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Abstract

In this note, we prove that if C is a duadic binary abelian code with splitting u = p—1 and
the minimum odd weight of C satisfies d> —d 4+ 1 # n, then d(d — 1) = n + 11. We show by
an example that this bound is sharp. A series of open problems on this subject are proposed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Duadic algebra codes were first introduced by Leon et al. [3] and Rushanan [7] as
a generalization of quadratic residue codes. It is known [3,7,9] that the minimum odd
weight of duadic algebra codes satisfy a square root bound. Tilborg [8,5] presented
an useful method to evaluate the weight of binary quadratic residue codes. Since the
core of this method is to decompose a kind of multiset, we name this method Tilborg’s
decomposition method. Using this method, Tilborg proved that if C is a binary quadratic
residue code of length n=—1 (mod 8) and the minimum odd weight d of C satisfies
d(d—1)>n—1, then d(d —1)=n+11. Pless et al. [6] generalized the result to duadic
binary cyclic codes with splitting u=pu_;.

The purpose of this note is to generalize the result of Tilborg [8,5] to duadic
abelian codes. Tilborg’s method is valid for the cyclic duadic codes. We first generalize
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Tilborg’s decomposition method to the abelian group case, and then prove the
following:

Theorem 1.1. Let F=GF(2) and G be an abelian group of order n. If C is a duadic
abelian code in FG with splitting u=u_, and the minimum weight of C satisfies
d’> —d +1+#n, then d(d —1)=n+ 11.

The bound in the theorem is sharp. In [6, Table II], Pless et al. illustrate two duadic
codes with length 31 and minimum weight 7.

2. Preliminaries

Throughout, = GF(q) is a finite field with ¢ elements and G is a group of order n,
where we assume that gcd(g,n)=1. All of our calculations take place in group algebra
FG. Let G={g1,92,----9n}, an clement of FG is the sums

> aign a€GF(q), g;€G, i=12,....n.

I1<i<n

The multiplicative identity of FG is denoted by 1. Any automorphism pe€ Aut(G)
defines an automorphism of FG by

u ( > aig,) = > g

1<i<n 1<i<n

If ged(n,t)=1, we define the automorphism p,(g)=1tg. Of special interest is the au-
tomorphism pu_;.

Because gcd(n,q)=1, FG is semi-simple, which means that any ideal of FG is
the unique sum of minimal ideals (see [1,4]). Ideals in FG are called abelian group
codes. Each code is generated by a unique idempotent; minimal ideals are generated
by primitive idempotents. If a code C is generated by an idempotent e, then we denote
C = (e). The idempotent eg = (1/n) 3, ., ., g: is called trivial idempotent. All primitive
idempotents not equal to ey are called nontrivial. If C is a code in FG and pu € Aut(G),
then p is an automorphism of C if and only if u fixes its idempotent.

For &= ) i, @9 €FG if Ceg=0, that is, D, _;_, a; =0, then the element ¢ is
called even-like. Otherwise it is called odd-like.

Definition 2.1. Let ¢; and e, be two idempotents of FG and u € Aut(G) satisfying the
following two properties:

1. e +ter =1+ e,
2. (e1)=ep and u(er)=ey.

Then (ey), {(ez), (1 —e;) and (1 — e;) are called duadic abelian codes determined by
e; and e;. The automorphism p is said to give the splitting for the duadic codes.
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The following proposition gave the necessary and sufficient condition for the exis-
tence of duadic abelian codes.

Proposition 2.2 (Zhang [10] and Ward and Zhu [9]). FG contains duadic abelian
codes with splitting u_, if and only if q has odd order modulo n.

3. Generalization of Tilborg’s decomposition method

In this section, we will introduce a generalization of Tilborg’s decomposition method.
Let {= ) ;a9 €FG, the set {g€G: a,#0} is said to be the support of ¢ and is
denoted by Supt(¢). Let Z(&) be the multiset defined by {g,g; : gi € Supt(), g; € Supt
(#-1(8)),i#j}. The number of elements in 2(¢) which appear exactly s times is
denote by n,. Let g € Z(&), we say that an element g; € Supt(¢) is related to g if there
exists some element g; € Supt(¢) such that g:g,-gj_] or g=¢;g; ! Denote the set of
elements in Z(¢) which are related to g by %ye)(g).

Lemma 3.1. Let g be an element of G that appears exactly s times in (). Then
Rae)(g) can be uniquely divided into the following blocks

[gilagil g5 90, gC]]a [gizagizgo e 9gi2gcz]s LR} [gira 9i.9,--- agl}gcr]’ (1)

where g;, € Roy)(9), 1 <I<r, and (1) satisfies the following properties:

1. each element in Ry \(g) appears in exactly one block,

2. if gi,g; are two elements in different blocks in (1), then g,-gj_1 #£9,
IS - Le<o(g) and ¢y + ¢+ -+ ¢ =s.

Where o(g) denotes the order of g and r,c;, 1 <i<r, are uniquely determined by g.

We say that (¢, ca,...c¢.) is the structure of g.
We now give two examples to illustrate the notations and the lemma.

Example 3.2. Let G= (a,b) be a group with a’ =5’ =1 (identity of G) and ab = ba.
G is an abelian group of order 49. Then e = 1 +(b+b*+b*) 30 d' +a+a®+a* is an
idempotent of FG. Let C = (e) be a code in FG then C has minimum odd weight 9.
Let ¢ = (ab® +ab*+ab®)e be a codeword of C with weight 9. By definition, Supt(&)=
{B3, b*, B8, a*b3, a*b*, a*bS, abb3, abb*, aSb} and Rysy(a)={b?, b, b6, ab3, abb?,
aSb%}. Ay¢(a) can be decomposed into the following blocks which satisfies the con-
ditions given by Lemma 3.1

[a°B*,a%b3a = b],[a®b*, a®b*a = b*], [a®D®, a®bCa = b°].

Example 3.3. Let G = (g) with g*’ =1 and GF(47) be a field, O is the set of quadratic
residues of GF(47). Let e= Ziegxi. Then (e) is a code with minimum weight 11

and E=x" +x"7 + 4220 + x2 + x5 + 330 + 3 + 32 + 3 + 1P +x* is a codeword
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with minimum odd weight. Sup(¢&)={x?, x!7, x?°, x22,x%, %0, X3!, x32, x34, x¥, x¥}

and x12 = x9x—# — 32,20 — 34,22 _ )43,-31 _ 44,32 Congider the set R ((x12).

At the first step, we can get the following blocks:
07, 620, 2, 22, 340, ), P, 2, oM

can concatenate the second, fifth and the first block into a block. By arranging the
blocks, we get

[x22 22 12] [x31 x43] [x20 x20x12 20(x12)2,x20(x12)3].

It is easily seen that the above blocks are the needed blocks.
We now prove Lemma 3.1.

Proof. Let Z9)(g) = {9i1»9ip»- - 2Gis9jy = 919> 9jp = 9irGs - - -5 gj, = 9,9} be the multiset
of the elements in Z(¢) which are related to g. We first construct the following blocks:

[gilogilg]o[gizagizg]a~~~a[gl}agl}g]' (2)

If there does exists some k #[,1<k,[<s, such that iy =j,, we are done. Otherwise,
we can concatenate the blocks into one block. Without loss of generality, we assume
that i, = j;. Then g;, = gy;,, it follows that the elements g;, g;, =919, 9, = 9i, g* are
in the same block. Thus, we get the following blocks:

[9i1- 994 = 97+ 919" = 9.1 [9irs 91291 - - - . [Gir» 91,9

Assume that we have gotten the following blocks:

[gi| »9i95- -5 Y5 gal]’ [giz> 9dirgs- -+ gizgaz]’ [RRE) [gi,a 9i9,--- 7gi/gal]' (3)

If there does not exist any i,i; € {i1,i,...i;} and 0<h<a;, 0<m<a;, such that
9i.9"(g:,9™) "' =g, then we are done. Otherwise, if A=m — 1, then g;, = g;, g" "= 1; if
h<m — 1, then g;, :gi,g(’”“_’”. In either case, we can concatenate the /th block and
the kth block into a block. Continue in this way and arrange the blocks such that the
blocks satisfies the property 3, we get the required blocks. [

Letci+cy+ -+ ¢ +r=N. Obviously N <d. We have the following:

Lemma 3.4. Let g be an element of G that appears s times in Z(&) and g has
structure (¢1,¢p,...,¢,). Then N(N — 1) —2e —2r(r — 1)< 25;23’% where N =c; +
o+ 4o t+r=r+sande=1ifc,>c,_1orr=1;e=0if ¢,=c,_.

Proof. Let Riye)(9) denote the multi-set {Jljg (9i9™ " D 1<), k<, 1<h<cj,1<m
<ck, (ij,h) # (zk,m)} generated by the elements in the blocks of (1). Obviously, |, 25)
(9)|=N(N —1). Consider the total number of elements in A7 (9) that appear at least
twice. Realize that an element in 7, .)(g) appears exactly once only if #=c; and m=0
or h=0and m=c; or ¢, >c,_1.
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Thus, the number of elements in %7 (g) that appears at least twice is equal to
NN —-1)=2-=-2r(r—1),if ¢,>c,_1 or N(N = 1)—=2r(r — 1), if ¢, =¢,_1.

On the other hand, the number of elements in Z(¢) that appears at least twice
is equal to ) _,sn,. Lemma 3.4 now follows from the observation that Ro:)(9)
co). O

The following lemma tells us the information about .

Lemma 3.5. Let F =GF(2), then

(1) Yoyng=n—1,

(2) nps=0 for all s,
(3) ny is even for all s,
(4) ny=0 for all s>d,
(5) Yo sny=d(d —1).

Proof. By Definition 1, we have
etpui(e)=1+e 4)

and there is an element = deG byg € FG such that £ =ye. Since ¢ is odd-like, # is
odd-like too, that is } by # 0. It follows that:

2

nu_r(meo= | > _ by | e (5)

geG

and that the weight of nu_;(n)ey is n. Since e is an odd-like idempotent, by the
definition, we have

en_1(e)=e(1+ ey — €)= ey, 6)

Since Eu—1(&) =npu—1(n)epu—1(e)=nu—_1(n)eo, then the weight of cu_1(<) is n, thus
each non-identity element of G appears in Z(¢). (1) is now proved

Since F = GF(2) and {p_1(&) has weight n, there does not exist any element g € G
such that g appears even times in the multi-set Z(&). So ny; =0 for all s.

Now we assume that some element g:gigjfl appears s times in (&), then g~ ! =
g[_]gj appears s times in 2(¢) too. Statement (2) now follows from the observation that
g#g~" for any g € Z(¢). Indeed, if g=g~', then g = 1. By Lagrange Theorem, 2|n.
This contradicts the assumption that gcd(2,n)=1.

Suppose that there is some s>d such that n; >0, then there exists some g € G such
that g appears s times in Z(&). Without loss of generality, assume that g =g, g_;l, k=1,
2,...,s. Since there exactly d distinct terms in ¢, there exist £ and /, such that g; =g;,.
Since gl-kgj;1 :g,-,gj_ll, it follows that g; = g;,. This means that (i, jx )= (i, /;), a con-
tradiction. Thus for each g€ G, g appears at most d times in Z(&). (3) is now
proved.
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Since there are d(d — 1) terms in Z(&) and Eu_1(&) has weight n, then
> sny=d(d - 1). (7)

Lemma 3.5 is now proved. [

4. Proof of Theorem 1.1

In order to prove our main results, the following lemmas are needed:
Lemma 4.1 ([2]). For any odd integer m, gcd(2™ — 1,3)=1.
Lemma 4.2 ([2]). For any odd integer m, gcd(2™ — 1,5)=1.

Proof of Theorem 1.1. Since d(d — 1)>n—1, then d(d — 1) —(n — 1)=mny + 2n3 +
3n4 + 4ns + Sng + 6n7 + --- >0. By Lemma 3.5,n,,=0 for all 5, so d(d — 1) —n=
—1+4+ny +2n3+3n4 +4ns + Sng +6n7 +--- =—1+2n3 +4ns +6n7 +--- .

Assume to the contrary, that d(d — 1)<n + 11. By Lemma 3.5 n; is even. Since
2n3 + 4ns + 6n; + - - - <12, then there are three cases

Case 1: n3 =2 and n, =0 for all s>3. Let g be an element of G that appears 3 times
and g has structure (cy,cz,...,¢). If r=3, then (c1,c2,¢c3)=(1,1,1) and N(N — 1) —
26 =2r(r—1)=18; if r=2, then (c1,c2)=(1,2) and N(N —1)—2¢—=2r(r —1)=14; if
r=1, then (¢;)=(3) and N(N —1)—2¢—2r(r—1)=10. Because 25235’15 =3x2=6,
we see that all possibilities contradict Lemma 3.4.

Case 2: ns=2 and ny;=0 for all s>3 and s#5. Then there is some element g
that appears 5 times. Let the structure of g be (¢1,ca,...,¢). Of course, r<5. Since
g appears 5 times in (&) then N=c;+c+--+¢, +r=r+35. Thus NW — 1) —
26 =2r(r— 1) =(r+5)(r+4)—2—2r(r —1). By Lemma 3.4, we have

(r +5)(r +4) =2 = 2r(r — DSN(N — 1) =26 = 2r(r — )< Y _ ing=10.

But the above inequalities does not hold for 1 <r<5.

Case 3: n3=4 and n,=0 for all s>3. In this case, 2‘935’15 =12. Let g be
the element appears 3 times and g has structure (¢, c3,...,¢.). If r=3, then (c1,¢2,¢3) =
(1,1,1) and N(N — 1) — 2¢ — 2r(r — 1)=30. If r=2, then (cy,c2)=(1,2) and
N(N —1)—2e—2r(r—1)=14. We see that all the above possibilities contradict Lemma
3.4. Thus r=1 and each g€ G that appears three times has structure (3). Let g be
such an element, then there exists g;,,d;,,di»¢i, such that g:g,-lg;1 :gizgizl :g@gijl.
Realize that ¢> = g;,9;,'95,9;,' =995, and also g =g;,g;,", one know that g> appears
3 times, then there exists g, g € {g1,92,--.,ga} such that g° :gisg,—zl. Since g* has
structure (3) and g° :gilgg' :g,-zgi:], then is =i3 and ig =i, or is=1i4 and ic =1;.

(1) If is=1i3 and ig =1i,, then gzzg,-sgiz1 :g,-3gi;1 =g~ !, it follows that g°> =1. Thus
3|n. But by Proposition 2.2, 2 has odd order modulo #. This implies that there exists
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some odd positive integer m, such that n|2” — 1, thus 3|2” — 1. This contradicts
Lemma 4.1.

(2) If is=iy and ig =1y, then ¢* =gig; ' =9i9;," =995, 9095, 919, )" =g, it
follows that g>=1. Thus 5|n. It follows that 52" — 1 for some odd positive
integer m. This contradicts Lemma 4.2.

Thus d(d — 1) — (n — 1)>12. The Theorem is now proved. []

5. Further remarks

Firstly, it is worth mentioning that although the bound given in Theorem 1.1 is sharp
we could not find more duadic codes such that the minimum odd weight d satisfies
d?> —d=n+11. We would like to propose the following:

Problem 5.1. Is there infinitely family of other duadic code such that the minimum
weight d satisfies d*> —d =n + 11?

Secondly, it is well known that if C is an odd-like duadic code in FG with splitting
u=p_; and C contains an odd-like vector ¢ with weight d satisfying d*> —d + 1=n,
then the support of all vectors with weight d in C forms a projective plane of order d—1
[7,11]. An interesting question has been proposed by the referee: Is there something
to be said for the case d(d — 1)=n+ 11?

With the aid of computer, we have found all the minimum weight vectors of the
two (31,16,7) codes. Let C; be the (31,16,7) cyclic duadic code generated by x +
X2 xS b xT xS X0  x10 14 16 18 19 4 (20 4 025 L 008 Then the
minimum weight vectors of C; are x'(x! 4+x? +x7 +x'0 +x26 +x7 +x28), x'(x* +x7 +
X190 4 322 4 025) (2 6y T e 13 1T 26 i g x6 gyl
x4 x4 x2 4 x30), x4+ a0 X 20 x84 x30), i=0,1,2,...,30. Using
difference family theory, we know that they constitute a (31,7,7)-BIBD.

Let C, be the (31,16,7) cyclic duadic code generated by x +x% 4 x> +x* + x> +x° +
x84+ 4 x10 12 4 x10 4 x17 4 x18 4 x20 4 x24. Then the minimum weight vectors of C,
are x/(x? +x a7 0 £t E x4 x28), w67 a0 4t a2 a2 42 4130, xi(1 4
X0 x12 1S 21 4 30) i S pl0 2 I3 16 4 (25 i gyt g
24+ x5 +x2%), i=0,1,2,...,30. They also constitute a (31,7,7)-BIBD.

If the answer to our Problem 5.1 is affirmative, we would like to propose the
following:

Problem 5.2. Suppose C is an abelian duadic code with minimum weight d satisfying
d*> —d=n+11. Whether the support of all vectors with minimum odd weight d form
a BIBD?

Next, we have checked by computer that the support of the minimum odd weight
codewords of (23,12,7)-code, (41,21,9)-code, (47,24,7)-code constitute a (23,7,21)-
BIBD, (41,9,18)-BIBD and (47,11,220)-BIBD, respectively, while the support of the
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minimum odd weight codewords of a (17,8,5) code does not constitute a BIBD. The
following problem seems challenging.

Problem 5.3. Characterize those duadic codes whose support of all vectors with min-
imum odd weight d form a BIBD.
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