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Abstract

In this note, we prove that if C is a duadic binary abelian code with splitting � = �−1 and
the minimum odd weight of C satis-es d2 − d + 1 �= n, then d(d − 1)¿ n + 11. We show by
an example that this bound is sharp. A series of open problems on this subject are proposed.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Duadic algebra codes were -rst introduced by Leon et al. [3] and Rushanan [7] as
a generalization of quadratic residue codes. It is known [3,7,9] that the minimum odd
weight of duadic algebra codes satisfy a square root bound. Tilborg [8,5] presented
an useful method to evaluate the weight of binary quadratic residue codes. Since the
core of this method is to decompose a kind of multiset, we name this method Tilborg’s
decomposition method. Using this method, Tilborg proved that if C is a binary quadratic
residue code of length n≡−1 (mod 8) and the minimum odd weight d of C satis-es
d(d−1)¿n−1, then d(d−1)¿n+11. Pless et al. [6] generalized the result to duadic
binary cyclic codes with splitting �= �−1.
The purpose of this note is to generalize the result of Tilborg [8,5] to duadic

abelian codes. Tilborg’s method is valid for the cyclic duadic codes. We -rst generalize
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Tilborg’s decomposition method to the abelian group case, and then prove the
following:

Theorem 1.1. Let F =GF(2) and G be an abelian group of order n. If C is a duadic
abelian code in FG with splitting �= �−1 and the minimum weight of C satis7es
d2 − d+ 1 �= n, then d(d − 1)¿n+ 11.

The bound in the theorem is sharp. In [6, Table II], Pless et al. illustrate two duadic
codes with length 31 and minimum weight 7.

2. Preliminaries

Throughout, F =GF(q) is a -nite -eld with q elements and G is a group of order n,
where we assume that gcd(q; n)= 1. All of our calculations take place in group algebra
FG. Let G= {g1; g2; : : : ; gn}, an element of FG is the sums∑

16i6n

aigi; ai ∈GF(q); gi ∈G; i=1; 2; : : : ; n:

The multiplicative identity of FG is denoted by 1. Any automorphism �∈Aut(G)
de-nes an automorphism of FG by

�

( ∑
16i6n

aigi

)
=
∑
16i6n

ai�(gi):

If gcd(n; t)= 1, we de-ne the automorphism �t(g)= tg. Of special interest is the au-
tomorphism �−1.
Because gcd(n; q)= 1, FG is semi-simple, which means that any ideal of FG is

the unique sum of minimal ideals (see [1,4]). Ideals in FG are called abelian group
codes. Each code is generated by a unique idempotent; minimal ideals are generated
by primitive idempotents. If a code C is generated by an idempotent e, then we denote
C = 〈e〉. The idempotent e0 = (1=n)

∑
16i6n gi is called trivial idempotent. All primitive

idempotents not equal to e0 are called nontrivial. If C is a code in FG and �∈Aut(G),
then � is an automorphism of C if and only if � -xes its idempotent.
For �=

∑
16i6n aigi ∈FG if �e0 = 0, that is,

∑
16i6n ai=0, then the element � is

called even-like. Otherwise it is called odd-like.

De�nition 2.1. Let e1 and e2 be two idempotents of FG and �∈Aut(G) satisfying the
following two properties:

1. e1 + e2 = 1+ e0,
2. �(e1)= e2 and �(e2)= e1.

Then 〈e1〉, 〈e2〉, 〈1 − e1〉 and 〈1 − e2〉 are called duadic abelian codes determined by
e1 and e2. The automorphism � is said to give the splitting for the duadic codes.
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The following proposition gave the necessary and suLcient condition for the exis-
tence of duadic abelian codes.

Proposition 2.2 (Zhang [10] and Ward and Zhu [9]). FG contains duadic abelian
codes with splitting �−1 if and only if q has odd order modulo n.

3. Generalization of Tilborg’s decomposition method

In this section, we will introduce a generalization of Tilborg’s decomposition method.
Let �=

∑
g∈G agg∈FG; the set {g∈G : ag �=0} is said to be the support of � and is

denoted by Supt(�). Let D(�) be the multiset de-ned by {gigj : gi ∈Supt(�); gj ∈Supt
(�−1(�)); i �= j}. The number of elements in D(�) which appear exactly s times is
denote by ns. Let g∈D(�), we say that an element gi ∈Supt(�) is related to g if there
exists some element gj ∈Supt(�) such that g= gig−1j or g= gjg−1i . Denote the set of
elements in D(�) which are related to g by RD(�)(g).

Lemma 3.1. Let g be an element of G that appears exactly s times in D(�). Then
RD(�)(g) can be uniquely divided into the following blocks

[gi1 ; gi1g; : : : ; gi1g
c1 ]; [gi2 ; gi2g; : : : ; gi2g

c2 ]; : : : ; [gir ; gir g; : : : ; gir g
cr ]; (1)

where gil ∈RD(�)(g), 16l6r, and (1) satis7es the following properties:

1. each element in RD(�)(g) appears in exactly one block,
2. if gi; gj are two elements in di<erent blocks in (1), then gig−1j �= g,
3. 16c16c26 · · ·6cr¡o(g) and c1 + c2 + · · ·+ cr = s.

Where o(g) denotes the order of g and r; ci; 16i6r, are uniquely determined by g.

We say that (c1; c2; : : : cr) is the structure of g.
We now give two examples to illustrate the notations and the lemma.

Example 3.2. Let G= 〈a; b〉 be a group with a7 = b7 = 1 (identity of G) and ab= ba.
G is an abelian group of order 49. Then e=1+(b+b2+b4)

∑6
i=0 a

i+a+a2+a4 is an
idempotent of FG. Let C = 〈e〉 be a code in FG then C has minimum odd weight 9.
Let �=(ab3+ab4+ab6)e be a codeword of C with weight 9. By de-nition, Supt(�)=
{b3, b4, b6, a4b3, a4b4, a4b6, a6b3, a6b4, a6b6} and RD(�)(a)= {b3, b4, b6, a6b3, a6b4,
a6b6}. RD(�)(a) can be decomposed into the following blocks which satis-es the con-
ditions given by Lemma 3.1

[a6b3; a6b3a= b3]; [a6b4; a6b4a= b4]; [a6b6; a6b6a= b6]:

Example 3.3. Let G= 〈g〉 with g47 = 1 and GF(47) be a -eld; Q is the set of quadratic
residues of GF(47). Let e=

∑
i∈Q xi. Then 〈e〉 is a code with minimum weight 11

and �= x9 + x17 + +x20 + x22 + x25 + x30 + x31 + x32 + x34 + x43 + x44 is a codeword
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with minimum odd weight. Sup(�)= {x9, x17, x20, x22; x25, x30, x31, x32, x34, x43, x44}
and x12 = x9x−44 = x32x−20 = x34x−22 = x43x−31 = x44x−32. Consider the set RD(�)(x12).
At the -rst step, we can get the following blocks:

[x44; x9]; [x20; x32]; [x22; x34]; [x31; x43]; [x32; x44]

can concatenate the second, -fth and the -rst block into a block. By arranging the
blocks, we get

[x22; x22x12]; [x31; x43]; [x20; x20x12; x20(x12)2; x20(x12)3]:

It is easily seen that the above blocks are the needed blocks.
We now prove Lemma 3.1.

Proof. Let RD(�)(g)= {gi1 ; gi2 ; : : : ; gis ; gj1 = gi1g, gj2 = gi2g; : : : ; gjs = gisg} be the multiset
of the elements in D(�) which are related to g. We -rst construct the following blocks:

[gi1 ; gi1g]; [gi2 ; gi2g]; : : : ; [gis ; gisg]: (2)

If there does exists some k �= l; 16k; l6s, such that ik = jl, we are done. Otherwise,
we can concatenate the blocks into one block. Without loss of generality, we assume
that i2 = j1. Then gj2 = ggj1 , it follows that the elements gi1 , gj1 = gi1g, gj2 = gi1g

2 are
in the same block. Thus, we get the following blocks:

[gi1 ; ggi1 = gj1 ; gi1g
2 = gj2 ]; [gi2 ; gi2g]; : : : ; [gik ; gik g]:

Assume that we have gotten the following blocks:

[gi1 ; gi1g; : : : ; gi1g
a1 ]; [gi2 ; gi2g; : : : ; gi2g

a2 ]; : : : ; [git ; git g; : : : ; git g
at ]: (3)

If there does not exist any ik ; il ∈{i1; i2; : : : it} and 06h6ak , 06m6al, such that
gik g

h(gilg
m)−1 = g, then we are done. Otherwise, if h¿m− 1, then gil = gik g

(h−m−1); if
h¡m − 1, then gik = gilg

(m+1−h). In either case, we can concatenate the lth block and
the kth block into a block. Continue in this way and arrange the blocks such that the
blocks satis-es the property 3, we get the required blocks.

Let c1 + c2 + · · ·+ cr + r=N . Obviously N6d. We have the following:

Lemma 3.4. Let g be an element of G that appears s times in D(�) and g has
structure (c1; c2; : : : ; cr). Then N (N − 1)− 2 − 2r(r − 1)6∑s¿2 sns, where N = c1 +
c2 + · · ·+ cr + r= r + s and  =1 if cr¿cr−1 or r=1;  =0 if cr = cr−1.

Proof. Let R∗
D(�)(g) denote the multi-set {gij g

h(gik g
m)−1 : 16j; k6r; 16h6cj; 16m

6ck ; (ij; h) �=(ik ; m)} generated by the elements in the blocks of (1). Obviously, |R∗
D(�)

(g)|=N (N −1). Consider the total number of elements in R∗
D(�)(g) that appear at least

twice. Realize that an element in R∗
D(�)(g) appears exactly once only if h= cj and m=0

or h=0 and m= ck or cr¿cr−1.
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Thus, the number of elements in R∗
D(�)(g) that appears at least twice is equal to

N (N − 1)− 2− 2r(r − 1), if cr¿cr−1 or N (N − 1)− 2r(r − 1), if cr = cr−1.
On the other hand, the number of elements in D(�) that appears at least twice

is equal to
∑

s¿2 sns. Lemma 3.4 now follows from the observation that R∗
D(�)(g)

⊆D(�).

The following lemma tells us the information about ns.

Lemma 3.5. Let F =GF(2), then

(1)
∑

s ns= n − 1,
(2) n2s=0 for all s,
(3) ns is even for all s,
(4) ns=0 for all s¿d,
(5)

∑
s sns=d(d − 1).

Proof. By De-nition 1, we have

e + �−1(e)= 1+ e0 (4)

and there is an element !=
∑

g∈G bgg∈FG such that �= !e. Since � is odd-like, ! is
odd-like too, that is

∑
g∈G bg �=0. It follows that:

!�−1(!)e0 =


∑

g∈G

bg



2

e0 (5)

and that the weight of !�−1(!)e0 is n. Since e is an odd-like idempotent, by the
de-nition, we have

e�−1(e)= e(1+ e0 − e)= e0: (6)

Since ��−1(�) = !�−1(!)e�−1(e)= !�−1(!)e0, then the weight of ��−1(�) is n, thus
each non-identity element of G appears in D(�). (1) is now proved
Since F =GF(2) and ��−1(�) has weight n, there does not exist any element g∈G

such that g appears even times in the multi-set D(�). So n2s=0 for all s.
Now we assume that some element g= gig−1j appears s times in D(�), then g−1 =

g−1i gj appears s times in D(�) too. Statement (2) now follows from the observation that
g �= g−1 for any g∈D(�). Indeed, if g= g−1, then g2 = 1. By Lagrange Theorem, 2|n.
This contradicts the assumption that gcd(2; n)= 1.
Suppose that there is some s¿d such that ns¿0, then there exists some g∈G such

that g appears s times in D(�). Without loss of generality, assume that g= gik g
−1
jk ; k =1;

2; : : : ; s. Since there exactly d distinct terms in �, there exist k and l, such that gik = gil .
Since gik g

−1
jk = gilg

−1
jl , it follows that gjk = gjl . This means that (ik ; jk)= (il; jl), a con-

tradiction. Thus for each g∈G, g appears at most d times in D(�). (3) is now
proved.
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Since there are d(d − 1) terms in D(�) and ��−1(�) has weight n, then∑
s

sns=d(d − 1): (7)

Lemma 3.5 is now proved.

4. Proof of Theorem 1.1

In order to prove our main results, the following lemmas are needed:

Lemma 4.1 ([2]). For any odd integer m, gcd(2m − 1; 3)=1.

Lemma 4.2 ([2]). For any odd integer m, gcd(2m − 1; 5)=1.

Proof of Theorem 1.1. Since d(d − 1)¿n − 1, then d(d − 1) − (n − 1)= n2 + 2n3 +
3n4 + 4n5 + 5n6 + 6n7 + · · ·¿0. By Lemma 3.5; n2s=0 for all s, so d(d − 1) − n=
−1 + n2 + 2n3 + 3n4 + 4n5 + 5n6 + 6n7 + · · · =−1 + 2n3 + 4n5 + 6n7 + · · · .
Assume to the contrary, that d(d − 1)¡n + 11. By Lemma 3.5 ns is even. Since

2n3 + 4n5 + 6n7 + · · ·¡12, then there are three cases
Case 1: n3 = 2 and ns=0 for all s¿3. Let g be an element of G that appears 3 times

and g has structure (c1; c2; : : : ; cr). If r=3, then (c1; c2; c3)= (1; 1; 1) and N (N − 1)−
2 −2r(r−1)=18; if r=2, then (c1; c2)= (1; 2) and N (N −1)−2 −2r(r−1)=14; if
r=1, then (c1)= (3) and N (N−1)−2 −2r(r−1)=10. Because ∑s¿3 sns=3× 2=6,
we see that all possibilities contradict Lemma 3.4.
Case 2: n5 = 2 and ns=0 for all s¿3 and s �=5. Then there is some element g

that appears 5 times. Let the structure of g be (c1; c2; : : : ; cr). Of course, r65. Since
g appears 5 times in D(�) then N = c1 + c2 + · · ·+ cr + r= r + 5. Thus N (N − 1)−
2 − 2r(r − 1)¿(r + 5)(r + 4)− 2− 2r(r − 1). By Lemma 3.4, we have

(r + 5)(r + 4)− 2− 2r(r − 1)6N (N − 1)− 2 − 2r(r − 1)6
∑

s

ins=10:

But the above inequalities does not hold for 16r65.
Case 3: n3 = 4 and ns=0 for all s¿3. In this case,

∑
s¿3 sns=12. Let g be

the element appears 3 times and g has structure (c1; c2; : : : ; cr). If r=3, then (c1; c2; c3)=
(1; 1; 1) and N (N − 1) − 2 − 2r(r − 1)=30. If r=2, then (c1; c2)= (1; 2) and
N (N−1)−2 −2r(r−1)=14. We see that all the above possibilities contradict Lemma
3.4. Thus r=1 and each g∈G that appears three times has structure (3). Let g be
such an element, then there exists gi1 ; gi2 ; gi3 ; gi4 such that g= gi1g

−1
i2 = gi2g

−1
i3 = gi3g

−1
i4 .

Realize that g2 = gi1g
−1
i2 gi2g

−1
i3 = gi1g

−1
i3 and also g2 = gi2g

−1
i4 , one know that g2 appears

3 times, then there exists gi5 ; gi6 ∈{g1; g2; : : : ; gd} such that g2 = gi5g
−1
i6 . Since g2 has

structure (3) and g2 = gi1g
−1
i3 = gi2g

−1
i4 , then i5 = i3 and i6 = i2 or i5 = i4 and i6 = i1.

(1) If i5 = i3 and i6 = i2, then g2 = gi5g
−1
i6 = gi3g

−1
i2 = g−1, it follows that g3 = 1. Thus

3|n. But by Proposition 2.2, 2 has odd order modulo n. This implies that there exists
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some odd positive integer m, such that n|2m − 1, thus 3|2m − 1. This contradicts
Lemma 4.1.

(2) If i5 = i4 and i6 = i1, then g2 = gi5g
−1
i6 = gi4g

−1
i2 = (gi1g

−1
i2 gi2g

−1
i3 gi3g

−1
i4 )

−1 = g−3, it
follows that g5 = 1. Thus 5|n. It follows that 5|2m − 1 for some odd positive
integer m. This contradicts Lemma 4.2.

Thus d(d − 1)− (n − 1)¿12. The Theorem is now proved.

5. Further remarks

Firstly, it is worth mentioning that although the bound given in Theorem 1.1 is sharp
we could not -nd more duadic codes such that the minimum odd weight d satis-es
d2 − d= n+ 11. We would like to propose the following:

Problem 5.1. Is there in7nitely family of other duadic code such that the minimum
weight d satis7es d2 − d= n+ 11?

Secondly, it is well known that if C is an odd-like duadic code in FG with splitting
�= �−1 and C contains an odd-like vector � with weight d satisfying d2 − d+ 1= n,
then the support of all vectors with weight d in C forms a projective plane of order d−1
[7,11]. An interesting question has been proposed by the referee: Is there something
to be said for the case d(d − 1)= n+ 11?
With the aid of computer, we have found all the minimum weight vectors of the

two (31; 16; 7) codes. Let C1 be the (31; 16; 7) cyclic duadic code generated by x +
x2 + x4 + x5 + x7 + x8 + x9 + x10 + x14 + x16 + x18 + x19 + x20 + x25 + x28. Then the
minimum weight vectors of C1 are xi(x1 + x2 + x7 + x10 + x26 + x27 + x28); xi(x4 + x7 +
x11 + x19 + x20 + x22 + x25); xi(x2 + x6 + x7 ++x9 + x13 + x17 + x26); xi(x3 + x6 + x11 +
x19 + x20 + x28 + x30); xi(x9 + x15 + x16 + x18 + x20 + x28 + x30); i=0; 1; 2; : : : ; 30. Using
diOerence family theory, we know that they constitute a (31; 7; 7)-BIBD.
Let C2 be the (31; 16; 7) cyclic duadic code generated by x+ x2 + x3 + x4 + x5 + x6 +

x8 +x9 +x10 +x12 +x16 +x17 +x18 +x20 +x24. Then the minimum weight vectors of C2
are xi(x2+x4+x7+x9+x11+x27+x28); xi(x7+x10+x11+x23+x28+x29+x30); xi(1+
x4 + x6 + x12 + x15 + x21 + x30); xi(x2 + x5 + x10 + x12 + x13 + x16 + x25); xi(1 + x4 +
x8 + x9 + x11 + x21 + x25); i=0; 1; 2; : : : ; 30. They also constitute a (31; 7; 7)-BIBD.
If the answer to our Problem 5.1 is aLrmative, we would like to propose the

following:

Problem 5.2. Suppose C is an abelian duadic code with minimum weight d satisfying
d2−d= n+11. Whether the support of all vectors with minimum odd weight d form
a BIBD?

Next, we have checked by computer that the support of the minimum odd weight
codewords of (23; 12; 7)-code, (41; 21; 9)-code, (47; 24; 7)-code constitute a (23; 7; 21)-
BIBD, (41; 9; 18)-BIBD and (47; 11; 220)-BIBD, respectively, while the support of the
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minimum odd weight codewords of a (17; 8; 5) code does not constitute a BIBD. The
following problem seems challenging.

Problem 5.3. Characterize those duadic codes whose support of all vectors with min-
imum odd weight d form a BIBD.
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