Note

On weights in duadic abelian codes ${ }^{\text {Th }}$

Qiaoliang $\mathrm{Li}^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, Hunan Normal University, Changsha 410081, People's Republic of China
${ }^{\mathrm{b}}$ Center for Combinatorics, The Key Laboratory of Pure Mathematics and Combinatorics of Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China

Received 4 January 2000; received in revised form 24 May 2002; accepted 3 June 2002

Abstract

In this note, we prove that if C is a duadic binary abelian code with splitting $\mu=\mu_{-1}$ and the minimum odd weight of C satisfies $d^{2}-d+1 \neq n$, then $d(d-1) \geqslant n+11$. We show by an example that this bound is sharp. A series of open problems on this subject are proposed. (c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Duadic abelian codes; Primitive idempotent; Group algebra; Weight

1. Introduction

Duadic algebra codes were first introduced by Leon et al. [3] and Rushanan [7] as a generalization of quadratic residue codes. It is known $[3,7,9]$ that the minimum odd weight of duadic algebra codes satisfy a square root bound. Tilborg [8,5] presented an useful method to evaluate the weight of binary quadratic residue codes. Since the core of this method is to decompose a kind of multiset, we name this method Tilborg's decomposition method. Using this method, Tilborg proved that if C is a binary quadratic residue code of length $n \equiv-1(\bmod 8)$ and the minimum odd weight d of C satisfies $d(d-1)>n-1$, then $d(d-1) \geqslant n+11$. Pless et al. [6] generalized the result to duadic binary cyclic codes with splitting $\mu=\mu_{-1}$.

The purpose of this note is to generalize the result of Tilborg [8,5] to duadic abelian codes. Tilborg's method is valid for the cyclic duadic codes. We first generalize

[^0]Tilborg's decomposition method to the abelian group case, and then prove the following:

Theorem 1.1. Let $F=G F(2)$ and G be an abelian group of order n. If C is a duadic abelian code in $F G$ with splitting $\mu=\mu_{-1}$ and the minimum weight of C satisfies $d^{2}-d+1 \neq n$, then $d(d-1) \geqslant n+11$.

The bound in the theorem is sharp. In [6, Table II], Pless et al. illustrate two duadic codes with length 31 and minimum weight 7.

2. Preliminaries

Throughout, $F=G F(q)$ is a finite field with q elements and G is a group of order n, where we assume that $\operatorname{gcd}(q, n)=1$. All of our calculations take place in group algebra FG. Let $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, an element of $F G$ is the sums

$$
\sum_{1 \leqslant i \leqslant n} a_{i} g_{i}, \quad a_{i} \in G F(q), g_{i} \in G, i=1,2, \ldots, n .
$$

The multiplicative identity of $F G$ is denoted by 1. Any automorphism $\mu \in \operatorname{Aut}(G)$ defines an automorphism of $F G$ by

$$
\mu\left(\sum_{1 \leqslant i \leqslant n} a_{i} g_{i}\right)=\sum_{1 \leqslant i \leqslant n} a_{i} \mu\left(g_{i}\right) .
$$

If $\operatorname{gcd}(n, t)=1$, we define the automorphism $\mu_{t}(g)=t g$. Of special interest is the automorphism μ_{-1}.

Because $\operatorname{gcd}(n, q)=1, F G$ is semi-simple, which means that any ideal of $F G$ is the unique sum of minimal ideals (see [1,4]). Ideals in $F G$ are called abelian group codes. Each code is generated by a unique idempotent; minimal ideals are generated by primitive idempotents. If a code C is generated by an idempotent e, then we denote $C=\langle e\rangle$. The idempotent $e_{0}=(1 / n) \sum_{1 \leqslant i \leqslant n} g_{i}$ is called trivial idempotent. All primitive idempotents not equal to e_{0} are called nontrivial. If C is a code in $F G$ and $\mu \in \operatorname{Aut}(G)$, then μ is an automorphism of C if and only if μ fixes its idempotent.

For $\xi=\sum_{1 \leqslant i \leqslant n} a_{i} g_{i} \in F G$ if $\xi e_{0}=0$, that is, $\sum_{1 \leqslant i \leqslant n} a_{i}=0$, then the element ξ is called even-like. Otherwise it is called odd-like.

Definition 2.1. Let e_{1} and e_{2} be two idempotents of $F G$ and $\mu \in \operatorname{Aut}(G)$ satisfying the following two properties:

1. $e_{1}+e_{2}=1+e_{0}$,
2. $\mu\left(e_{1}\right)=e_{2}$ and $\mu\left(e_{2}\right)=e_{1}$.

Then $\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle\mathbf{1}-e_{1}\right\rangle$ and $\left\langle\mathbf{1}-e_{2}\right\rangle$ are called duadic abelian codes determined by e_{1} and e_{2}. The automorphism μ is said to give the splitting for the duadic codes.

The following proposition gave the necessary and sufficient condition for the existence of duadic abelian codes.

Proposition 2.2 (Zhang [10] and Ward and Zhu [9]). FG contains duadic abelian codes with splitting μ_{-1} if and only if q has odd order modulo n.

3. Generalization of Tilborg's decomposition method

In this section, we will introduce a generalization of Tilborg's decomposition method. Let $\xi=\sum_{g \in G} a_{g} g \in F G$, the set $\left\{g \in G: a_{g} \neq 0\right\}$ is said to be the support of ξ and is denoted by $\operatorname{Supt}(\xi)$. Let $\mathscr{D}(\xi)$ be the multiset defined by $\left\{g_{i} g_{j}: g_{i} \in \operatorname{Supt}(\xi)\right.$, $g_{j} \in \operatorname{Supt}$ $\left.\left(\mu_{-1}(\xi)\right), i \neq j\right\}$. The number of elements in $\mathscr{D}(\xi)$ which appear exactly s times is denote by n_{s}. Let $g \in \mathscr{D}(\xi)$, we say that an element $g_{i} \in \operatorname{Supt}(\xi)$ is related to g if there exists some element $g_{j} \in \operatorname{Supt}(\xi)$ such that $g=g_{i} g_{j}^{-1}$ or $g=g_{j} g_{i}^{-1}$. Denote the set of elements in $\mathscr{D}(\xi)$ which are related to g by $\mathscr{R}_{\mathscr{O}(\xi)}(g)$.

Lemma 3.1. Let g be an element of G that appears exactly s times in $\mathscr{D}(\xi)$. Then $\mathscr{R}_{\mathscr{O}(\xi)}(\mathrm{g})$ can be uniquely divided into the following blocks

$$
\begin{equation*}
\left[g_{i_{1}}, g_{i_{1}} g, \ldots, g_{i_{1}} g^{c_{1}}\right],\left[g_{i_{2}}, g_{i_{2}} g, \ldots, g_{i_{2}} g^{c_{2}}\right], \ldots,\left[g_{i_{r}}, g_{i_{r}} g, \ldots, g_{i_{r}} g^{c_{r}}\right] \tag{1}
\end{equation*}
$$

where $g_{i_{l}} \in \mathscr{R}_{\mathscr{(\xi)}}(g), 1 \leqslant l \leqslant r$, and (1) satisfies the following properties:

1. each element in $\mathscr{R}_{\mathscr{O}(\xi)}(g)$ appears in exactly one block,
2. if g_{i}, g_{j} are two elements in different blocks in (1), then $g_{i} g_{j}^{-1} \neq g$,
3. $1 \leqslant c_{1} \leqslant c_{2} \leqslant \cdots \leqslant c_{r}<o(g)$ and $c_{1}+c_{2}+\cdots+c_{r}=s$.

Where $\mathrm{o}(g)$ denotes the order of g and $r, c_{i}, 1 \leqslant i \leqslant r$, are uniquely determined by g.
We say that $\left(c_{1}, c_{2}, \ldots c_{r}\right)$ is the structure of g.
We now give two examples to illustrate the notations and the lemma.
Example 3.2. Let $G=\langle a, b\rangle$ be a group with $a^{7}=b^{7}=1$ (identity of G) and $a b=b a$. G is an abelian group of order 49. Then $e=1+\left(b+b^{2}+b^{4}\right) \sum_{i=0}^{6} a^{i}+a+a^{2}+a^{4}$ is an idempotent of $F G$. Let $C=\langle e\rangle$ be a code in $F G$ then C has minimum odd weight 9 . Let $\xi=\left(a b^{3}+a b^{4}+a b^{6}\right) e$ be a codeword of C with weight 9 . By definition, $\operatorname{Supt}(\xi)=$ $\left\{b^{3}, b^{4}, b^{6}, a^{4} b^{3}, a^{4} b^{4}, a^{4} b^{6}, a^{6} b^{3}, a^{6} b^{4}, a^{6} b^{6}\right\}$ and $\mathscr{R}_{\mathscr{(\xi)}}(a)=\left\{b^{3}, b^{4}, b^{6}, a^{6} b^{3}, a^{6} b^{4}\right.$, $\left.a^{6} b^{6}\right\} . \mathscr{R}_{\mathscr{(})}(a)$ can be decomposed into the following blocks which satisfies the conditions given by Lemma 3.1

$$
\left[a^{6} b^{3}, a^{6} b^{3} a=b^{3}\right],\left[a^{6} b^{4}, a^{6} b^{4} a=b^{4}\right],\left[a^{6} b^{6}, a^{6} b^{6} a=b^{6}\right] .
$$

Example 3.3. Let $G=\langle g\rangle$ with $g^{47}=1$ and $G F(47)$ be a field, Q is the set of quadratic residues of $G F(47)$. Let $e=\sum_{i \in Q} x^{i}$. Then $\langle e\rangle$ is a code with minimum weight 11 and $\xi=x^{9}+x^{17}++x^{20}+x^{22}+x^{25}+x^{30}+x^{31}+x^{32}+x^{34}+x^{43}+x^{44}$ is a codeword
with minimum odd weight. $\operatorname{Sup}(\xi)=\left\{x^{9}, x^{17}, x^{20}, x^{22}, x^{25}, x^{30}, x^{31}, x^{32}, x^{34}, x^{43}, x^{44}\right\}$ and $x^{12}=x^{9} x^{-44}=x^{32} x^{-20}=x^{34} x^{-22}=x^{43} x^{-31}=x^{44} x^{-32}$. Consider the set $\mathscr{R}_{\mathscr{O}(\xi)}\left(x^{12}\right)$. At the first step, we can get the following blocks:

$$
\left[x^{44}, x^{9}\right],\left[x^{20}, x^{32}\right],\left[x^{22}, x^{34}\right],\left[x^{31}, x^{43}\right],\left[x^{32}, x^{44}\right]
$$

can concatenate the second, fifth and the first block into a block. By arranging the blocks, we get

$$
\left[x^{22}, x^{22} x^{12}\right],\left[x^{31}, x^{43}\right],\left[x^{20}, x^{20} x^{12}, x^{20}\left(x^{12}\right)^{2}, x^{20}\left(x^{12}\right)^{3}\right] .
$$

It is easily seen that the above blocks are the needed blocks.
We now prove Lemma 3.1.
Proof. Let $\mathscr{R}_{\mathscr{(}(\xi)}(g)=\left\{g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{s}}, g_{j_{1}}=g_{i_{1}} g, g_{j_{2}}=g_{i_{2}} g, \ldots, g_{j_{s}}=g_{i_{s}} g\right\}$ be the multiset of the elements in $\mathscr{D}(\xi)$ which are related to g. We first construct the following blocks:

$$
\begin{equation*}
\left[g_{i_{1}}, g_{i_{1}} g\right],\left[g_{i_{2}}, g_{i_{2}} g\right], \ldots,\left[g_{i_{s}}, g_{i_{s}} g\right] \tag{2}
\end{equation*}
$$

If there does exists some $k \neq l, 1 \leqslant k, l \leqslant s$, such that $i_{k}=j_{l}$, we are done. Otherwise, we can concatenate the blocks into one block. Without loss of generality, we assume that $i_{2}=j_{1}$. Then $g_{j_{2}}=g g_{j_{1}}$, it follows that the elements $g_{i_{1}}, g_{j_{1}}=g_{i_{1}} g, g_{j_{2}}=g_{i_{1}} g^{2}$ are in the same block. Thus, we get the following blocks:

$$
\left[g_{i_{1}}, g g_{i_{1}}=g_{j_{1}}, g_{i_{1}} g^{2}=g_{j_{2}}\right],\left[g_{i_{2}}, g_{i_{2}} g\right], \ldots,\left[g_{i_{k}}, g_{i_{k}} g\right] .
$$

Assume that we have gotten the following blocks:

$$
\begin{equation*}
\left[g_{i_{1}}, g_{i_{1}} g, \ldots, g_{i_{1}} g^{a_{1}}\right],\left[g_{i_{2}}, g_{i_{2}} g, \ldots, g_{i_{2}} g^{a_{2}}\right], \ldots,\left[g_{i_{t}}, g_{i_{t}} g, \ldots, g_{i_{t}} g^{a_{t}}\right] \tag{3}
\end{equation*}
$$

If there does not exist any $i_{k}, i_{l} \in\left\{i_{1}, i_{2}, \ldots i_{t}\right\}$ and $0 \leqslant h \leqslant a_{k}, 0 \leqslant m \leqslant a_{l}$, such that $g_{i_{k}} g^{h}\left(g_{i,} g^{m}\right)^{-1}=g$, then we are done. Otherwise, if $h \geqslant m-1$, then $g_{i_{l}}=g_{i_{k}} g^{(h-m-1)}$; if $h<m-1$, then $g_{i_{k}}=g_{i_{l}} g^{(m+1-h)}$. In either case, we can concatenate the l th block and the k th block into a block. Continue in this way and arrange the blocks such that the blocks satisfies the property 3 , we get the required blocks.

Let $c_{1}+c_{2}+\cdots+c_{r}+r=N$. Obviously $N \leqslant d$. We have the following:
Lemma 3.4. Let g be an element of G that appears s times in $\mathscr{D}(\xi)$ and g has structure $\left(c_{1}, c_{2}, \ldots, c_{r}\right)$. Then $N(N-1)-2 \varepsilon-2 r(r-1) \leqslant \sum_{s \geqslant 2} s n_{s}$, where $N=c_{1}+$ $c_{2}+\cdots+c_{r}+r=r+s$ and $\varepsilon=1$ if $c_{r}>c_{r-1}$ or $r=1 ; \varepsilon=0$ if $c_{r}=c_{r-1}$.

Proof. Let $\mathscr{R}_{\mathscr{(}(5)}^{*}(g)$ denote the multi-set $\left\{g_{i_{j}} g^{h}\left(g_{i_{k}} g^{m}\right)^{-1}: 1 \leqslant j, k \leqslant r, 1 \leqslant h \leqslant c_{j}, 1 \leqslant m\right.$ $\left.\leqslant c_{k},\left(i_{j}, h\right) \neq\left(i_{k}, m\right)\right\}$ generated by the elements in the blocks of (1). Obviously, $\mid \mathscr{R}_{\mathscr{D}}^{*}(\xi)$ $(g) \mid=N(N-1)$. Consider the total number of elements in $\mathscr{R}_{\mathscr{D}(\xi)}^{*}(g)$ that appear at least twice. Realize that an element in $\mathscr{R}_{\mathscr{O}(\xi)}^{*}(g)$ appears exactly once only if $h=c_{j}$ and $m=0$ or $h=0$ and $m=c_{k}$ or $c_{r}>c_{r-1}$.

Thus, the number of elements in $\mathscr{R}_{\mathscr{O}(\xi)}^{*}(g)$ that appears at least twice is equal to $N(N-1)-2-2 r(r-1)$, if $c_{r}>c_{r-1}$ or $N(N-1)-2 r(r-1)$, if $c_{r}=c_{r-1}$.

On the other hand, the number of elements in $\mathscr{D}(\xi)$ that appears at least twice is equal to $\sum_{s \geqslant 2} s n_{s}$. Lemma 3.4 now follows from the observation that $\mathscr{R}_{\mathscr{D}(\xi)}^{*}(\mathrm{~g})$ $\subseteq \mathscr{D}(\xi)$.

The following lemma tells us the information about n_{s}.
Lemma 3.5. Let $F=G F(2)$, then
(1) $\sum_{s} n_{s}=n-1$,
(2) $n_{2 s}=0$ for all s,
(3) n_{s} is even for all s,
(4) $n_{s}=0$ for all $s>d$,
(5) $\sum_{s} s n_{s}=d(d-1)$.

Proof. By Definition 1, we have

$$
\begin{equation*}
e+\mu_{-1}(e)=\mathbf{1}+e_{0} \tag{4}
\end{equation*}
$$

and there is an element $\eta=\sum_{g \in G} b_{g} g \in F G$ such that $\xi=\eta e$. Since ξ is odd-like, η is odd-like too, that is $\sum_{g \in G} b_{g} \neq 0$. It follows that:

$$
\begin{equation*}
\eta \mu_{-1}(\eta) e_{0}=\left(\sum_{g \in G} b_{g}\right)^{2} e_{0} \tag{5}
\end{equation*}
$$

and that the weight of $\eta \mu_{-1}(\eta) e_{0}$ is n. Since e is an odd-like idempotent, by the definition, we have

$$
\begin{equation*}
e \mu_{-1}(e)=e\left(\mathbf{1}+e_{0}-e\right)=e_{0} \tag{6}
\end{equation*}
$$

Since $\xi \mu_{-1}(\xi)=\eta \mu_{-1}(\eta) e \mu_{-1}(e)=\eta \mu_{-1}(\eta) e_{0}$, then the weight of $\xi \mu_{-1}(\xi)$ is n, thus each non-identity element of G appears in $\mathscr{D}(\xi)$. (1) is now proved

Since $F=G F(2)$ and $\xi \mu_{-1}(\xi)$ has weight n, there does not exist any element $g \in G$ such that g appears even times in the multi-set $\mathscr{D}(\xi)$. So $n_{2 s}=0$ for all s.

Now we assume that some element $g=g_{i} g_{j}^{-1}$ appears s times in $\mathscr{D}(\xi)$, then $g^{-1}=$ $g_{i}^{-1} g_{j}$ appears s times in $\mathscr{D}(\xi)$ too. Statement (2) now follows from the observation that $g \neq g^{-1}$ for any $g \in \mathscr{D}(\xi)$. Indeed, if $g=g^{-1}$, then $g^{2}=1$. By Lagrange Theorem, $2 \mid n$. This contradicts the assumption that $\operatorname{gcd}(2, n)=1$.

Suppose that there is some $s>d$ such that $n_{s}>0$, then there exists some $g \in G$ such that g appears s times in $\mathscr{D}(\xi)$. Without loss of generality, assume that $g=g_{i_{k}} g_{j_{k}}^{-1}, k=1$, $2, \ldots, s$. Since there exactly d distinct terms in ξ, there exist k and l, such that $g_{i_{k}}=g_{i l}$. Since $g_{i_{k}} g_{j_{k}}^{-1}=g_{i_{l}} g_{j_{l}}^{-1}$, it follows that $g_{j_{k}}=g_{j_{l}}$. This means that $\left(i_{k}, j_{k}\right)=\left(i_{l}, j_{l}\right)$, a contradiction. Thus for each $g \in G, g$ appears at most d times in $\mathscr{D}(\xi)$. (3) is now proved.

Since there are $d(d-1)$ terms in $\mathscr{D}(\xi)$ and $\xi \mu_{-1}(\xi)$ has weight n, then

$$
\begin{equation*}
\sum_{s} s n_{s}=d(d-1) . \tag{7}
\end{equation*}
$$

Lemma 3.5 is now proved.

4. Proof of Theorem 1.1

In order to prove our main results, the following lemmas are needed:
Lemma 4.1 ([2]). For any odd integer $m, \operatorname{gcd}\left(2^{m}-1,3\right)=1$.
Lemma 4.2 ([2]). For any odd integer $m, \operatorname{gcd}\left(2^{m}-1,5\right)=1$.
Proof of Theorem 1.1. Since $d(d-1)>n-1$, then $d(d-1)-(n-1)=n_{2}+2 n_{3}+$ $3 n_{4}+4 n_{5}+5 n_{6}+6 n_{7}+\cdots>0$. By Lemma $3.5, n_{2 s}=0$ for all s, so $d(d-1)-n=$ $-1+n_{2}+2 n_{3}+3 n_{4}+4 n_{5}+5 n_{6}+6 n_{7}+\cdots=-1+2 n_{3}+4 n_{5}+6 n_{7}+\cdots$.

Assume to the contrary, that $d(d-1)<n+11$. By Lemma $3.5 n_{s}$ is even. Since $2 n_{3}+4 n_{5}+6 n_{7}+\cdots<12$, then there are three cases

Case 1: $n_{3}=2$ and $n_{s}=0$ for all $s>3$. Let g be an element of G that appears 3 times and g has structure $\left(c_{1}, c_{2}, \ldots, c_{r}\right)$. If $r=3$, then $\left(c_{1}, c_{2}, c_{3}\right)=(1,1,1)$ and $N(N-1)-$ $2 \varepsilon-2 r(r-1)=18$; if $r=2$, then $\left(c_{1}, c_{2}\right)=(1,2)$ and $N(N-1)-2 \varepsilon-2 r(r-1)=14$; if $r=1$, then $\left(c_{1}\right)=(3)$ and $N(N-1)-2 \varepsilon-2 r(r-1)=10$. Because $\sum_{s \geqslant 3} s n_{s}=3 \times 2=6$, we see that all possibilities contradict Lemma 3.4.

Case 2: $n_{5}=2$ and $n_{s}=0$ for all $s \geqslant 3$ and $s \neq 5$. Then there is some element g that appears 5 times. Let the structure of g be $\left(c_{1}, c_{2}, \ldots, c_{r}\right)$. Of course, $r \leqslant 5$. Since g appears 5 times in $\mathscr{D}(\xi)$ then $N=c_{1}+c_{2}+\cdots+c_{r}+r=r+5$. Thus $N(N-1)-$ $2 \varepsilon-2 r(r-1) \geqslant(r+5)(r+4)-2-2 r(r-1)$. By Lemma 3.4, we have

$$
(r+5)(r+4)-2-2 r(r-1) \leqslant N(N-1)-2 \varepsilon-2 r(r-1) \leqslant \sum_{s} i n_{s}=10 .
$$

But the above inequalities does not hold for $1 \leqslant r \leqslant 5$.
Case 3: $n_{3}=4$ and $n_{s}=0$ for all $s>3$. In this case, $\sum_{s \geqslant 3} s n_{s}=12$. Let g be the element appears 3 times and g has structure $\left(c_{1}, c_{2}, \ldots, c_{r}\right)$. If $r=3$, then $\left(c_{1}, c_{2}, c_{3}\right)=$ $(1,1,1)$ and $N(N-1)-2 \varepsilon-2 r(r-1)=30$. If $r=2$, then $\left(c_{1}, c_{2}\right)=(1,2)$ and $N(N-1)-2 \varepsilon-2 r(r-1)=14$. We see that all the above possibilities contradict Lemma 3.4. Thus $r=1$ and each $g \in G$ that appears three times has structure (3). Let g be such an element, then there exists $g_{i_{1}}, g_{i_{2}}, g_{i_{3}}, g_{i_{4}}$ such that $g=g_{i_{1}} g_{i_{2}}^{-1}=g_{i_{2}} g_{i_{3}}^{-1}=g_{i_{3}} g_{i_{4}}^{-1}$. Realize that $g^{2}=g_{i_{1}} g_{i_{2}}^{-1} g_{i_{2}} g_{i_{3}}^{-1}=g_{i_{1}} g_{i_{3}}^{-1}$ and also $g^{2}=g_{i_{2}} g_{i_{4}}^{-1}$, one know that g^{2} appears 3 times, then there exists $g_{i_{5}}, g_{i_{6}} \in\left\{g_{1}, g_{2}, \ldots, g_{d}\right\}$ such that $g^{2}=g_{i_{5}} g_{i_{6}}^{-1}$. Since g^{2} has structure (3) and $g^{2}=g_{i_{1}} g_{i_{3}}^{-1}=g_{i_{2}} g_{i_{4}}^{-1}$, then $i_{5}=i_{3}$ and $i_{6}=i_{2}$ or $i_{5}=i_{4}$ and $i_{6}=i_{1}$.
(1) If $i_{5}=i_{3}$ and $i_{6}=i_{2}$, then $g^{2}=g_{i_{5}} g_{i_{6}}^{-1}=g_{i_{3}} g_{i_{2}}^{-1}=g^{-1}$, it follows that $g^{3}=1$. Thus $3 \mid n$. But by Proposition 2.2, 2 has odd order modulo n. This implies that there exists
some odd positive integer m, such that $n \mid 2^{m}-1$, thus $3 \mid 2^{m}-1$. This contradicts Lemma 4.1.
(2) If $i_{5}=i_{4}$ and $i_{6}=i_{1}$, then $g^{2}=g_{i_{5}} g_{i_{6}}^{-1}=g_{i_{4}} g_{i_{2}}^{-1}=\left(g_{i_{1}} g_{i_{2}}^{-1} g_{i_{2}} g_{i_{3}}^{-1} g_{i_{3}} g_{i_{4}}^{-1}\right)^{-1}=g^{-3}$, it follows that $g^{5}=1$. Thus $5 \mid n$. It follows that $5 \mid 2^{m}-1$ for some odd positive integer m. This contradicts Lemma 4.2.

Thus $d(d-1)-(n-1) \geqslant 12$. The Theorem is now proved.

5. Further remarks

Firstly, it is worth mentioning that although the bound given in Theorem 1.1 is sharp we could not find more duadic codes such that the minimum odd weight d satisfies $d^{2}-d=n+11$. We would like to propose the following:

Problem 5.1. Is there infinitely family of other duadic code such that the minimum weight d satisfies $d^{2}-d=n+11$?

Secondly, it is well known that if C is an odd-like duadic code in $F G$ with splitting $\mu=\mu_{-1}$ and C contains an odd-like vector ξ with weight d satisfying $d^{2}-d+1=n$, then the support of all vectors with weight d in C forms a projective plane of order $d-1$ [7,11]. An interesting question has been proposed by the referee: Is there something to be said for the case $d(d-1)=n+11$?

With the aid of computer, we have found all the minimum weight vectors of the two $(31,16,7)$ codes. Let C_{1} be the $(31,16,7)$ cyclic duadic code generated by $x+$ $x^{2}+x^{4}+x^{5}+x^{7}+x^{8}+x^{9}+x^{10}+x^{14}+x^{16}+x^{18}+x^{19}+x^{20}+x^{25}+x^{28}$. Then the minimum weight vectors of C_{1} are $x^{i}\left(x^{1}+x^{2}+x^{7}+x^{10}+x^{26}+x^{27}+x^{28}\right), x^{i}\left(x^{4}+x^{7}+\right.$ $\left.x^{11}+x^{19}+x^{20}+x^{22}+x^{25}\right), x^{i}\left(x^{2}+x^{6}+x^{7}++x^{9}+x^{13}+x^{17}+x^{26}\right), x^{i}\left(x^{3}+x^{6}+x^{11}+\right.$ $\left.x^{19}+x^{20}+x^{28}+x^{30}\right), x^{i}\left(x^{9}+x^{15}+x^{16}+x^{18}+x^{20}+x^{28}+x^{30}\right), i=0,1,2, \ldots, 30$. Using difference family theory, we know that they constitute a (31,7,7)-BIBD.

Let C_{2} be the $(31,16,7)$ cyclic duadic code generated by $x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+$ $x^{8}+x^{9}+x^{10}+x^{12}+x^{16}+x^{17}+x^{18}+x^{20}+x^{24}$. Then the minimum weight vectors of C_{2} are $x^{i}\left(x^{2}+x^{4}+x^{7}+x^{9}+x^{11}+x^{27}+x^{28}\right), x^{i}\left(x^{7}+x^{10}+x^{11}+x^{23}+x^{28}+x^{29}+x^{30}\right), x^{i}(1+$ $\left.x^{4}+x^{6}+x^{12}+x^{15}+x^{21}+x^{30}\right), x^{i}\left(x^{2}+x^{5}+x^{10}+x^{12}+x^{13}+x^{16}+x^{25}\right), x^{i}\left(1+x^{4}+\right.$ $\left.x^{8}+x^{9}+x^{11}+x^{21}+x^{25}\right), i=0,1,2, \ldots, 30$. They also constitute a (31, 7, 7)-BIBD.

If the answer to our Problem 5.1 is affirmative, we would like to propose the following:

Problem 5.2. Suppose C is an abelian duadic code with minimum weight d satisfying $d^{2}-d=n+11$. Whether the support of all vectors with minimum odd weight d form a BIBD?

Next, we have checked by computer that the support of the minimum odd weight codewords of (23, 12, 7)-code, (41,21, 9)-code, (47,24, 7)-code constitute a (23, 7, 21)BIBD, $(41,9,18)$-BIBD and $(47,11,220)-B I B D$, respectively, while the support of the
minimum odd weight codewords of a $(17,8,5)$ code does not constitute a BIBD. The following problem seems challenging.

Problem 5.3. Characterize those duadic codes whose support of all vectors with minimum odd weight d form a BIBD.

Acknowledgements

The author wishes to thank Prof. Qingde Kang for providing him with Ref. [8]. The author are grateful to the referees for many helpful comments on an early version of this paper.

References

[1] C. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York, 1962.
[2] N. Koblitz, A Course in Number Theory and Cryptography, Springer, Berlin, 1987.
[3] J.S. Leon, J.M. Masley, V. Pless, Duadic codes, IEEE Trans. Inform. Theory IT-30 (1984) 709-714.
[4] F.J. MacWilliams, Codes and ideals in group algebras, in: R.C. Bose, T.A. Dowling (Eds.), Combinatorial Mathematics and its Applications, University of North Carolina Press, Chapel Hill, 1969 (Chapter 18).
[5] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, Amsterdam, 1978.
[6] V. Pless, J.M. Masley, J.S. Leon, On weights in duadic codes, J. Combin. Theory Ser. A 44 (1987) 6-21.
[7] J.J. Rushanan, Duadic codes and difference sets, J. Combin. Theory Ser. A 57 (1991) 254-261.
[8] H.C.A. van Tilborg, On weights in codes, Rep. 71-WSK-03, Department of Math. Tech., University of Eindhoven, Netherlands, December 1971.
[9] H.N. Ward, L. Zhu, Existence of abelian group codes partitions, J. Combin. Theory Ser. A 67 (1994) 276-281.
[10] S. Zhang, Extremal Self-dual codes and Duadic Group Algebra Codes, Ph.D. Thesis, Suzhou University, 1997.
[11] L. Zhu, Duadic group algebra codes, J. Statist. Plann. Inference 51 (1996) 395-401.

[^0]: This project is partially supported by the post-doctor grant of China.
 E-mail address: liqiaoliang@eyou.com (Q. Li).

