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1 Introduction

Let G = (V (G), E(G)) denote a graph with vertex set V (G) and edge set E(G). We
use the notation xy (or yx) to represent an edge with ends x and y. For any S ⊆ V (G),
let G[S] denote the subgraph of G with V (G[S]) = S and E(G[S]) consisting of the edges
of G with both ends in S; we say that G[S] is the subgraph of G induced by S. Let G−S
denote G[V (G) − S]. A subgraph H of G is an induced subgraph of G if G[V (H)] = H.
We also say that H is induced in G. A graph G is k-connected, where k is a positive
integer, if |V (G)| ≥ k + 1 and, for any S ⊂ V (G) with |S| ≤ k − 1, G − S is connected.
A subgraph H of G is non-separating if G − V (H) is connected.

In 1984, Itai and Rodeh [10] proposed a multi-tree approach to reliability in dis-
tributed networks. Let G be a graph and r ∈ V (G). We may view G as a distributed
network with a root r, and the vertices of G as processors. A fault-tolerant communi-
cation scheme can be designed for this network if we are able to find spanning trees of
G which are “independent” [6, 10]. For a tree T and x, y ∈ V (T ), let T [x, y] denote the
unique path from x to y in T . A rooted tree T is a tree with a specified vertex called
the root of T . Let T and T ′ be trees in a graph rooted at r. We say that T and T ′ are
independent if for each vertex x ∈ V (T ) ∩ V (T ′), the paths T [r, x] and T ′[r, x] have no
vertex in common except for r and x.

Itai and Rodeh [10] developed a linear time algorithm that given any vertex r in a
2-connected graph G, finds two independent spanning trees of G rooted at r. Later,
Cheryian and Maheshwari [3] proved that for any vertex r in a 3-connected graph G,
there exist three independent spanning trees of G rooted at r. Furthermore, they gave an
O(|V (G)|2) algorithm for finding these trees. Itai and Zehavi [11] proved independently
that every 3-connected graph contains three independent spanning trees (rooted at any
vertex), and they conjectured the following.

(1.1) Conjecture. Let G be a k-connected graph and let r ∈ V (G). Then there exist
k independent spanning trees of G rooted at r.

A contractible edge in a k-connected graph is an edge whose contraction results in a
new k-connected graph. Itai and Zehavi’s proof for the 3-connected case relies on the
existence of a contractible edge. On the other hand, for every k ≥ 4 there exist infinitely
many k-connected graphs with no contractible edges. In view of this fact, it would be
interesting to know if (1.1) holds for k = 4. The 4-connected case of (1.1) is also important
in terms of applications, since four independent spanning trees ensure at a reasonable
cost a higher degree of reliability in distributed networks. Huck [8] proved (1.1) for
planar 4-connected graphs. Miura, Nakano, Nishizeki and Takahashi [14] gave a linear
algorithm for finding four independent rooted spanning trees in a planar 4-connected
graph.
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Itai and Rodeh’s algorithm [10] for constructing two independent spanning trees relies
on “ear decompositions” of graphs. Cheriyan and Maheshwari [3] used the concept of
“non-separating” ear decomposition to construct three independent spanning trees in
3-connected graphs. The first step in their approach is to find a non-separating cycle
which “avoids” a given vertex. A cycle C avoids a vertex v if v �∈ V (C).

(1.2) Theorem. Let G be a 3-connected graph, let e ∈ E(G), and let u ∈ V (G) be
non-incident to e. Then G has a non-separating induced cycle through e and avoiding
u. Moreover, such a cycle can be found in O(|V (G)| + |E(G)|) time.

The existence of a non-separating induced cycle in (1.2) was proved by Tutte [21],
and the algorithmic part was done by Cheryian and Maheshwari ([3], Theorem 5). In
general, it is not true that given an edge e in a 4-connected graph G, there exists a cycle
C through e such that G−V (C) is 2-connected. In this paper we are concerned with the
problem of finding a “non-separating planar chain” in a 4-connected graph whose deletion
results in a 2-connected graph. (A “non-separating planar chain” may be viewed as a
generalization of the concept of a non-separating path.) We give an efficient algorithm
for solving this problem. Our result has some interesting consequences (Section 4) and
will be used in a forthcoming paper to decompose an arbitrary 4-connected graph into
“planar chains”.

In order to describe precisely our result, we need to introduce the concept of “chain”
and “planar chain”. A block of a graph G is either a maximal 2-connected subgraph of
G, or a subgraph of G induced by a cut edge. A block is nontrivial if it is 2-connected,
and trivial otherwise.

(1.3) Definition. A connected graph H is a chain if its blocks can be labeled as
B1, . . . , Bk, where k ≥ 1 is an integer, and its cut vertices can be labeled as v1, . . . , vk−1

such that

(i) V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k − 1, and

(ii) V (Bi) ∩ V (Bj) = ∅ if |i − j| ≥ 2 and 1 ≤ i, j ≤ k.

We let H := B1v1B2v2 . . . vk−1Bk denote this situation. If k ≥ 2, v0 ∈ V (B1)−{v1} and
vk ∈ V (Bk) − {vk−1}, or, if k = 1, v0, vk ∈ V (B1) and v0 �= vk, then we say that H is a
v0-vk chain, and we denote this by H := v0B1v1 . . . vk−1Bkvk. We usually fix v0 and vk,
and we refer to them as the ends of H. See Figure 1 for an example with k = 5.

A plane graph is a graph which is drawn in the plane with no pair of edges cross-
ing. Let G be a graph with distinct vertices a, b, c and d. We say that the quintuple
(G, a, b, c, d) is planar if G can be drawn in a closed disc in the plane with no pair of
edges crossing such that a, b, c, d occur on the boundary of the disc in this cyclic order.
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v0 v1 v2 v3 v4 v5

B1

B2 B3
B4

B5

Figure 1: Example of a chain.
.

For a graph G and x, y ∈ V (G) let G − xy denote the graph with vertex set V (G)
and edge set E(G) − {xy} (note that xy may not be an edge of G).

(1.4) Definition. Let G be a graph and let H := v0B1v1 . . . vk−1Bkvk be a chain.
If H is an induced subgraph of G, then we say that H is a chain in G. We say
that H is a planar chain in G if, for each 1 ≤ i ≤ k with |V (Bi)| ≥ 3 (or equiva-
lently, Bi is 2-connected), there exist distinct vertices xi, yi ∈ V (G) − V (H) such that
(G[V (Bi) ∪ {xi, yi}] − xiyi, xi, vi−1, yi, vi) is planar, and Bi − {vi−1, vi} is a component
of G−{xi, yi, vi−1, vi}. We also say that H is a planar v0-vk chain. See Figure 2 for two
drawings of an example with k = 5. The dashed edges there may or may not exist, but
they are not part of H.

(1.5) Definition. Let G be a graph, let S ⊆ V (G), and let k be a positive integer. We
say that G is (k, S)-connected if |V (G)| ≥ |S|+1, G is connected, and for any T ⊂ V (G)
with |T | ≤ k − 1, every component of G − T contains an element of S.

This definition is partially motivated by the following observation. Let G be a k-
connected graph, let S ⊆ V (G), and let K be a component of G−S. Then G[V (K)∪S]
is (k, S)-connected.

For a graph G and a subgraph H of G, we use NG(H) to denote the set of vertices in
V (G) − V (H) which are adjacent to at least one vertex in V (H). Now we are ready to
describe the main result of this paper. It is stated in a form which can be conveniently
used in a forthcoming paper. See Figure 5 for an illustration of the hypothesis of the
theorem.

(1.6) Theorem. Let G be a graph, let a, b be distinct vertices of G, let P be a non-
separating induced path in G between a and b, let BP be a nontrivial block of G−V (P ),
and let XP := NG(G−V (BP )). Suppose G−(V (BP )−XP ) is (4,XP ∪{a, b})-connected.
Then there exists a planar a-b chain H in G such that BP ⊆ G − V (H) and G − V (H)
is 2-connected. Moreover, such a chain can be found in O(|V (G)||E(G)|) time.
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B2
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x2x2

y2 = x4
y2 = x4

y4y4

x5x5

y5

y5

G − V (H)

G − V (H)

Figure 2: A planar chain H := v0B1v1B2v2B3v3B4v4B5v5 in a graph G.

There are two interesting consequences of (1.6) related to an open problem posed by
Lovász [13]. (See Section 4.)

(1.7) Corollary. Let G be a 4-connected graph, let a, b be distinct vertices of G, and
let P be a non-separating induced path in G between a and b such that G − V (P ) has
a nontrivial block. Then there is a path Q between a and b in G such that G − V (Q) is
2-connected, and such a path can be found in O(|V (G)||E(G)|) time.

(1.8) Corollary. Let G be a 4-connected graph, and ra ∈ E(G). Then there exists a
cycle C in G through ra such that G − (V (C) − {r}) is 2-connected. Moreover, such a
cycle can be found in O(|V (G)|2) time.

The rest of this paper is organized as follows. In the remainder of this section we
establish some notation we will use throughout the paper. In Section 2 we give several
auxiliary lemmas. These lemmas concern the existence of certain non-separating paths
in graphs with some connectivity constraints. In Section 3 we prove (1.6). In Section 4
we prove several consequences of (1.6), including (1.7) and (1.8).

Throughout this paper, we use A := B to rename B as A, or to define A as B.
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Let G be a graph. For S ⊆ V (G), let NG(S) := {x ∈ V (G) − S : xy ∈
E(G), for some y ∈ S}. Thus, for a subgraph H of G, NG(H) = NG(V (H)). When
S = {x}, we let NG(x) := NG({x}). When there exists no ambiguity, we may simply
use N(S), N(H) and N(x), instead of NG(S), NG(H) and NG(x), respectively. For a set
F of 2-element subsets of V (G), let G + F denote the graph with vertex set V (G) and
edge set E(G) ∪ F . If F := {xy}, let G + xy := G + F .

We describe a path in G as a sequence P = (v1, v2, . . . , vk) of distinct vertices of
G such that vivi+1 ∈ E(G), 1 ≤ i ≤ k − 1. The vertices v1 and vk are called the
ends of the path P , and the vertices in V (P ) − {v1, vk} are called the internal vertices
of P . For 1 ≤ i ≤ j ≤ k, let P [vi, vj ] := (vi, . . . , vj), and for 1 ≤ i < j ≤ k, let
P (vi, vj) := P [vi+1, vj−1]. For A,B ⊆ V (G), we say that a path P is an A-B path if one
end of P is in A, the other end is in B, and no internal vertex of P is in A ∪ B. If P
is a path with ends a and b, we say that P is a path from a to b, or P is an a-b path.
Two paths P and Q are disjoint if V (P ) ∩ V (Q) = ∅. Two paths are internally disjoint
if no internal vertex of one is contained in the other. Given a path P in G and a set
S ⊂ V (G) (respectively, a subgraph S of G), we say that P is internally disjoint from S
if no internal vertex of P is contained in S (respectively, V (S)). We also describe a cycle
in G as a sequence C = (v1, v2, . . . , vk, v1) such that the vertices v1, . . . , vk are distinct,
vivi+1 ∈ E(G), for 1 ≤ i ≤ k − 1, and vkv1 ∈ E(G).

2 Non-Separating paths

In trying to find a non-separating planar chain, we need to be able to find efficiently
disjoint paths and non-separating paths in graphs which satisfy certain connectivity
conditions. The purpose of this section is to provide auxiliary lemmas (and algorithms)
to deal with these problems.

The disjoint paths problem can be defined as follows: given a graph G and distinct
vertices a, b, c, d of G, find disjoint paths from a to b, and from c to d, respectively, or
certify that they do not exist.

This problem was solved independently in [2], [16],[17], and [19]. We state Seymour’s
version ([16], Theorem 4.1).

(2.1) Theorem. Let a, b, c, d be distinct vertices of a graph G. Then exactly one of the
following holds:

(1) G contains disjoint paths from a to b, and from c to d, respectively, or

(2) for some integer k ≥ 0, there exist pairwise disjoint sets A1, . . . , Ak ⊆ V (G) −
{a, b, c, d} such that

• for 1 ≤ i �= j ≤ k, NG(Ai) ∩ Aj = ∅,
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• for 1 ≤ i ≤ k, |NG(Ai)| ≤ 3, and

• if G′ is the graph obtained from G by, for each i, deleting Ai and adding new
edges joining every pair of distinct vertices in NG(Ai), and also, adding the
edges ab and cd, then G′ can be drawn in the plane with no pair of edges
crossing except ab and cd, which cross once.

Let G be a graph and S := {a, b, c, d} ⊆ V (G). Shiloach [17] gave an O(|V (G)||E(G)|)
algorithm for the disjoint paths problem. We need to solve a special case of the disjoint
paths problem, namely, when G is (4, S)-connected. We show in the appendix that
Shiloach’s algorithm can solve the disjoint paths problem in O(|V (G)|+ |E(G)|) time for
(4, S)-connected graphs.

(2.2) Lemma. Let G be a graph and let S := {a, b, c, d} ⊂ V (G). Suppose that G is
(4, S)-connected. Then exactly one of the following holds:

(1) there exist disjoint paths from a to b and from c to d, respectively, or

(2) (G, a, c, b, d) is planar.

Moreover, one can in O(|V (G)| + |E(G)|) time find paths as in (1) or certify that (2)
holds.

The rest of this section deals with non-separating induced paths in graphs with certain
connectivity properties. We also show how to find these paths efficiently.

(2.3) Lemma. Let G be a connected graph, S ⊆ V (G), {a, a′} ⊆ S, and let P be an
a-a′ path in G. Suppose

(i) G is (3, S)-connected, and

(ii) S − {a, a′} is contained in a component U of G − V (P ).

Then there exists a non-separating induced a-a′ path P ′ in G such that V (P ′)∩V (U) = ∅.
Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Proof. We may assume that P is induced, otherwise, we can find in O(|V (G)|+ |E(G)|)
time an induced a-a′ path in G satisfying (ii). If P is non-separating, then P ′ := P is
the required path. If |V (P )| = 2 then by (i) every component of G − V (P ) contains a
vertex of S, and so by (ii) G − V (P ) = U , which implies that P is non-separating. So
we may assume that |V (P )| ≥ 3 and G − V (P ) is not connected.

Let G′ be the graph obtained from G by contracting U to a single vertex u, adding
the edges aa′, ua and ua′, and removing multiple edges. See Figure 3. Note that a, a′

belong to the cycle P + aa′. We claim that H := G′ − u is 2-connected. Suppose for a
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U u

aa a′a′

G G′

Figure 3: Graphs G and G′ in the proof of (2.3).

contradiction that there exists v ∈ V (H) such that H − v is disconnected. Since a, a′ are
vertices of P + aa′ which is a cycle in H, there exists a component K in H − v which
does not contain any vertex of P . But then K is a component of G − v which does not
contain any vertex in S, contradicting (i). Thus, G′ − u is 2-connected.

In fact, G′ must be 3-connected. Suppose for a contradiction that G′ is not 3-
connected. Then there is a vertex cut T in G′ with |T | ≤ 2. Since G′ − u is 2-connected,
u �∈ T . Moreover, since {u, a, a′} induces a triangle in G′, there exists a component K of
G′ − T which does not contain any of u, a, a′. But then K is also a component of G− T
which does not contain any element of S, contradicting (i). Hence, G′ is 3-connected.

By Theorem (1.2) (with G′, aa′, u as G, e, u respectively), there exists a non-separating
induced cycle C in G′ containing aa′ and avoiding u. Moreover, such a cycle can be found
in O(|V (G′)|+|E(G′)|) time (and hence, in O(|V (G)|+|E(G)|) time). Thus, P ′ := C−aa′

is a non-separating induced path in G such that V (P ′) ∩ V (U) = ∅. �

As an application of (2.3), we derive the following strengthening of Lemma (2.2).

(2.4) Lemma. Let G be a graph and S := {a, a′, b, b′} ⊆ V (G). Suppose that G is
(4, S)-connected. Then exactly one of the following holds:

(1) there exists a non-separating induced a-a′ path P ′ in G such that V (P ′)∩{b, b′} = ∅,
or

(2) (G, a, b, a′, b′) is planar.

Moreover, one can in O(|V (G)| + |E(G)|) time find a path as in (1) or certify that (2)
holds.

Proof. By Lemma (2.2), either (a) there exist disjoint paths P and Q in G from a to
a′ and from b to b′, respectively, or (b) (G, a, b, a′, b′) is planar. Moreover, one can in

7



O(|V (G)| + |E(G)|) time find paths as in (a) or certify that (b) holds. If (b) holds,
then (2) holds. So assume (a) holds. Let U be the component of G − V (P ) containing
S−{a, a′} = {b, b′}. Since G is (4, S)-connected (and hence, (3, S)-connected), G,P, S,U
and {a, a′} satisfy the hypothesis of (2.3). Thus, by (2.3) there exists a non-separating
a-a′ path P ′ in G such that V (P ′) ∩ V (U) = ∅, and such a path can be found in
O(|V (G)| + |E(G)|) time. Hence, V (P ′) ∩ {b, b′} = ∅, and P ′ satisfies (1). �

To prove the final result of this section, we need the following result of Cheriyan and
Maheshwari ([3], p. 516), which is in fact, the core of the linear algorithm in [3] for
finding a non-separating induced cycle as described in Theorem (1.2).

(2.5) Theorem. Let G be a 3-connected graph, let aa′ ∈ E(G), and let C be a non-
separating induced cycle in G containing aa′. Then there exists another non-separating
induced cycle C ′ in G such that V (C ′) ∩ V (C) = {a, a′} and E(C ′) ∩ E(C) = {aa′}.
Moreover, such a cycle can be found in O(|V (G)| + |E(G)|) time.

Our next result is in the same spirit as of (2.5), but we relax the 3-connectivity
condition. Therefore, it is more convenient to use.

(2.6) Lemma. Let G be a connected graph, let a, a′ be distinct vertices of G with degree
at least two, and let P be a non-separating induced a-a′ path in G. Suppose that G is
(3, V (P ))-connected. Then there exists another non-separating induced a-a′ path P ′ in
G such that V (P ′) ∩ V (P ) = {a, a′} and E(P ′) ∩ E(P ) = ∅. Moreover, such a path can
be found in O(|V (G)| + |E(G)|) time.

Proof. For convenience, let H := G−V (P ). Since P is a non-separating path in G, H is
connected. Morever, both a and a′ have a neighbor in V (H) because both have degree
at least two in G and P is induced. Let v1 = a, v2, . . . , vk = a′ be the neighbors of H on
P in this order from a to a′ (see Figure 4 for an illustration). Note that k ≥ 3 because
G is (3, V (P ))-connected. Let G′ be the graph obtained from G by adding the edge aa′,
and by replacing, for each 1 ≤ i ≤ k − 1, the path P [vi, vi+1] by an edge vivi+1. Note
that C := G′ − V (H) is a cycle in G′. See again Figure 4.

We claim that G′ is 3-connected. Suppose for a contradiction that G′ is not 3-
connected. Then there is a vertex cut T in G′ with |T | ≤ 2. Note that T �⊆ V (C),
since H is connected and every vertex of C has a neighbor in H. But then G′ − T
has a component K such that V (K) ∩ V (C) = V (K) ∩ V (P ) = ∅. Hence, K is also a
component of G − T with V (K) ∩ V (P ) = ∅, contradicting the assumption that G is
(3, V (P ))-connected. Hence, G′ is 3-connected.

By (2.5) (with G′, C, a, a′ as G,C, a, a′ respectively), there exists a non-separating
cycle C ′ in G′ such that V (C ′) ∩ V (C) = {a, a′} and E(C ′) ∩ E(C) = {aa′}. Moreover,
such a cycle can be found in O(|V (G′)|+ |E(G′)|) time (and hence, in O(|V (G)|+ |E(G)|)
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a = v1a = v1 a′ = v6 a′ = v6

G G′

H H

P C

v2
v2v3 v3 v4v4 v5

v5

Figure 4: G and G′ as in the proof of Lemma (2.6).

time). Thus, P ′ := C ′ − aa′ is a non-separating induced a-a′ path in G such that
V (P ′) ∩ V (P ) = {a, a′} and E(P ′) ∩ E(P ) = ∅. �

3 Non-separating chains

The main goal of this section is to design an algorithm that solves the following
problem: given G, a, b, P,BP as in (1.6), find a planar a-b chain H in G such that
G − V (H) is 2-connected and V (BP ) ⊆ V (G) − V (H). For convenience, we fix the
following notation throughout this section.

(3.1) Notation and assumptions. Let G be a graph, let a, b be distinct vertices of G,
let P be a non-separating induced a-b path in G, let BP be a nontrivial block of G−V (P ),
and let XP := NG(G − V (BP )). Suppose that G − (V (BP ) − XP ) is (4,XP ∪ {a, b})-
connected. See Figure 5.

Let PP be the set of non-separating induced a-b paths P ′ in G with BP ⊆ G−V (P ′).
Note that P ∈ PP . For each P ′ ∈ PP let BP ′ denote the nontrivial block of G − V (P ′)
containing BP . We say that P ′ ∈ PP is a BP -augmenting path if |V (BP )| < |V (BP ′)|.

Note that XP consists of cut vertices of G − V (P ) contained in V (BP ) and the
neighbors of V (P ) contained in V (BP ). Also note that our next result shows that the
paths in PP are well-behaved.

(3.2) Lemma. Let P ′ ∈ PP . Let XP ′ := N(G− V (BP ′)). Then G− (V (BP ′)−XP ′) is
(4,XP ′ ∪ {a, b})-connected.

Proof. For convenience, let G′ := G− (V (BP ′)−XP ′). Suppose for a contradiction that
G′ is not (4,XP ′ ∪ {a, b})-connected. Then there exists some T ⊂ V (G′) with |T | ≤ 3
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a a

b b

P P
BP

XPXP

G G − (V (BP ) − XP )

Figure 5: G, a, b, P,BP ,XP in (3.1).

and there exists some component K of G′−T such that V (K)∩ (XP ′ ∪{a, b}) = ∅. Since
V (BP ) ⊆ V (BP ′), for each x ∈ XP , either x �∈ V (G′) or x ∈ XP ′ . Thus, V (K)∩XP = ∅.
But then, K is a component of (G − (V (BP ) − XP )) − T which does not contain any
vertex in XP ∪ {a, b}. This contradicts the assumption that G − (V (BP ) − XP ) is
(4,XP ∪ {a, b})-connected. Therefore, G′ is (4,XP ′ ∪ {a, b})-connected. �

Let us describe the basic idea of the algorithm which we want to design. At the
beginning of each iteration we have a non-separating a-b path P and a nontrivial block
BP of G−V (P ). The algorithm then tries to find a BP -augmenting path P ′ ∈ PP . If the
algorithm finds such a path P ′, then it starts a new iteration with P ′ as P (note that, by
Lemma (3.2), G − (V (BP ′)− XP ′) is (4,XP ′ ∪ {a, b})-connected). If the algorithm does
not find a BP -augmenting path, then it finds a planar a-b chain as required in (1.6).

In order to describe this algorithm more precisely, we need more concepts and nota-
tion.

(3.3) Definition. Let F be a subgraph of a graph K. An F -bridge of K is a subgraph
of K which is induced by either (1) an edge in E(K) − E(F ) with both ends on F , or
(2) edges of a component D of K − V (F ) together with the edges of K from D to F .

10



For an F -bridge B of K, the set V (B) ∩ V (F ) is the set of attachments of B on F .

(3.4) Notation. Let B denote the set of BP -bridges of G − V (P ). For each B ∈ B,
V (BP ) ∩ V (B) consists of exactly one vertex (which is contained in XP ), and we let rB

denote this vertex. For any x, y ∈ V (P ), we denote x ≤ y if x ∈ V (P [a, y]). If x ≤ y and
x �= y, then we write x < y. In this case, we say that x is lower than y, or y is higher
than x. Since G is (4,XP ∪ {a, b})-connected, for each B ∈ B, B − rB has at least three
neighbors on P . Let lB and hB denote the lowest and the highest neighbor of B − rB on
P , respectively. See Figure 6 for an example.

(3.5) Lemma. The following holds:

(1) V (P (lB , hB)) �= ∅ and NG(P (lB , hB)) ∩ (V (B) − {rB}) �= ∅, and

(2) NG(P (lB , hB)) �⊂ V (B) ∪ V (P ).

Proof. (1) holds because B−rB has at least three neighbors on P , and (2) holds because
P is an induced path in G and {rB , lB , hB} is not a 3-vertex cut of G. �

Next, we describe members of B which we can use to produce a BP -augmenting path.

(3.6) Definition. For each vertex x of G − V (P ), we define x∗ as follows. If x ∈ V (B)
for some B ∈ B, then let x∗ := rB. If x ∈ V (BP ), then x∗ := x. We say that a member
B of B is a nice bridge if there exist x, y ∈ NG(P (lB , hB)) − ((V (B) − {rB}) ∪ V (P ))
such that x∗ �= y∗. See Figure 6 for an example.

The next lemma shows that any nice bridge can be used to find a BP -augmenting path.

(3.7) Lemma. Let B ∈ B be a nice bridge. Then there exists an induced lB-hB path
Q in G[V (B) ∪ {lB , hB}] such that P ′ := (P − V (P (lB , hB))) ∪ Q is a BP -augmenting
path in G. Moreover, such a path Q can be found in O(|V (G)| + |E(G)|) time.

Proof. Since B is a nice bridge, there exist x, y ∈ NG(P (lB , hB))−((V (B)−{rB})∪V (P ))
such that x∗ �= y∗. See Figure 6. Let GB be the subgraph of G induced by (V (B) −
{rB})∪ V (P [lB , hB ]). Since B is a BP -bridge, B − rB is connected. Thus, P [lB , hB ] is a
non-separating induced path in GB . Furthermore, since G is (4,XP ∪ {a, b})-connected,
for any T ⊂ V (GB) with |T | ≤ 2, every component of GB − T contains a vertex of
V (P [lB , hB ]) (otherwise, T ∪ {rB} is a 3-cut of G, and G− (T ∪ {rB}) has a component
not containing any element of XP ∪ {a, b}). Thus, GB is (3, V (P [lB , hB ]))-connected.
By Lemma (2.6) (with GB , lB , hB , P [lB , hB ] as G, a, a′, P respectively), there exists a
non-separating induced lB-hB path Q in GB disjoint from P (lB , hB). Moreover, such
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a

b

P
rB = x∗

B − rB

BBP

lB

hBx

x′

y

y′

y∗

z = z∗

Figure 6: A nice bridge B and the graph GB as defined in the proof of Lemma (3.7)
shown in boldface.

a path Q can be found in O(|V (GB)| + |E(GB)|) time. Since |V (GB)| + |E(GB)| =
O(|V (G)| + |E(G)|), such a path Q can be found in O(|V (G)| + |E(G)|) time.

Clearly, the path P ′ = (P − V (P (lB , hB))) ∪ Q is an induced a-b path in G.
Let us prove that P ′ is non-separating in G. It suffices to prove that for every

v /∈ V (BP )∪V (P ′), there exists a {v}-V (BP ) path in G−V (P ′). First, suppose v ∈ V (B′)
for some B′ ∈ B with B′ �= B. Since V (B′) ∩ V (P ′) = ∅, there exists a v-rB′ path in B′

(and hence in G− V (P ′)). So we may assume v ∈ (V (B)−{rB})∪ V (P (lB , hB)). Since
NG(P (lB , hB)) �⊂ V (B) ∪ V (P ) (by (2) of (3.5)) and V (Q(lB , hB)) ∩ V (P (lB , hB)) = ∅,
and because Q is a non-separating path in GB , there exists a v-V (BP ) path in G−V (P ′).
Hence, P ′ is non-separating in G.

Thus, P ′ ∈ PP . It remains to show that |V (BP )| < |V (BP ′)|. Note that G contains
disjoint paths Px and Py from x to x∗ and from y to y∗, respectively, and Px and Py

are disjoint from P ∪ (B − rB) ∪ (BP − {x∗, y∗}). Let x′, y′ ∈ V (P (lB , hB)) such that
xx′, yy′ ∈ E(G). Then both BP and the path (Px ∪ P [x′, y′] ∪ Py) + {xx′, yy′} are
contained in BP ′ . Hence, |V (BP )| < |V (BP ′)|, and so, P ′ is a BP -augmenting path. �
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In what follows we prove several lemmas which will help us find nice bridges (and
hence, BP -augmenting paths by (3.7)). But first, we need the following.

(3.8) Definition. We say that two BP -bridges B and B′ in B are overlapping if the
paths P [lB , hB ] and P [lB′ , hB′ ] have an edge in common. Define an auxiliary graph K
such that V (K) = B, and B and B′ are adjacent in K if B and B′ are overlapping. See
Figure 7 for an example.

a

b

BP

B1
B1

B2B2

B3B3

B4
B4

B5
B5

B6
B6

G K

Figure 7: An example of an auxiliary graph K.

The next two lemmas appear in [5]. Since their proofs are short, we include them
here.

(3.9) Lemma. Let (B1, B2, B3) be an induced path in K such that rB1 �= rB3 . Then
B2 is a nice bridge.

Proof. By the definition of K and by the assumption that (B1, B2, B3) is induced in K,
B1 and B3 are not overlapping. So we may assume lB1 < hB1 ≤ lB3 < hB3 . Moreover,
lB2 < hB1 and lB3 < hB2 . Let x ∈ V (B1) − {rB1} such that xhB1 ∈ E(G) and let
y ∈ V (B3) − {rB3} such that ylB3 ∈ E(G). Clearly, x, y ∈ NG(P (lB2 , hB2)), x, y �∈
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(V (B2) − {rB2}) ∪ V (P ), and x∗ = rB1 �= rB3 = y∗. Hence by (3.6), B2 is a nice bridge.
�

(3.10) Lemma. Let (B1, B2, B3) be a path in K such that rB1 �= rB2 �= rB3 �= rB1 .
Then one can find in constant time some i ∈ {1, 2, 3} such that Bi is a nice bridge.

Proof. If the path (B1, B2, B3) is induced in K then the result follows from (3.9). So
suppose that B1, B2, B3 induces a triangle in K. By symmetry, assume that P [lB1 , hB1 ]
is not properly contained in P [lBi , hBi ] for i = 2, 3 (this can be checked in constant
time). Thus, for each i ∈ {2, 3}, either lBi ∈ V (P (lB1 , hB1)), or hBi ∈ V (P (lB1 , hB1)),
or P [lB1 , hB1 ] = P [lBi , hBi ]. Therefore, since NG(P (lBi , hBi)) ∩ (V (Bi) − {rBi}) �= ∅
(by (1) of (3.5)), it follows that there exist x ∈ NG(P (lB1 , hB1)) ∩ (V (B2) − {rB2}) and
y ∈ NG(P (lB1 , hB1)) ∩ (V (B3) − {rB3}). Note that x, y �∈ (V (B1) − {rB1}) ∪ V (P ), and
x∗ = rB2 �= rB3 = y∗. Hence by (3.6), B1 is a nice bridge. �

In order to find BP -augmenting paths, we need to search the components of K. For
convenience, we introduce the following notation.

(3.11) Notation. Let A1,A2, . . . ,At be the components of the auxiliary graph K. For
j = 1, . . . , t let Vj :=

⋃
B∈V (Aj)

V (B), let Qj :=
⋃

B∈V (Aj)
P [lB , hB ], and let RAj :=

{rB : B ∈ V (Aj)}. Note that Vj is a subset of V (G) − (V (BP ) − XP ), Qj is a subpath
of P , and R(Aj) ⊆ XP .

The number of edges in a component of K can be O(|V (K)|2), but for our purpose, we
need to compute only a spanning tree of each component.

(3.12) Lemma. Algorithm 1 constructs rooted spanning trees Tj of Aj for all j =
1, . . . , t, and finds the ends aj , bj of Qj with aj < bj , for all j = 1, . . . , t. Furthermore,
for any j ∈ {1, . . . , t} and any element B of V (Tj), the path from the root of Tj to B in
Tj is induced in K. Moreover, all Tj, aj , bj can be found in O(|V (G)| + |E(G)|) time.

Proof. The set Q is implemented as a queue and for each vertex x of the path P we
keep a list of BP -bridges B of G − V (P ) such that lB = x. The index k is used to
avoid re-scanning a vertex more than once. The algorithm is basically a variation of
the breadth-first search method and can be implemented to run in O(|V (G)|) time. It
is easy to see that each Tj is a spanning tree of a component of K. The first vertex
inserted in Tj becomes its root. Furthermore, it is not hard to see that (from the nature
of breadth-first search) Tj satisfies the following property: for any element B of V (Tj),
the path in Tj from B to the root of Tj is induced in K. �
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Algorithm 1 Construct forest.
Require: The set B of BP -bridges of G − V (P ).
Return: An integer t ≥ 0, spanning trees T1,T2, . . . ,Tt of the components of the auxil-

iary graph K, and the ends aj, bj of Qj with aj < bj for j = 1, . . . , t.
Let P = (a = x1, x2, . . .);
j ← 1;
k ← 1;
while k ≤ |V (P )| do

Let B ∈ B such that lB = xk;
Tj ← B;
aj ← lB ;
bj ← hB ;
Q ← {B};
while Q �= ∅ do

Let B′ ∈ Q;
Q ← Q− {B′};
Let xk′ = hB′ ;
for i ← k to k′ − 1 do

for each B such that lB = xi do
if B �∈ V (Tj) then

Q ← Q∪ {B};
Tj ← (Tj ∪ {B}) + BB′;

if k′ > k then
k ← k′;

bj ← xk;
while k ≤ |V (P )| and there exists no B ∈ B such that lB = xk do

k ← k + 1;
j ← j + 1;

¿From the above, we see that Qj = P [aj , bj ].
Next, for a component Aj of K (or more precisely, the spanning tree Tj computed

by Algorithm 1) we derive necessary and sufficient conditions for the existence of a nice
bridge in V (Aj), and hence, we may apply Lemma (3.7) to derive the existence of a
BP -augmenting path. We do this by considering the size of RAj .

(3.13) Lemma. Let Aj be a component of K such that |RAj | ≥ 3. Then there exists
a member of V (Aj) which is a nice bridge. Moreover, such a member of V (Aj) can be
found in O(|V (G)|) time.

Proof. We want to show that Tj contains a path (B1, B2, B3) such that either
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(i) (B1, B2, B3) is an induced path in K and rB1 �= rB3 , or (ii) rB1 �= rB2 �= rB3 �= rB1 .
For convenience, let T := Tj. Since |RAj | ≥ 3, there exist members W,Y and Z of V (Aj)
such that rW �= rY �= rZ �= rW . Moreover, W,Y and Z can be found in O(|V (T )|) time,
and hence, in O(|V (G)|) time. We may assume that W is the root of T . By Lemma (3.12)
T [W,Y ] and T [W,Z] are induced paths in Aj.

Suppose neither T [W,Y ] nor T [W,Z] contains a path (B1, B2, B3) satisfying (i) or (ii)
above. Because rW �= rY , rB ∈ {rW , rY } for every member B of V (T [W,Y ]) and rB1 �=
rB2 for every member B1B2 of E(T [W,Y ]). Similarly, because rW �= rZ , rB ∈ {rW , rZ}
for every member of V (T [W,Z]) and rB1 �= rB2 for any member B1B2 of E(T [W,Z]).
But since rZ is distinct from rW and rY , it follows that T [W,Y ]∪T [W,Z] must contain a
path (B1, B2, B3) which satisfies (i) or (ii). Clearly, this path can be found in O(|V (G)|)
time.

By Lemmas (3.9) and (3.10), one of B1, B2, B3 is nice bridge, and such a bridge can
be found in O(|V (G)|) time. �

If |RAj | ≤ 2 for every j ∈ {1, . . . , t}, then the existence of a nice bridge is not
guaranteed. In this case, we will find certain 4-cuts of G which play a fundamental role
in the construction of the desired planar a-b chain.

(3.14) Lemma. Let Aj be a component of K such that |RAj | = 1. Then one of the
following holds:

(1) |V (Aj)| = 1 and |(XP ∩ NG(Qj(aj , bj))) − RAj | = 1, or

(2) a member of V (Aj) is a nice bridge, and it can be found in O(|V (G)|) time.

Proof. We claim that (XP ∩ NG(Qj(aj , bj))) − RAj �= ∅. Otherwise, there exists a
component of G − (RAj ∪ {aj , bj}) not containing any element of XP ∪ {a, b} (because
P is induced), which is a contradiction to the assumption that G is (4,XP ∪ {a, b})-
connected. Thus, let x ∈ (XP ∩ NG(Qj(aj , bj))) − RAj .

First, suppose |V (Aj)| ≥ 2. Let B ∈ V (Aj) such that x ∈ NG(P (lB , hB)). Since
|V (Aj)| ≥ 2, there exists B′ ∈ V (Aj) such that B′ �= B, and B and B′ overlap. By
renaming B and B′ if necessary, we may assume that P [lB , hB ] is not a proper subpath
of P [lB′ , hB′ ]. Then, either lB′ ∈ V (P (lB , hB)), or hB′ ∈ V (P (lB , hB)), or both lB = lB′

and hB = hB′ . By (1) of (3.5), NG(P (lB′ , hB′))∩ (V (B′)−{rB′}) �= ∅. Hence, P (lB , hB)
has a neighbor y such that y ∈ V (B′) − {rB′}. Note that x, y ∈ NG(P (lB , hB)), x, y �∈
(V (B)−{rB})∪V (P ), x∗ = x �∈ Vj and y∗ = rB′ ∈ Vj . Thus by (3.6), B is a nice bridge.
Clearly, B can be found in O(|V (G)|) time, and hence, (2) holds.

Now, assume that |V (Aj)| = 1 and B is the only member of V (Aj). Then
Qj = p[lB , hB ]. Suppose (1) does not hold. Then |(XP ∩ NG(P (lB , hB))) − RAj | > 1.
Hence, there exists some y ∈ (XP ∩ NG(P (lB , hB))) − RAj with y �= x. Then
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x, y ∈ NG(P (lB , hB)), x, y �∈ (V (B) − {rB}) ∪ V (P ), and x∗ = x �= y = y∗. Hence
by (3.6), B is a nice bridge. Again, (2) holds. �

(3.15) Lemma. Let Aj be a component of K such that |RAj | = 2. Then, one of the
following holds:

(1) XP ∩ NG(Qj(aj , bj)) ⊆ RAj , or

(2) a member of V (Aj) is a nice bridge, and it can be found in in O(|V (G)|) time.

Proof. Suppose that (1) does not hold. Then there exists some x ∈ (XP ∩
NG(Qj(aj , bj)))−RAj . Note that x∗ = x. Let B ∈ V (Aj) such that x ∈ NG(P (lB , hB)).
Since |RAj | = 2, we have |V (Aj)| ≥ 2, and hence, there exists B′ ∈ V (Aj) such that
B′ �= B, and B and B′ overlap. We can rename B and B′ if necessary so that P [lB , hB ]
is not a proper subpath of P [lB′ , hB′ ]. We can show that B is a nice bridge as in the
second paragraph in the proof of Lemma (3.14). �

Before we can fully describe the main algorithm, we need to deal with the situation
where (1) of (3.14) or (1) of (3.15) occurs.

(3.16) Definition. Let Aj be a component of K such that either (i) |RAj | = 1 and
|(XP ∩ NG(Qj(aj , bj))) − RAj | = 1, or (ii) |RAj | = 2 and NG(XP ∩ Qj(aj , bj)) ⊆ RAj .
If (i) holds, then let RAj := {cj}, let (XP ∩ N(Qj(aj , bj))) − R(Aj) := {dj}, and let
Gj := G[Vj ∪ {dj} ∪ V (Qj)] − cjdj . If (ii) holds, then let RAj := {cj , dj}, and let
Gj := G[Vj ∪ V (Qj)] − cjdj . In both cases, the set Sj := {aj , bj , cj , dj} is a 4-cut in G,
and Gj − Sj is a component of G − Sj. We say that Aj determines the 4-cut Sj. Note
that since Aj is a component of K, Gj − {cj , dj} is 2-connected. See Figure 8.

(3.17) Lemma. Let Aj be a component of K which determines a 4-cut {aj , bj , cj , dj}.
Then one of the following holds:

(1) there exists an induced aj-bj path Q in Gj −{cj , dj} such that (P −V (P (aj , bj)))∪Q
is a BP -augmenting path; or

(2) (Gj , aj , cj , bj, dj) is planar.

Moreover, one can in O(|V (Gj)|+ |E(Gj)|) time find a path as in (1) or certify that (2)
holds.

Proof. Since G is (4,XP ∪ {a, b})-connected, if T ⊂ V (Gj) with |T | ≤ 3, then any
component of Gj−T contains an element of {aj , bj , cj , dj}. Hence, Gj is (4, {aj , bjcj , dj})-
connected. Apply (2.4) with Gj , aj , bj , cj , dj as G, a, a′, b, b′ respectively. Then one of the
following holds:
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(1)
(2)

aj

aj

bjbj

cj

cj

dj dj

Figure 8: 4-cuts determined by a component Aj of K.

(a) there exists a non-separating induced aj-bj path Q in Gj such that V (Q)∩{cj , dj} =
∅, or

(b) (Gj , aj , cj , bj, dj) is planar.

Moreover, one can in O(|V (Gj)|+ |E(Gj)|) time find a path as in (a) or certify that (b)
holds.

If (b) occurs, then we have (2). So we may assume that (a) occurs. Let P ′ :=
(P −V (P (aj , bj)))∪Q. Then P ′ is a non-separating induced path in G. Moreover, since
{cj , dj} is contained in the connected subgraph Gj − V (Q) of G − V (P ′), |V (BP )| <
|V (BP ′)|. Thus, P ′ is a BP -augmenting path. �

We are now ready to prove the main result of this paper: with input G, a, b, P,BP ,XP ,
Algorithm 2 returns a planar a-b chain H in G such that G − V (H) is 2-connected and
V (BP ) ⊆ V (G) − V (H).

(3.18) Theorem. Algorithm 2 is correct and runs in O(|V (G)||E(G)|) time.

Proof. Let us first prove the correctness of the algorithm.
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Algorithm 2 Non-separating Planar Chain.
Require: G, a, b, P,BP ,XP satisfying hypotheses of Theorem (1.6).
Return: A planar a-b chain H in G such that G − V (H) is 2-connected and V (BP ) ⊆

V (G) − V (H).
1: loop
2: if G − V (P ) = BP then
3: Return H ← P and stop;
4: Compute the set B of BP -bridges in G − V (P );
5: Apply Algorithm 1 to B to compute spanning trees T1,T2, . . . ,Tt of the components

A1, A2 . . . ,At of the auxiliary graph K, the subpaths Q1, Q2 . . . , Qt of P and their
respective ends a1, b1, a2, b2, . . . , at, bt;

6: if every Aj determines a 4-cut {aj , bj , cj , dj} and (Gj , aj , cj , bj , dj) is planar then
7: Return H := (P −

⋃t
j=1 V (P (aj , bj))) ∪ (

⋃t
j=1(Gj − {cj , dj})) and stop;

8: if there exists j such that |RAj | ≥ 3 or Aj does not determine a 4-cut then
9: Find a nice bridge B ∈ V (Aj);

10: Find an induced lB-hB path Q in G[(V (B) ∪ {lB , hB}] such that (P −
V (P (lB , hB))) ∪ Q is a BP -augmenting path;

11: Set P ← (P −V (P (lB , hB)))∪Q, update BP and XP , and start a new iteration;
12: if there exists Aj which determines a 4-cut and (Gj , aj , cj , bj , dj) is nonplanar

then
13: Find an induced aj-bj path Q in Gj − {cj , dj} such that (P − V (P (aj , bj))) ∪Q

is a BP -augmenting path.
14: Set P ← (P − V (P (aj , bj)))∪Q, update BP and XP , and start a new iteration;

At the start of each iteration of the main loop, P is a non-separating induced a-
b path, and BP is a nontrivial block of G − V (P ). Moreover, G − (V (BP ) − XP ) is
(4,XP ∪ {a, b})-connected, where XP := NG(G − V (BP )). As the algorithm progresses,
|V (BP )| increases.

If the algorithm stops at line 3, then clearly G − V (P ) is 2-connected. Moreover,
since P is an induced a-b path, H := P is also a planar a-b chain in G.

If the algorithm stops at line 7, it returns a subgraph H. First, note that BP =
G − V (H) is 2-connected. Let us prove that H is a planar a-b chain in G. Note that
t ≥ 1. For each j, 1 ≤ j ≤ t, we have that |R(Aj)| ≤ 2 and Aj determines a 4-
cut Sj := {aj , bj , cj , dj} where cj , dj ∈ XP ⊆ V (BP ). Moreover, (Gj , aj , cj , bj , dj) is
planar. Since Aj is a component of K, Gj − {cj , dj} is 2-connected. Therefore, H :=
(P −

⋃t
j=1 V (P (aj , bj))) ∪ (

⋃t
j=1(Gj − {cj , dj})) is a planar a-b chain in G.

If B is a nice bridge, then by Lemma (3.7) the path Q in line 10 exists and (P −
V (P (lB , hB)))∪Q is a BP -augmenting path. So, every time the algorithm executes lines
8-11, it increases |V (BP )|. Moreover, the existence of the nice bridge B on line 9 is
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guaranteed by (3.13), (2) of (3.14) and (2) of (3.15).
If Aj is a component of K that determines a 4-cut {aj , bj , cj , dj} and (Gj , aj , cj , bj , dj)

is nonplanar, then by (1) of Lemma (3.17) the path Q in line 13 exists and (P −
V (P (aj , bj)))∪Q is a BP -augmenting path. So when the algorithm executes lines 12-14,
it also increases |V (BP )|.

Finally, Lemma (3.2) guarantees that after the update of BP and XP either in line 11
or in line 14, the hypotheses of Theorem (1.6) still hold in the next iteration. Since
|V (BP )| increases at each iteration, the loop eventually stops, and hence, Algorithm 2 is
correct.

Now, let us verify the complexity of the algorithm.
The loop on line 1 is executed at most |V (G)| times since |V (BP )| increases at each

iteration.
The steps in lines 2 and 4 can be performed in O(|V (G)|+ |E(G)|) time by standard

graph search techniques (for example, see [18]). By Lemma (3.12), the spanning trees
T1, . . . ,Tt (line 5), the paths Q1, . . . , Qt and their respective ends a1, b1, . . . , at, bt can be
computed in O(|V (G)| + |E(G)|) time by Algorithm 1.

The steps in line 6 and line 12 test whether (Gj , aj , bj , cj , dj) is planar. By (2.4) this
is equivalent to deciding whether there exists a non-separating induced aj − bj path in
Gj containing neither cj nor dj , and can be done in O(|V (Gj)| + |E(Gj)|) (and hence,
O(|V (G)| + |E(G)|) time).

Finding a nice bridge B in line 9 can be done in O(|V (G)|) time by (3.13), (2) of
(3.14) and (2) of (3.15). The path Q in line 10 can be found in O(|V (G)| + |E(G)|)
time by Lemma (3.7). The path Q in line 13 can be found in O(|V (Gj)|+ |E(Gj)|) (and
hence, O(|V (G)| + |E(G)|) time by Lemma (3.17).

Clearly, the steps in lines 11 and 14 can be done in O(|E(G)|) time.
Therefore, the running time of Algorithm 2 is O(|V (G)||E(G)|). �

4 Related results

Our eventual goal is to construct a decomposition of any 4-connected graph into
certain chains and find four independent spanning trees. This will be done in forthcoming
papers where the asymptotic performance of Algorithm 2 can often be improved to
O(|V (G)|2): instead of applying the algorithm to G, we apply it to a sparse spanning
4-connected subgraph of G with the help from a result of Ibaraki and Nagamochi [9].

(4.1) Theorem. Given a k-connected graph G, one can find in O(|V (G)|+|E(G)|) time
a spanning k-connected subgraph of G with at most k|V (G)| edges.

The first step in our decomposition of a 4-connected graph is to find a “non-separating
cyclic chain”. Intuitively, a cyclic chain is a graph obtained from a chain by identifying
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its ends. More precisely, we have the following.

(4.2) Definition. A connected graph H is a cyclic chain if for some integer k ≥ 2, there
exist subgraphs B1, . . . , Bk of H and vertices v1, . . . , vk of H such that

(i) for 1 ≤ i ≤ k, Bi is 2-connected or Bi is induced by an edge of H,

(ii) V (H) =
⋃k

i=1 V (Bi) and E(H) =
⋃k

i=1 E(Bi),

(iii) if k = 2, then V (B1) ∩ V (B2) = {v1, v2} and E(B1) ∩ E(B2) = ∅, and

(iv) if k ≥ 3, then V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k where Bk+1 := B1, and
V (Bi) ∩ V (Bj) = ∅ for 1 ≤ i < i + 2 ≤ j ≤ k and (i, j) �= (1, k).

We usually fix one of the vertices v1, . . . , vk as the root of H, say vk, and we use the
notation H := v0B1v1 . . . vk−1Bkvk to indicate that H is a cyclic chain rooted at v0

(= vk). Each subgraph Bi is called a piece of H. See Figure 9 for an example with k = 6.

v0 = v6 v1 v2 v3 v4 v5

B1

B2 B3
B4

B5

B6

Figure 9: Example of a cyclic chain.

(4.3) Definition. Let G be a graph and let H := v0B1v1 . . . vk−1Bkvk be a cyclic chain
rooted at v0 = vk. If H is an induced subgraph of G, then we say that H is a cyclic chain
in G. We say that H is a planar cyclic chain in G, if for each 1 ≤ i ≤ k with |V (Bi)| ≥ 3
(or equivalently, Bi is 2-connected), there exist distinct vertices xi, yi ∈ V (G) − V (H)
such that (G[V (Bi) ∪ {xi, yi}] − xiyi, xi, vi−1, yi, vi) is planar, and Bi − {vi−1, vi} is a
component of G − {xi, yi, vi−1, vi}. See Figure 10 for an example with k = 6, where the
dashed edges may or may not exist in G but they are not part of H.

Now we can state and prove a result which will serve as the first chain in a chain
decomposition of a 4-connected graph. See again Figure 10 for an example.

(4.4) Theorem. Let G be a 4-connected graph and let ra ∈ E(G). Then there exists
a planar cyclic chain H in G rooted at r such that ra induces a piece of H and G −
(V (H) − {r}) is 2-connected. Moreover, such a chain can be found in O(|V (G)||E(G)|)
time.
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v0 = v6 = r

v1

v2

v3

v4

v5

B1

B2

B3

B4

B5

B6

x2

y2 = x4

y4

x5

y5

G − (V (H) − {r})

Figure 10: A planar cyclic chain H := v0B1v1 . . . v5B6v6 rooted at r in a graph G.

Proof. Let G be a 4-connected graph and let ra ∈ E(G). By (1.2), one can find a non-
separating induced cycle C in G through ra in O(|V (G)| + |E(G)|) time. Let P denote
the path C − r and let b be the end of P other than a. Since C is induced, exactly two
neighbors of r lie on P , namely a and b. Thus, since (G − V (P )) − r = G − V (C) is
connected, r is not a cut vertex of G−V (P ). Let BP be the block of G−V (P ) containing
r. Note that NG(r) ⊆ V (BP )∪{a, b}. Hence, BP contains more than two vertices because
r has degree at least four, and therefore, BP is 2-connected. If G − V (P ) = BP , then
H := C is a planar cyclic chain rooted at r such that ra induces a piece of H and
G− (V (H)− {r}) is 2-connected. So assume that G− V (P ) is not 2-connected, that is,
G − V (P ) �= BP .

Let XP := NG(G − V (BP )). Then G, a, b, P,BP ,XP satisfy the hypotheses of (1.6).
By (1.6) one can find in O(|V (G)||E(G)|) time a planar a-b chain H ′ in G such that
BP ⊆ G−V (H ′) and G−V (H ′) is 2-connected. Since NG(r) ⊆ V (BP )∪{a, b}, we have
r �∈ NG(H ′ −{a, b}). Therefore, H := (H ′ ∪{r})+ {ra, rb} is an induced subgraph of G.
Hence H is a planar cyclic chain in G rooted at r such that ra induces a piece of H and
G − (V (H) − {r}) is 2-connected. �
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The property that ra induces a piece in the planar cyclic chain in (4.4) is not necessary
for constructing a chain decomposition of a 4-connected graph, but it has an interesting
consequence (see Corollary (1.8)). To derive (1.7) and (1.8), we need to introduce some
results on Hamilton paths and cycles in planar graphs.

Thomassen [20] proved the existence of a special path in a 2-connected planar graph,
and later on, Chiba and Nishizeki [4] developed a O(|V (G)| + |E(G)|) algorithm for
finding such a path.

(4.5) Theorem. Let G be a 2-connected plane graph with a facial cycle F . Let x ∈
V (F ), e ∈ E(F ) and y ∈ V (G) − {x}. Then G contains an x-y path P through e such
that

(i) every P -bridge of G has at most three attachments on P , and

(ii) every P -bridge of G containing an edge of F has at most two attachments on P .

Moreover, such a path P can be found in O(|V (G)| + |E(G)|) time.

For our purpose, we need the following consequence of (4.5). This was proved by
Curran and Yu [5]. For a proof, see the appendix.

(4.6) Corollary. Let (G, a, c, b, d) be a planar graph and suppose that G is
(4, {a, b, c, d})-connected. Then there exists a Hamilton a-b path in G−{c, d}. Moreover,
such a path can be found in O(|V (G)| + |E(G)|) time.

(4.7) Corollary. Let G be a 4-connected graph and let H be a planar x-y chain in G.
Then there exists a Hamilton x-y path in H. Moreover, such a path can be found in
O(|V (H)| + |E(H)|) time.

Proof. Let H := v0B1v1 . . . vk−1Bkvk where v0 = x and vk = y. Since H is a planar
chain, for each nontrivial block Bi of H there exists ui, wi ∈ V (G) − V (H) such that
(G[V (Bi)∪{ui, wi}]−uiwi, vi−1, ui, vi, wi) is planar and Bi−{vi−1, vi} is a component of
G−{vi−1, vi, ui, wi}. Moreover, Gi := G[V (Bi)∪ {ui, wi}]− uiwi is (4, {vi−1, vi, ui, wi})-
connected. Applying (4.6) to (Gi, vi−1, ui, vi, wi) as (G, a, c, b, d), one can find a Hamilton
vi−1-vi path in Bi = Gi − {ui, wi} in O(|V (Gi)| + |E(Gi)|) time. Therefore, a Hamilton
x-y path in H can be found in O(|V (H)| + |E(H)|) time. �

By similar argument as in (4.7) we can prove the following.

(4.8) Corollary. Let G be a 4-connected graph and let H be a planar cyclic chain in
G. Then there exists a Hamilton cycle in H. Moreover, such a cycle can be found in
O(|V (H)| + |E(H)|) time.
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It is now easy to see that (1.7) follows from (1.6) and (4.7), and (1.8) follows from
(4.1), (4.4) and (4.8).

Corollary (1.8) is similar in spirit to (1.2) which was proved by Tutte. Unlike Tutte’s
result, however, we cannot ask the cycle C in (1.8) to be induced, and, we do not remove
the vertex r from the graph. Curran and Yu ([5], Theorem 1.3) showed that if G is
5-connected and e ∈ E(G), then G contains an induced cycle C through e such that
G − V (C) is 2-connected. All these results are related to the following important open
problem. In 1975, Lovász [13] conjectured the following: given any positive integer k,
there exists some positive integer f(k) with the property that for any given vertices x
and y of an f(k)-connected graph G, there exists an induced x-y path P in G such that
G − V (P ) is k-connected. Thus, Tutte’s result solves the case k = 1, and Curran and
Yu’s result implies the case k = 2 which was proved independently by Chen, Gould and
Yu [1] and Kriesell [12]. The conjecture is still open for higher values of k.
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5 Appendix

Proof of Lemma (2.2). First, we prove that exactly one of (1) and (2) holds. Clearly, (1)
and (2) are mutually exclusive because of planarity. We know that either (1) or (2) of (2.1)
holds. If (1) of (2.1) holds, then (1) of Lemma (2.2) holds. So assume (2) of (2.1) holds.
Let A1, . . . , Ak be as described in (2) of (2.1). Then S∩Ai = ∅ for 1 ≤ i ≤ k. Hence, G[Ai]
consists of those components of G − NG(Ai) containing no element of S, contradicting
our assumption that G is (4, S)-connected because |NG(Ai)| ≤ 3. So no Ai can exist.
Let G′ be described as in (2) of Theorem (2.1). Observe that (G′ − {ab, cd}, a, c, b, d) is
planar. Since G′ − {ab, cd} = G, (2) of Lemma (2.2) holds. Therefore, either (1) or (2)
holds.

Let us prove the algorithmic part of Lemma (2.2). First, we give a sketch of Shiloach’s
algorithm. It has as input a graph G and vertices a, b, c, d of G (with no connectivity
hypothesis on G). The algorithm consists of reductions R1,. . . ,R6 which reduces the
general problem to a restricted one.

R1: The algorithm initially reduces the problem to 3-connected graphs, in O(|V (G)|+
|E(G)|) time.

R2: If the graph is planar, then a specialized O(|V (G)| + |E(G)|) algorithm for
3-connected planar graphs [15] is used to solve the problem.

R3: Assume that G is nonplanar. This is the most time-consuming step of the
algorithm. It reduces the problem using network flow techniques to graphs satisfying
some connectivity constraints involving S := {a, b, c, d}. Namely, the resulting graph G
satisfies the following property: for any subset S′ of vertices of G with |S′| ≤ 4, there exist
four disjoint paths connecting S to S′ (these paths can share ends in S′ though). In fact,
this step is not executed at once, but it is interspersed with reductions R4, R5 and R6
in the algorithm. Whenever the algorithm finds a set S′ which is not connected to S by
four disjoint paths, a reduction is performed. The total time spent with these reductions
during the whole algorithm is O(|V (G)||E(G)|). For simplicity, suppose that no such set
S′ exists. By Menger’s theorem, this is equivalent to saying that G is (4, S)-connected.
Note that the graph G in the statement of Lemma (2.2) is (4, S)-connected.

Thus, so far G is 3-connected, nonplanar, and (4, S)-connected. The algorithm then
finds a subdivision of a Kuratowski graph (K5 or K3,3). Shiloach gave an O(|V (G)|2)
algorithm to find such a subdivision, but this can be improved as we show below using
an algorithm of Hsu and Shih [7].

R4: If a subdivision of K5 is found, Shiloach claims that the required two disjoint
paths can be found in O(|V (G)| + |E(G)|) time, using a result of Watkins [22].

R5 and R6: If a subdivision of K3,3 is found, then Shiloach’s algorithm finds the
required two disjoint paths in O(|V (G)| + |E(G)|) time.

Let us show how to improve the running time of the algorithm for (4, S)-connected
graphs. Let G be a graph, let S := {a, b, c, d} ⊂ V (G) and suppose that G is (4, S)-
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connected. Let G+ := G + {ac, cb, bd, da}. Since G is (4, S)-connected, G+ is (4, S)-
connected. Because each of a, b, c, d has degree at least three in G+, it follows that G+

is 3-connected. Moreover, if there exist disjoint paths P and Q in G+ from a to b, and
from c to d, respectively, then P and Q are both paths in G, and vice-versa.

We describe now how to solve the two disjoint paths problem for G+ in O(|V (G)| +
|E(G)|) time. Hsu and Shih [7] developed a O(|V (H)| + |E(H)|) algorithm that given a
graph H, either finds an embedding of H, or finds a subdivision of a Kuratowski graph in
H. Applying this algorithm to G+, either we find an embedding of G+, or, a subdivision
of K5 or K3,3. If the former occurs, then G+ is planar, and we can use step R2 to solve
the two disjoint paths problem in O(|V (G)| + |E(G)|) time. Otherwise, there exists a
subdivision of K5 (or K3,3), and we can use steps R4 (or, R5 and R6, respectively) of
Shiloach’s algorithm to find the required two disjoint paths. Thus, we can find the two
disjoint paths P and Q, if they exist, in O(|V (G)| + |E(G)|) time. �

Proof of (4.6). Let G′ := (G − d) ∪ {bc, ac}. We first show that G′ is 2-connected.
Suppose on the contrary that G′ is not 2-connected. Let x be a cut vertex of G′. Since
G is (4, {a, b, c, d})-connected, G − {c, d} contains an a-b path, and hence, {a, b, c} is
contained in a cycle in G′. Therefore, {a, b, c} is contained in an x-bridge of G′, and
G′ has another x-bridge B such that (V (B) − {x}) ∩ {a, b, c} = ∅. Hence, B − x is a
component of G−T , where T := {x, d}, and (V (B)−{x})∩{a, b, c} = ∅, a contradiction.

Note that G′ is planar, and can be drawn in the plane so that ac, bc and NG(d) are
on a facial cycle F . Applying (4.5) (with G′, a, c, bc as G,x, y, e respectively), G′ has an
a-c path P through bc satisfying (i) and (ii) of (4.5). Moreover, such a path can be found
in O(|V (G)| + |E(G)|) time. Note that ac �∈ E(P ) because bc ∈ E(P ).

We proceed to show that every P -bridge of G′ is induced by a single edge, and so P
must be a Hamilton path in G′. Let B be a P -bridge of G′ such that V (B)− V (P ) �= ∅,
and let T := V (B) ∩ V (P ). Since a, b and c are all on P , then {a, b, c} ∩ V (B) ⊆ T .
Thus, B − T is a component of G − (T ∪ {d}) containing no element of {a, b, c, d}. If
|T | ≤ 2, then |T ∪ {d}| ≤ 3, contradicting our assumption that G is (4, {a, b, c, d})-
connected. Since P satisfies (i) of (4.5), we may assume |T | = 3. Then by (ii) of (4.5),
E(B)∩E(F ) = ∅, and hence (V (B)−T )∩NG(d) = ∅. Therefore, B −T is a component
of G− T such that (V (B)− T ) ∩ {a, b, c, d} = ∅, a contradiction to the assumption that
G is (4, {a, b, c, d})-connected.

Thus, P − c is a Hamilton a-b path in G−{c, d}. Moreover, by (4.5) such a path can
be found in O(|V (G)| + |E(G)|) time. �
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