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Abstract

In this paper, some new families of integral trees with diameters 5 and 6 are
constructed. All these classes are infinite. They are different from those in the
existing literature. We also prove that the problem of finding integral trees of
diameters 5 and 6 is equivalent to the problem of solving some Diophantine
equations. The discovery of these integral trees is a new contribution to the
search for such trees.
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1 Introduction

The notion of integral graphs was first introduced by F. Harary and A.J. Schwenk in
1974 (see [7]). A graph G is called integral if all the zeros of the characteristic polynomial
P (G, x) are integers. The 23rd open problem of reference [4] is about trees with purely inte-
gral eigenvalues. All integral trees with diameters less than 4 are given in [1, 4]. Results on
integral trees with diameters 4, 5, 6 and 8 can be found in [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13,
14, 15, 18, 19, 20, 21, 22, 23, 24].

Various families of integral balanced trees were studied in [1, 4, 5, 7, 8, 9, 11, 12, 14, 19,
20, 21, 22]. A tree T is called balanced if the vertices at the same distance from the center of
T have the same degree. Balanced trees split into two families according to the parity of the
diameter. We shall code a balanced tree of diameter 2k by the sequence (nk, nk−1, · · · , n1) or
the tree T (nk, nk−1, · · · , n1), where nj (j = 1, 2, · · · , k) denotes the number of successors of a
vertex at distance k−j from the center. Let the tree K1,s•T (nk, nk−1, · · · , n1) of diameter 2k
be obtained by identifying the center w of K1,s and the center v of T (nk, nk−1, · · · , n1). Let the
tree T [m, r] of diameter 3 be formed by joining the centers of K1,m and K1,r with a new edge,
and let the tree T t[m, r] of diameter 5 (or T t(r, m) of diameter 6) be obtained by attaching t
new endpoints to each vertex of the tree T [m, r] (or T (r, m)). Integral trees of diameters 5 and
6 were studied in [1, 2, 9, 11, 12, 13, 14, 15] and [1, 2, 8, 9, 11, 12, 14, 15, 18, 19, 20, 21, 22].
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Infinitely many integral trees T t[m, r] of diameter 5 were first constructed by R.Y. Liu in
[14]. Later Z.F. Cao obtained general results on these classes by using the solutions of
some Pell equations in [2], and then Y. Li obtained more general results on these classes
by using the solutions of some more general quadratic Diophantine equations in [13]. In-
tegral trees T t(r, m), T (r, m, t), and K1,s • T (r, m, t) of diameter 6 were investigated in
[1, 2, 8, 9, 11, 12, 14, 15, 18, 19, 20, 21, 22]. In this paper, some new families of integral
trees with diameters 5 and 6 are constructed. All these classes are infinite. They are different
from those in the existing literature. We also prove that the problem of finding integral trees
of diameters 5 and 6 is equivalent to the problem of solving some Diophantine equations. The
discovery of these integral trees is a new contribution to the search of such trees. We believe
it is useful for constructing other integral trees.

Firstly, we shall give some lemmas on graphs, the first three of which can be found in [5].
For notations and terminology, we refer to [5].

Lemma 1.1. Let G1
⋃

G2 denote the union of two disjoint graphs G1 and G2. If u ∈ V (G1),
v ∈ V (G2) and G = G1

⋃
G2 + uv, then

P (G, x) = P (G1, x)P (G2, x) − P (G1 − u, x)P (G2 − v, x).

Lemma 1.2. Let G be a graph. If u ∈ V (G), v �∈ V (G) and G∗ = G + uv, then

P (G∗, x) = xP (G, x) − P (G − u, x).

Lemma 1.3. Let G be a graph with n vertices, and Gt is obtained by attaching t new endpoints
to each vertex of the graph G. Then we have P (Gt, x) = xntP (G, x − t

x).
The following Lemmas 1.4, 1.5 and 1.6 can be found in [6], [11] and [18], respectively.

Lemma 1.4. If G•H is the graph obtained from G and H by identifying the vertices v ∈ V (G)
and w ∈ V (H), then

P (G • H, x) = P (G, x)P (Hw, x) + P (Gv, x)P (H, x) − xP (Gv, x)P (Hw, x),

where Gv and Hw are the subgraphs of G and H induced by V (G)\{v} and V (H)\{w},
respectively.

Lemma 1.5. (1) P (K1,t, x) = xt−1(x2 − t).

(2) P (T (m, t), x) = xm(t−1)+1(x2 − t)m−1[x2 − (m + t)].

Lemma 1.6.

P [K1,s • T (m, t), x] = xm(t−1)+(s−1)(x2 − t)m−1[x4 − (m + t + s)x2 + st].

A graph G is called a rooted graph if one vertex u of G is distinguished from the rest. The
distinguished vertex u is called the root-vertex, or simply the root. Let r ∗ G be the graph
formed by joining the roots of r copies of G to a new vertex w, and let K1,r •G be the graph
obtained by identifying the center z of K1,r and the root u of G. The following Lemmas 1.7
and 1.8 can be found in [20].
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Lemma 1.7. P (r ∗ G, x) = P r−1(G, x)[xP (G, x) − rP (G − u, x)].
Proof. It is easy to check the validity by Lemmas 1.1 and 1.2. �

Lemma 1.8. P (K1,r • G, x) = xr−1[xP (G, x) − rP (G − u, x)].
Proof. It is easy to check the validity by Lemmas 1.4 and 1.5. �

Secondly, we shall give some facts in number theory. For notations and terminology, we
refer to [3, 17, 25].

Let d be a positive integer but not a perfect square, m �= 0, and m be an integer. We
shall study the Diophantine equation

x2 − dy2 = m. (1)

If x1, y1 is a solution of Eqn.(1), for convenience, then x1 + y1

√
d is also called a solution

of Eqn.(1). Let s + t
√

d be any solution of the Pell equation

x2 − dy2 = 1. (2)

Clearly, we know that

(x1 + y1

√
d)(s + t

√
d) = x1s + y1td + (y1s + x1t)

√
d

is also a solution of Eqn.(1). Then this solution and x1 + y1

√
d are called associate. If

two solutions x1 + y1

√
d and x2 + y2

√
d of Eqn.(1) are associate, then we denote them by

x1 + y1

√
d ∼ x2 + y2

√
d. It is easy to verify that the associate relation ∼ is an equivalence

relation. Hence, if Eqn.(1) has solutions, then all the solutions can be classified by the as-
sociate relation. Any two solutions in the same associate class are associate each other, any
two solutions not in the same class are not associate.

The following Lemmas 1.9, 1.10 and 1.11 can be found in [3] or [25].

Lemma 1.9. A necessary and sufficient condition for two solutions x1 +y1

√
d and x2 +y2

√
d

of Eqn.(1) to be in the same associate class K is that

x1x2 − dy1y2 ≡ 0(mod|m|), y1x2 − x1y2 ≡ 0(mod|m|).
Let x1 + y1

√
d be any solution of Eqn.(1), by Lemma 1.9, we have that −(x1 + y1

√
d) ∼

x1 +y1

√
d, −(x1−y1

√
d) ∼ x1−y1

√
d. Let K and K be any two associate classes of solutions

of Eqn.(1). If any solution x+y
√

d ∈ K, then x−y
√

d ∈ K. The converse is also true. Hence,
K and K are called conjugate classes. If K = K, then this class is called an ambiguous class.
Let u0 + v0

√
d be the fundamental solution of the associate class K, where v0 is positive and

has the least value in the class K. If the class K is ambiguous, we can assume that u0 ≥ 0.

Lemma 1.10. Let K be any associate class of solutions of Eqn.(1), and u0 + v0

√
d be the

fundamental solution of the associate class K. Let x0 + y0

√
d be the fundamental solution of

Eqn.(2). Then we have that

0 ≤ v0 ≤
⎧⎨
⎩

y0
√

m√
2(x0+1)

, if m > 0,
y0

√−m√
2(x0−1)

, if m < 0.
(3)
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0 ≤ |u0| ≤
⎧⎨
⎩

√
1
2(x0 + 1)m, if m > 0,√
1
2(x0 − 1)(−m), if m < 0.

(4)

Lemma 1.11. (i) Let d be a positive integer but not a perfect square, m �= 0, and m be
an integer. Then there are only finitely many associate classes for Eqn.(1), and the
fundamental solutions of all these classes can be found by finite steps from (3) and (4).

(ii) Let K be an associate class of solutions of Eqn.(1), and u0 + v0

√
d be the fundamental

solution of the associate class K. Then all solutions of the class K are given by

x + y
√

d = ±(u0 + v0

√
d)(x0 + y0

√
d)n,

where n is an integer, and x0 + y0

√
d is the fundamental solution of Eqn.(2).

(iii) If u0 and v0 satisfy (3) and (4) but are not solutions of Eqn.(1), then there is no solution
for Eqn.(1).

The following Lemmas 1.12 and 1.13 can be found in [3, 16] or [17].

Lemma 1.12. Let d (> 1) be a positive integer but not a perfect square. Then there exist
solutions for Eqn.(2), and all the positive integral solutions xk, yk of Eqn.(2) are given by

xk + yk

√
d = εk, (5)

for k = 1, 2, 3, · · · , where ε = x0 + y0

√
d is the least positive solution of Eqn.(2). Suppose that

ε = x0 − y0

√
d. Then we have that εε = 1 and

xk =
εk + εk

2
, yk =

εk − εk

2
√

d
, (6)

for k = 1, 2, · · · .

Lemma 1.13. Let u, v be the least positive solution of Eqn.(2), where d(> 1) is a positive
integer but not a perfect square. Then the Pell equation

x2 − dy2 = −1 (7)

has solutions if and only if there exist positive integral solutions s and t for the equations

s2 + dt2 = u, 2st = v,

and moreover s and t are the least positive solutions of Eqn.(7).
The following Lemmas 1.14 and 1.15 can be found in [16] and [25], respectively.

Lemma 1.14. Suppose that Eqn.(7) is solvable. Let ρ = x0 + y0

√
d be the least positive

solution of Eqn.(7), where d(> 1) is a positive integer but not a perfect square. Then we have
the following results.

(1) All the positive integral solutions xk, yk of Eqn.(7) are given by

xk + yk

√
d = ρk, (8)

for k = 1, 3, 5, · · ·
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(2) All the positive integral solutions xk, yk of Eqn.(2) are given by Eqn.(8) for k = 2, 4, 6, · · ·
(3) Let ρ = x0 − y0

√
d, then ρρ = −1, and xk, yk can be defined by

xk =
ρk + ρk

2
, yk =

ρk − ρk

2
√

d
, k = 1, 2, · · · (9)

Lemma 1.15. (1) Let d (> 1) be a positive integer with square-free divisor, if there exist
d1 > 1 and d2 such that d = d1d2 and the Diophantine equation

d1x
2 − d2y

2 = 1 (10)

has positive integral solutions, then d1, d2 are uniquely determined by d.

(2) Let ε1 = x1

√
d1 + y1

√
d2 be the least positive integral solution of Eqn.(10). Then all

positive integral solutions xn, yn of Eqn.(10) are given by

xn

√
d1 + yn

√
d2 = εn

1 , 2 � n. (11)

(3) Let ε1 = x1

√
d1 − y1

√
d2. Then ε1ε1 = 1 and

xn =
εn
1 + εn

1

2
√

d1
, yn =

εn
1 − εn

1

2
√

d2
, 2 � n. (12)

2 Integral trees of diameter 5

In this section, we shall construct infinitely many new integral trees of diameter 5. They
are different from those in the existing literature.

Theorem 2.1. Let the tree [K1,s • T (m, t)] 	 T (q, r) of diameter 5 be obtained by joining
the center u of K1,s • T (m, t) and the center v of T (q, r) with a new edge. Then the tree
[K1,s • T (m, t)] 	 T (q, r) of diameter 5 is integral if and only if the equation

(x2 − t)m−1(x2 − r)q−1{x6 − (m + t + s + q + r + 1)x4 + [st + (q + r)(m + t + s)
+r + t]x2 − t(sq + sr + r)} = 0

has only integral roots.
Proof. Note that the vertex u is the center of the tree K1,s • T (m, t), and the vertex v is the
center of the tree T (q, r). Suppose that

G1 = K1,s • T (m, t), G2 = T (q, r).

Than, by Lemma 1.1 we know that

P ({[K1,s • T (m, t)] 	 T (q, r)}, x)
= P (K1,s • T (m, t), x)P (T (q, r), x) − xsPm(K1,t, x)P q(K1,r, x)

By Lemmas 1.5 and 1.6, we have

P ({[K1,s • T (m, t)] 	 T (q, r)}, x)
= xm(t−1)+q(r−1)+s(x2 − t)m−1(x2 − r)q−1{[x2 − (q + r)][x4 − (m + t + s)x2 + st]
−(x2 − t)(x2 − r)}
= xm(t−1)+q(r−1)+s(x2 − t)m−1(x2 − r)q−1{x6 − (m + t + s + q + r + 1)x4

+[st + (q + r)(m + t + s) + r + t]x2 − t(sq + sr + r)}
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Thus, the theorem is proved. �
The following Corollary 2.2 can be found in [1].

Corollary 2.2. If s = 0, then the tree [K1,0 • T (m, t)]	 T (q, r) = T (m, t)	 T (q, r) is not an
integral tree with diameter 5.

Now we assume that s > 0 throughout the whole paper.

Corollary 2.3. If q + r = t, then the tree [K1,s • T (m, t)] 	 T (q, r) of diameter 5 is integral
if and only if there exist natural numbers a and b such that x4 − (m + t + s + 1)x2 + st + r
can be factored as (x2 − a2)(x2 − b2), t is a perfect square, and either q = 1 or q > 1 and r is
a perfect square.
Proof. It is easy to check the validity by Theorem 2.1. �

Corollary 2.4. For the tree [K1,s •T (m, t)]	T (q, r) of diameter 5, if q + r = t, we have the
following results.

(1) When q = 1, let d > 1 such that there exist positive integral solutions for Eqn.(7). Then,
all positive integral solutions x2k−1, y2k−1 of Eqn.(7) are defined by Eqn.(9). If s = d−1,
m = a2 + b2 − y2

2k−1 − d, t = y2
2k−1, q = 1, r = y2

2k−1 − 1 and ab = x2k−1, where k, a and
b are positive integers, then the tree [K1,s • T (m, t)]	 T (q, r) is integral with diameter 5,
and there are infinitely many such integral trees.

(2) When q > 1, if s = de2, t = f2y2
k,q = f2(y2

k − e2) > 0, r = e2f2, m = a2 + b2 − f2y2
k −

de2 − 1 > 0, and ab = efxk, where a, b, d(> 1), e, f and k are positive integers, and d
is not a perfect square, and all positive integral solutions xk, yk of Eqn.(2) are given by
Eqn.(6), then the tree [K1,s • T (m, t)] 	 T (q, r) is integral with diameter 5, and there are
infinitely many such integral trees.

(3) When q > 1, if t and r are perfect squares, q = t − r > 0, s = a2b2−r
t > 0, m =

a2 + b2 − a2b2−r
t − t − 1 > 0, where s, m, t, q, r, a and b are positive integers, then the

tree [K1,s • T (m, t)] 	 T (q, r) is integral with diameter 5.

Proof. Since q + r = t, by Theorem 2.1 we get that

P ({[K1,s • T (m, t)] 	 T (q, r)}, x)
= xm(t−1)+q(r−1)+s(x2 − t)m(x2 − r)q−1[x4 − (m + t + s + 1)x2 + st + r].

By Corollary 2.3, we know that the tree [K1,s•T (m, t)]	T (q, r) of diameter 5 (where q+r = t)
is integral if and only if there exist positive integral solutions for the following Diophantine
equations (13) satisfying one of the following two conditions:

(i) q = 1, t is a perfect square, that is, t = t21.

(ii) q > 1, t and r are perfect squares, that is, t = t21 and r = r2
1.

{
a2b2 = st + r,
a2 + b2 = m + t + s + 1,

(13)
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(1) By Eqn.(13), condition (i) and q + r = t, we get that

a2b2 − (s + 1)t = −1. (14)

Assume that ab = x, s + 1 = d, t = t21 = y2. Then Eqn. (14) can be changed into Eqn.(7).
Hence, by Lemmas 1.13 and 1.14, Eqn.(13) and Eqn.(14), it is easy to check the validity of
(1) of Corollary 2.4.

(2) By Eqn.(13), condition (ii) and q + r = t, we get that

a2b2 − st = r ⇒ a2b2 − st21 = r2
1 ⇒ a2b2

r2
1

− st21
r2
1

= 1 (15)

Assume that r = r2
1 = e2f2, s = de2, t = t21 = f2y2 and ab = efx, where a, b, d(> 1), e,

f and k are positive integers, and d is not a perfect square. Then Eqn.(15) can be changed
into Eqn.(2). Thus, by Eqn.(13), condition (ii) and q + r = t, and Lemmas 1.12 and 1.14, it
is easy to check the validity of (2) of Corollary 2.4.

(3) It is easy to check the validity of (3) of Corollary 2.4 by Theorem 2.1 or Corollary 2.3.
The proof is now complete. �

Note that we obtain the smallest integral tree [K1,2 • T (3, 4)] 	 T (3, 1) of diameter 5 in
this class. Its characteristic polynomial is P ([K1,2 • T (3, 4)]	 T (3, 1), x) = x11(x2 − 1)3(x2 −
4)3(x2 − 9) with order 25.

For (3) of Corollary 2.4, we simply list some examples of integral trees [K1,s • T (m, t)] 	
T (q, r) with diameter 5.

Example 2.5. When q + r = t, q > 1, let s, m, t, q, r, a and b be those positive integers of
(3) of Corollary 2.4, given in the following items, where a1, b1, k, k1, k2 and l are positive
integers. Then the tree [K1,s • T (m, t)] 	 T (q, r) is integral with diameter 5.

(1) s = k2(l2 + 2), m = (l2 − k2)(l2 − k2 + 2) > 0, t = k2l2, q = k2(l2 − k2) > 1, r = k4,
a = k2 and b = l2 + 1,

(2) s = k2(l2 + 2), m = k2l4 − 1 > 0, t = k2l2, q = k2(l2 − k2) > 1, r = k4, a = k and
b = k(l2 + 1),

(3) s = k2(l2 − 2) > 0, m = (l2 − k2)(l2 − k2 − 2) > 0, t = k2l2, q = k2(l2 − k2) > 1, r = k4,
a = k2 and b = l2 − 1 > 0,

(4) s = k2(l2 − 2) > 0, m = k2(l2 − 2)2 − 1 > 0, t = k2l2, q = k2(l2 − k2) > 1, r = k4, a = k
and b = k(l2 − 1) > 0,

(5) s = l2 + 2, m = l4 − k2l2 + l2 + k2 − 2 > 0, t = k2l2, q = k2(l2 − 1) > 1, r = k2, a = k
and b = l2 + 1,

(6) s = l2 − 2 > 0, m = l4 − k2l2 − 3l2 + k2 + 2 > 0, t = k2l2, q = k2(l2 − 1) > 1, r = k2,
a = k and b = l2 − 1 > 0,

(7) s = a2
1b

2
1(l

2+2), m = k2
1a

4
1+k2

2b
4
1(l

2+1)2−a2
1b

2
1(l

2+2)−k2
1k

2
2a

2
1b

2
1l

2−1 > 0, t = k2
1k

2
2a

2
1b

2
1l

2,
q = k2

1k
2
2a

2
1b

2
1(l

2 − a2
1b

2
1) > 1, r = k2

1k
2
2a

4
1b

4
1, a = k1a

2
1 and b = k2b

2
1(l

2 + 1),
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(8) s = a2
1b

2
1(l

2 − 2) > 0, m = k2
1a

4
1 + k2

2b
4
1(l

2 − 1)2 − a2
1b

2
1(l

2 − 2) − k2
1k

2
2a

2
1b

2
1l

2 − 1 > 0, t =
k2

1k
2
2a

2
1b

2
1l

2, q = k2
1k

2
2a

2
1b

2
1(l

2−a2
1b

2
1) > 1, r = k2

1k
2
2a

4
1b

4
1, a = k1a

2
1 and b = k2b

2
1(l

2−1) > 0,

(9) s = k2
1k

2
2a

2
1b

2
1(l

2 + 2), m = k2
1a

4
1 + k2

2b
4
1(l

2 + 1)2 − k2
1k

2
2a

2
1b

2
1(l

2 + 2) − a2
1b

2
1l

2 − 1 > 0,
t = a2

1b
2
1l

2, q = a2
1b

2
1(l

2 − k2
1k

2
2a

2
1b

2
1) > 1, r = k2

1k
2
2a

4
1b

4
1, a = k1a

2
1 and b = k2b

2
1(l

2 + 1),

(10) s = k2
1k

2
2a

2
1b

2
1(l

2 − 2) > 0, m = k2
1a

4
1 + k2

2b
4
1(l

2 − 1)2 − k2
1k

2
2a

2
1b

2
1(l

2 − 2) − a2
1b

2
1l

2 − 1 > 0,
t = a2

1b
2
1l

2, q = a2
1b

2
1(l

2 − k2
1k

2
2a

2
1b

2
1) > 1, r = k2

1k
2
2a

4
1b

4
1, a = k1a

2
1 and b = k2b

2
1(l

2 − 1) > 0.

Proof. It is easy to check the validity by Corollary 2.3 or (3) of Corollary 2.4. �

Corollary 2.6. If q + r �= t, then the tree [K1,s • T (m, t)] 	 T (q, r) of diameter 5 is integral
if and only if there exist natural numbers a, b and c such that
x6 − (m + t + s + q + r + 1)x4 + [st + (q + r)(m + t + s) + r + t]x2 − t(sq + sr + r)
can be factored as (x2 − a2)(x2 − b2)(x2 − c2), and both of these conditions hold:
(i) Either m = 1 or m > 1 and t is a perfect square.
(ii) Either q = 1 or q > 1 and r is a perfect square.
Proof. It is easy to check the validity by Theorem 2.1. �

Corollary 2.7. When q + r �= t, m = 1, q > 1, let a, b, c, s, m, t, q and r be those positive
integers of Corollary 2.6, given in the following Table 1 (where a, b, c, s, m, t, q and r are
obtained by computer searching, and 1 ≤ a ≤ 16, a ≤ b ≤ a + 8, b ≤ c ≤ b + 10, q + r �= t,
m = 1 and q > 1). Then the tree [K1,s • T (m, t)] 	 T (q, r) is integral with diameter 5.

a b c s m t q r a b c s m t q r

2 9 10 4 1 80 90 9 8 9 10 71 1 75 72 25
8 9 10 71 1 96 72 4 15 16 18 239 1 243 240 81
15 16 18 239 1 320 240 4 / / / / / / / /

Table 1: Integral tree [K1,s • T (m, t)] 	 T (q, r) with diameter 5, where q + r �= t, m = 1 and
q > 1.

Proof. It is easy to check the validity by Theorem 2.1 or Corollary 2.6. �

Corollary 2.8. When q + r �= t, m > 1, q > 1, t and r are perfect squares, let a, b, c, s, m,
t, q and r be those positive integers of Corollary 2.6, given in the following Table 2 (where
a, b, c, s, m, t, q and r are obtained by computer searching, and 1 ≤ a ≤ 7, a ≤ b ≤ 9,
b ≤ c ≤ 20,q + r �= t, m > 1 and q > 1). Then the tree [K1,s • T (m, t)] 	 T (q, r) is integral
with diameter 5.
Proof. It is easy to check the validity by Theorem 2.1 or Corollary 2.6. �

Remark 2.9. From Theorem 2.1, we know that it is important to find positive integral solu-
tions of the following Diophantine equations (16) satisfying one of the following four condi-
tions:

(i) m = 1 and q = 1.

(ii) m > 1, q = 1, t is a perfect square.

(iii) m = 1, q > 1, r is a perfect square.
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a b c s m t q r a b c s m t q r

1 5 6 3 16 9 32 1 1 5 6 7 18 4 31 1
1 5 6 8 21 4 27 1 1 6 7 10 27 4 43 1
1 6 7 11 30 4 39 1 1 6 7 5 32 9 38 1
1 9 10 22 63 4 91 1 1 9 10 23 66 4 87 1
2 5 6 12 10 9 29 4 2 6 7 20 20 9 35 4
2 7 8 13 27 16 56 4 2 7 8 15 33 16 48 4
2 8 9 17 39 16 72 4 2 8 9 19 45 4 64 4
3 6 8 35 20 16 36 1 3 8 10 55 36 16 40 25
3 8 11 67 45 16 64 1 3 9 10 21 36 36 87 9
3 9 10 24 45 36 75 9 4 5 12 25 36 100 22 1
5 6 12 38 32 100 30 4 5 6 17 35 56 225 32 1
6 7 16 50 48 196 42 4 6 7 20 102 190 144 44 4
6 8 15 57 60 144 54 9 7 8 16 67 44 196 52 9

Table 2: Integral tree [K1,s • T (m, t)] 	 T (q, r) with diameter 5, where q + r �= t, m > 1 and
q > 1.

(iv) m > 1, q > 1, t and r are perfect squares.

⎧⎨
⎩

a2 + b2 + c2 = m + t + s + q + r + 1
a2b2 + b2c2 + c2a2 = st + (q + r)(m + t + s) + t + r
a2b2c2 = t(sq + sr + r)

(16)

By Theorem 2.1, Corollaries 2.3, 2.4, 2.6, 2.7 and 2.8, we know that there exist infinitely
many such integral trees [K1,s • T (m, t)] 	 T (q, r) of diameter 5. However, (i) when m = 1
and q = 1, 1 ≤ a ≤ 15, a ≤ b ≤ a+15, b ≤ c ≤ b+20, (ii) when m > 1, q = 1, q + r �= t, and
t is a perfect square, 1 ≤ a ≤ 5, a ≤ b ≤ a + 8, b ≤ c ≤ b + 10, we have not found positive
integral solutions of Eqn.(16) by computer searching.

Hence, we raise the following Question 2.10.

Question 2.10. Are there integral trees [K1,s • T (m, t)] 	 T (q, r) of diameter 5 with m = 1,
q = 1 or m > 1, q = 1, q + r �= t, t a perfect square ?

From Corollary 2.7, we raise the following Question 2.11.

Question 2.11. Can we prove that there are infinitely many integral trees [K1,s • T (m, t)]	
T (q, r) of diameter 5 with q + r �= t, m = 1 and q > 1 ?

Remark 2.12. For integral tree [K1,s • T (m, t)] 	 T (q, r) of diameter 5, by analyzing Table
2, we can see the following result. If q + r �= t, m > 1 and q > 1, t and r are perfect squares,
then the problem of finding such integral trees is equivalent to the problem of solving Eqn.(16).
In particular, we can also see that

[x2 − (q + r)][x4 − (m + t + s)x2 + st] − (x2 − t)(x2 − r)
= [x2 − (q + r)](x2 − r)(x2 − st

r ) − (x2 − t)(x2 − r)
= (x2 − r)[x4 − (q + r + st

r + 1)x2 + t + st(q+r)
r )

= (x2 − r)(x2 − a2)(x2 − b2).
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Thus, when q+r �= t, m > 1 and q > 1, t and r are perfect squares, that is, t = t21 and r = r2
1,

we know that the problem is equivalent to solving the following Diophantine equations (17).
⎧⎨
⎩

a2 + b2 = q + r + st
r + 1

a2b2 = t + st(q+r)
r

m + t + s = r + st
r

(17)

Hence, we raise the following Question 2.13.

Question 2.13. When q + r �= t, m > 1 and q > 1, t and r are perfect squares, can we prove
that there are infinitely many positive integral solutions for Eqn. (16) or Eqn.(17)? Moreover,
can we find all positive integral solutions of Eqn. (16) or Eqn.(17) ?

Theorem 2.14. Let the tree [K1,s • T (m, t)] 	 [K1,p • T (q, r)] of diameter 5 be obtained by
joining the center u of K1,s •T (m, t) and the center w of K1,p •T (q, r) with a new edge. Then
the characteristic polynomial of the tree [K1,s • T (m, t)] 	 [K1,p • T (q, r)] of diameter 5 is
P ({[K1,s • T (m, t)]	 [K1,p • T (q, r)]}, x) = xm(t−1)+q(r−1)+s+p−2(x2 − t)m−1(x2 − r)q−1{[x4 −
(m + t + s)x2 + st][x4 − (p + q + r)x2 + pr] − x2(x2 − t)(x2 − r)}.
Proof. It is easy to check the validity by Lemmas 1.1, 1.5 and 1.6. �

Corollary 2.15. The tree [K1,s • T (m, t)] 	 [K1,p • T (q, r)] of diameter 5 is integral if and
only if the equation

(x2 − t)m−1(x2 − r)q−1{x8 − (m + t + s + p + q + r + 1)x6 + [(m + t + s)(p + q + r)
+st + pr + t + r]x4 − [st(p + q + r) + pr(m + t + s) + rt]x2 + prst} = 0

has only integral roots.
For the tree [K1,s•T (m, t)]	 [K1,p•T (q, r)] of diameter 5, we can see the following results.

(i) If p = 0, then [K1,s•T (m, t)]	[K1,p•T (q, r)] = [K1,s•T (m, t)]	T (q, r). (ii) If s = p = r = t,
then [K1,s • T (m, t)] 	 [K1,p • T (q, r)] = T t[m, q]. Integral trees T t[m, q] of diameter 5 were
investigated in [2, 13, 14, 15]. We simply list some examples from [2, 13, 14, 15]. The following
Example 2.16 can be found in [2, 13].

Example 2.16. (1) Let d (> 1) be a positive integer but not a perfect square, and xk, yk

be defined by Eqn.(6). If m = d(yn−yl
2 )2, r = d(yn+yl

2 )2, and t = (
x2

n+l
2

−x2
n−l
2

4 )2, where
n > l > 0, n and l are even, then all T t[m, r] are integral trees with diameter 5.

(2) Let d > 1 such that there exists positive integral solutions for Eqn.(7), and let xk, yk be

defined by Eqn.(9). If m = d(xnyn − xlyl)2, r = d(xnyn + xlyl)2, and t = (
x2

n+l−x2
n−l

4 )2,
where n > l > 0, then all T t[m, r] are integral trees with diameter 5.

(3) Let d (> 1) be a positive integer with square-free divisor, d = d1d2, d1 > 1 such that
Eqn.(10) has positive integral solutions, and let xk, yk be defined by Eqn.(12). If m =
dx2

ky
2
l , r = dx2

l y
2
k, and t = d2

1(
x2

k−x2
l

4 )2, where k �= l, 2 � kl, then all T t[m, r] are integral
trees with diameter 5.

(4) Let d (> 1) be a positive integer with square-free divisor, and xk, yk be defined by Eqn.(6).
Let m = dx2

ky
2
l , r = dx2

l y
2
k, and t = (x2

k−x2
l

4 )2, where k �= l, ε = x0 + y0

√
d is the least
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positive solution of Eqn.(2). If 2 � x0 or 2|x0, and k ≡ l(mod 2), then all T t[m, r] are
integral trees with diameter 5.
For the tree [K1,s•T (m, t)]	[K1,p•T (q, r)] of diameter 5, we have only found such integral

trees for the case that s = t = p = r. Hence, we raise the following Question 2.17.

Question 2.17. Are there integral trees [K1,s •T (m, t)]	 [K1,p •T (q, r)] of diameter 5 for s,
t, p and r which are not all equal?

3 Integral trees of diameter 6

In this section, we shall construct infinitely many new integral trees of diameter 6. They
are different from those in the existing literature.

Theorem 3.1. Let the tree r∗(K1,s•T (m, t)) of diameter 6 be obtained by joining the centers
of r copies of K1,s • T (m, t) to a new vertex w, and let the tree K1,q • [r ∗ (K1,s • T (m, t))] of
diameter 6 be obtained by identifying the center z of K1,q and the root w of r∗(K1,s•T (m, t)),
where r > 1. Then their characteristic polynomials are as follows.

(1) P [r ∗ (K1,s •T (m, t)), x] = xrm(t−1)+r(s−1)+1(x2− t)r(m−1)[x4− (m+ t+s)x2 +st]r−1[x4−
(m + t + s + r)x2 + t(r + s)].

(2) P{K1,q • [r ∗ (K1,s •T (m, t))], x} = xrm(t−1)+r(s−1)+q−1(x2 − t)r(m−1)[x4 − (m+ t+ s)x2 +
st]r−1{x6 − (m + t + s + r + q)x4 + [t(r + s) + q(m + t + s)]x2 − qst}.

Proof. It is easy to check the validity by Lemmas 1.5, 1.6, 1.7 and 1.8. �

The following (2) of Corollary 3.2 can be found in [2, 14] or [22].

Corollary 3.2. For the tree K1,q • [r ∗ (K1,s • T (m, t))] of diameter 6, we have the following
results.

(1) If q = t, then P{K1,t • [r ∗ (K1,s •T (m, t))], x} = x(rm+1)(t−1)+r(s−1)(x2 − t)r(m−1)+1[x4 −
(m + t + s)x2 + st]r−1[x4 − (m + t + s + r)x2 + st].

(2) If q = s = t, then P (T t(r, m), x) = P{K1,t • [r∗ (K1,t •T (m, t))], x} = x(rm+r+1)(t−1)(x2−
t)r(m−1)+1[x4 − (m + 2t)x2 + t2]r−1[x4 − (m + 2t + r)x2 + t2].

Proof. It is easy to check the validity by Theorem 3.1 �

Theorem 3.3. (1) The tree r ∗ (K1,s • T (m, t)) of diameter 6 is integral if and only if the
equation

(x2 − t)r(m−1)[x4 − (m + t + s)x2 + st]r−1[x4 − (m + t + s + r)x2 + t(r + s)] = 0

has only integral roots.

(2) The tree K1,q • [r ∗ (K1,s • T (m, t))] of diameter 6 is integral if and only if the equation

(x2 − t)r(m−1)[x4 − (m + t + s)x2 + st]r−1{x6 − (m + t + s + r + q)x4 + [t(r + s)
+q(m + t + s)]x2 − qst} = 0

has only integral roots.
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Proof. It is easy to check the validity by Theorem 3.1. �

Theorem 3.4. For any positive integer n, we have the following results.

(1) If the tree r ∗ [K1,s • T (m, t)] of diameter 6 is integral, and m > 1, then the tree (rn2) ∗
[K1,sn2 • T (mn2, tn2)] of diameter 6 is integral, too.

(2) If the tree K1,q • [r ∗ (K1,s • T (m, t))] of diameter 6 is integral, and m > 1, then the tree
K1,qn2 • [(rn2) ∗ (K1,sn2 • T (mn2, tn2))] of diameter 6 is integral, too.

Proof. It is easy to check the validity by Theorem 3.1. �

Remark 3.5. Unfortunately, we have not found integral trees r ∗ (K1,s •T (m, t)) of diameter
6. We believe that such integral trees do not exist.

Remark 3.6. For the tree K1,q • [r ∗ (K1,s • T (m, t))] of diameter 6, when q = s = t, integral
trees T t(r, m) = K1,t • [r ∗ (K1,t • T (m, t))] of diameter 6 were studied in [2, 15, 22]. Here,
our results on integral tree T t(r, m) = K1,t • [r ∗ (K1,t • T (m, t))] of diameter 6 are different
from those of [2, 15, 22].

Corollary 3.7. For any positive integer n, we have the following results.

(1) Let d (> 1) be a positive integer but not a perfect square, and xk, yk be defined by Eqn.(6).

If m = (dyk+lyk−l)2, r = x2kx2l, and t = (
x2

k+l−x2
k−l

4 )2, where k > l > 0, k and l

are positive integers, then T t(r, m) (see [2]) and T tn2
(rn2, mn2) are integral trees with

diameter 6.

(2) Let d (> 1) be a positive integer but not a perfect square, let Eqn.(7) have positive integral
solutions, and let xk, yk be defined by Eqn.(9). If

m =
{

(dyk+lyk−l)2, if k ≡ l(mod2),
(xk+lxk−l)2, if k �≡ l(mod2),

r = x2kx2l, and t = (
x2

k+l−x2
k−l

4 )2, where k > l > 0, then T t(r, m) (see [2]) and T tn2
(rn2, mn2)

are integral trees with diameter 6.

Proof. It is easy to check the validity by Theorems 3.1, 3.3 and 3.4. �

Corollary 3.8. (1) Let a, b, k and n be positive integers satisfying b < a < b2

k and k | a. If
m = (a2 − b2)2, r = (ab2

k − ka)2 − (a2 − b2)2, t = a2b2, then T tn2
(rn2, mn2) is an integral

tree with diameter 6.

(2) Let a, b and n be positive integers satisfying b < a < b2. If m = (a2 − b2)2, r =
(ab2 − a)2 − (a2 − b2)2, t = a2b2, then T t(r, m) (see [15]) and T tn2

(rn2, mn2) are integral
trees with diameter 6.

(3) Let a, b, c, d and n be positive integers. If m = (a2− b2)2, r = (c2−d2)2− (a2− b2)2 > 0,
t = a2b2 = c2d2, then T t(r, m) (see [22]) and T tn2

(rn2, mn2) are integral trees with
diameter 6.
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Proof. It is easy to check the validity by Theorems 3.1, 3.3 and 3.4. �

Corollary 3.9. For the tree K1,q • [r ∗ (K1,s • T (m, t))] of diameter 6, let n be a positive
integer, we have the following results.

(1) If q = t, then the tree K1,t • [r ∗ (K1,s • T (m, t))] of diameter 6 is integral if and only if
there exist natural numbers a, b, c and d such that x4 − (m+ t+ s)x2 + st can be factored
as (x2 −a2)(x2 − b2), and x4 − (m+ t+ s+ r)x2 + st can be factored as (x2 − c2)(x2 −d2).

(2) If q = t �= s, and the tree K1,t • [r ∗ (K1,s • T (m, t))] of diameter 6 is integral, then the
trees K1,tn2 • [(rn2) ∗ (K1,sn2 • T (mn2, tn2))] and K1,sn2 • [(rn2) ∗ (K1,tn2 • T (mn2, sn2))]
are integral with diameter 6.

Proof. It is easy to check the validity by Theorem 3.1 and Corollary 3.2. �

Corollary 3.10. For the tree K1,q • [r ∗ (K1,s • T (m, t))] of diameter 6, let n be a positive
integer, a, b, c and d be those of Corollary 3.9, q, r, s, m and t be positive integers in the
following Tables 3 and 4 (where a, b, c, d, q, r, s, m and t are obtained by computer searching,
and 1 ≤ a ≤ 10, a ≤ b ≤ a + 20, 1 ≤ c ≤ 20, c ≤ d ≤ c + 20). Then we have the following
results.

(1) If q = t = s, q, r, s, m and t are positive integers in the following Table 3, then
T tn2

(rn2, mn2) = K1,tn2 • [(rn2) ∗ (K1,tn2 •T (mn2, tn2))] is an integral tree with diameter
6.

(2) If q = t �= s, and q, r, s, m and t are positive integers in the following Table 4, then
K1,tn2 • [(rn2) ∗ (K1,sn2 • T (mn2, tn2))] and K1,sn2 • [(rn2) ∗ (K1,tn2 • T (mn2, sn2))] are
integral trees with diameter 6.

a b c d q = t = s r m a b c d q = t = s r m

2 8 1 16 16 189 36 3 12 2 18 36 175 81
4 9 2 18 36 231 25 4 9 3 12 36 56 25
8 18 6 24 144 224 100 9 16 6 24 144 275 49
9 16 8 18 144 51 49 / / / / / / /

Table 3: Integral tree T tn2
(rn2, mn2) = K1,tn2 • [(rn2) ∗ (K1,tn2 •T (mn2, tn2))] of diameter 6,

where n is a positive integer.

Proof. It is easy to check the validity by Theorem 3.1 or Corollary 3.9. �
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a b c d q = t r s m a b c d q = t r s m

2 6 1 12 16 105 9 15 2 6 1 12 9 105 16 15
2 9 1 18 36 240 9 40 2 9 1 18 9 240 36 40
2 10 1 20 25 297 16 63 2 10 1 20 16 297 25 63
3 8 2 12 36 75 16 21 3 8 2 12 16 75 36 21
3 10 2 15 36 120 25 48 3 10 2 15 25 120 36 48
3 12 2 18 81 175 16 56 3 12 2 18 16 175 81 56
3 14 2 21 49 240 36 120 3 14 2 21 36 240 49 120
4 10 2 20 64 288 25 27 4 10 2 20 25 288 64 27
4 12 3 16 64 105 36 60 4 12 3 16 36 105 64 60
4 15 3 20 144 168 25 72 4 15 3 20 25 168 144 72
4 15 3 20 100 168 36 105 4 15 3 20 36 168 100 105
5 12 3 20 100 240 36 33 5 12 3 20 36 240 100 33
5 12 4 15 100 72 36 33 5 12 4 15 36 72 100 33
5 16 4 20 100 135 64 117 5 16 4 20 64 135 100 117
6 12 4 18 81 160 64 35 6 12 4 18 64 160 81 35
6 14 4 21 144 225 49 39 6 14 4 21 49 225 144 39
6 15 5 18 100 88 81 80 6 15 5 18 81 88 100 80
6 16 4 24 144 300 64 84 6 16 4 24 64 300 144 84
6 20 5 24 225 165 64 147 6 20 5 24 64 165 225 147
6 20 5 24 144 165 100 192 6 20 5 24 100 165 144 192
7 18 6 21 196 104 81 96 7 18 6 21 81 104 196 96
8 15 5 24 144 312 100 45 8 15 5 24 100 312 144 45
8 15 6 20 144 147 100 45 8 15 6 20 100 147 144 45
8 18 6 24 256 224 81 51 8 18 6 24 81 224 256 51
8 21 7 24 196 120 144 165 8 21 7 24 144 120 196 165
9 24 8 27 324 136 144 189 9 24 8 27 144 136 324 189
10 18 9 20 225 57 144 55 10 18 9 20 144 57 225 55

Table 4: Integral tree K1,tn2 • [(rn2) ∗ (K1,sn2 •T (mn2, tn2))] of diameter 6 and integral tree
K1,sn2 •[(rn2) ∗(K1,tn2 •T (mn2, sn2))] of diameter 6, where n is a positive integer.
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