
ON A PROPERTY OF MINIMAL ZERO-SUM SEQUENCES
AND RESTRICTED SUMSETS

WEIDONG GAO AND ALFRED GEROLDINGER

Abstract. Let G be an additively written abelian group and S a sequence in G \ {0} with length
|S| ≥ 4. Suppose that S is a product of two subsequences, say S = BC, such that the element g + h

occurs in the sequence S whenever g ·h is a subsequence of B or of C. Then S contains a proper zero-sum
subsequence, apart from some well-characterized exceptional cases. This result is closely connected with

restricted set addition in abelian groups. Moreover, it solves a problem on the structure of minimal

zero-sum sequences, which recently occurred in the theory of non-unique factorizations.

1. Introduction and Main Results

Let G be an additively written finite abelian group and S =
∏l

i=1 gi a (multiplicatively written, finite)
sequence in G. Then S is called a minimal zero-sum sequence, if σ(S) =

∑l
i=1 gi = 0 and

∑
i∈I gi 6= 0

for all ∅ 6= I ( [1, l]. It is still an open problem to determine the maximal possible length |S| = l of a
minimal zero-sum sequence S, and only first steps have been made to determine the structure of minimal
zero-sum sequences which have maximal possible lengths (cf. [6] for a more detailed description of these
problems and an extensive list of recent literature).

In this paper we show that minimal zero-sum sequences are not additively closed (in the sense of
Definition 3.4).

Theorem 1.1. Let G be an abelian group and S ∈ F(G) a minimal zero-sum sequence with |S| ≥ 7. If
S = BC, where B,C are subsequences of S with |B| ≥ |C| ≥ 2, then either B or C contains a subsequence
T = g · h whose sum σ(T ) = g + h does not occur in S.

This result answers a question which recently occurred in the theory of non-unique factorizations (cf.
[1] and [2] for a survey). Suppose that S is a sequence with sum zero. Then in general, S allows distinct
factorizations into products of minimal zero-sum subsequences, say

S = U1 · . . . · Uk and S = V1 · . . . · Vl

where U1, . . . , Uk, V1, . . . , Vl are minimal zero-sum subsequences of S. It is the central problem of fac-
torization theory to describe the variety of possible distinct factorizations of some given element. More
precisely, the above property of minimal zero-sum sequences allows a deeper investigation of catenary de-
grees in Krull monoids with finite divisor class groups (in particular, in a forthcoming article the present
results will be used to sharpen Theorem 3.1 and hence Theorem 4.4 in [8]; cf. also [7], [4]).

We formulate a result which, among others, implies Theorem 1.1.
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Theorem 1.2. Let G be an abelian group and S ∈ F(G \ {0}) a sequence with |S| ≥ 4. Suppose that
S = BC with B,C ∈ F(G) and that σ(T ) ∈ supp(S) for all subsequences T of B with |T | = 2 and for
all subsequences T of C with |T | = 2. Then S contains a proper zero-sum subsequence, apart from the
following exceptions:

1. min{|B|, |C|} = 1, say |C| = 1, and S has one of the following forms:
(a) B = gk and C = 2g for some g ∈ G and k ∈ [3, ord(g)− 1).
(b) B = gk · (2g) and C = 3g for some g ∈ G and k ∈ [2, ord(g)− 4).
(c) B = g · e · (g + e) and C = 2g + e for some g, e ∈ G with ord(e) = 2 and ord(g) ≥ 5.

2. B = g · 9g · 10g and C = 11g · 3g · 14g for some g ∈ G with ord(g) = 16.

Clearly, Theorem 1.2 implies Theorem 1.1. We discuss a further consequence dealing with restricted
sumsets. In order to avoid the repetition of the exceptional cases, we formulate it only for the cases
|S| ≥ 7 and min{|B|, |C|} ≥ 2.

Corollary 1.3. Let G be an abelian group, S ⊂ G \ {0} a finite subset with |S| ≥ 7 and S = B ∪ C a
partition with min{|B|, |C|} ≥ 2. If

(B u B) ∪ (C u C) ⊂ S

(the union of the restricted sumsets), then S contains a proper subset which sums to zero (i.e., there are
s1, . . . , sk ∈ S with k < |S| such that

∑k
i=1 si = 0).

Obviously, Corollary 1.3 is a special case of Theorem 1.2. On the other hand, Theorem 1.2 can easily
be obtained from Corollary 1.3. Indeed, in the course of the proof of Theorem 1.2 the general case of
sequences will be reduced to the case of sets which allows us to apply Kneser’s Addition Theorem (cf.
the proof of Proposition 3.5). Since the conjecture of Erdös-Heilbronn has been solved by Dias da Silva
and Hamidoune (cf. [3] and [15, Chapter 3]), restricted sumsets have also been studied in the setting of
general finite abelian groups (cf. [12, 13, 14], [10], [5] and the literature cited there). However, up to
now there are no analogues of the Theorems of Scherk, Kneser and Kemperman. Since the conjectured
analogues (cf. [11], section 4) could give a simpler access to Corollary 1.3, it might in converse turn out
that Corollary 1.3 is a useful tool for tackling that conjecture.

2. Preliminaries

Let N denote the set of positive integers, N0 = N ∪ {0} and for a, b ∈ Z we set

[a, b] = {x ∈ Z | a ≤ x ≤ b}.

For a ∈ Z and b ∈ Z ∪ {∞} let [a, b) = {x ∈ Z | a ≤ x < b}. If A,B are sets, then A ⊂ B means that A
is contained in B but may be equal to B.

Throughout, all abelian groups will be written additively. Let G be an abelian group, α ∈ G and
A,B ⊂ G non-empty subsets. Then

A + B = {a + b | a ∈ A, b ∈ B} ⊂ G

denotes their sumset, α + B = {α}+ B and

A u B = {a + b | a ∈ A, b ∈ B, a 6= b} ⊂ A + B

denotes the restricted sumset of A and B. Since A+B =
⋃

a∈A(a+B), we have |B| = |a+B| ≤ |A+B|;
if B < G is a subgroup and |A + B| is finite, then |B| divides |A + B|.
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Let F(G) denote the free abelian monoid with basis G. An element S ∈ F(G) is called a sequence in
G and will be written in the form

S =
l∏

i=1

gi =
∏
g∈G

gvg(S) ∈ F(G)

where all vg(S) ∈ N0 and vg(S) = 0 for all but finitely many g ∈ G. Clearly, F(G) is a factorial monoid,
and we use all notions of elementary divisibility theory (cf. [9, chapter 10]). For every g ∈ G we call
vg(S) the multiplicity of g in S. We say that g occurs in S, if vg(S) > 0. The unit element 1 ∈ F(G) is
called the empty sequence. A sequence T ∈ F(G) is a subsequence of S, if vg(T ) ≤ vg(S) for every g ∈ G,
and T is called a proper subsequence of S, if it is a subsequence with 1 6= T 6= S. If T is a subsequence
of S, then there exists a subset I ⊂ [1, l] such that

T =
∏
i∈I

gi and hence T−1S =
∏

i∈[1,l]\I

gi.

We denote by
1. |S| = l =

∑
g∈G vg(S) ∈ N0 the length of S (in particular, we have |1| = 0),

2. σ(S) =
∑l

i=1 gi =
∑

g∈G vg(S)g ∈ G the sum of S,
3. supp(S) = {gi | i ∈ [1, l]} = {g ∈ G | vg(S) > 0} ⊂ G the support of S, and by
4. Σ(S) = {

∑
i∈I gi | ∅ 6= I ⊂ [1, l]} ⊂ G the set of sums of non-empty subsequences of S.

The sequence S is called
1. zero-sumfree, if 0 /∈ Σ(S),
2. squarefree, if vg(S) ≤ 1 for all g ∈ G,
3. a zero-sum sequence, if σ(S) = 0,
4. a minimal zero-sum sequence, if it is a non-empty zero-sum sequence and every proper zero-sum

subsequence is zero-sumfree.

Clearly, S is squarefree if and only if |S| = |supp(S)|, and, roughly speaking, a squarefree sequence is
a set.

3. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2. We first handle the special cases where min{|B|, |C|} ≤
2 and the case |S| ≤ 7. Then we are well prepared to tackle the general case, which will be done by
induction on the length of the sequence.

Throughout the rest of this section, let G = (G, +) be an additively written abelian group. A subset
A ⊂ G is called additively closed if A + A ⊂ A. We define a corresponding notion for sequences.

Definition 3.1. A sequence S ∈ F(G) is called additively closed, if σ(T ) ∈ supp(S) for all subsequences
T of S with length |T | = 2.

Let S ∈ F(G) be a sequence and A = supp(S). If A is additively closed, then A is a subgroup and S
is additively closed. Conversely, if S is additively closed, then for the restricted sumset A u A we have
A u A ⊂ A. The next lemma gives a straightforward characterization of this condition.

Lemma 3.2. Let A ⊂ G be a finite subset with |A| ≥ 2. Then the following statements are equivalent:
1. A u A ⊂ A.
2. Either A = {0, g} or A = {0, g,−g} for some g ∈ G with 2g 6= 0 or A ∪ {0} is an elementary

2-group or A < G is a subgroup.
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Proof. 1. =⇒ 2. If all elements of A \ {0} have order two, then A ∪ {0} is additively closed whence an
elementary 2-group.

Suppose that A contains elements of order greater than two and that there is no g ∈ G with ord(g) > 2
such that A = {0, g} or A = {0, g,−g}. We show that for every g ∈ A we have 2g ∈ A. This implies that
A + A ⊂ A whence A < G is a subgroup.

Let g ∈ A. We assert that there exists some h ∈ A \ {g,−g} such that either h = 2g or 2h 6= 0. If
2g = 0, then any h ∈ A with ord(h) > 2 has the required property. Suppose that 2g 6= 0. By assumption
there exists some g′ ∈ A \ {0, g,−g}. If 2g′ 6= 0, then we set h = g′. Suppose that 2g′ = 0. Then g′ 6= g,
g + g′ ∈ A \ {g} and 2(g + g′) = 2g 6= 0. If g + g′ 6= −g, then we set h = g + g′. If g + g′ = −g, then
g′ = −2g, 0 = 2g′ = −4g whence h = g′ = 2g ∈ A \ {g,−g}.

Clearly, if h = 2g ∈ A, then we are done. Suppose that h ∈ A \ {g,−g} with 2h 6= 0. We assert that
g − h ∈ A. Since g + h 6= g − h, this implies that

2g = (g + h) + (g − h) ∈ A u A ⊂ A.

If there is some i ∈ N such that g +(i− 1)h ∈ A and g + ih = 0, then −h = g +(i− 1)h ∈ A \ {g} whence
g + (−h) ∈ A. Suppose that no such i ∈ N exists. We assert that g + ih ∈ A for all i ∈ N0. For i ∈ [0, 1]
this is clear. Let i ≥ 2 and suppose that g + jh ∈ A for all j ∈ [0, i − 1]. Then g + (i − 2)h ∈ A \ {0}
whence h 6= g + (i− 1)h and h + (g + (i− 1)h) = g + ih ∈ A. Since A is finite, h has finite order whence
g − h ∈ A.

2. =⇒ 1. Obvious. �

Corollary 3.3. Let S ∈ F(G \ {0}) be a sequence with |S| ≥ 2. Then the following statements are
equivalent:

1. S is additively closed.
2. supp(S) ∪ {0} is an elementary 2-group and vg(S) = 1 for every g ∈ supp(S).

If S is additively closed and |S| ≥ 4, then S contains a proper zero-sum subsequence.

Proof. 1. =⇒ 2. We set A = supp(S). Then A ⊂ G \ {0}, |A| ≥ 2 and A u A ⊂ A. Hence Lemma 3.2
implies that A ∪ {0} is an elementary 2-group. Since 0 /∈ A and S is additively closed, it follows that S
is squarefree.

2. =⇒ 1. Obvious.
The remaining statement follows immediately from the characterization. �

Definition 3.4. Let S ∈ F(G) be a sequence and B,C ∈ F(G) subsequences such that S = BC. We
say that S is additively closed with respect to (B,C), if σ(T ) ∈ supp(S) for all subsequences T of B with
|T | = 2 and for all subsequences T of C with |T | = 2.

Let S = BC ∈ F(G) as above and let B = supp(B) and C = supp(C). If

(B + B) ∪ (C + C) ⊂ supp(S),

then S is additively closed with respect to (B,C). If S is additively closed with respect to (B,C), then

(B u B) ∪ (C u C) ⊂ supp(S).

Clearly, S is additively closed, if and only if it is additively closed with respect to (S, 1).

Proposition 3.5. Let S = BC ∈ F(G \ {0}) be a sequence with |B| ≥ 3 and |C| = 1, and suppose that
S is additively closed with respect to (B,C). Then S contains a proper zero-sum subsequence, apart from
the following exceptions:

1. B = gk and C = 2g for some g ∈ G and k ∈ [3, ord(g)− 1).
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2. B = gk · (2g) and C = 3g for some g ∈ G and k ∈ [2, ord(g)− 4).
3. B = g · e · (g + e) and C = 2g + e for some g, e ∈ G with ord(e) = 2 and ord(g) ≥ 5.

Proof. Suppose that B is additively closed. If |B| ≥ 4, then by Corollary 3.3, B (and hence S) has a
proper zero-sum subsequence. If |B| = 3, then Corollary 3.3 implies that B = e1 · e2 · (e1 + e2) with
ord(e1) = ord(e2) = 2 whence B is a proper zero-sum subsequence of S.

From now on we suppose that B is not additively closed. This implies that C - B and that B has a
subsequence T with |T | = 2 and σ(T ) = C. We set

B = supp(B).

Suppose that |B| = 1. Then B = gk and C = 2g for some g ∈ G and some k ≥ 3. Thus, either S has
a proper zero-sum subsequence or k ≤ ord(g)− 2.

Suppose that |B| = 2, say B = gkhl with g, h ∈ G and k ≥ l ≥ 1. Since g + h ∈ supp(S) \ {g, h},
it follows that C = g + h. Since k ≥ 2, we infer that h = 2g. If l ≥ 2, then h + h = 4g = g whence
0 = 3g = g + h ∈ supp(S), a contradiction. Therefore we obtain that B = gk · (2g) with k ≥ 2. If
k ≥ ord(g)− 4, then clearly S has a proper zero-sum subsequence.

Suppose that |B| = 3, say B = gk1
1 gk2

2 gk3
3 with k1, k2, k3 ∈ N and C = g2 + g3. Then g1 + g2 ∈

supp(S)\{g1, g2, g2+g3} whence g3 = g1+g2, and g1+g3 ∈ supp(S)\{g1, g3, g2+g3} whence g2 = g1+g3.
This implies that g2 = g1+(g1+g2) whence 2g1 = 0 and 2g2 = 2g3. If k1 ≥ 2, then g2

1 is a proper zero-sum
subsequence of B. Suppose that k1 = 1. If k2 ≥ 2, then 2g3 = 2g2 ∈ supp(S) \ {g2, g2 + g3, g3} whence
2g2 = g1 and g3 = g1 + g2 = 3g2. Thus g1 + g3 = 5g2 ∈ supp(S) = {g1 = 2g2, g2, g3 = 3g2, g2 + g3 = 4g2},
a contradiction. Thus we infer that k2 = 1. If k3 ≥ 2, then 2g2 = 2g3 ∈ supp(S)\{g3, g2, g2 + g3} whence
2g3 = g1 and g2 = g1 + g3 = 3g3. Thus g1 + g2 = 5g3 ∈ supp(S) = {g1 = 2g3, g2 = 3g3, g3, g2 + g3 = 4g3},
a contradiction. Thus k3 = 1 and S has form 3.

Suppose that |B| ≥ 4. We assert that S contains a proper zero-sum subsequence and proceed by
induction on |B|.

Let |B| = 4. Firstly, suppose that, for every h ∈ B, h−1S is not additively closed with respect to
(h−1B,C). Then B is squarefree and, for every h ∈ B, there is some subsequence T of B with |T | = 2
and h = σ(T ). We set B = {g1, g2, g3, g4}. Since B u B ⊂ supp(S) and |supp(S)| = 5, we may suppose
that g1 + g2 = g3 + g4. Moreover, we may assume that g1 = g2 + g3. Then it follows that

2g2 = g1 + g2 − g3 = g4 ∈ {g1 + g2, g2 + g3, g1 + g3}
whence g4 = g1 + g3. Then g1 + g2 = g3 + g4 = g3 + g1 + g3, g2 = 2g3, g4 = 4g3, g1 = 3g3 and
B = {g3, 2g3, 3g3, 4g3}. Thus either 4g3 + 3g3 ∈ B or 4g3 + 2g3 ∈ B which implies that B contains a
proper zero-sum subsequence.

Secondly, suppose that there is some h ∈ B such that h−1S is additively closed with respect to
(h−1B,C). If (h−1B,C) 6= (g · e · (g + e), 2g + e), with g, e as described above, then h−1S (and hence S)
has a proper zero-sum subsequence. Suppose that B = g · e · (g + e) ·h and C = 2g + e. Since |B| = 4 and
C - B, it follows that g + h ∈ supp(S) \ {g + e, 2g + e} whence g + h = e and g · e · h is a proper zero-sum
subsequence of S.

Suppose that |B| ≥ 5. If there exists some h ∈ G such that h2 | B, then h−1S is additively closed with
respect to (h−1B,C). Since |supp(h−1B)| ≥ 4 and |h−1B| < |B|, the induction hypothesis implies that
h−1S (and hence S) has a proper zero-sum subsequence.

For the remainder of the proof, we suppose that B is squarefree. Suppose that there exists some h ∈ B
such that h 6= σ(T ) for every subsequence T of B with length |T | = 2. Then h−1S is additively closed
with respect to (h−1B,C). Since |supp(h−1B)| = |h−1B| ≥ 4 and |h−1B| < |B|, h−1S (and hence S)
has a proper zero-sum subsequence by induction hypothesis.

Now, we suppose that for every h ∈ B there is some subsequence T of B with length |T | = 2 such
that h = σ(T ). If there exists some h ∈ B with 2h = 0 and T is a subsequence of B with |T | = 2 and
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σ(T ) = h, then h · T is a proper zero-sum subsequence of S. Hence, from now on we may suppose that
2h 6= 0 for all h ∈ B.

Let T = g0 · g′0 be a subsequence of B with σ(T ) = C, and let A = {g1, . . . , gk} = B \ {g0, g
′
0} whence

|A| = k ≥ 3. Then

g0 + A ⊂ supp(S) \ {g0, g0 + g′0} and g′0 + A ⊂ supp(S) \ {g′0, g0 + g′0}.

Case 1: g′0 ∈ g0 + A and g0 ∈ g′0 + A. Thus there exist i, j ∈ [1, k] such that g′0 = g0 + gi and
g0 = g′0 + gj whence g0 = g0 + gi + gj . Since 2gi 6= 0, we infer that i 6= j whence gi · gj is a proper
zero-sum subsequence of B.

Case 2: (g′0 /∈ g0 +A) or (g0 /∈ g′0 +A). Without restriction, we suppose that g′0 /∈ g0 +A. This implies
that g0 + A ⊂ supp(S) \ {g0, g

′
0, g0 + g′0} = A whence g0 + A = A. This implies that

a + νg0 ∈ A for all a ∈ A and all ν ∈ N0.

Since A is finite, we infer that ord(g0) < ∞ whence a+ g0, a− g0 ∈ A. Thus we obtain that 2a ∈ supp(S)
for every a ∈ A.

We assert that {2g0, 2g′0} ⊂ supp(S). First we show that 2g′0 ∈ supp(S). By the above assumption,
there exist i, j ∈ [0, k] distinct such that g′0 = gi + gj . Without restriction we suppose that gi 6= g0. Then
g′0 + gi ∈ supp(S) \ {gi, g

′
0, g0 + g′0} whence there is some l ∈ [0, k] \ {i} such that g′0 + gi = gl. If l = j,

then we have
g′0 + gi = gj and gi + gj = g′0

whence 2gi = 0, a contradiction. Thus we have l 6= j and

2g′0 = g′0 + (gi + gj) = gl + gj ∈ supp(S).

Similarly, we obtain that 2g0 ∈ supp(S).

So on the one hand, we have shown that

B + B ⊂ supp(S) whence |B + B| ≤ |B|+ 1,

and on the other hand, Kneser’s Addition Theorem (cf. [15, Theorem 4.2]) implies that

either |B + B| ≥ 2|B| or |B + B| = 2|B + K| − |K|,

where
K = {g ∈ G | g + B + B = B + B} < G

is the stabilizer of B + B. If 2|B| ≤ |B + B| ≤ |B|+ 1, then |B| ≤ 1, a contradiction. Thus we infer that

|B + B| = |B + K|+ |B + K| − |K| ≤ |B|+ 1.

Since |B| ≤ |B + K| and |K| ≤ |B + K|, this implies that |B + K| − |K| ∈ {0, 1}.
Suppose that |B + K| = |K| + 1. Since |K| divides |B + K| = |K| + 1, it follows that |K| = 1 and

|B| ≤ |B + K| = |K|+ 1 = 2, a contradiction.
Suppose that |B + K| = |K|. Then

B ⊂ B + K =
⋃

b′∈B
(b′ + K) = b + K

for some b ∈ B. Since g0, g1 ∈ B and g0 +g1 ∈ g0 +A = A ⊂ B, it follows that g0 +g1 ∈ (2b+K)∩(b+K),
whence b ∈ K. This implies that B ⊂ K whence B + B ⊂ K. Since |K| divides |B + B + K| = |B + B|, we
obtain that B + B = K. Thus there are b, b′ ∈ B such that b + b′ = 0. Since 2b 6= 0, it follows that b 6= b′

and b · b′ is a proper zero-sum subsequence of S. �
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Remark: In the above proof we could use a result of Kemperman-Scherk instead of Kneser’s Addition
Theorem, which is most probably better known. For some historical remarks and the interdependence of
both results we refer to [11, section 1].

Proposition 3.6. Let S = BC ∈ F(G \ {0}) be a sequence with |S| ≥ 4, min{|B|, |C|} = 2, and suppose
that S is additively closed with respect to (B,C). Then S contains a proper zero-sum subsequence.

Proof. Without restriction we may suppose that min{|B|, |C|} = |B| = 2, and we set

B = g1 · g2, g = g1 + g2, and {i, j} = {1, 2}.
Assume to the contrary, that S does not contain a proper zero-sum subsequence. By assumption we have
g | C and there is some h ∈ G such that g · h | C. Since g1 · g2 · g is a subsequence of S, it follows that
ord(g) > 2.

Assertion 1: g ·
∏λ

ν=0(νg+h) is a subsequence of C for every λ ∈ [0, ord(g)). In particular, ord(g) < ∞,
and we set ord(g) = n.
Proof of Assertion 1: We proceed by induction on λ. Clearly, the assertion holds for λ = 0. Now let
λ ∈ N0 with λ ≤ ord(g)−2, and suppose that g

∏λ
ν=0(νg+h) is a subsequence of C. Setting T = g·(λg+h)

we infer that σ(T ) = (λ + 1)g + h ∈ supp(S).
If (λ + 1)g + h = gi, then (λg + h) · gj is a proper zero-sum subsequence of S, a contradiction.
If (λ + 1)g + h = g, then 0 = λg + h ∈ supp(S), a contradiction.
If (λ + 1)g + h = νg + h for some ν ∈ [0, λ], then (λ + 1− ν)g = 0, a contradiction to λ ≤ ord(g)− 2.
Thus g ·

∏λ+1
ν=0(νg + h) is a subsequence of C.

Assertion 2:

Sλ = g ·
n−1∏
ν=0

(νg + h) ·
λ∏

ν=2

(νh + g)

is a subsequence of C for every λ ∈ [1, ord(h)).
Once we have established the validity of Assertion 2, we can complete the proof as follows. We observe

that ord(h) = m < ∞. If m = 2, then (g + h) · (−g + h) is a proper zero-sum subsequence of S, a
contradiction. Suppose that m ≥ 3. Then Sm−1 is a subsequence of C, whence (−g + h) · (−h + g) is a
proper zero-sum subsequence of S, a contradiction.
Proof of Assertion 2: We proceed by induction on λ. If λ = 1, then Sλ = g ·

∏n−1
ν=0(νg+h) is a subsequence

of C by Assertion 1. Suppose that λ ∈ N with λ ≤ ord(h)− 2 and that Sλ is a subsequence of C. Setting
T = h · (λh + g) we infer that σ(T ) = (λ + 1)h + g ∈ supp(S).

If (λ + 1)h + g = gi, then (λh + g) · ((n − 1)g + h) · gj is a proper zero-sum subsequence of S, a
contradiction.

If (λ + 1)h + g = g, then 0 = (λ + 1)h, a contradiction.
If (λ + 1)h + g = h, then 0 = λh + g ∈ supp(S), a contradiction.
If (λ + 1)h + g = νh + g for some ν ∈ [1, λ], then (λ + 1− ν)h = 0, a contradiction.
If (λ + 1)h + g = νg + h for some ν ∈ [1, n− 1], then λh + (n− ν + 1)g = 0. If (λ, ν) 6= (2, n− 1), then

((λ−1)h+g) · ((n−ν)g+h) is a proper zero-sum subsequence of S, a contradiction. If (λ, ν) = (2, n−1),
then 2h + 2g = 0 whence g · h · (g + h) is a proper zero-sum subsequence of S, a contradiction.

Thus Sλ+1 is a subsequence of C. �

Lemma 3.7. Let S = BC ∈ F(G \ {0}) be a squarefree sequence having the following properties:
1. S is additively closed with respect to (B,C).
2. For every a ∈ supp(S) there is some T ∈ F(G) with a = σ(T ), |T | = 2 and (T | B or T | C).
3. min{|B|, |C|} ≥ 3.
4. S does not contain a proper zero-sum subsequence.
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Then supp(S) does not contain an element of order two, and one of the two sequences B or C, say B,
contains a subsequence T with |T | = 2 such that σ(T )T | B.

Proof. Assume to the contrary that a ∈ supp(S) has order two. If T ∈ F(G) is as in Assumption 2., then
a · T is a proper zero-sum subsequence of S, a contradiction.

As for the second assertion, we assume to the contrary that neither B nor C has the required property.
Without restriction we may suppose that |B| ≥ |C|. Let T = h·h′ be a subsequence of C whence σ(T ) | B,
say σ(T ) = g1 and B =

∏l
i=1 gi. Since B does not have the required property, the sequence

∏l
i=2(g1 +gi)

divides C whence |C| ≥ |B| − 1. Thus |C| ∈ {|B|, |B| − 1} and {h, h′} ∩ {g1 + gi | i ∈ [2, l]} 6= ∅, say
h = g1 + g2. Then h = g1 + g2 = h + h′ + g2 whence h′ · g2 is a proper zero-sum subsequence of S. �

Proposition 3.8. Let S = BC ∈ F(G \ {0}) be a sequence with |B| = |C| = 3, and suppose that S is
additively closed with respect to (B,C). Then S contains a proper zero-sum subsequence, apart from the
case where

B = g · 9g · 10g and C = 11g · 3g · 14g for some g ∈ G with ord(g) = 16.

Proof. Suppose that S is not squarefree, say a2 | S for some a ∈ supp(B). Then S′ = (a−1B)(C) is
additively closed with respect to (a−1B,C). Since min{|a−1B|, |C|} = 2, Proposition 3.6 implies that
a−1S, and hence S, has a proper zero-sum subsequence.

Suppose there exists some a ∈ supp(S) such that a 6= σ(T ) for all T ∈ F(G) with |T | = 2 and (T | B
or T | C). Without restriction we may suppose that a | B. Then S′ = (a−1B)(C) is additively closed
with respect to (a−1B,C). Arguing as above we infer that S has a proper zero-sum subsequence.

Thus we may suppose that S is squarefree and for every a ∈ supp(S) there is some T ∈ F(G) with
a = σ(T ), |T | = 2 and (T | B or T | C). Suppose that S does not contain a proper zero-sum subsequence.
We show that B and C have the given special form.

Since S satisfies all assumptions of Lemma 3.7, supp(S) does not contain elements of order two, and
there exists some T ∈ F(G) with |T | = 2 such that Tσ(T ) | B, say B = g1 · g2 · (g1 + g2). Then it follows
that 2g1 + g2 /∈ {g1, g2, g1 + g2} whence 2g1 + g2 ∈ supp(C). Since g1 + 2g2 /∈ {g1, g2, g1 + g2, 2g1 + g2},
it follows that

S = g1 · g2 · (g1 + g2)︸ ︷︷ ︸
B

· (2g1 + g2) · (g1 + 2g2) · h︸ ︷︷ ︸
C

for some h ∈ G.

If 3g1 + 3g2 ∈ {g1, g2, g1 + g2}, then it easy to see that S has a proper zero-sum subsequence. Therefore
we get h = 3g1 + 3g2. If 5g1 + 4g2 ∈ {g1, g1 + g2, g1 + 2g2}, then S has a proper zero-sum subsequence.
Thus 5g1 +4g2 = g2 whence 5g1 +3g2 = 0. Similarly, we consider 4g1 +5g2 and obtain that 3g1 +5g2 = 0.
Thus it follows that

2g1 = 2g2, g2 = −7g1 and 5g1 − 21g1 = −16g1 = 0
whence

S = (g1 · 9g1 · 10g1)︸ ︷︷ ︸
B

· (11g1 · 3g1 · 14g1)︸ ︷︷ ︸
C

.

�

Proposition 3.9. Let S = BC ∈ F(G \ {0}) be a sequence with |B| = 3, |C| = 4 and suppose that S is
additively closed with respect to (B,C). Then S contains a proper zero-sum subsequence.

Proof. Suppose that S is not squarefree, say a2 | S for some a ∈ supp(S). First suppose that a ∈ supp(C).
Then S′ = (B)(a−1C) is additively closed with respect to (B, a−1C). By Proposition 3.8, S′ is either
a minimal zero-sum sequence or S′ contains a proper zero-sum subsequence. Hence S = aS′ contains a
proper zero-sum subsequence. If a ∈ supp(B), then S′ = (a−1B)(C) is additively closed with respect
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to (a−1B,C) and Proposition 3.6 implies that S′ (and hence S = aS′) contains a proper zero-sum
subsequence.

Suppose that there exists some a ∈ supp(S) such that

a /∈ {σ(T ) | |T | = 2, T is a subsequence of B or C}.
Arguing as above we obtain that S = aS′ contains a proper zero-sum subsequence.

Thus we may suppose that S is squarefree, |B| = 3, |C| = 4 and that for every a ∈ supp(S) there
is some T ∈ F(G) with a = σ(T ), |T | = 2 and (T | B or T | C). Assume to the contrary that S does
not contain a proper zero-sum subsequence. Then all assumptions of Lemma 3.7 are satisfied, and in
particular supp(S) does not contain elements of order two. The argument reduces to two cases.

Case 1: For every T ∈ F(G) with |T | = 2 and T | B it follows that σ(T ) - B. We set B = g1 · g2 · g3.
Then (g1 + g2) · (g1 + g3) · (g2 + g3) is a subsequence of C. Since for every h ∈ supp(C) there is some T
with |T | = 2 and (T | B or T | C) such that h = σ(T ), we may suppose without restriction that

S = g1 · g2 · g3︸ ︷︷ ︸
B

· (g1 + g2) · (g1 + g3) · (g2 + g3) · (2g1 + g2 + g3)︸ ︷︷ ︸
C

.

If g1 +g2 +2g3 ∈ {g1, g2, g3}, then it follows immediately that S contains a proper zero-sum subsequence.
If g1 + g2 +2g3 = 2g1 + g2 + g3, then g3 = g1, a contradiction. Thus it follows that g1 + g2 +2g3 = g1 + g2

whence 2g3 = 0, a contradiction.

Case 2: B contains a subsequence T with |T | = 2 such that σ(T ) | B, say B = g1 · g2 · (g1 + g2).
Without loss of generality we suppose that ord(g1) ≥ ord(g2) > 2.

Then we infer that (2g1 + g2) · (g1 + 2g2) is a subsequence of C. Then 3g1 + 3g2 ∈ supp(S). If
3g1 + 3g2 ∈ {g1, g2, g1 + g2}, then S contains a proper zero-sum subsequence. Thus suppose that

S = g1 · g2 · (g1 + g2)︸ ︷︷ ︸
B

· (2g1 + g2) · (g1 + 2g2) · (3g1 + 3g2) · h︸ ︷︷ ︸
C

for some h ∈ G.

Since h = σ(T ) for some T ∈ F(G) with |T | = 2 and (T | B or T | C), it follows that h ∈ {5g1 +
4g2, 4g1 + 5g2}, say h = 5g1 + 4g2. Setting T = (g1 + 2g2) · (5g1 + 4g2) we infer that σ(T ) = 6g1 + 6g2 ∈
{g1, g2, g1 + g2, 2g1 + g2, 3g1 + 3g2}. If 6g1 + 6g2 = g1, then (g1 + g2) · (g1 + 2g2) · (3g1 + 3g2) is a proper
zero-sum subsequence of S. If 6g1 + 6g2 = g2, then (g1 + g2) · (2g1 + g2) · (3g1 + 3g2) is a proper zero-sum
subsequence of S. If 6g1 + 6g2 = g1 + g2, then g2 · (5g1 + 4g2) is a proper zero-sum subsequence of
S. If 6g1 + 6g2 = 2g1 + g2, then g2 · (g1 + g2) · (3g1 + 3g2) is a proper zero-sum subsequence of S. If
6g1 + 6g2 = 3g1 + 3g2, then 0 = 3g1 + 3g2 ∈ supp(S). Thus in all cases we derive a contradiction. �

Proof of Theorem 1.2. The cases min{|B|, |C|} ∈ {0, 1, 2} (whence in particular the cases |S| ∈ {4, 5})
are settled by Corollary 3.3, Proposition 3.5 and Proposition 3.6. If |B| = |C| = 3, then the assertion
follows from Proposition 3.8.

Let S = BC with min{|B|, |C|} ≥ 2 and |S| ≥ 7. We assert that S contains a proper zero-sum
subsequence and proceed by induction on |S|. For |S| = 7 this follows from Proposition 3.9, and moreover
the case min{|B|, |C|} = 2 is settled. Suppose that every sequence S′ = B′C ′ ∈ F(G \ {0}), which is
additively closed with respect to (B′, C ′) and with 7 ≤ |S′| < |S|, |B′| ≥ 2, |C ′| ≥ 2, contains a proper
zero-sum subsequence.

Let S = BC with |S| ≥ 8 and min{|B|, |C|} ≥ 3.
Suppose that S is not squarefree, say a2 | S for some a ∈ supp(B). Then S′ = (a−1B)(C) is additively

closed with respect to (a−1B,C), |a−1B| ≥ 2, |C| ≥ 3 and |S′| ≥ 7. Thus, by induction hypothesis, S′

and hence aS′ = S contains a proper zero-sum subsequence.
Suppose there exists some a ∈ supp(S) such that a 6= σ(T ) for all T ∈ F(G) with |T | = 2 and (T | B

or T | C). Without restriction we may suppose that a | B. Then S′ = (a−1B)(C) is additively closed
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with respect to (a−1B,C), |a−1B| ≥ 2, |C| ≥ 3 and |S′| ≥ 7. Again, by induction hypothesis, aS′ = S
contains a proper zero-sum subsequence.

Suppose that S is squarefree and that for every a ∈ supp(S) there exists some T ∈ F(G) with
a = σ(T ), |T | = 2 and (T | B or T | C). Assume to the contrary that S does not contain a proper
zero-sum subsequence. Then, by Lemma 3.7, supp(S) does not contain elements of order two.

Assertion: There exist subsequences T ′ =
∏k

i=1 ai of S having the following properties:

1. {
∑j

i=1 ai | j ∈ [2, k]} ⊂ supp(S),
2. either a1 · a2 · (a1 + a2) | B or a1 · a2 · (a1 + a2) | C, and
3. for all i ∈ [2, k] either (a1 + . . . + ai−1) · ai | B or (a1 + . . . + ai−1) · ai | C.

If T is a subsequence of S having the above properties with maximal possible length, then |T | ≥ |S| − 2.

Assuming this Assertion, we first complete the proof of the Theorem. The proof of the Assertion will
be given in the next step.

Let T =
∏k

i=1 ai be a subsequence of S having the properties formulated in the Assertion with length
|T | ≥ |S| − 2. For every l ∈ [1, k], we set

Bl = gcd(B,
l∏

i=1

ai) and Cl = gcd(C,
l∏

i=1

ai)

whence BlCl =
∏l

i=1 ai. For a sequence A ∈ F(G) we set 2ˆA =
∏

g∈G0
g where G0 = supp(A)usupp(A).

For every l ∈ [3, k − 1] each of the sequences

(1)
l∏

i=1

ai,
l−1∏
i=3

(a1 + . . . + ai), 2ˆBl, 2ˆCl

is a subsequence of
∏k

i=l(a1 + . . . + ai)−1 · S whence

Ul = lcm

(
l∏

i=1

ai,

l−1∏
i=3

(a1 + . . . + ai), 2ˆBl, 2ˆCl

)

is a subsequence of
∏k

i=l(a1 + . . . + ai)−1 · S and

(2) |Ul| ≤ |S| − (k − l + 1) ≤ |S| − (|S| − 2− l + 1) = l + 1.

Since
k − 1 = |T | − 1 ≥ |S| − 3 ≥ 5,

we may consider equation (2) for l = 5. Since (a1 + a2 + a3) · a4 is a subsequence of B or C, it follows
that a4 6= a1 + a2 + a3. Similarly, since (a1 + a2 + a3 + a4) · a5 is a subsequence of B or C, it follows that
a5 6= a1 + a2 + a3 + a4. Since lcm{

∏5
i=1 ai, (a1 + a2 + a3) · (a1 + a2 + a3 + a4)} is a squarefree sequence

of length at most 6, which has no proper zero-sum subsequence, it follows that a5 = a1 + a2 + a3 and

U5 = a1 · a2 · a3 · a4 · (a1 + a2 + a3) · (a1 + a2 + a3 + a4).

By assumption we may suppose without restriction that a1 · a2 · (a1 + a2) | B. Then (a1 + a2) · a3 | B,
whence a1 · a2 · a3 | B5.

Since 2ˆB5 | U5, it follows that a1 + a2 ∈ supp(U5) whence a1 + a2 ∈ {a3, a4}. Since (a1 + a2) · a3 | B,
it follows that a3 6= a1 + a2 whence a1 + a2 = a4 and

U5 = a1 · a2 · a3 · (a1 + a2)︸ ︷︷ ︸
a4

· (a1 + a2 + a3)︸ ︷︷ ︸
a5

· (2a1 + 2a2 + a3)︸ ︷︷ ︸
a1+a2+a3+a4

.
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Similarly, we have a2 + a3 ∈ supp(U5) and clearly, a2 + a3 /∈ {a2, a3, a1 + a2, a1 + a2 + a3}. If
a2 + a3 = 2a1 + 2a2 + a3, then 2a1 + a2 = 0 and a1 · (a1 + a2) is a proper zero-sum subsequence of S, a
contradiction. Thus we infer that a2 + a3 = a1 and

U5 = a1 · a2 · (a1 − a2)︸ ︷︷ ︸
a3

· (a1 + a2)︸ ︷︷ ︸
a4

· 2a1︸︷︷︸
a5

· (3a1 + a2)︸ ︷︷ ︸
a1+a2+a3+a4

.

Furthermore, we have a1+a3 ∈ supp(U5) and clearly, a1+a3 /∈ {a1, a3, a5, a4}. If a1+a3 = a1+a2+a3+a4,
then a2 · a4 is a proper zero-sum subsequence of S, a contradiction. Thus we obtain that a1 + a3 = a2

whence a1 + a3 = a1 − a3 and 2a3 = 0, a contradiction.

Proof of the Assertion: By Lemma 3.7, one of the two sequences B or C, say sequence B, has a
subsequence T = a1 ·a2 such that Tσ(T ) = a1 ·a2 · (a1 +a2) is a subsequence of B. If |B| ≥ 4, then there
exists some a3 ∈ supp(B) \ {a1, a2, a1 + a2} and T ′ = a1 · a2 · a3 satisfies all required properties. Suppose
that |B| = 3. Then C =

∏l
i=1 ci has length |C| = l ≥ 5. Since |{c1 + c2, . . . , c1 + cl}| = l − 1 > |B|,

there exists some i ∈ [2, l], say i = 2, such that (c1 + c2) | C, whence c1 · c2 · (c1 + c2) | C. Then there
exists some i ∈ [3, l], say i = 3, with c3 6= c1 + c2 and the sequence T ′ = c1 · c2 · c3 satisfies all required
properties.

Let T =
∏k

i=1 ai be a subsequence of S having the required properties and suppose that |T | is maximal
possible. Then k ≥ 3, and we assume to the contrary that |T | ≤ |S| − 3. We set Bk = gcd(B, T ) and
Ck = gcd(C, T ) whence BkCk = T .

Without restriction we may suppose that a1 + . . . + ak ∈ supp(B). If Bk = B, then B =
∏

ν∈I aν

for some I ⊂ [1, k] whence a1 + . . . + ak = ai for some i ∈ I and S has a proper zero-sum subsequence,
a contradiction. Thus Bk 6= B. If B−1

k B contains some element ak+1 with ak+1 6= a1 + . . . + ak, then
the sequence ak+1 · T satisfies all required properties, a contradiction to the maximality of |T |. Thus it
follows that B = b0 ·Bk with b0 = a1 + . . . + ak. Since

|T | = |BkCk| ≤ |S| − 3 = |BC| − 3 = |Bk|+ |C| − 2,

it follows that |C−1
k C| ≥ 2.

Case 1: ak | C. Then a1 + . . . + ak−1 ∈ supp(C) and there exists some a′k ∈ supp(C−1
k C) with

a′k 6= a1 + . . . + ak−1. We set

T ′ = a−1
k · a′k · T, B′

k = gcd(T ′, B) and C ′
k = gcd(T ′, C).

Then T ′ = B′
kC ′

k, B′
k = Bk and C ′

k = a−1
k a′kCk whence |C ′

k
−1

C| ≥ 2. Since a1 + . . . ak−1 + a′k 6=
a1 + . . . + ak = b0 and since S does not contain a proper zero-sum subsequence, it follows that a1 + . . . +
ak−1 + a′k /∈ supp(Bk)∪ {b0} = supp(B) whence a1 + . . . + ak−1 + a′k ∈ supp(C). If a′k+1 ∈ supp(C ′

k
−1

C)
with a′k+1 6= a1 + . . . + ak−1 + a′k, then a′k+1T

′ satisfies all required properties, a contradiction to the
maximality of |T |.

Case 2: ak | B. Then a1 + . . .+ak−1 ∈ supp(B) and a1 + . . .+ak = b0 implies that a1 + . . .+ak−1 6= b0

whence a1+. . .+ak−1+b0 ∈ supp(S). If a1+. . .+ak−1+b0 ∈ supp(C), then for some a′k+1 ∈ supp(C−1
k C)

with a′k+1 6= a1 + . . .+ak−1 +b0 the sequence a−1
k Tb0a

′
k+1 satisfies all required properties, a contradiction

to the maximality of |T |. Thus we infer that a1 + . . .+ ak−1 + b0 ∈ supp(B). If a1 + . . .+ ak−1 + b0 6= ak,
then we obtain again a contradiction to the maximality of |T |. Therefore it follows that

(∗) a1 + . . . + ak = b0 and a1 + . . . + ak−1 + b0 = ak.

Adding these two equations we infer that 2(a1 + . . . + ak−1) = 0 whence a1 · . . . · ak−1 · (a1 + . . . + ak−1)
is a proper zero-sum subsequence of S, a contradiction. �

Acknowledgement: We would like to thank the referee for his careful reading.
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