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Abstract
In this paper, we compute, for large n, the determinant of a class of n×n Hankel
matrices, which arise from a smooth perturbation of the Jacobi weight. For this
purpose, we employ the same idea used in previous papers, where the unknown
determinant Dn[wα,βh] is compared with the known determinant Dn[wα,β].
Here wα,β is the Jacobi weight and wα,βh, where h = h(x), x ∈ [−1, 1],
is strictly positive and real analytic, is the smooth perturbation on the Jacobi
weight wα,β(x) := (1 − x)α(1 + x)β. Applying a previously known formula on
the distribution function of linear statistics, we compute the large-n asymptotics
of Dn[wα,βh] and supply a missing constant of the expansion.

PACS number: 02.10.Yn

1. Introduction and preliminaries

The purpose of this paper is to find heuristically an asymptotic expansion for determinants of
certain Hankel matrices. The matrices are generated by the moments of a function defined on
the interval [−1, 1]. Let w(x) be a function of the form

wα,β(x)h(x),

where

wα,β(x) = (1 − x)α(1 + x)β, α � 0, β � 0,

and h(x) is a strictly positive function with a derivative satisfying a Lipschitz condition.
Define

µk[w] =
∫ 1

−1
xkw(x) dx, k = 0, 1, 2, . . . ,
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and

Dn[w] = det(µj+k[w])n−1
j,k=0.

The motivation for investigating such perturbed Hankel determinants comes from random
matrix theory and its applications, where one studies the generating functions of linear statistics
[4, 5]. Also see [1] and some of the references in that volume.

Our goal will be to show formally that, for w = wα,βh,

Dn[w] ∼ 2−n(n+α+β)n(α2+β2)/2−1/4(2π)n exp

(
n

π

∫ 1

−1

ln h(x)√
1 − x2

dx

)
C, (1.1)

where the n independent constant C is given by

exp

[
1

4π2

∫ 1

−1

ln h(x)√
1 − x2

(
P

∫ 1

−1

√
1 − y2

y − x

h′(y)

h(y)
dy

)
dx

]

× exp

(
α + β

2π

∫ 1

−1

ln h(x)√
1 − x2

dx

)
G2

(
α+β+1

2

)
G2

(
α+β

2 + 1
)
�

(
α+β+1

2

)
G(α + β + 1)G(α + 1)G(β + 1)

.

In the above formula the function G is the Barnes G-function, an entire function that satisfies
the difference equation G(z + 1) = �(z)G(z), with G(1) = 1. The result (1.1) is also valid
for α � −1/2, and β � −1/2, since this expression is real analytic in α and β.

The main idea, which can be traced back to a paper of Szeg ′′o [9], is that one can find the
above formula in two steps. The first is to consider the ‘pure’ weight

wα,β(x) = (1 − x)α(1 + x)β.

Using some basic results from the theory of orthogonal polynomials, the Hankel determinant
for the pure weight can be found exactly and then easily computed asymptotically. This step
is rigorous and in fact may be the first instance where these asymptotics are found completely.

The next step is to use the linear statistics formula derived from the Coulomb fluid
approach [4, 5]—expected to be valid for sufficiently large n—to heuristically compute the
quotient

Dn[wα,βh]

Dn[wα,β]
, (1.2)

thus achieving the desired result.
We note that in a recent work [8], the asymptotic formula for Dn appears, but without

the constant term. In future work, we hope to use the techniques of [2] to make the ideas
presented here complete and thus firmly establish the validity of the asymptotic formula.

We begin with some notation. Let Pn(x) be monic polynomials of degree n in x and
orthogonal, with respect to a weight, w(x), x ∈ [a, b];∫ b

a

Pm(x)Pn(x)w(x) dx = hn[w]δm,n, (1.3)

where hj [w] is the square of the L2 norm of the polynomials orthogonal with respect to w,
over [−1, 1].

From the orthogonality condition there follows the recurrence relation

zPn(z) = Pn+1(z) + αnPn(z) + βnPn−1(z), n = 0, 1, . . . , (1.4)

where β0P−1(z) := 0, αn, n = 0, 1, 2, . . . , is real and βn > 0, n = 1, 2, . . . .

There is an intimate relationship between the values of βn, hn and the Hankel determinants.
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Indeed, the determinant, for any weight w,

Dn[w] =
n−1∏
j=0

hj [w].

In addition,

hj [w] = h0[w]
j∏

k=1

βk.

Thus, if we can compute βj it follows that both hj and Dn can be explicitly determined.
For this and all other basic results see [10].

For the monic Jacobi polynomials, which is in the case when w = wα,β , it is well known
that

αn = β2 − α2

(2n + α + β)(2n + α + β + 2)

and

βn = 4n(n + α)(n + β)(n + α + β)

(2n + α + β)2(2n + α + β + 1)(2n + α + β − 1)
.

Hence, it follows that

hn[wα,β] = 22n+α+β+1 �(n + 1)�(n + α + 1)�(n + β + 1)�(n + α + β + 1)

(2n + α + β + 1)[�(2n + α + β + 1)]2
, (1.5)

and

Dn[wα,β] = 2−n(n+α+β)(2π)n
�

(
α+β+1

2

)
G2

(
α+β+1

2

)
G2

(
α+β

2 + 1
)

G(α + β + 1)G(α + 1)G(β + 1)

× G(n + 1)G(n + α + 1)G(n + β + 1)G(n + α + β + 1)

G2
(
n + α+β+1

2

)
G2

(
n + α+β

2 + 1
)
�

(
n + α+β+1

2

) , (1.6)

where G(z) is the Barnes G-function. See [6] for a first-principles derivation of the recurrence
coefficients.

The asymptotics of the Gamma function and the Barnes G-function are well understood.
We have that

�(n + a) ∼
√

2π e−nnn+a−1/2,

G(n + a + 1) ∼ n(n+a)2/2−1/12 e−3n2/4−an(2π)(n+a)/2K,

where

K := G2/3(1/2)π1/62−1/36.

From the above asymptotic expressions, an easy computation shows that

Dn[wα,β] ∼ 2−n(n+α+β)n(α2+β2)/2−1/4(2π)n
G2

(
α+β+1

2

)
G2

(
α+β

2 + 1
)
�

(
α+β+1

2

)
G(α + β + 1)G(α + 1)G(β + 1)

. (1.7)

The above formula is the promised result for the ‘pure’ weight. When α = 0 = β, we find

Dn[w0,0] ∼ πn

n1/4

1

2n(n−1)
G2(1/2)�(1/2).

This is consistent with Hilbert’s [7] asymptotic expression for large n, of the Hankel
determinant associated with the Legendre weight,

(Dn[w0,0])1/n = π

2n−1
(1 + εn), where lim

n→∞ εn = 0,

and we have changed the notation of [7] to be compatible with ours.
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2. Perturbed Jacobi weight

In this section we show how to compare the unknown Hankel determinant Dn[wα,βh], with
the known Hankel determinant Dn[wα,β]. It is known from [10] (see also [4, 5]) that

Dn[wα,βh]

Dn[wα,β]
=

〈
n∏

k=1

h(xj )

〉
, (2.1)

where � = �(x1, . . . , xn), and

〈�〉 :=
∫ 1
−1 · · · ∫ 1

−1 �
∏

1�j<k�n(xk − xj )
2 ∏n

l=1 wα,β(xl) dxl∫ 1
−1 · · · ∫ 1

−1

∏
1�j<k�n(xk − xj )2

∏n
l=1 wα,β(xl) dxl

. (2.2)

This can be rewritten as an average of the exponential of the linear statistics
∑n

l=1 ln h(xl),
i.e., 〈

exp

(
n∑

l=1

ln h(xl)

)〉
.

Note that, because of the assumptions on h, ln h is well defined for x ∈ [−1, 1]. Results, at
least in a heuristic way, are known about such linear statistics. In particular, the logarithm of
(2.1) is, for large n,

1

4π2

∫ bn

an

ln h(x)√
(bn − x)(x − an)

(
P

∫ bn

an

√
(bn − y)(y − an)

y − x

h′(y)

h(y)
dy

)
dx +

∫ bn

an

ln h(x)σ (x) dx,

(2.3)

where the equilibrium density σ(x), defined for x ∈ [an, bn], is

σ(x) =
√

(bn − x)(x − an)

2π2

∫ bn

an

v′(x) − v′(y)

x − y

dy√
(bn − y)(y − an)

,

and

v′(x) := −w′
α,β(x)

wα,β(x)
= − α

x − 1
− β

x + 1
.

The end points, an and bn, of the support are determined by

2πn =
∫ bn

an

xv′(x)√
(bn − x)(x − an)

dx, 0 =
∫ bn

an

v′(x)√
(bn − x)(x − an)

dx.

For the derivation of (2.3) using a ‘small fluctuations’ approach see [1].
In our problem, the above equations become

n +

(
α + β

2

)
= α

2
√

(1 − an)(1 − bn)
+

β

2
√

(1 + an)(1 + bn)

0 = α√
(1 − an)(1 − bn)

− β√
(1 + an)(1 + bn)

,

and the solutions are

an = β2 − α2 − 4
√

n(n + α)(n + β)(n + α + β)

(2n + α + β + 2)2

bn = β2 − α2 + 4
√

n(n + α)(n + β)(n + α + β)

(2n + α + β + 2)2
.
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In the Coulomb fluid approximations [3], the diagonal (α̃n) and off-diagonal recurrence
coefficients (β̃n) are

α̃n = bn + an

2
= β2 − α2

(2n + α + β)2
, β̃n = (bn − an)

2

16
= 4n(n + α)(n + β)(n + α + β)

(2n + α + β)4
,

and the deviations from the exact results are

α̃n − αn = β2 − α2

4n3
+ O

(
1

n4

)
, β̃n − βn = − 1

16n2
+ O

(
1

n3

)
.

For later reference we also note that

1 + an = β2

2n2
+ O

(
1

n3

)
1 − bn = α2

2n2
+ O

(
1

n3

)
.

A simple calculation shows that, for x ∈ [an, bn],

σ(x)√
(bn − x)(x − an)

= 1

2π

[
α√

(1 − an)(1 − bn)(1 − x)
+

β√
(1 + an)(1 + bn)(1 + x)

]

= 1

π

(
n +

α + β

2

)
1

1 − x2
, −1 < an < bn < 1,

where we have used
α√

(1 − an)(1 − bn)
= n +

α + β

2
,

β√
(1 + an)(1 + bn)

= n +
α + β

2
.

Therefore, for x ∈ (−1, 1), and n large,

σ(x) = n + (α + β)/2

π
√

1 − x2
+ O

(
1

n

)
.

Put f (x) = ln h(x), and x = Rn + rnt , where Rn := (bn + an)/2, and rn := (bn − an)/2, the
second term of (2.3) becomes(

n +
α + β

2

)
r2
n

∫ 1

−1

f (Rn + rnt)

1 − (Rn + rnt)2

√
1 − t2 dt,

while the first term of (2.3) reads

rn

4π2

∫ 1

−1

f (Rn + rns)√
1 − s2

(
P

∫ 1

−1

√
1 − t2

t − s
f ′(Rn + rnt) dt

)
ds.

Now, since

Rn = β2 − α2

4

1

n2
+ O

(
1

n3

)
rn = 1 − α2 + β2

4

1

n2
+ O

(
1

n3

)
we see that the second term of (2.3) is asymptotic to(

n +
α + β

2

) ∫ 1

−1

ln h(x)

π
√

1 − x2
dx + o(1),

while the first term of (2.3) is asymptotic to

1

4π2

∫ 1

−1

ln h(x)√
1 − x2

(
P

∫ 1

−1

√
1 − y2

y − x

h′(y)

h(y)
dy

)
dx + o(1).

The above two expressions combined with (1.7) give formula (1.1).
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