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Abstract

An infinite graph is 2-indivisible if the deletion of any finite set of vertices from
the graph results in exactly one infinite component. Let G be a 4-connected, 2-
indivisible, infinite, plane graph. It is known that G contains a spanning 1-way
infinite path. In this paper, we prove a stronger result by showing that, for any
vertex x and any edge e on a facial cycle of G, there is a spanning 1-way infinite
path in G from x and through e. Results will be used in two forthcoming papers to
establish a conjecture of Nash-Williams.
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1 Introduction and notation

Notation and terminology not defined in this paper may be found in [9] and [10]. In
1931, Whitney [8] proved that every 4-connected planar triangulation contains a Hamil-
ton cycle. Later, Tutte [7] proved that every 4-connected planar graph contains a Hamil-
ton cycle. A natural extension of this theorem to infinite planar graphs is the existence
of spanning 1-way infinite paths or 2-way infinite paths. This led Nash-Williams to the
following concept: A graph G is k-indivisible, where k is a positive integer, if, for any
finite X ⊆ V (G), G− X has at most k − 1 infinite components. Nash-Williams ([2], [3],
also see [5]) conjectured that a 4-connected infinite planar graph G contains a spanning
1-way infinite path if, and only if, G is 2-indivisible. This conjecture has been verified
by Dean, Thomas and Yu [1]. Nash-Williams ([2] and [3]) also conjectured that a 4-
connected infinite planar graph contains a spanning 2-way infinite path if, and only if, it
is 3-indivisible. This conjecture is verified for 2-indivisible graphs in [9] and [10]. In order
to establish this conjecture completely, we need results that are stronger than those in
[1]. In particular, we need to prove the existence of a certain type of 1-way infinite paths
in 2-indivisible graphs. For simplicity, we first state a consequence of our main result.

(1.1) Theorem. Let G be a 4-connected 2-indivisible infinite plane graph. Let C be a
facial cycle of G, x ∈ V (C), and e ∈ E(C). Then G contains a spanning 1-way infinite
path from x and through e.

To state the main result of this paper, which will be used in two forthcoming papers
to establish the Nash-Williams conjecture, we recall the definition of a Tutte subgraph.
Let G be a graph (finite or infinite) and P be a subgraph (finite or infinite) of G. A
P -bridge of G is a subgraph (finite or infinite) of G which is induced by either (1) a single
edge in E(G) − E(P ) with both incident vertices in V (P ) or (2) the edges contained in
a component D of G − V (P ) and the edges from D to P . (For any X ⊆ V (G), we view
X as a subgraph of G with V (X) = X and E(X) = ∅, and hence, we can speak of
X-bridges of G.) A P -bridge satisfying (2) is said to be non-trivial. If B is a P -bridge
of G, then the vertices in V (P ) ∩ V (B) are called the attachments of B (on P ). We say
that P is a Tutte subgraph of G if every P -bridge of G is finite and has at most three
attachments. For any subgraph C in G, we say that P is a C-Tutte subgraph in G if P
is a Tutte subgraph of G and every P -bridge of G containing an edge of C has at most
two attachments.

Let G be a graph and C a subgraph of G; we say that G is (4, C)-connected if, for
any cut set S of G with |S| ≤ 3, every component of G − S contains a vertex of C. For
vertices x, v on a path P , we use xPv to denote the subpath of P between x and v. We
can now state the main result of this paper.
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(1.2) Theorem. Let G be a 2-connected 2-indivisible infinite plane graph, let C be a
facial cycle of G, let x ∈ V (C) and uv ∈ E(C) with v �= x, and let Q denote the subpath
of C − v between u and x. Assume that G is (4, C)-connected and v is contained in the
infinite component of G−V (Q). Then G contains a 1-way infinite C-Tutte path P from
x such that uv ∈ E(P ) and u ∈ V (xPv).

We note that Theorem (1.2) is stronger than the main results in [1] in the sense that
x can be any given vertex on C and P uses a specified edge uv (while in [1] only the
existence of x and P is shown).

This paper is organized as follows. In Section 2, we briefly review the definition of
a net and a structural result of 2-indivisible infinite plane graphs. We will prove, in
Section 3, several lemmas for extending Tutte paths in 2-connected graphs. In Section
4, we will prove a special case of Theorem (1.1), which will then be used in Section 5 as
an induction basis to complete the proof of Theorem (1.1).

To avoid confusion, we adopt the convention that a graph is finite, unless it is clear
from context or it is mentioned otherwise. We consider simple graphs only. For a finite
plane graph G, we use ∂G to denote the subgraph of G consisting of vertices and edges
incident with its infinite face. Given any cycle C in a (finite or infinite) plane graph G
and given distinct x, y ∈ V (C), we use xCy to denote the clockwise segment of C from
x to y (which is a path).

2 Nets

For convenience, we recall from [10] the notation and definition of a net. By the
Jordan curve theorem, any cycle C in an infinite plane graph G divides the plane into
two closed regions (whose intersection is C). If exactly one of these two closed regions,
say R, contains only finitely many vertices and edges of G, then we use IG(C) to denote
the subgraph of G consisting of vertices and edges of G contained in R. Hence, IG(C)
is a finite graph. When there is no danger of confusion, we use I(C) instead of IG(C).
Note that C ⊆ I(C), and if I(C) = C then C is a facial cycle of G.

A net in an infinite plane graph G is a sequence N = (C1, C2, · · ·) of cycles in G such
that I(Ci) is defined for all i ≥ 1, and the following properties are satisfied:

(1) I(Ci) ⊆ I(Ci+1) for all i ≥ 1,

(2)
⋃∞

i=1 I(Ci) = G, and

(3) either Ci ∩ Cj = ∅ for all i �= j, or, for all i ≥ 1, Ci ∩ Ci+1 is a non-trivial path,
Ci ∩ Ci+1 ⊆ Ci+1 ∩ Ci+2, and neither endvertex of Ci ∩ Ci+1 is an endvertex of
Ci+1 ∩ Ci+2.
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If Ci ∩ Cj = ∅ for all i �= j, then N is a radial net; otherwise, N is a ladder net. Let
∂N = ∅ if N is a radial net; otherwise, let ∂N =

⋃∞
i=1(Ci ∩ Ci+1).

Note that from (2) and (3) that if an infinite plane graph has a net, then it is locally
finite, that is, every vertex has finite degree. Also note from (3) that if N is a ladder net
in an infinite plane graph, then ∂N is a 2-way infinite path.

The proof of Theorem (2.4) in [10] can easily be modified to obtain a proof of the fol-
lowing result, which slightly generalizes Theorem (2.4) in [10] and describes the structure
of certain 2-indivisible infinite plane graphs.

(2.1) Theorem. Let G be a 2-connected 2-indivisible infinite plane graph, let C be a
facial cycle of G such that G is (4, C)-connected, and let S denote the set of vertices of
infinite degree in G. Then |S| ≤ 2, and there is a set F ⊆ E(G) such that

(1) for any f ∈ F , f is incident with exactly one vertex in S,

(2) G − F has a net N = (C1, C2, · · ·), C ⊆ I(C1), S ⊆ ∂N , and for any f ∈ F , both
incident vertices of f are contained in a common infinite S-bridge of ∂N ,

(3) if |S| = 1, then either one S-bridge of ∂N contains all vertices incident with edges
in F or each S-bridge of ∂N contains infinitely many vertices incident with edges
in F , and

(4) if |S| = 2, then, for any T ⊆ V (G)−S with |T | ≤ 3, S is contained in a component
of (G − F ) − T .

It will be convenient to deal with certain embeddings of an infinite plane graph. An
infinite plane graph G is nicely embedded (or is a nice embedding) if, for every cycle C in
G for which IG(C) is defined, IG(C) is contained in the closed disc bounded by C. The
following result is Lemma (2.1) in [10].

(2.2) Lemma. If G is a plane graph with a net and C is a facial cycle of G, then G has
a nice embedding in which C is a facial cycle.

3 Tutte paths

The main objective of this section is to prove several lemmas about Tutte subgraphs
in planar graphs. The following two results will be used frequently. The first is due to
Thomassen [6], and the second is due to Thomas and Yu [4].

(3.1) Lemma. Let G be a 2-connected plane graph, let C be a facial cycle of G, and
let u ∈ V (C), e ∈ E(C), and v ∈ V (G) − {u}. Then G contains a C-Tutte path P from
u to v and through e.
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Note that Lemma (3.1) holds for connected graphs as long as C is a facial walk and
G contains a path from u to v and through e.

(3.2) Lemma. Let G be a 2-connected plane graph, and let C be a facial cycle of G.
Let u, v ∈ V (C) be distinct, let e, f ∈ E(C), and assume that u, v, e, f occur on C in
this clockwise order. Then G contains a vCu-Tutte path P from u to v and through e
and f .

Next, we prove a technical lemma which will be used many times in later proofs.
This lemma is stated in a fairly general setting in order to cover all situations in which
it is applied. See Figure 1 for an illustration.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

uuw

ww′

p p

q
q

sisi

ti
ti

Q
Q

Q′

Q′

L

L

T

T
Bi

Ui

(a) Q′ is a cycle (b) Q′ is a path or 2-way infinite path

Figure 1: Illustration of Lemma (3.3) and its proof.

(3.3) Lemma. Let K be a connected (finite or infinite) plane graph, C be a finite facial
walk of K, Q be a path between vertices p and q on C, u ∈ V (C) − V (Q), L be a
subgraph of K − V (Q), and Q′ be a cycle in L or a path in L or a 2-way infinite path in
L. Suppose the following three conditions are satisfied:

(1) for any (L ∪ Q)-bridge B of K, |V (B ∩ L)| ≤ 1 and V (B ∩ L) ⊆ V (Q′),

(2) K − V (L) is finite and all vertices of K − V (L) have finite degree in K, and

(3) L contains a Q′-Tutte subgraph T with u ∈ V (T ) and |V (Q′) ∩ V (T )| ≥ 2.

Then K−V (T ) contains a path S between p and q such that S∪T is a Q-Tutte subgraph
of K, and every T -bridge of L containing no edge of Q′ is also an (S ∪ T )-bridge of K.

Proof. Let W denote the set of attachments on Q′ of (L ∪ Q)-bridges of K. By (2),
W is a finite set. Note that for each w ∈ W , either w ∈ V (T ) or there is a unique
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T -bridge X of L such that w ∈ V (X) − V (T ). For any w,w′ ∈ W , we define w ∼ w′

if w = w′ or there is a T -bridge X of L such that {w,w′} ⊆ V (X) − V (T ). Clearly, ∼
is an equivalence relation on W . Let W1,W2, . . . ,Wm denote the equivalence classes of
W with respect to ∼. Then for each i ∈ {1, . . . ,m}, either |Wi| = 1 and Wi ⊆ V (T ) (in
this case, let Bi := Wi) or Wi ⊆ V (Bi) − V (T ) for some T -bridge Bi of L. Since T is a
Q′-Tutte subgraph of L and W ⊆ V (Q′), |V (Bi ∩ T )| ≤ 2.

Next we describe subgraphs Ti and Ui of K which lie between L and Q, and the desired
path S will be contained in the union of these subgraphs. For each i ∈ {1, . . . ,m}, let
si, ti ∈ V (Q) such that (i) p, si, ti, q occur on Q in this order, (ii) there are ws, wt ∈ Wi

such that {si, ws} is contained in a (L ∪ Q)-bridge of K and {ti, wt} is contained in a
(L ∪ Q)-bridge of K, and (iii) subject to (i) and (ii), siQti is maximal. (See Figure 1(a)
when |Wi| = 1 and Figure 1(b) when |Wi| ≥ 2.) By planarity and since u ∈ V (C) and Q
is a path on C, the paths siQti, i = 1, . . . ,m, are edge disjoint. We may therefore assume
that p, s1, t1, s2, t2, . . . , sm, tm, q occur on Q in this order. For each i ∈ {1, . . . ,m}, let Ui

denote the union of siQti, Bi, and those (L ∪ Q)-bridges of K whose attachments are
all contained in V (siQti) ∪ Wi. Let t0 := p and sm+1 := q. For each i ∈ {0, . . . ,m},
let Ti denote the union of tiQsi+1 and those (L ∪ Q)-bridges of K whose attachments
are all contained in V (tiQsi+1). Note that there is no path from Ti − {ti, si+1} to L in
K−{ti, si+1}. Because of (2), the graphs Ui and Tj are finite. By the definition of siQti,
the graphs Ui and Tj are almost disjoint. More precisely, we have the following.

(a) For any i ≤ j, Ui ∩ Tj (and for i < j, (Ui − T )∩ (Uj − T )) is one of the following:
∅, or {ti}, or the union of those (L∪Q)-bridges of K with ti as their only attachment on
L∪Q. Similarly, for i < j, Ti ∩Tj (and also Ti ∩Uj) is one of the following: ∅, or {si+1},
or the union of those (L∪Q)-bridges of K with si+1 as their only attachment on L∪Q.

Next we show how to route the desired path S through Ti.

(b) For each i ∈ {0, . . . ,m}, Ti contains a tiQsi+1-Tutte path Ri between ti and si+1.
If |V (tiQsi+1)| ≤ 2, then Ri := tiQsi+1 gives the desired path for (b). Now assume

that |V (tiQsi+1)| ≥ 3. Let Ci := tiQsi+1 + tisi+1 and choose an edge e from E(tiQsi+1).
Note that Ti + tisi+1 has a plane representation in which Ci is a facial cycle. By applying
Lemma (3.1) (with Ti + tisi+1, Ci, ti, si+1 as G,C, u, v, respectively), Ti + tisi+1 has a
Ci-Tutte path Ri between ti and si+1 such that e ∈ E(Ri). Clearly, Ri is a tiQsi+1-Tutte
path in Ti.

Now we show how to route the desired path S through Ui.

(c) For each i ∈ {1, . . . ,m}, Ui −V (T ∩Ui) contains a path Si between si and ti such
that Si ∪ (Ui ∩ T ) is an siQti-Tutte subgraph of Ui.

Note that for all i ∈ {1, . . . ,m}, |V (Ui ∩ T )| = |V (Bi ∩ T )| ≤ 2. If si = ti, then
let Si := siQti, and clearly, Si ∪ (Ui ∩ T ) is an siQti-Tutte subgraph of Ui (because
|V (Ui ∩ T )| ≤ 2). So assume that si �= ti. We distinguish two cases.
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First assume that Wi ⊆ V (T ). Then |Wi| = 1. Let w be the only vertex in Wi. See
Figure 1(a). By (1), V (Ui ∩ L) = {w}. Clearly, Ui + tiw has a plane representation so
that siQti + {w, tiw} is contained in a facial walk Di of Ui + tiw. By Lemma (3.1) (with
Ui + tiw,Di, si, w, tiw as G,C, u, v, e, respectively), Ui + tiw contains a Di-Tutte path S′

i

between si and w such that tiw ∈ E(S′
i). Let Si := S′

i − w. Then Si ⊆ Ui − V (T ∩ Ui),
and it is easy to see that Si ∪ (Ui ∩ T ) = Si ∪ {w} is an siQti-Tutte subgraph of Ui.

Now assume that Wi �⊆ V (T ). Then Wi ⊆ V (Bi) − V (T ) for some T -bridge Bi of L
containing an edge of Q′. Hence, since Q′ is either a cycle or a path or a 2-way infinite
path, it follows from (3) that V (Bi ∩T ) consists of at most two vertices, say w and w′ (if
V (Bi∩T ) has only one vertex w, we may choose w′ appropriately). By (1), |V (Ui∩L)| =
2. We may assume that Ui is drawn in a closed disc so that w,w′, ti, tiQsi, si occur on its
boundary in cyclic order. See Figure 1(b). Note that siQti+{w,w′, wsi, tiw

′} is contained
in a cycle of Ui + {wsi, tiw

′}, and hence, we may let U ′
i denote a plane representation of

the block of Ui + {wsi, tiw
′} in which siQti + {w,w′, wsi, tiw

′} is contained in a facial
cycle D′

i and w,w′, tiw′, wsi occur on D′
i in clockwise order. By Lemma (3.2) (with

U ′
i ,D

′
i, w,w′, tiw′, wsi as G,C, u, v, e, f , respectively), U ′

i contains a w′D′
iw-Tutte path

S′
i between w and w′ such that {wsi, tiw

′} ⊆ E(S′
i). Clearly, S′

i is also an siQti-Tutte
path in Ui + {wsi, tiw

′}. Let Si := S′
i − {w,w′}. Then Si ⊆ Ui − V (T ∩ Ui), and it is

easy to see that Si ∪ (Ui ∩ T ) = Si ∪ {w,w′} is an siQti-Tutte subgraph of Ui.

By (a), (b) and (c), S := (
⋃m

i=0 Ri)∪(
⋃m

i=1 Si) is a path between p and q in K−V (T ).
It is easy to see that every non-trivial (S ∪ T )-bridge of K is one of the following: a T -
bridge of L not contained in any Ui, or a Ri-bridge of Ti, or an (Si ∪ (Ui ∩ T ))-bridge of
Ui, or a (L∪Q)-bridge of K with only one attachment on Q that is si or ti (by (1) such
bridge has at most one attachment in L). Thus, S ∪ T is a Q-Tutte subgraph of K, and
every T -bridge of L containing no edge of Q′ (and hence not contained in any Ui) is also
an (S ∪ T )-bridge of K. �

Our next lemma deals with disjoint paths that form a Tutte subgraph in a planar
graph. See Figure 2 for an illustration.

(3.4) Lemma. Let G be a 2-connected plane graph with a facial cycle C, let
s, u, v, x, t, x′ be vertices on C in clockwise order. Suppose that uv ∈ E(C), t �= x′ �= s,
v �= x, and G − V (xCt) contains a path from s to x′ and through uv. Then G contains
disjoint paths P and Q such that P is from s to x′ and through uv, Q is from x to t,
and P ∪ Q is an sCt-Tutte subgraph of G.

Proof. Without loss of generality, assume that C is the outer cycle of G (that is, C = ∂G).
Let L be the minimal subgraph of G − V (xCt) such that L is a union of blocks of
G− V (xCt) and L contains a path from s to x′. Then all paths in G− V (xCt) between
x′ and s are contained in L, and hence, x′Cs ⊆ L and uv ∈ E(L). Let c be the vertex
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Figure 2: Illustration of Lemma (3.4) and its proof.

of C ∩ L such that cCx is minimal. Let L′ := L + x′s, where the edge x′s (shown in
Figure 2 as the dotted edge) is added in such a way that E(sCc) ∪ {x′s} ⊆ ∂L′. By the
minimality of L, every cut vertex of L (if any) must separate s from x′. Therefore, L′ is
2-connected.

Observe that, since L is a union of blocks of G − V (xCt), each (L ∪ xCt)-bridge of
G has at most one attachment on c∂L′x′, with its remaining attachments on xCt. In L′,
we use Lemma (3.2) to find an s∂L′x′-Tutte path P from x′ to s and through uv and c
(by choosing an edge of C incident with c). Next, we will find the path Q, which is done
in two steps.

Let p ∈ V (xCt) with xCp maximal such that {p, c} is contained in a (L∪xCt)-bridge
of G. Let J denote the union of xCp and those (L∪xCt)-bridges of G whose attachments
are all contained in V (xCp)∪ {c}. If x = p then let R denote the trivial path consisting
of x; if x �= p then by Lemma (3.1) there is a cCp-Tutte path R′ in J + pc from c to x
and through pc, and let R := R′ − c.

It is easy to verify that the conditions of Lemma (3.3) hold, with G′ := G − V (J −
{c, p}), L, pCt, s∂L′x′, c, P as K,L,Q,Q′, u, T , respectively. Hence by Lemma (3.3), there
is a path S from p to t in G′ −V (P ) such that S ∪P is a pCt-Tutte subgraph of G′, and
every P -bridge of L containing no edge of Q′ is also an (S ∪ P )-bridge of G′. In fact, it
follows from planarity and {s, c, x′} ⊆ V (P ) that any P -bridge of L containing an edge
of sCc is also an (S ∪ P )-bridge of G′, and so, has at most two attachments on S ∪ P .

Let Q = R ∪ S. Clearly, P ∩ Q = ∅ and Q is a path from x to t. It is easy to see
that any non-trivial (P ∪Q)-bridge of G is either an (S ∪P )-bridge of G′ or a R′-bridge
of J + pc. Hence, P ∪ Q is an sCt-Tutte subgraph of G. �

We conclude this section by proving three technical lemmas, which will be used to
extend Tutte paths in a subgraph of a graph G to Tutte paths in G. In order to cover all
situations when these lemmas are applied, their statements are somewhat complicated.
Fortunately, these statements are very similar and their proofs are quite simple (with
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Figure 3: Illustration of Lemma (3.5) and its proof.

the help of Lemma (3.3)). For an illustration of the next result, see Figure 3.

(3.5) Lemma. Let G be a 2-connected (finite or infinite) plane graph and C be a facial
cycle of G such that G is (4, C)-connected. Let x, u, v ∈ V (C) and uv ∈ E(C) with
v �= x, let Q be the subpath of C −v between x and u, and let G′ be a block of G−V (Q)
such that

(i) v and G′ are in the same component of G − V (Q),

(ii) G′ has a facial cycle C ′ such that if G is infinite then IG(C ′) is defined and C ⊆
IG(C ′), and if G is finite then IG(C ′) is the maximal subgraph of G which contains
C and lies in the closed region bounded by C ′, and

(iii) |V (C ∩ C ′)| ≤ 1.

Then there exists x′ ∈ V (C ′) such that, for any (finite or infinite) subgraph X of G
containing IG(C ′) and for any (finite or 1-way infinite) C ′-Tutte path P ′ in X ′ := X ∩G′

from x′ with |V (P ′ ∩ C ′)| ≥ 2, there is a C-Tutte path P in X from x and through uv
with the following properties:

(a) P ′ ⊆ P ,

(b) u ∈ V (xPv) and P − V (P ′ − x′) is a path from x to x′ and through uv, and

(c) for any z ∈ V (P )−V (P ′), either z /∈ V (X ′) or z ∈ V (Z)−V (P ′) for some P ′-bridge
Z of X ′ containing an edge of C ′.

Proof. Without loss of generality, assume that uCx = Q if u �= x. (If u = x then Q is
just the trivial path consisting of u = x only.) Since C ′ ⊆ G−V (Q), C∩C ′ ⊆ C−V (Q).
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If |V (C ∩ C ′)| = 1, then let x′ be the unique vertex of C ∩ C ′. See Figure 3(a). Now
assume that |V (C ∩ C ′)| = 0. Then from planarity, C − V (Q) is contained in a single
(G′ ∪ Q)-bridge of G. Let x′ be the attachment on C ′ of this (G′ ∪ Q)-bridge of G;
x′ uniquely exists because G′ is a block and both v and G′ are contained in the same
component of G − V (Q). See Figure 3(b).

Since G is (4, C)-connected, there exist distinct s, t ∈ V (Q) such that u, s, t, x occur
on Q in order, {s, x′} is contained in a (G′ ∪ Q)-bridge of G, {t, x′} is contained in a
(G′ ∪Q)-bridge of G, there is a (G′ ∪Q)-bridge of G containing a vertex of sQt−{s, t},
and no (G′∪Q)-bridge of G containing a vertex of sQt−{s, t} contains x′. Let J denote
the union of tCs and those (G′ ∪ Q)-bridges of G whose attachments are all contained
in V (tCs) ∪ {x′}.

Next we show that J contains disjoint paths Ps and Pt such that Ps is from x′ to s
and through uv, Pt is from x to t, u ∈ V (sPsv), Ps ∪ Pt is a tCs-Tutte subgraph of J .

First, assume that |V (C ∩ C ′)| = 1. See Figure 3(a). Then x′ is a cut vertex of J .
Let Js, Jt denote the subgraphs of J such that Js ∪ Jt = J , V (Js ∩ Jt) = {x′}, x′Cs ⊆ Js

and tCx′ ⊆ Jt. In Js +x′s, we apply Lemma (3.1) to find an x′Cs-Tutte path Ps from x′

to s and through uv. By planarity, u ∈ V (sPsv). If t = x then let Pt denote the trivial
path consisting of x; and if t �= x then we use Lemma (3.1) to find a tCx′-Tutte path P ′

t

in Jt + x′t from x to x′ and through tx′, and let Pt := P ′
t − x′. It is easy to verify that

Ps and Pt give the desired paths.
Now assume |V (C ∩ C ′)| = 0. See Figure 3(b). Since G is 2-connected and s �= t,

J ′ := J + {x′s, x′t} is 2-connected. Clearly, J ′ has a plane representation so that ∂J ′ =
tCs+{x′, x′s, x′t}, and x′, s, u, v, x, t occur on ∂J ′ in clockwise order. Thus s∂J ′t = tCs.
Since v and G′ are contained in a component of G− V (Q), J ′ − V (Q) has a path from v
to x′. Hence, J ′−V (tCx) contains a path from s to x′ and through uv. By Lemma (3.4)
(with J ′, ∂J ′ as G,C, respectively), J ′ contains disjoint paths Ps and Pt such that Ps is
from x′ to s and through uv, Pt is from x to t, and Ps ∪ Pt is an s∂J ′t-Tutte subgraph
of J ′. By planarity, u ∈ V (sPsv). It is easy to see that Ps and Pt give the desired paths.

To complete the proof this lemma, let X be a subgraph of G containing IG(C ′)
and let P ′ be a (finite or 1-way infinite) C ′-Tutte path in X ′ := X ∩ G′ from x′ with
V (P ′∩C ′)| ≥ 2. Note that x′ is on the facial walk of X−V (J−{s, t, x′}) containing sQt.
It is straightforward to verify that the conditions of Lemma (3.3) hold, with X∗ := X −
V (J − {s, t, x′}),X ′, P ′, sQt, s, t, C ′, x′ as K,L, T,Q, p, q,Q′, u, respectively. By Lemma
(3.3), we find a path S from s to t in X∗−V (P ′) such that S∪P ′ is a sQt-Tutte subgraph
of X∗ and every P ′-bridge of X ′ containing no edge of C ′ is an (S ∪ P ′)-bridge of X∗.

Let P = P ′ ∪ S ∪ Ps ∪ Pt. Then P is a path from x, P ′ ⊆ P , u ∈ V (xPv), and
P − V (P ′ − x′) = S ∪ Ps ∪ Pt is a path between x and x′. Note that because G is
(4, C)-connected, each non-trivial P -bridge of X is one of the following: a P ′-bridge of
X ′ not containing any edge of C ′, or an (S ∪ P ′)-bridge of X∗, or a (Ps ∪ Pt)-bridge of
J . Hence, it is easy to check that P is a C-Tutte path from x and through uv in X, and
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Figure 4: Illustration for Lemma (3.6) and its proof.

P satisfies (a), (b), and (c). �

For the next result, see Figure 4 for an illustration.

(3.6) Lemma. Let G be a 2-connected (finite or infinite) plane graph and C be a facial
cycle of G such that G is (4, C)-connected. Let x, u, v ∈ V (C) and uv ∈ E(C) with
v �= x, let Q be the subpath of C −v between x and u, and let G′ be a block of G−V (Q)
such that

(i) v and G′ are in the same component of G − V (Q),

(ii) G′ has a facial cycle C ′ such that if G is infinite then IG(C ′) is defined and C ⊆
IG(C ′), and if G is finite then IG(C ′) is the maximal subgraph of G which contains
C and lies in the closed region bounded by C ′, and

(iii) C ∩ C ′ is a non-trivial path.

Then there exist x′ ∈ V (C ∩C ′) and u′v′ ∈ E(C ′) such that x′ and u′ are the endvertices
of C ∩ C ′, if G is infinite then v′ is in an infinite component of the graph obtained from
G′ by deleting the path in C ′ − v′ between x′ and u′, and, for any (finite or infinite)
subgraph X of G containing IG(C ′) and for any (finite or 1-way infinite) C ′-Tutte path
P ′ in X ′ := X ∩ G′ from x′ and through u′v′, there is a C-Tutte path P in X from x
and through uv with the following properties:

(a) P ′ ⊆ P ,

(b) u ∈ V (xPv) and P − V (P ′ − x′) is a path from x to x′ through uv, and

(c) for any z ∈ V (P )−V (P ′), either z /∈ V (X ′) or z ∈ V (Z)−V (P ′) for some P ′-bridge
Z of X ′ containing an edge of C ′.

11



Proof. Without loss of generality, assume that Q = uCx if u �= x. (If u = x then Q is
the trivial path consisting of u = x only.) Let x′ and u′ denote the endvertices of C ∩C ′

such that x, u′, x′, v, u occur on C in clockwise order. See Figure 4. Let u′v′ ∈ E(C ′)
such that if Q′ denotes the subpath of C ′ − v′ between x′ and u′ and if G is infinite then
v′ is contained in an infinite component of G′ − V (Q′). Such u′v′ exists because G is
(4, C)-connected. (Note that there are only two choices for v′, and if neither works then
G − {x′, u′} has a component which does not contain any vertex of C.)

Let s ∈ V (Q) with uQs maximal such that {s, x′} is contained in some (G′ ∪ Q)-
bridge of G, and let Js denote the union of uQs and those (G′ ∪ Q)-bridges of G whose
attachments are all contained in V (uQs) ∪ {x′}. By applying Lemma (3.1), we find an
x′Cs-Tutte path Ps in Js +x′s from x′ to s and through uv. By planarity, u ∈ V (x′Psv).

Let t ∈ V (Q) with tQx maximal such that {t, u′} is contained in some (G′ ∪ Q)-
bridge of G, and let Jt denote the union of tQx and those (G′ ∪ Q)-bridges of G whose
attachments are all contained in V (tQx) ∪ {u′}. If t = x let Pt be the path consisting
of x only; and if t �= x then by applying Lemma (3.1) we find a tCu′-Tutte path P ′

t in
Jt + tu′ from u′ to x through tu′, and let Pt := P ′

t − u′.
To complete the proof, let X be a subgraph of G containing IG(C ′) and let P ′ be

a (finite or 1-way infinite) C ′-Tutte path in X ′ := X ∩ G′ from x′ and through u′v′.
It is easy to verify that X∗ := X − V ((Js ∪ Jt) − {s, t, u′, x′}), X ′, P ′, sQt, s, t, C ′, x′

(as K,L, T,Q, p, q,Q′, u respectively) satisfy the conditions of Lemma (3.3). Hence by
Lemma (3.3) we find a path S from s to t in X∗ − V (P ′) such that S ∪ P ′ is a Q-Tutte
subgraph of X∗ and every P ′-bridge of X ′ containing no edge of C ′ is an (S ∪P ′)-bridge
of X∗.

Let P := P ′∪S∪Ps∪Pt. Then P ′ ⊆ P , u ∈ V (xPv), and P −V (P ′−x′) = S∪Ps∪Pt

is a path between x and x′. Note that because G is (4, C)-connected, each non-trivial
P -bridge of X is one of the following: a P ′-bridge of G′ not containing any edge of C ′,
or an (S ∪P ′)-bridge of X∗, or a Ps-bridge of Js + x′s, or a P ′

t -bridge of Jt + tu′. Hence,
it is easy to see that P is a C-Tutte path from x and through uv in X and P satisfies
(a), (b), and (c). �

For an illustration of the final result in this section, see Figure 5.

(3.7) Lemma. Let G be a 2-connected (finite or infinite) plane graph, let C be a facial
cycle of G, and let x ∈ V (C) such that G is (4, C)-connected. Let G′ be a block of
G − V (C) and C ′ be a facial cycle of G′, and assume that if G is infinite then IG(C ′)
is defined and C ⊆ IG(C ′), and if G is finite then IG(C ′) is the maximal subgraph of
G which contains C and lies in the closed region bounded by C ′. Then there exists
x′ ∈ V (C ′) such that, for any (finite or infinite) subgraph X of G containing IG(C ′)
and for any (finite or 1-way infinite) C ′-Tutte path P ′ from x′ in X ′ := X ∩ G′ with
|V (P ′ ∩ C ′)| ≥ 2, there is a C-Tutte path P from x in X with the following properties:

12
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Figure 5: Illustration of Lemma (3.7) and its proof.

(a) P ′ ⊆ P ,

(b) P − V (P ′ − x′) is a path between x and x′, and

(c) for any z ∈ V (P )−V (P ′), either z /∈ V (X ′) or z ∈ V (Z)−V (P ′) for some P ′-bridge
Z of X ′ containing an edge of C ′.

Proof. Let w1, · · · , wm be the attachments on C ′ of (G′∪C)-bridges of G which occur on
C ′ in clockwise order. Let pj , qj ∈ V (C) such that (i) {pj , wj} is contained in a (G′∪C)-
bridge of G and {qj , wj} is contained in a (G′∪C)-bridge of G, (ii) every (G′∪C)-bridge
of G containing some wl �= wj contains no vertex of pjCqj −{pj , qj}, and (iii) subject to
(i) and (ii), pjCqj is maximal.

Without loss of generality, assume that x ∈ V (pkCpk+1)−{pk} for some 1 ≤ k ≤ m,
where pm+1 := p1. Let J denote the union of pkCpk+1 and those (G′ ∪ C)-bridges of G
whose attachments are all contained in V (pkCpk+1) ∪ {wk}. Let x′ = wk. See Figure 5.

Next we show that J contains disjoint paths P ∗ and Q∗ such that P ∗ is from x′ to
pk, Q∗ is from x to pk+1, and P ∗ ∪ Q∗ is a pkCpk+1-Tutte subgraph of J . Since G is
2-connected, J ′ := J + x′pk+1 is 2-connected. Clearly J ′ has a plane representation in
which pkCpk+1 + {x′, x′pk+1} ⊆ ∂J ′, and pk, x

′, pk+1, x occur on ∂J ′ in clockwise order.
We use Lemma (3.1) to find a ∂J ′-Tutte path P ′′ in J ′ from x to pk and through x′pk+1.
Let P ∗ and Q∗ be the components of P ′′ − x′pk+1, where P ∗ is a path from x′ to pk

and Q∗ is a path from x to pk+1. Clearly, every non-trivial (P ∗ ∪ Q∗)-bridge of J is a
P ′′-bridge of J . Hence P ∗ ∪ Q∗ is a pkCpk+1-Tutte subgraph of J .

Now we see that X∗ := X − V (J − {x′, pk, pk+1}),X ′, pk+1Cpk, C
′, P ′, pk+1, pk, x

′

(as K,L,Q,Q′, T, p, q, u, respectively) satisfy the conditions of Lemma (3.3). By Lemma
(3.3), we find a path S from pk+1 to pk in X∗−V (P ′) such that S∪P ′ is a pk+1Cpk-Tutte
subgraph of X∗ and any P ′-bridge of X ′ containing no edge of C ′ is also an (S∪P ′)-bridge
of X∗.
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Let P = P ′ ∪ S ∪ (P ∗ ∪ Q∗). Then because G is (4, C)-connected, each non-trivial
P -bridge of X is one of the following: a P ′-bridge of G′ containing no edge of C ′, or a
(P ∗ ∪ Q∗)-bridge of J , or an (S ∪ P ′)-bridge of X∗. Hence, it is easy to check that P is
a C-Tutte path in G.

Clearly, P ′ ⊆ P , P − V (P ′ − x′) = S ∪ (P ∗ ∪Q∗) is a path between x and x′, and for
any z ∈ V (P ) − V (P ′), either z /∈ V (X ′) or z ∈ V (Z) − V (P ′) for some P ′-bridge Z of
X ′ containing an edge of C ′. Thus P gives the desired path in X. �

4 Tutte paths in graphs with ladder nets

We begin this section by stating Theorem (3.7) of [10] which will be used in the next
section to deal with graphs with ladder nets.

(4.1) Lemma. Let G be a 2-connected 2-indivisible infinite plane graph with a ladder
net N . Let x ∈ V (∂N) and uv ∈ E(∂N) such that u ∈ V (x∂Nv). Then G contains a
1-way infinite ∂N -Tutte path P from x and through uv such that u ∈ V (xPv).

We devote the rest of this section to proving a lemma which will be used as a part of
the induction basis in the proof of Theorem (1.2). Before we do this, let us extend the
notation ∂G to infinite graphs. Let G be an infinite plane graph. Then ∂G denotes the
subgraph of G defined as follows: for every x ∈ V (G) ∪ E(G), we have x ∈ ∂G if, and
only if, for any cycle C in G for which I(C) is defined, x /∈ I(C)− V (C) when x ∈ V (G)
and x /∈ I(C) − E(C) when x ∈ E(G).

Let G be a 2-connected 2-indivisible infinite plane graph, and let C be a facial cycle
of G such that G is (4, C)-connected. If G has a radial net N = (C1, C2, . . .), then clearly
for each x ∈ V (G) ∪E(G), x ∈ I(Ci)− V (Ci) for all sufficiently large i, and so, ∂G = ∅.
Now assume that G does not have a radial net. Let S be the set of vertices of infinite
degree in G. Then |S| ≤ 2, and there exists F ⊆ E(G) as in Theorem (2.1) such that
G−F has a ladder net N satisfying the conclusions of Theorem (2.1). Observe that the
vertices and edges of G − F not on ∂N are definitely not in ∂G. If S = ∅, then in fact
∂G = ∂N . If |S| = 2, then it is not hard to see that ∂G is the subpath of ∂N between
the vertices in S. If |S| = 1 and one S-bridge of ∂N contains all incident vertices of edges
in F , then ∂G is the other S-bridge of ∂N which is a 1-way infinite path. If |S| = 1 and
each S-bridge of ∂N contains infinitely many vertices incident with edges in F , then ∂G
consists of the only vertex in S. Hence, if ∂G �= ∅, then ∂G is a trivial path, or a 1-way
infinite path, or a 2-way infinite path, and the endvertices of ∂G are in S.

Next, we prove the main result of this section. See Figure 6 for an illustration.

(4.2) Lemma. Let G be a 2-connected 2-indivisible infinite plane graph, and let C be
a facial cycle of G such that G is (4, C)-connected. Let x ∈ V (C) and uv ∈ E(C) with
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Figure 6: The structure of G − F .

v �= x, let Q be the subpath of C − v between u and x, and assume that Q∩ ∂G �= ∅ and
v is in the infinite component of G − V (Q). Then G contains a 1-way infinite C-Tutte
path P from x such that uv ∈ E(P ) and u ∈ V (xPv).

Proof. Without loss of generality, we may assume that Q = uCx if u �= x. (If u = x
then Q is a trivial path.) Let a, b ∈ V (Q ∩ ∂G) such that a∂Gb is maximal and u, a, b, x
occur on C in clockwise order. Let S denote the set of vertices of infinite degree in G.
By Theorem (2.1), |S| ≤ 2, and there is a set F ⊆ E(G) such that

(1) for any f ∈ F , f is incident with exactly one vertex in S,

(2) G − F has a net N = (C1, C2, · · ·), C ⊆ I(C1), S ⊆ ∂N , and for any f ∈ F , both
incident vertices of f are contained in a common infinite S-bridge of ∂N ,

(3) if |S| = 1, then either one S-bridge of ∂N contains all vertices incident with edges
in F or each S-bridge of ∂N contains infinitely many vertices incident with edges
in F , and

(4) if |S| = 2, then for any T ⊆ V (G)−S with |T | ≤ 3, S is contained in a component
of (G − F ) − T .

Since Q ∩ ∂G �= ∅, we have ∂G �= ∅, and hence N is a ladder net. Therefore,
(G−F )−V (Q) has a unique infinite block, say H, and H has a ladder net, say NH . See
Figure 6. For convenience, let D := ∂NH . Note that D∩∂N has exactly two components.
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Moreover, the components of D ∩ ∂N are 1-way infinite paths, and between them there
are infinitely many vertex disjoint paths (contained in Ci+1 − V (Ci ∩ Ci+1) for all large
i).

We claim that we may further choose F such that

(5) S ⊆ {a, b} ∪ V (D ∩ ∂N), every edge in F has an incident vertex on D ∩ ∂N , if
|S ∩ V (D)| = 1 then there are at least three paths in H from S ∩ V (D) to the
component of D ∩ ∂N not containing S ∩ V (D) which only share the vertex in
S ∩ V (D), and if |S ∩ V (D)| = 2 then there are at least three internally disjoint
paths in H between the vertices in S ∩ V (D).

This can be shown as follows. Since S ⊆ V (∂G) and since a∂Gb is maximal subject to
a, b ∈ V (Q∩∂G), we see that S∩V (a∂Nb) ⊆ {a, b}. If S ⊆ {a, b}, then let F ′ be obtained
from F by deleting all edges with no incident vertex on D (there are only finitely many
such edges), and we have (1)–(5) with F ′ replacing F . So assume S �⊆ {a, b}. For each
s ∈ S − V (a∂Nb), we choose s′ ∈ V (D ∩ ∂N) such that ss′ ∈ F , there are disjoint paths
Ps, Qs, Rs in G − F from ps, qs, rs ∈ V (D ∩ s∂Ns′) to vertices p′s, q′s, r′s, respectively, in
the component of D ∩ ∂N not intersecting s∂Ns′, and ps∂Nqs − qs and qs∂Nrs − rs

contain vertices incident with edges in F . Moreover, if S − V (a∂Nb) has two vertices,
say s and t, then we may further choose s′, Ps, Qs, Rs and t′, Pt, Qt, Rt so that Ps = Pt,
Qs = Qt, and Rs = Rt. (This can be done because Q ∩ ∂G �= ∅, s and t belong to
different components of D ∩ ∂N , and there are infinitely many disjoint paths between
the two components of D ∩ ∂N .) Let F ′ be obtained from F by deleting those edges in
F whose incident vertices are all contained in s∂Ns′, for all s ∈ S − V (a∂Nb). Then
S − V (a∂Nb) is contained in a unique infinite block H ′ of (G− F ′)− V (Q), and H ′ has
a ladder net, say N ′. Let D′ := ∂N ′. Then H ⊆ H ′ and S − V (a∂Nb) ⊆ V (D′ ∩ ∂N).
Clearly, all edges in F ′ have an incident vertex in D′∩∂N . It is straightforward to verify
that (1)–(5) are satisfied, with F ′, N ′,D′ replacing F,N,D, respectively. In particular,
the choices of Ps, Qs, Rs guarantee (5).

By planarity, the attachments on H of (H ∪Q)-bridges of G−F are all contained in
D. Note that D ∩ C = ∅ or D ∩ C is a path, and hence we distinguish two cases.

Case 1. |V (D ∩ C)| ≤ 1.
Then D ∩ C = ∅ or D ∩ C is a trivial path. If D ∩ C �= ∅, then let w denote the

unique vertex of D ∩ C. See Figure 6(a).
If D ∩ C = ∅, then C − V (Q − {x, u}) is contained in a single (H ∪ Q)-bridge Bv of

G−F . See Figure 6(b). In this case, we claim that (Bv −V (Q))∩H �= ∅. For otherwise,
Bv − V (Q) is a finite component of (G−F )− V (Q). Since S ⊆ {a, b} ∪ V (∂N ∩D) and
every edge in F has an incident vertex in D ∩ ∂N (by (5)), Bv − V (Q) is also a finite
component of G − V (Q). Therefore, v is not in the infinite component of G − V (Q), a
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contradiction. Hence, let w ∈ V (Bv) ∩ V (H). Then w is the attachment of Bv on H,
and Bv − V (Q) contains a path from v to w.

In H, we use Lemma (4.1) to find a 1-way infinite D-Tutte path P ′ from w such that
if (S − {w}) ∩ V (D) �= ∅ then P ′ contains a vertex in S − {w} (by using an edge of D
incident with that vertex).

We claim that S ∩ V (D) ⊆ V (P ′). This is obvious when w ∈ S (because |S| ≤ 2) or
when |S ∩ V (D)| ≤ 1. So assume that w /∈ S and S ∩ V (D) = {s1, s2}. By planarity
and since Q ∩ ∂G �= ∅, s1 and s2 belong to different components of D ∩ ∂N . Suppose
s1 /∈ V (P ′). Then s1 ∈ V (B) for some P ′-bridge B of H. Since P ′ is a D-Tutte path,
|V (B∩P ′)| = 2. Note that s2 ∈ V (P ′), because P ′ contains a vertex of (S∩V (D))−{w}.
Thus, s2 /∈ V (B) because s2 �= w and s1 and s2 belong to different components of D∩∂N .
Therefore, s1 and s2 belong to different components of H −V (B∩P ′), contradicting (5).

We wish to extend P ′ to the desired path P . Let s, t ∈ V (Q) with a, b, t, x, u, s on C in
clockwise order such that (i) {s,w} is contained in an (H∪Q)-bridge of G−F and {t, w}
is contained in an (H ∪Q)-bridge of G−F , (ii) every (H ∪Q)-bridge of G−F containing
a vertex of H − {w} contains no vertex of tCs − {s, t}, and (iii) subject to (i) and (ii),
tCs is maximal. See Figure 6(a) and Figure 6(b). Then t �= s; otherwise, because all
edges in F have both incident vertices in {a, b} ∪ V (D ∩ ∂N) (by (5)), {t = s,w} is a
2-cut of G and G − {s,w} has a component containing no vertex of C, contradicting
the assumption that G is (4, C)-connected. Let J denote the union of tCs and those
(H ∪ Q)-bridges of G − F whose attachments are all contained in V (tCs) ∪ {w}.

Next we show that J contains disjoint paths Ps and Pt such that Ps is from w to s
and through uv, Pt is from x to t, u ∈ V (sPsv), and Ps ∪ Pt is a tCs-Tutte subgraph of
J . We consider two cases.

First, assume w /∈ C. Then J ′ := J +{ws,wt} is 2-connected. Clearly, J ′ has a plane
representation so that ∂J ′ = tCs + {w,ws,wt} and s∂J ′t = tCs. Also J ′ − V (Q) has a
path from v to w (because Bv −V (Q) contains a path from v to w). Hence, J ′−V (tCx)
contains a path from s to w and through uv. By applying Lemma (3.4) to J ′ (with
J ′, ∂J ′, w as G,C, x′, respectively), we find disjoint paths Ps and Pt in J ′ such that Ps is
from w to s and through uv, Pt is from x to t, Ps ∪Pt is an s∂J ′t-Tutte subgraph of J ′.
Note that ws,wt /∈ Ps ∪ Pt. Hence Ps ∪ Pt is a tCs-Tutte subgraph of J . By planarity,
u ∈ V (sPsv).

Now assume w ∈ C. Then w is a cut vertex of J . If |V (wCs)| = 2 then let Ps := wCs,
and if x = t then let Pt denote the trivial path consisting of x only. Now assume that
|V (wCs)| ≥ 3 and x �= t. Since G is (4, C)-connected, J has exactly two w-bridges Js

and Jt, where s ∈ V (Js) and t ∈ V (Jt), and both J ′
s := Js + ws and J ′

t := Jt + wt are
2-connected. Clearly J ′

s and J ′
t have plane representations so that ∂J ′

s = wCs + ws and
∂J ′

t = tCw + wt. In J ′
s, we use Lemma (3.1) to find a ∂J ′

s-Tutte path Ps from w to s
and through uv. In J ′

t, we use Lemma (3.1) to find a ∂J ′
t-Tutte path P ′

t from w to x and
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through wt, and let Pt := P ′
t − w. It is easy to see that Ps ∪ Pt is a tCs-Tutte subgraph

of J . By planarity, u ∈ V (sPsv).

It is easy to verify that G′ := (G − F ) − V (J − {s, t, w}),H,Q,D, s, t, P ′, w
(as K,L,Q,Q′, p, q, T, u, respectively) satisfy the conditions of Lemma (3.3). By
Lemma (3.3), we find a path R ⊆ G′ − V (P ′) from s to t such that R ∪ P ′ is a Q-Tutte
subgraph of G′ and every P ′-bridge of H containing no edge of D is an (R ∪ P ′)-bridge
of G′. Since {a, b} ⊆ V (Q ∩ ∂G) and by planarity, {a, b} ⊆ V (R). By (5) and since
S ∩ V (D) ⊆ V (P ′), S ⊆ V (P ′ ∪ R).

Let P := P ′∪R∪Ps∪Pt. Then P is a 1-way infinite path in G from x and through uv
such that u ∈ V (xPv). It is easy to check that each non-trivial P -bridge of G is one of the
following: a (R∪P ′)-bridge of G′, or a (Ps∪Pt)-bridge of J , or a subgraph of G obtained
from a P ′-bridge B of H by adding edges in F between S ∩ V (B) and V (B)− V (P ′), or
a subgraph of G obtained from a P ′-bridge B of H (with two attachments) by adding a
vertex s∗ ∈ S and all edges in F between s∗ and V (B) − V (P ′). Hence, it is easy to see
that P is a 1-way infinite C-Tutte path in G.

Case 2. D ∩ C is a non-trivial path.
Let w,w′ denote the endvertices of D ∩C such that D ∩C = w′Cw. Then {w′, x} is

contained in an (H ∪ Q)-bridge of G − F , and {w, u} is contained in an (H ∪ Q)-bridge
of G − F . See Figure 6(c). In H, we use Lemma (4.1) to find a 1-way infinite D-Tutte
path P ′ from w and through w′.

We claim that S ∩ V (D) ⊆ V (P ′). Suppose on the contrary that s∗ ∈ (S ∩ V (D)) −
V (P ′). Then s∗ ∈ V (B)−V (P ′) for some P ′-bridge B of H. Since P ′ is a D-Tutte path
of H, |V (P ′∩B)| = 2. Let Dw and D′

w denote the infinite w′Dw-bridges of D containing
w and w′, respectively. (These are 1-way infinite paths.) By symmetry, assume that
s∗ ∈ V (D′

w). Then by planarity and since {w,w′} ⊆ V (P ′), V (B ∩ P ′) ⊆ V (D′
w). Note

that w /∈ V (B∩P ′). Hence V (B∩P ′) is a 2-cut of H separating s∗ from Dw. Then either
V (B ∩ P ′) separates the vertices in S (when |S ∩ V (D)| = 2) or V (B ∩ P ′) separates s∗

from the component of D ∩ ∂N not containing s∗ (when |S ∩ V (D)| = 1), contradicting
(5).

Next, we extend P ′ to the desired path P . Let s ∈ V (Q) with uQs maximal such
that {s,w} is contained in an (H ∪ Q)-bridge of G − F , and let Js denote the union of
those (H ∪ Q)-bridges of G − F whose attachments are all contained in V (uQs) ∪ {w}.
If |V (wCs)| = 2 then let Ps := wCs, and otherwise, we use Lemma (3.1) to find a
wCs-Tutte path Ps in Js + ws from w to s and through uv.

Let t ∈ V (Q) with tQx maximal such that {t, w′} is contained in an (H∪Q)-bridge of
G−F , and let Jt denote the union of those (H ∪Q)-bridges of G−F whose attachments
are all contained in V (tQx) ∪ {w′}. If t = x then let Pt be the trivial path consisting of
x, otherwise, we use Lemma (3.1) to find a tCw′-Tutte path P ′

t in Jt + tw′ from w′ to x
and through tw′, and let Pt := P ′

t − w′.
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It is easy to verify that G′ := (G−F )−V ((Js ∪Jt)−{s, t, w,w′}),H,Q,D, s, t, P ′, w
(as K,L,Q,Q′, p, q, T, u, respectively) satisfy the conditions of Lemma (3.3). By Lemma
(3.3), we find a path R ⊆ G′ − V (P ′) such that R ∪ P ′ is a Q-Tutte subgraph of G′

and every P ′-bridge of H containing no edge of D is an (R ∪ P ′)-bridge of G′. Since
{a, b} ⊆ V (Q∩∂G), {a, b} ⊆ V (R). By (5) and since S∩V (D) ⊆ V (P ′), S ⊆ V (P ′∪R).

Let P := P ′ ∪R∪ Ps ∪ Pt. Then P is a 1-way infinite path in G from x and through
uv such that u ∈ V (xPv). It is easy to verify that each non-trivial P -bridge of G is one
of the following: a (R ∪ P ′)-bridge of G′, or a Ps-bridge of Js + ws, or a P ′

t -bridge of
Jt + tw′, or a subgraph of G obtained from a P ′-bridge B of H by adding edges in F
between S ∩ V (B) and V (B) − V (P ′), or a subgraph of G obtained from a P ′-bridge B
of H (with two attachments) by adding a vertex s∗ ∈ S and all edges in F between s∗

and V (B) − V (P ′). Hence, it is easy to see that P is a 1-way infinite C-Tutte path in
G. �

5 One-way infinite paths

In this section, we prove our main result about 1-way infinite Tutte paths from a
specified vertex and through a specified edge. Such paths will be useful for proving the
existence of 2-way infinite Tutte paths in 3-indivisible infinite plane graphs.

First, we state the following result which is a variation of König’s Infinity Lemma. It
allows us to “construct” a 1-way infinite path from a sequence of finite paths.

(5.1) Lemma. Let G be an infinite and locally finite graph, and let x ∈ V (G). Suppose
{Pn} is an infinite sequence of finite paths from x such that the length of Pn increases.
Then {Pn} has a subsequence {Pnk

} converging to a 1-way infinite path P from x, that
is, for every v ∈ V (P ), xPv = xPnk

v for all sufficiently large nk.

In later proofs, we need to find a sequence of finite Tutte paths converging to a 1-
way infinite Tutte path. For this reason, we recall the notion of forward paths. Let
N = (H1,H2, · · ·) be a sequence of finite subgraphs in a (finite or infinite) graph G. A
path P in G is N -forward or (H1,H2, · · ·)-forward if, for i ≥ 1 and for every a, b, c ∈ V (P )
with a ∈ V (bPc), {b, c} ⊆ V (Hi) implies that a /∈ V (Hj) for all j ≥ i+2. Note that if, for
each i ≥ 2,

⋃i−1
j=1 Hj and

⋃
j≥i+1 Hj are contained in different components of G−V (Hi),

then “P is (H1,H2, · · ·)-forward” means that if P starts from H1, then, after visiting
Hi+2, P never visits Hi again.

Before we prove our main result, we need to prove two more lemmas.

(5.2) Lemma. Let G be a 2-connected 2-indivisible infinite plane graph with a radial
net, let C be a facial cycle of G such that G is (4, C)-connected, and let x ∈ V (C). Then
G contains a 1-way infinite C-Tutte path P from x.
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Proof. By Lemma (2.2), we may work with a nice embedding of G in which C is a
facial cycle. First, we construct an infinite sequence G = ((Gi, Ci, xi) : i ≥ 1). Let
G1 = G,C1 = C, and x1 = x. Suppose for some i ≥ 1, we have constructed a 2-
connected infinite plane graph Gi ⊆ G with a radial net, a facial cycle Ci of Gi, and a
vertex xi ∈ V (Ci). Let Gi+1 denote the unique infinite block of Gi − V (Ci) and let Ci+1

denote the facial cycle of Gi+1 for which Ci ⊆ IGi(Ci+1). (Both Gi+1 and Ci+1 exist,
since Gi has a radial net.)

It is easy to see that the conditions of Lemma (3.7) are satisfied, with
Gi, Ci, xi, Gi+1, Ci+1 as G,C, x,G′, C ′, respectively. By Lemma (3.7), we have the fol-
lowing.

(1) There exists some xi+1 ∈ V (Ci+1) such that, for any (finite or infinite) subgraph
X of Gi containing IGi(Ci+1) and for any (finite or 1-way infinite) Ci+1-Tutte path
Pi+1 from xi+1 in X ′ := X ∩ Gi+1 with |V (Pi+1 ∩ Ci+1)| ≥ 2, there is a Ci-Tutte
path Pi from xi in Gi such that Pi+1 ⊆ Pi, Pi − V (Pi+1 − xi+1) is a path from xi

to xi+1, and for any z ∈ V (Pi)−V (Pi+1), either z /∈ V (X ′) or z ∈ V (Z)−V (Pi+1)
for some Pi+1-bridge Z of X ′ containing an edge of Ci+1.

Notice that N = (C1, C2, · · ·) is a radial net in G. Let Hi = (IG(Ci+1) − V (Ci+1)) −
V (IG(Ci) − V (Ci)), and let Gn,i = Gi ∩ IG(Cn) (for n ≥ i ≥ 1). By definition, Gn,i =
IG(Cn)− V (IG(Ci)− V (Ci)), and H1,H2, . . . are pairwise vertex disjoint. Next we show
that

(2) Gn,i contains a Ci-Tutte path Pn,i between xi and a vertex of Cn such that |V (Pn,i∩
Ci)| ≥ 2 and Pn,i is (H1,H2, · · ·)-forward in G.

We use induction on n − i. If n − i = 0, then Gn,i = Cn = Ci. In this case, let Pn,i be a
path in Cn between xi and an arbitrary vertex of Cn − xi. Then |V (Pn,i ∩Ci)| ≥ 2, Pn,i

is a Ci-Tutte path in Gn,i (because Gn,i = Cn has only one Pn,i-bridge which has just
two attachments), and Pn,i is (H1,H2, · · ·)-forward (because Pn,i ⊆ Cn ⊆ Hn).

Now assume that n−i ≥ 1 and Gn,i+1 contains a Ci+1-Tutte path Pn,i+1 between xi+1

and a vertex of Cn such that |V (Pn,i+1∩Ci+1)| ≥ 2 and Pn,i+1 is (H1,H2, · · ·)-forward in
G. By (1) above (with X = Gn,i) Gn,i contains a Ci-Tutte path Pn,i from xi such that (a)
Pn,i+1 ⊆ Pn,i, (b) Pn,i − V (Pn,i+1 − xi+1) is a path between xi and xi+1, and (c) for any
z ∈ V (Pn,i) − V (Pn,i+1), either z /∈ V (Gn,i+1) or z ∈ V (Z) − V (Pn,i+1) for some Pn,i+1-
bridge Z of Gn,i+1 containing an edge of Ci+1. Because G is (4, C)-connected, Gi is
(4, Ci)-connected, and hence, |V (Pn,i)∩Ci)| ≥ 2 since Pn,i is a Ci-Tutte path in Gn,i. By
(b), Pn,i is between xi and a vertex of Cn. By (c) and since every Pn,i+1-bridge of Gn,i+1

containing an edge of Ci+1 has just two attachments, (Pn,i−V (Pn,i+1−xi+1))∩Ci+2 = ∅.
Hence, Pn,i − V (Pn,i+1 − xi+1) ⊆ Hi ∪ Hi+1.
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To show that Pn,i is (H1,H2, · · ·)-forward in G, let a, b, c ∈ V (Pn,i) such that a ∈
V (bPn,ic), and b, c ∈ V (Hk). We need to show that a /∈ V (Hj) for all j ≥ k + 2. First,
assume that b, c ∈ V (Pn,i) − V (Pn,i+1 − xi+1). Then bPn,ic ⊆ Pn,i − V (Pn,i+1 − xi+1) ⊆
Hi ∪ Hi+1. Hence, Hk = Hi or Hk = Hi+1. Since a ∈ V (bPn,ic), a ∈ V (Hi) ∪ V (Hi+1),
and so, a /∈ V (Hj) for all j ≥ k + 2 ≥ i + 2. Now assume that b, c ∈ V (Pn,i+1).
Then a /∈ V (Hj) for all j ≥ k + 2 because Pn,i+1 is (H1,H2, · · ·)-forward in G. Finally,
assume by symmetry that b ∈ V (Pn,i) − V (Pn,i+1) and c ∈ V (Pn,i+1 − xi+1). Then b ∈
V (Hi)∪V (Hi+1) and c /∈ V (Hi). Since b, c ∈ V (Hk), Hk = Hi+1, and so, xi+1 ∈ V (Hk).
If a ∈ V (bPn,ixi+1) then a ∈ V (Hi ∪ Hi+1), and hence, a /∈ V (Hj) for all j ≥ k + 2.
So assume a ∈ V (xi+1Pn,i+1c). Since {xi+1, c} ⊆ V (Hk), a /∈ V (Hj) for all j ≥ k + 2
(because Pn,i+1 is (H1,H2, · · ·)-forward in G). Hence, Pn,i is (H1,H2, · · ·)-forward in G.
This completes the proof of (2).

By (2), Pn := Pn,1 is a C-Tutte path in Gn,1 = I(Cn) between x and a vertex of Cn,
and Pn is (H1,H2, · · ·)-forward in G. By Lemma (5.1), there is a subsequence {Pnk

} of
{Pn} converging to a 1-way infinite path P from x in G. We claim that

(3) for any P -bridge B of G, B is a Pnk
-bridge of IG(Cnk

) for all sufficiently large nk.

First, we see that B must be finite. For otherwise, since G is locally finite (because G has
a radial net), B contains a 1-way infinite path. Thus a finite subpath Q of that 1-way
infinite path must intersect Ci, � ≤ i ≤ � + 3, for some large �. Now Q ⊆ IG(Cj) for all
sufficiently large j. So Q is contained in some Pnk

-bridge of IG(Cnk
) for all sufficiently

large nk. Since Q intersects at least four consecutive Ci’s, such a Pnk
-bridge of IG(Cnk

)
has at least four attachments, a contradiction. Now that B is finite, B ⊆ IG(Ci) for all
sufficiently large i. Therefore, B is a Pnk

-bridge of IG(Cnk
) for all sufficiently large nk.

By (3) and since each Pnk
is a C-Tutte path of IG(Cnk

), P is a 1-way infinite C-Tutte
path from x in G. �

The next lemma will serve as part of the induction basis in the proof of our main
result.

(5.3) Lemma. Let G be a 2-connected 2-indivisible infinite plane graph, and let C be
a facial cycle of G such that G is (4, C)-connected. Then for every x ∈ V (C), G contains
a 1-way infinite C-Tutte path from x.

Proof. If G has a radial net, then Lemma (5.3) follows from Lemma (5.2). Now assume
that G has no radial net. Let S denote the set of vertices of infinite degree in G. Then
there is a set F ⊆ E(G) as in Theorem (2.1) such that G − F has a ladder net N
satisfying the conclusions of Theorem (2.1). Thus, there exists a maximum number n
for which there are vertex disjoint cycles C0, C1, . . . , Cn in G such that C0 = C and
I(C0) ⊆ I(C1) ⊆ . . . ⊆ I(Cn). Then Cn ∩ ∂G �= ∅. We will apply induction on n.
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Suppose n = 0. Then C ∩ ∂G �= ∅. Let a, b ∈ V (C ∩ ∂G) such that C ∩ ∂G ⊆ aCb
and subject to this aCb is maximal. Since G is (4, C)-connected, we can pick uv from
E(C) so that, {u, v} ∩ {a, b} �= ∅, v �= x, the path Q of C − v between x and u intersects
∂G, and v is in the infinite component of G − V (Q). Hence Lemma (5.3) follows from
Lemma (4.2).

So assume that n ≥ 1, and consider G−V (C). Let H denote the unique infinite block
of G−V (C) (which exists since G is 2-indivisible and (4, C)-connected) and let C ′ denote
the cycle bounding the face of H containing C. By Lemma (3.7), there is some x′ ∈ V (C ′)
such that, for any 1-way infinite C ′-Tutte path P ′ from x′ in H with |V (P ′ ∩ C ′)| ≥ 2,
there is a 1-way infinite C-Tutte path P from x in G with P ′ ⊆ P . Note that if
D0 = C ′,D1, . . . ,Dk are disjoint cycles of H with IH(D0) ⊆ IH(D1) ⊆ . . . ⊆ IH(Dk),
then k < n by the maximality of n. So by induction, there is a 1-way infinite C ′-Tutte
path P ′ in H from x′. Hence, G has a 1-way infinite C-Tutte path from x. �

Proof of Theorem (1.2). It follows from Lemma (2.2) that we may work with a nice
embedding of G in which C is a facial cycle. Recall that ∂G = ∅ if and only if G has a
radial net.

First, we construct a sequence G = {(Gi, Ci, Qi, xi, uivi) : i = 0, 1, 2, · · ·}. Let G0 =
G, C0 = C, Q0 = Q, x0 = x, u0 = u, and v0 = v.

If Q0 ∩ ∂G0 �= ∅, then we stop this process.
Suppose for some i ≥ 0, we have constructed (Gj , Cj , Qj , xj , ujvj), 0 ≤ j ≤ i, such

that for every 0 ≤ j ≤ i, Gj ⊆ G is a 2-connected 2-indivisible infinite plane graph,
Cj is a facial cycle of Gj , Gj is (4, Cj)-connected, xj ∈ V (Cj) and ujvj ∈ E(Cj) with
vj �= xj , Qj is the subpath of Cj − vj between xj and uj, vj is in the infinite component
of Gj − V (Qj), and for all 0 ≤ j < i, IG(Cj) ⊆ IG(Cj+1) and any (Gj+1 ∪ Cj)-bridge of
Gj has at most one attachment on Cj+1.

If Qi ∩ ∂G �= ∅, then we stop this process.
Now assume Qi ∩ ∂G = ∅. Then since Gi is 2-indivisible and (4, Ci)-connected,

Gi − V (Qi) has a unique infinite block, say Hi, which has a facial cycle C ′
i bounding the

face of Hi containing Ci. By planarity there are two possibilities: |V (Ci) ∩ V (C ′
i)| ≤ 1

or Ci ∩ C ′
i is a nontrivial path. (See Figures 3 and 4 for an illustration.) Recall that vi

and Hi are contained in the unique infinite component of Gi − V (Qi).
(i) If |V (Ci) ∩ V (C ′

i)| ≤ 1, then by Lemma (3.5) (with Gi, Ci, Qi,Hi, C
′
i, xi, ui, vi as

G,C,Q,G′, C ′, x, u, v, respectively), there exists x′
i ∈ V (C ′

i) such that, for any C ′
i-Tutte

path P ′
i from x′

i in Hi with |V (P ′
i ) ∩ V (C ′

i)| ≥ 2 there is a Ci-Tutte path Pi from xi

through uivi in Gi with the following properties: (a) P ′
i ⊆ Pi, (b) ui ∈ V (xiPivi) and

Pi − V (P ′
i − x′

i) is a path from xi to x′
i, and (c) for any z ∈ V (Pi) − V (P ′

i ), either
z /∈ V (Hi) or z ∈ V (Z) − V (P ′

i ) for some P ′
i -bridge Z of Hi.

(ii) If Ci∩C ′
i is a nontrivial path then by Lemma (3.6) (with Gi, Ci, Qi,Hi, C

′
i, xi, ui, vi

as G,C,Q,G′, C ′, x, u, v, respectively), there exist x′
i ∈ V (Ci) ∩ V (C ′

i) and u′
iv

′
i ∈ E(C ′

i)
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such that x′
i and u′

i are the endvertices of Ci ∩ C ′
i, v′i is in the infinite component of the

graph obtained from Hi by deleting the path Q′
i in C ′

i − v′i between x′
i and u′

i, and, for
any subgraph X of Gi containing IG(C ′

i) and for any C ′
i-Tutte path P ′

i in X ′ := X ∩Hi

from x′
i and through u′

iv
′
i, there is a Ci-Tutte path from xi through uivi in X with the

following properties: (a) P ′
i ⊆ Pi, (b) ui ∈ V (xiPivi) and Pi − V (P ′

i − x′
i) is a path from

xi to x′
i, and (c) for any z ∈ V (Pi) − V (P ′

i ), either z /∈ V (Hi) or z ∈ V (Z) − V (P ′
i ) for

some P ′
i -bridge Z of X ′.

If (i) occurs, we stop this process.
Now assume (ii) occurs. Let Gi+1 = Hi, Ci+1 = C ′

i, Qi+1 = Q′
i, xi+1 = x′

i, ui+1 = u′
i,

and vi+1 = v′i. Since xi+1 and ui+1 are endvertices of Ci ∩C ′
i, we have Qi+1 = Ci ∩Ci+1

or Qi+1 = Ci+1 − (V (Ci ∩ Ci+1) − {xi+1, ui+1}). Note that Gi+1 is a 2-connected 2-
indivisible infinite plane graph, Ci+1 is a facial cycle of Gi+1, Gi+1 is (4, Ci+1)-connected,
xi+1 ∈ V (Ci+1) and ui+1vi+1 ∈ E(Ci+1) with vi+1 �= xi+1, Qi+1 is the subpath of
Ci+1 − vi+1 between xi+1 and ui+1, vi+1 is in the infinite component of Gi+1 − V (Qi+1),
IG(Ci) ⊆ IG(Ci+1), and any (Gi+1 ∪ Ci)-bridge of Gi has at most one attachment on
Ci+1.

(1) We may assume that G is an infinite sequence.

Otherwise, suppose that G = {(Gi, Ci, Qi, xi, uivi) : i = 0, · · · , n}. Then by the above
construction of G, either Qn ∩ ∂G �= ∅ or |V (Cn ∩ C ′

n)| ≤ 1. We will apply induction on
n.

Suppose n = 0. If Q0∩∂G �= ∅, then the result follows from Lemma (4.2). So assume
that Q0 ∩ ∂G = ∅. Then |V (C0 ∩ C ′

0)| ≤ 1. By Lemma (5.3), H0 has a 1-way infinite
C ′

0-Tutte path P0 from x′
0. Because G is (4, C)-connected, H0 is (4, C ′

0)-connected, and
so, |V (P0 ∩ C ′

0)| ≥ 2. By (i) in the construction of G, we see that G0 = G has a 1-way
infinite C-Tutte path P from x through uv such that u ∈ V (xPv).

Now assume that n ≥ 1. Then by the above construction of G, Q0 ∩ ∂G = ∅
and C0 ∩ C ′

0 is a non-trivial path. Therefore, we may apply induction to the sequence
G1 = {(Gi, Ci, Qi, xi, uivi) : i = 1, · · · , n}, and conclude that G1 has a 1-way infinite
C1-Tutte path P1 from x1 through u1v1. By (ii) in the construction of G, we see that
G0 = G has a 1-way infinite C-Tutte path P from x through uv such that u ∈ V (xPv).
This proves (1).

By (1), Qj ∩ ∂G = ∅ and Cj ∩ Cj−1 is a non-trivial path, for all j ≥ 1. Hence for
all j ≥ 1, Qj = Cj ∩ Cj−1 or Qj = Cj − V ((Cj ∩ Cj−1) − {xj , uj}). Also from the
construction of G, we have IG(Cj−1) ⊆ IG(Cj), for all j ≥ 1. We will show that there is
a subsequence (Ci1 , Ci2 , . . .) of (C1, C2, . . .) such that Ci1 = C0 and Cij ∩ Cik = ∅ for all
ij �= ik. This sequence will be used to define forward Tutte paths.

(2) We claim that, for any given i ≥ 1, there is some �i > i such that C�i
∩ Ci = ∅.
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Suppose that Cj ∩ Ci �= ∅ for all j > i. First we show that Qj = Cj − V ((Cj ∩ Cj−1) −
{xj , uj}) for all j > i. For otherwise, assume that Qk = Ck ∩Ck−1 for some k > i. Then
Ck+1∩Ck−1 = ∅ because Ck+1 = C ′

k ⊆ Gk−V (Qk) = Gk−V (Ck∩Ck−1) = Gk−V (Ck−1)
(since (Ck−1−V (Ck∩Ck−1))∩Gk = ∅). Therefore, since IG(Ci) ⊆ IG(Ck−1), Ck+1∩Ci =
∅, a contradiction.

Hence, for all j ≥ i, Cj+1 ∩ Cj ⊆ Cj − V (Qj) = (Cj ∩ Cj−1) − {xj , uj} �= Cj ∩ Cj−1.
That is, for all j ≥ i, Cj+1∩Cj is a proper subgraph of Cj ∩Cj−1. But this is impossible
because Ci ∩ Ci+1 is finite. Hence we have (2).

By (2), let N = (Ci1 , Ci2 , · · ·) be a subsequence of (C0, C1, · · ·) such that Ci1 = C0

and Cik ∩ Cik+1
= ∅ for all k ≥ 0. Then N is a radial net in G. Let Hk = (I(Cik+1

) −
V (Cik+1

)) − V (I(Cik) − V (Cik)). For 1 ≤ i ≤ n, let Gn,i = Gi ∩ I(Cn). Next we show
that

(3) Gn,i contains a Ci-Tutte path Pn,i between xi and a vertex of Cn such that uivi ∈
E(Pn,i), ui ∈ V (xiPn,ivi), and Pn,i is (H1,H2, · · ·)-forward in G.

We use induction on n− i. If n = i, then Gn,i = Ci = Cn. In this case, let f be the edge
of Ci incident with xi such that f is contained in the path of C − ui between xi and vi,
and let Pn,i = Ci − f . It is easy to see that Pn,i is a Ci-Tutte path between xi and a
vertex of Cn such that uivi ∈ E(Pi), ui ∈ V (xiPn,ivi), and Pn,i is (H1,H2, · · ·)-forward
in G (because Pn,i ⊆ Cn ⊆ Hk for some k).

Now assume that n > i and Gn,i+1 contains a Ci+1-Tutte path Pn,i+1 between xi+1

and a vertex of Cn such that ui+1vi+1 ∈ E(Pi+1), ui+1 ∈ V (xi+1Pn,i+1vi+1), and Pn,i+1

is (H1,H2, · · ·)-forward in G. By (ii) in the construction of G (with X = Gn,i), Gn,i

has a Ci-Tutte path Pn,i from xi and through uivi such that (a) Pn,i+1 ⊆ Pn,i and
ui ∈ V (xiPn,ivi), (b) Pn,i − V (Pn,i+1 − xi+1) is a path between xi and xi+1, and (c) for
any z ∈ V (Pn,i) − V (Pn,i+1), either z /∈ V (Gn,i+1) or z ∈ V (Z) − V (Pn,i+1) for some
Pn,i+1-bridge Z of Gn,i+1 containing an edge of Ci+1.

It remains to show that Pn,i is (H1,H2, · · ·)-forward in G. Note that Ci ⊆ Hl for
some positive integer l. Then from the construction of G (only (ii) applies since G is
infinite), we have xi+1 ∈ V (Hl) because xi+1 ∈ V (Ci). Also, by (c) above, Pn,i −
V (Pn,i+1 − xi+1) ⊆ Hl ∪ Hl+1. Let a, b, c ∈ V (Pn,i) such that a ∈ V (bPn,ic), and
suppose that {b, c} ⊆ V (Hk). We need to show that a /∈ V (Hj) for all j ≥ k + 2.
If {b, c} ⊆ V (Pn,i+1), then a /∈ V (Hj) for all j ≥ k + 2 because Pn,i+1 is (H1,H2, · · ·)-
forward in G. Now assume that {b, c} ⊆ V (Pn,i)−V (Pn,i+1−xi+1). Then a ∈ V (bPn,ic) ⊆
V (Pn,i) − V (Pn,i+1 − xi+1) ⊆ V (Hl ∪ Hl+1). Hence, either Hk = Hl or Hk = Hl+1, and
so, a /∈ V (Hj) for any j ≥ k+2 ≥ l+2. Finally, assume by symmetry that b /∈ V (Pn,i+1)
and c ∈ V (Pn,i+1 − xi+1). Then b ∈ V (Hl) ∪ V (Hl+1), and hence, either Hk = Hl or
Hk = Hl+1. We may assume that a ∈ V (Pn,i+1); otherwise, a ∈ V (Hl) ∪ V (Hl+1), and
hence, a /∈ V (Hj) for all j ≥ k + 2 ≥ l + 2. If Hk = Hl, then a /∈ V (Hj) for all j ≥ k + 2,
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because a ∈ V (xi+1Pn,i+1c), {xi+1, c} ⊆ V (Hk), and Pn,i+1 is (H1,H2, · · ·)-forward in G.
So assume that Hk = Hl+1. Now suppose that a ∈ V (Hr) for some r ≥ k + 2. Since
xi+1 ∈ V (Hl), there is some x′ ∈ V (xi+1Pn,i+1a) ∩ V (Hk). Hence {x′, c} ⊆ V (Hk) and
a ∈ V (x′Pn,i+1c). Since Pn,i+1 is (H1,H2, · · ·)-forward in G, a /∈ V (Hj) for all j ≥ k + 2,
contradicting the assumption that a ∈ V (Hr). Hence, Pn,i is (H1,H2, · · ·)-forward in G.

Let Pn = Pn,1. Then Pn is a C-Tutte path in I(Cn) between x and a vertex of Cn

and through uv such that u ∈ V (xPnv), and Pn is (H1,H2, · · ·)-forward in G. By Lemma
(5.1), {Pn} has a subsequence {Pnk

} converging to a 1-way infinite path P from x and
through uv. Note that u ∈ V (xPv) (since u ∈ V (xPnk

v) for all k ≥ 1). By a similar
argument as for (3) in the proof of (5.2), we have

(4) for any P -bridge B of G, B is a Pnk
-bridge of I(Cnk

) for all sufficiently large nk.

By (4) and since each Pnk
is a C-Tutte path of I(Cnk

), P is a 1-way infinite C-Tutte
path in G from x and through uv such that u ∈ V (xPv). �

It is easy to see that Theorem (1.1) follows from Theorem (1.2).
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