Pan-factorial Property in Regular Graphs*

M. Kano ${ }^{1}$ and Qinglin Yu^{23}
${ }^{1}$ Department of Compuetr and Information Sciences
Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
kano@cis.ibaraki.ac.jp
${ }^{2}$ Center for Combinatorics, LPMC
Nankai University, Tianjing, PR China
yu@nankai.edu.cn
${ }^{3}$ Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada
yu@tru.ca

Abstract

Among other results, we show that if for any given edge e of an r-regular graph G of even order, G has a 1 -factor containing e, then G has a k-factor containing e and another one avoiding e for all $k, 1 \leq k \leq r-1$.

Submitted: Nov 4, 2004; Accepted: Nov 7, 2005; Published: Nov 15, 2005
MSC: 05C70, 05C75.
Keywords: pan-factorial property, 1-factor, k-factor.
For a function $f: V(G) \rightarrow\{0,1,2,3, \ldots\}$, a spanning subgraph F of G with $\operatorname{deg}_{F}(x)=$ $f(x)$ for all $x \in V(G)$ is called an f-factor of G, where $\operatorname{deg}_{F}(x)$ denotes the degree of x in F. If $f(x)=k$ for all vertices $x \in V(G)$, then an f-factor is also called a k-regular factor or a k-factor. An $[a, b]$-factor is a spanning subgraph F of G such that $a \leq \operatorname{deg}_{F}(x) \leq b$ for all $x \in V(G)$.

A graph G is pan-factorial if G contains all k-factors for $1 \leq k \leq \delta(G)$. In this note, we investigate the pan-factor property in regular graphs. Moreover, we proved that the existence of 1 -factor containing any given edge implies the existence of k-factors containing or avoiding any given edge.

The first of our main results is the following.

[^0]Theorem 1 Let G be a connected r-regular graph of even order. If for every edge e of G, G has a 1-factor containing e, then G has a k-factor containing e and another k-factor avoiding e for all integers $k, 1 \leq k \leq r-1$.

The next theorem is also one of our main results.
Theorem 2 Let G be a connected graph of even order, e be an edge of G, and a, b, c be odd integers such that $1 \leq a<c<b$. If G has both an a-factor and a b-factor containing e, then G has a c-factor containing e. Similarly, if G has both an a-factor and a b-factor avoiding e, then G has a c-factor avoiding e.

The above theorem shows that there exists a kind of continuity relation among regular factors, which is an improvement of the following theorem obtained by Katerinis [1].

Theorem 3 (Katerinis [1]) Let G be a connected graph of even order, and a, b and c be odd integers such that $1 \leq a<c<b$. If G has both an a-factor and $a b$-factor, then G has a c-factor.

We need a few known results as lemmas for the proof of our theorems. Firstly, we quote Petersen's classic decomposition theorem about regular graphs of even degree.

Lemma 1 (Petersen [2]) Every 2r-regular graph can be decomposed into r disjoint 2factors.

For the introduction of Tutte's f-factors theorem, we require the following notation.
For a graph G and $S, T \subseteq V(G)$ with $S \cap T=\emptyset$, define

$$
\delta_{G}(S, T)=\sum_{x \in S} f(x)+\sum_{x \in T}\left(d_{G-S}(x)-f(x)\right)-h_{G}(S, T),
$$

where $h_{G}(S, T)$ is the number of components C of $G-(S \cup T)$ such that $\sum_{x \in V(C)} f(x)+$ $e_{G}(V(C), T) \equiv 1 \quad(\bmod 2)$ and such a component C is called an f-odd component of $G-(S \cup T)$.

Lemma 2 (Tutte's f-factor Theorem [3]) Let G be a graph and $f: V(G) \rightarrow\{0,1,2,3, \ldots\}$ be a function. Then
(a) G has an f-factor if and only if $\delta_{G}(S, T) \geq 0$ for all $S, T \subseteq V(G)$ with $S \cap T=\emptyset$;
(b) $\delta_{G}(S, T) \equiv \sum_{x \in V(G)} f(x) \quad(\bmod 2)$ for all $S, T \subseteq V(G)$ with $S \cap T=\emptyset$.

Lemma 3 Let G be a connected graph. If for any edge e there exists a 1-factor containing e, then there exists another 1-factor avoiding e.

Proof. For any edge $e \in E(G)$, we will show that there exists a 1-factor avoiding e. Choose an edge e^{\prime} incident to the given edge e, then there exists a 1-factor F containing e^{\prime} and thus F is the 1-factor avoiding e.

Now we are ready to show the main results. We start with the proof of Theorem 2 and then derive the proof of Theorem 1 from it.

Proof of Theorem 2. Let e be an edge of G. Assume that G has both a-factor and b-factor avoiding e. By applying Theorem 3 to $G-e$, we see that $G-e$ has a c-factor, which implies that G has a c-factor avoiding e.

We now prove that if G has both a-factor and b-factor containing e, then G has a c-factor containing e.

We define a new graph G^{*} by inserting a new vertex w on the edge e, and define an integer-value function $f_{k}: V\left(G^{*}\right) \rightarrow\{k, 2\}$ such that

$$
f_{k}(x)= \begin{cases}k & \text { if } x \in V(G) \\ 2 & \text { if } x=w\end{cases}
$$

Then G has a k-factor containing e if and only if G^{*} has a f_{k}-factor. It is obvious that $\sum_{x \in V\left(G^{*}\right)} f_{k}(x)=k|V(G)|+2 \equiv 0 \quad(\bmod 2)$ since G is of even order.

Assume that G^{*} has no f_{c}-factor. Then, by Tutte's f-factor Theorem, there exist two disjoint subsets $S, T \subseteq V\left(G^{*}\right)$ such that

$$
\begin{equation*}
\delta\left(S, T ; f_{c}\right)=\sum_{x \in S} f_{c}(x)+\sum_{x \in T}\left(\operatorname{deg}_{G^{*}-S}(x)-f_{c}(x)\right)-h\left(S, T ; f_{c}\right) \leq-2 . \tag{1}
\end{equation*}
$$

On the other hand, since G^{*} has both f_{a}-factor and f_{b}-factor, we have

$$
\begin{array}{r}
\delta\left(S, T ; f_{a}\right)=\sum_{x \in S} f_{a}(x)+\sum_{x \in T}\left(\operatorname{deg}_{G^{*}-S}(x)-f_{a}(x)\right)-h\left(S, T ; f_{a}\right) \geq 0, \\
\delta\left(S, T ; f_{b}\right)=\sum_{x \in S} f_{b}(x)+\sum_{x \in T}\left(\operatorname{deg}_{G^{*}-S}(x)-f_{b}(x)\right)-h\left(S, T ; f_{b}\right) \geq 0 . \tag{3}
\end{array}
$$

Now depending on the location of w, we consider three cases:
Case 1. $w \notin S \cup T$.
(1), (2) and (3) can be rewritten as

$$
\begin{align*}
c|S|+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-c|T|-h\left(S, T ; f_{c}\right) & \leq-2 \tag{4}\\
a|S|+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-a|T|-h\left(S, T ; f_{a}\right) & \geq 0 \tag{5}\\
b|S|+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-b|T|-h\left(S, T ; f_{b}\right) & \geq 0 \tag{6}
\end{align*}
$$

Subtracting (5) from (4), we have

$$
\begin{equation*}
(c-a)(|S|-|T|)+h\left(S, T ; f_{a}\right)-h\left(S, T ; f_{c}\right) \leq-2 . \tag{7}
\end{equation*}
$$

Similarly, from (6) and (4), we have

$$
\begin{equation*}
(c-b)(|S|-|T|)+h\left(S, T ; f_{b}\right)-h\left(S, T ; f_{c}\right) \leq-2 \tag{8}
\end{equation*}
$$

Recall that $h\left(S, T ; f_{k}\right)$ is the number of f_{k}-odd components C of $G^{*}-(S \cup T)$, which satisfies $\sum_{x \in V(C)} f_{k}(x)+e_{G^{*}}(C, T) \equiv 1 \quad(\bmod 2)$. Since all a, b and c are odd integers, it follows that if $w \notin V(C)$, then

$$
\begin{aligned}
& \sum_{x \in V(C)} f_{a}(x)+e_{G^{*}}(C, T)=a|C|+e_{G^{*}}(C, T) \\
\equiv & b|C|+e_{G^{*}}(C, T)=\sum_{x \in V(C)} f_{b}(x)+e_{G^{*}}(C, T) \quad(\bmod 2) \\
\equiv & c|C|+e_{G^{*}}(C, T)=\sum_{x \in V(C)} f_{c}(x)+e_{G^{*}}(C, T) \quad(\bmod 2) .
\end{aligned}
$$

Therefore we obtain

$$
h\left(S, T ; f_{c}\right)-h\left(S, T ; f_{a}\right) \leq 1 \quad \text { and } \quad h\left(S, T ; f_{c}\right)-h\left(S, T ; f_{b}\right) \leq 1
$$

If $|S| \geq|T|$, then (7) implies

$$
-1 \leq(c-a)(|S|-|T|)+h\left(S, T ; f_{a}\right)-h\left(S, T ; f_{c}\right) \leq-2
$$

a contradiction. If $|S|<|T|$, then (8) implies

$$
-1 \leq(c-b)(|S|-|T|)+h\left(S, T ; f_{b}\right)-h\left(S, T ; f_{c}\right) \leq-2,
$$

a contradiction again.
Case 2. $w \in S$.
In this case, (1), (2) and (3) become

$$
\begin{aligned}
& 2+c(|S|-1)+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-c|T|-h\left(S, T ; f_{c}\right) \leq-2 \\
& 2+a(|S|-1)+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-a|T|-h\left(S, T ; f_{a}\right) \geq 0 \\
& 2+b(|S|-1)+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-b|T|-h\left(S, T ; f_{b}\right) \geq 0
\end{aligned}
$$

It is clear that $h\left(S, T ; f_{c}\right)=h\left(S, T ; f_{a}\right)=h\left(S, T ; f_{b}\right)$. If $|S| \geq|T|+1$, we have $0 \leq(c-$ $a)(|S|-1-|T|) \leq-2$, a contradiction; if $|S|<|T|+1$, then $0 \leq(c-b)(|S|-1-|T|) \leq-2$, a contradiction as well.

Case 3. $w \in T$.
In this case, (1), (2) and (3) become

$$
\begin{aligned}
& c|S|+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-2-c(|T|-1)-h\left(S, T ; f_{c}\right) \leq-2 \\
& a|S|+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-2-a(|T|-1)-h\left(S, T ; f_{a}\right) \geq 0 \\
& b|S|+\sum_{x \in T} \operatorname{deg}_{G^{*}-S}(x)-2-b(|T|-1)-h\left(S, T ; f_{b}\right) \geq 0
\end{aligned}
$$

Discussing similarly as in Case 2, we yield contradictions. Consequently the theorem is proved.

With help of Theorem 2 and Petersen's Theorem (Lemma 1), we can provide a clean proof for Theorem 1.

Proof of Theorem 1. For any edge e of G, let F_{1} be a 1-factor containing e. From Lemma 3, there exists another 1-factor F_{2} avoiding e. According to the parity of r we consider two cases.

Case 1. r is odd.
Since $G-F_{1}$ is an even regular graph, by Lemma $1, G-F_{1}$ can be decomposed into 2 -factors $T_{1}, T_{2}, \ldots, T_{m}$, where $m=(r-1) / 2$. For an integer $k(1 \leq k \leq m-1)$, $F_{1} \cup T_{1} \cup \cdots \cup T_{k}$ is a $(2 k+1)$-factor containing e. In the mean time, $T_{1} \cup \cdots \cup T_{k}$ is a $2 k$-factor avoiding e. Moreover, $G-F_{1}$ is a $2 m$-factor avoiding e.

Similarly, $G-F_{2}$ has disjoint 2-factors $T_{1}, T_{2}, \ldots, T_{m}$. Without loss of generality, we may assume $e \in T_{1}$. Then $F_{2} \cup T_{2} \cup \cdots \cup T_{k+1}$ is a (2k+1)-factor avoiding e, and $T_{1} \cup \cdots \cup T_{k}$ is a $2 k$-factor containing e. Furthermore, $G-F_{2}$ is a $2 m$-factor containing e. Therefore the theorem holds in this case.

Case 2. r is even.
For even k, similar to Case $1, G$ can be decomposed into 2 -factors $T_{1}, T_{2}, \ldots, T_{m}$, where $m=r / 2$. Without loss of generality, assume $e \in T_{1}$. Then $T_{1}, T_{1} \cup T_{2}, \ldots, T_{1} \cup \ldots \cup T_{m}$ are 2-factor, 4-factor, \ldots, r-factor containing e, respectively. Moreover, $T_{2}, T_{2} \cup T_{3}, \ldots$, $T_{2} \cup T_{3} \cup \ldots \cup T_{m}$ are 2-factor, 4-factor, $\ldots,(r-2)$-factor avoiding e, respectively.

For odd k, it is clear that $G-F_{2}$ is a $(r-1)$-factor containing e and $G-F_{1}$ is an $(r-1)$-factor avoiding e. By Theorem 2, the odd-factors F_{1} and $G-F_{2}$ containing e, respectively, imply the existence of k-factors containing $e, 1 \leq k \leq r-1$. Similarly, we obtain k-factors avoiding $e, 1 \leq k \leq r-1$.

So the desired statement holds and consequently the theorem is proved.
Next we consider the existence of factors containing or avoiding a given edge in a regular graph of odd order and prove a similar but slightly weaker result than Theorem 1.

Theorem 4 Let G be a connected $2 r$-regular graph of odd order. For any given edge e and any vertex $v \in V(G)-V(e)$, if $G-v$ has a 1-factor containing e, then $G-v$ has a $[k, k+1]$-factor containing or avoiding e for $1 \leq k \leq 2 r-2$.

Proof. For any edge e of G and any vertex $u \in V(G)-V(e)$, let the neighbor vertices of u be $x_{1}, x_{2}, \ldots, x_{2 r}$. We construct a new graph G^{*} by using two copies of $G-u$ and joining two sets of vertices $\left\{x_{1}, x_{2}, \ldots, x_{2 r}\right\}$ by a matching M. Then the resulting graph G^{*} is a $2 m$-regular graph with $2(|V(G)|-1)$ vertices. Since $G-u$ has a 1-factor containing e, so does G^{*}. By Theorem 1, G^{*} has a k-factor containing e and another k-factor avoiding e for all $k, 1 \leq k \leq 2 r-1$. Deleting the matching M from G^{*}, we obtain a $[k, k+1]$-factor
containing or avoiding e for $1 \leq k \leq 2 r-2$.

References

[1] P. Katerinis, Some conditions for the existence of f-factors, J. Graph Theory. 9 (1985), 513-521.
[2] J. Petersen, Die Theorie der Regularen Graphen, Acta Math. 15 (1891), 193-220.
[3] W. T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.

[^0]: *Authors would like to thank the support from the National Science Foundation of China and the Natural Sciences and Engineering Research Council of Canada

