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Abstract

Among other results, we show that if for any given edge e of an r-regular graph
G of even order, G has a 1-factor containing e, then G has a k-factor containing e
and another one avoiding e for all k, 1 ≤ k ≤ r − 1.
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For a function f : V (G) → {0, 1, 2, 3, . . .}, a spanning subgraph F of G with degF (x) =
f(x) for all x ∈ V (G) is called an f -factor of G, where degF (x) denotes the degree of x in
F . If f(x) = k for all vertices x ∈ V (G), then an f -factor is also called a k-regular factor
or a k-factor. An [a, b]-factor is a spanning subgraph F of G such that a ≤ degF (x) ≤ b
for all x ∈ V (G).

A graph G is pan-factorial if G contains all k-factors for 1 ≤ k ≤ δ(G). In this note,
we investigate the pan-factor property in regular graphs. Moreover, we proved that the
existence of 1-factor containing any given edge implies the existence of k-factors containing
or avoiding any given edge.

The first of our main results is the following.

∗Authors would like to thank the support from the National Science Foundation of China and the
Natural Sciences and Engineering Research Council of Canada
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Theorem 1 Let G be a connected r-regular graph of even order. If for every edge e of G,
G has a 1-factor containing e, then G has a k-factor containing e and another k-factor
avoiding e for all integers k, 1 ≤ k ≤ r − 1.

The next theorem is also one of our main results.

Theorem 2 Let G be a connected graph of even order, e be an edge of G, and a, b, c be
odd integers such that 1 ≤ a < c < b. If G has both an a-factor and a b-factor containing
e, then G has a c-factor containing e. Similarly, if G has both an a-factor and a b-factor
avoiding e, then G has a c-factor avoiding e.

The above theorem shows that there exists a kind of continuity relation among regular
factors, which is an improvement of the following theorem obtained by Katerinis [1].

Theorem 3 (Katerinis [1]) Let G be a connected graph of even order, and a, b and c be
odd integers such that 1 ≤ a < c < b. If G has both an a-factor and a b-factor, then G
has a c-factor.

We need a few known results as lemmas for the proof of our theorems. Firstly, we
quote Petersen’s classic decomposition theorem about regular graphs of even degree.

Lemma 1 (Petersen [2]) Every 2r-regular graph can be decomposed into r disjoint 2-
factors.

For the introduction of Tutte’s f -factors theorem, we require the following notation.
For a graph G and S, T ⊆ V (G) with S ∩ T = ∅, define

δG(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(dG−S(x) − f(x)) − hG(S, T ),

where hG(S, T ) is the number of components C of G− (S ∪ T ) such that
∑

x∈V (C) f(x) +
eG(V (C), T ) ≡ 1 (mod 2) and such a component C is called an f -odd component of
G − (S ∪ T ).

Lemma 2 (Tutte’s f -factor Theorem [3]) Let G be a graph and f : V (G) → {0, 1, 2, 3, . . .}
be a function. Then

(a) G has an f -factor if and only if δG(S, T ) ≥ 0 for all S, T ⊆ V (G) with S ∩T = ∅;
(b) δG(S, T ) ≡ ∑

x∈V (G) f(x) (mod 2) for all S, T ⊆ V (G) with S ∩ T = ∅.

Lemma 3 Let G be a connected graph. If for any edge e there exists a 1-factor containing
e, then there exists another 1-factor avoiding e.

Proof. For any edge e ∈ E(G), we will show that there exists a 1-factor avoiding e.
Choose an edge e′ incident to the given edge e, then there exists a 1-factor F containing
e′ and thus F is the 1-factor avoiding e. 2
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Now we are ready to show the main results. We start with the proof of Theorem 2
and then derive the proof of Theorem 1 from it.

Proof of Theorem 2. Let e be an edge of G. Assume that G has both a-factor and b-factor
avoiding e. By applying Theorem 3 to G − e, we see that G − e has a c-factor, which
implies that G has a c-factor avoiding e.

We now prove that if G has both a-factor and b-factor containing e, then G has a
c-factor containing e.

We define a new graph G∗ by inserting a new vertex w on the edge e, and define an
integer-value function fk : V (G∗) → {k, 2} such that

fk(x) =

{
k if x ∈ V (G);
2 if x = w.

Then G has a k-factor containing e if and only if G∗ has a fk-factor. It is obvious that∑
x∈V (G∗) fk(x) = k|V (G)| + 2 ≡ 0 (mod 2) since G is of even order.
Assume that G∗ has no fc-factor. Then, by Tutte’s f -factor Theorem, there exist two

disjoint subsets S, T ⊆ V (G∗) such that

δ(S, T ; fc) =
∑
x∈S

fc(x) +
∑
x∈T

(degG∗−S(x) − fc(x)) − h(S, T ; fc) ≤ −2. (1)

On the other hand, since G∗ has both fa-factor and fb-factor, we have

δ(S, T ; fa) =
∑
x∈S

fa(x) +
∑
x∈T

(degG∗−S(x) − fa(x)) − h(S, T ; fa) ≥ 0, (2)

δ(S, T ; fb) =
∑
x∈S

fb(x) +
∑
x∈T

(degG∗−S(x) − fb(x)) − h(S, T ; fb) ≥ 0. (3)

Now depending on the location of w, we consider three cases:

Case 1. w /∈ S ∪ T .

(1), (2) and (3) can be rewritten as

c|S| + ∑
x∈T

degG∗−S(x) − c|T | − h(S, T ; fc) ≤ −2, (4)

a|S| + ∑
x∈T

degG∗−S(x) − a|T | − h(S, T ; fa) ≥ 0, (5)

b|S| + ∑
x∈T

degG∗−S(x) − b|T | − h(S, T ; fb) ≥ 0. (6)

Subtracting (5) from (4), we have

(c − a)(|S| − |T |) + h(S, T ; fa) − h(S, T ; fc) ≤ −2. (7)

Similarly, from (6) and (4), we have

(c − b)(|S| − |T |) + h(S, T ; fb) − h(S, T ; fc) ≤ −2. (8)

the electronic journal of combinatorics 12 (2005), #N23 3



Recall that h(S, T ; fk) is the number of fk-odd components C of G∗ − (S ∪ T ), which
satisfies

∑
x∈V (C) fk(x) + eG∗(C, T ) ≡ 1 (mod 2). Since all a, b and c are odd integers,

it follows that if w 6∈ V (C), then

∑
x∈V (C)

fa(x) + eG∗(C, T ) = a|C| + eG∗(C, T )

≡ b|C| + eG∗(C, T ) =
∑

x∈V (C)

fb(x) + eG∗(C, T ) (mod 2)

≡ c|C| + eG∗(C, T ) =
∑

x∈V (C)

fc(x) + eG∗(C, T ) (mod 2).

Therefore we obtain

h(S, T ; fc) − h(S, T ; fa) ≤ 1 and h(S, T ; fc) − h(S, T ; fb) ≤ 1.

If |S| ≥ |T |, then (7) implies

−1 ≤ (c − a)(|S| − |T |) + h(S, T ; fa) − h(S, T ; fc) ≤ −2,

a contradiction. If |S| < |T |, then (8) implies

−1 ≤ (c − b)(|S| − |T |) + h(S, T ; fb) − h(S, T ; fc) ≤ −2,

a contradiction again.

Case 2. w ∈ S.

In this case, (1), (2) and (3) become

2 + c(|S| − 1) +
∑
x∈T

degG∗−S(x) − c|T | − h(S, T ; fc) ≤ −2

2 + a(|S| − 1) +
∑
x∈T

degG∗−S(x) − a|T | − h(S, T ; fa) ≥ 0

2 + b(|S| − 1) +
∑
x∈T

degG∗−S(x) − b|T | − h(S, T ; fb) ≥ 0.

It is clear that h(S, T ; fc) = h(S, T ; fa) = h(S, T ; fb). If |S| ≥ |T | + 1, we have 0 ≤ (c −
a)(|S|−1−|T |) ≤ −2, a contradiction; if |S| < |T |+1, then 0 ≤ (c−b)(|S|−1−|T |) ≤ −2,
a contradiction as well.

Case 3. w ∈ T .

In this case, (1), (2) and (3) become

c|S| + ∑
x∈T

degG∗−S(x) − 2 − c(|T | − 1) − h(S, T ; fc) ≤ −2

a|S| + ∑
x∈T

degG∗−S(x) − 2 − a(|T | − 1) − h(S, T ; fa) ≥ 0

b|S| + ∑
x∈T

degG∗−S(x) − 2 − b(|T | − 1) − h(S, T ; fb) ≥ 0.
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Discussing similarly as in Case 2, we yield contradictions. Consequently the theorem
is proved. 2

With help of Theorem 2 and Petersen’s Theorem (Lemma 1), we can provide a clean
proof for Theorem 1.

Proof of Theorem 1. For any edge e of G, let F1 be a 1-factor containing e. From Lemma
3, there exists another 1-factor F2 avoiding e. According to the parity of r we consider
two cases.

Case 1. r is odd.

Since G − F1 is an even regular graph, by Lemma 1, G − F1 can be decomposed
into 2-factors T1, T2, . . . , Tm, where m = (r − 1)/2. For an integer k (1 ≤ k ≤ m − 1),
F1 ∪ T1 ∪ · · · ∪ Tk is a (2k + 1)-factor containing e. In the mean time, T1 ∪ · · · ∪ Tk is a
2k-factor avoiding e. Moreover, G − F1 is a 2m-factor avoiding e.

Similarly, G − F2 has disjoint 2-factors T1, T2, . . . , Tm. Without loss of generality, we
may assume e ∈ T1. Then F2∪T2∪· · ·∪Tk+1 is a (2k+1)-factor avoiding e, and T1∪· · ·∪Tk

is a 2k-factor containing e. Furthermore, G − F2 is a 2m-factor containing e. Therefore
the theorem holds in this case.

Case 2. r is even.

For even k, similar to Case 1, G can be decomposed into 2-factors T1, T2, . . ., Tm, where
m = r/2. Without loss of generality, assume e ∈ T1. Then T1, T1 ∪ T2, . . ., T1 ∪ . . . ∪ Tm

are 2-factor, 4-factor, . . ., r-factor containing e, respectively. Moreover, T2, T2 ∪ T3, . . .,
T2 ∪ T3 ∪ . . . ∪ Tm are 2-factor, 4-factor, . . ., (r − 2)-factor avoiding e, respectively.

For odd k, it is clear that G − F2 is a (r − 1)-factor containing e and G − F1 is an
(r − 1)-factor avoiding e. By Theorem 2, the odd-factors F1 and G − F2 containing e,
respectively, imply the existence of k-factors containing e, 1 ≤ k ≤ r − 1. Similarly, we
obtain k-factors avoiding e, 1 ≤ k ≤ r − 1.

So the desired statement holds and consequently the theorem is proved. 2

Next we consider the existence of factors containing or avoiding a given edge in a
regular graph of odd order and prove a similar but slightly weaker result than Theorem 1.

Theorem 4 Let G be a connected 2r-regular graph of odd order. For any given edge e
and any vertex v ∈ V (G) − V (e), if G − v has a 1-factor containing e, then G − v has a
[k, k + 1]-factor containing or avoiding e for 1 ≤ k ≤ 2r − 2.

Proof. For any edge e of G and any vertex u ∈ V (G)−V (e), let the neighbor vertices of u
be x1, x2, . . . , x2r. We construct a new graph G∗ by using two copies of G− u and joining
two sets of vertices {x1, x2, . . . , x2r} by a matching M . Then the resulting graph G∗ is a
2m-regular graph with 2(|V (G)| − 1) vertices. Since G− u has a 1-factor containing e, so
does G∗. By Theorem 1, G∗ has a k-factor containing e and another k-factor avoiding e
for all k, 1 ≤ k ≤ 2r − 1. Deleting the matching M from G∗, we obtain a [k, k + 1]-factor
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containing or avoiding e for 1 ≤ k ≤ 2r − 2. 2
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