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Abstract. A characterisation is given of edge-transitive Cayley graphs of
valency 4 on odd number of vertices. The characterisation is then applied
to solve several problems in the area of edge-transitive graphs: answering a

question proposed by Xu (1998) regarding normal Cayley graphs; providing

a method for constructing edge-transitive graphs of valency 4 with arbitrarily
large vertex-stabiliser; constructing and characterising a new family of half-

transitive graphs. Also this study leads to a construction of the first family
of arc-transitive graphs of valency 4 which are non-Cayley graphs and have a
‘nice’ isomorphic 2-factorisation.

1. Introduction

A graph Γ is a Cayley graph if there exist a group G and a subset S ⊂ G with
1 6∈ S = S−1 := {g−1 | g ∈ S} such that the vertices of Γ may be identified with
the elements of G in such a way that x is adjacent to y if and only if yx−1 ∈ S.
The Cayley graph Γ is denoted by Cay(G,S). Throughout this paper, denote by 1
the vertex of Cay(G,S) corresponding to the identity of G.

It is well-known that a graph Γ is a Cayley graph of a group G if and only if the
automorphism group AutΓ contains a subgroup which is isomorphic to G and acts
regularly on vertices. In particular, a Cayley graph Cay(G,S) is vertex-transitive
of order |G|. However, a Cayley graph is of course not necessarily edge-transitive.
In this paper, we investigate Cayley graphs that are edge-transitive.

Small valent Cayley graphs have received attention in the literature. For in-
stance, Cayley graphs of valency 3 or 4 of simple groups are investigated in [5, 6, 28];
Cayley graphs of valency 4 of certain p-groups are investigated in [7, 26]. A relation
between regular maps and edge-transitive Cayley graphs of valency 4 is studied in
[20]. In the main result (Theorem 1.1) of this paper, we characterise edge-transitive
Cayley graphs of valency 4 and odd order. To state this result, we need more defi-
nitions.

Let Γ be a graph with vertex set V Γ and edge set EΓ . If a subgroup X ≤ AutΓ
is transitive on V Γ or EΓ , then the graph Γ is said to be X-vertex-transitive or
X-edge-transitive, respectively. A sequence v0, v1, . . . , vs of vertices of Γ is called
an s-arc if vi−1 6= vi+1 for 1 ≤ i ≤ s− 1, and {vi, vi+1} is an edge for 0 ≤ i ≤ s− 1.
The graph Γ is called (X, s)-arc-transitive if X is transitive on the s-arcs of Γ ; if in
addition X is not transitive on the (s+1)-arcs, then Γ is said to be (X, s)-transitive.
In particular, a 1-arc is simply called an arc, and an (X, 1)-arc-transitive graph is
called X-arc-transitive.
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A typical method for studying vertex-transitive graphs is taking certain quo-
tients. For an X-vertex-transitive graph Γ and a normal subgroup N ¢ X, the
normal quotient graph ΓN induced by N is the graph that has vertex set V ΓN =
{vN | v ∈ V Γ} such that vN

1 and vN
2 are adjacent if and only if v1 is adjacent in Γ

to some vertex in vN
2 . If further the valency of ΓN equals the valency of Γ , then Γ

is called a normal cover of ΓN .

Theorem 1.1. Let G be a finite group of odd order, and let Γ = Cay(G,S) be
connected and of valency 4. Assume that Γ is X-edge-transitive, where G ≤ X ≤
AutΓ. Then one of the following holds:

(1) G is normal in X, X1 ≤ D8, and S = {a, a−1, aτ , (aτ )−1}, where τ ∈
Aut(G) such that either o(τ) = 2, or o(τ) = 4 and aτ2

= a−1;
(2) there is a subgroup M < G such that M ¢ X, and Γ is a cover of ΓM ;
(3) X has a unique minimal normal subgroup N ∼= Zk

p with p odd prime and
k ≥ 2 such that
(i) G = N oR ∼= Zk

p o Zm, where m > 1 is odd;
(ii) X = N o ((H oR).O) ∼= Zk

p o ((Zl
2 oZm).Zt), and X1 = H.O, where

H ∼= Zl
2 with 2 ≤ l ≤ k, and O ∼= Zt with t = 1 or 2, satisfying the

following statements:
(a) there exist x1, · · · , xk ∈ N and τ1, · · · , τk ∈ H such that N =

〈x1, · · · , xk〉, 〈xi, τi〉 ∼= D2p and H = 〈τi〉×CH(xi) for 1 ≤ i ≤ k;
(b) R does not centralise H;
(c) X/(NH) ∼= Zm or D2m, and Γ is X-arc-transitive if and only

if X/(NH) ∼= D2m;
(4) Γ is (X, s)-transitive, and X, X1, s and G are as in the following table:

X X1 s G
A5,S5 A4,S4 2 Z5

PGL(2, 7) D16 1 Z7 o Z3

PSL(2, 11),PGL(2, 11) A4,S4 2 Z11 o Z5

PSL(2, 23) S4 2 Z23 o Z11

Remarks on Theorem 1.1:

(a) The Cayley graph Γ in part (1), called normal edge-transitive graph, is
studied in [21]. If further X = AutΓ , then Γ is called a normal Cayley
graph, introduced in [27]. For this type of Cayley graph, the action of X
on the graph Γ is well-understood.

(b) Part (2) is a reduction from the Cayley graph Γ to a smaller graph ΓM ,
which is also an edge-transitive Cayley graph of valency 4. An edge-
transitive Cayley graph is called basic if it is not a normal cover of a smaller
edge-transitive Cayley graph. Theorem 1.1 shows that if Γ is not a normal
Cayley graph then Γ is a cover of a well-characterised graph, that is a basic
Cayley graph satisfying part (3) or part (4).

(c) Construction 3.2 shows that for every group X satisfying part (3) with
O = 1 indeed acts edge-transitively on some Cayley graphs of valency 4.

(d) Part (4) tells us that there are only three 2-arc-transitive basic Cayley
graphs of valency 4 and odd order.
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The following corollary of Theorem 1.1 gives a solution to Problem 4 of [27], in
particular, answering the question stated there in the negative.

Corollary 1.2. There are infinitely many connected basic Cayley graphs of valency
4 and odd order which are not normal Cayley graphs.

The proof of Corollary 1.2 follows from Lemma 3.3.
It is well-known that the vertex-stabiliser for an s-arc-transitive graph of va-

lency 4 with s ≥ 2 has order dividing 2436, see Lemma 2.5. However, in [22, 2],
‘non-trivial’ arc-transitive graphs of valency 4 which have arbitrarily large vertex-
stabiliser are constructed. Part (3) of Theorem 1.1 characterises edge-transitive
Cayley graphs of valency 4 and odd order with this property.

Corollary 1.3. Let Γ be a connected Cayley graph of valency 4 and odd order.
Assume that Γ is X-edge-transitive for X ≤ AutΓ. Then |X1| > 24 if and only if
Γ is a cover of a graph satisfying part (3) of Theorem 1.1 with l ≥ 5.

This characterisation provides a potential method for constructing edge-transitive
graphs of valency 4 with arbitrarily large vertex-stabiliser, see Construction 3.2.

A graph Γ is called half-transitive if AutΓ is transitive on the vertices and the
edges but not transitive on the arcs of Γ . Constructing and characterising half-
transitive graphs was initiated by Tutte (1965), and is a currently active topic
in algebraic graph theory, see [19, 20, 17] for references. Theorem 1.1 provides a
method for characterising some classes of half-transitive graphs of valency 4. The
following theorem is such an example.

Theorem 1.4. Let G = N o 〈g〉 = Zk
p o Zm < AGL(1, pk), where k > 1 is odd,

p is an odd prime and m is the largest odd divisor of pk − 1. Assume that Γ is a
connected edge-transitive Cayley graph of G of valency 4. Then AutΓ = GoZ2, Γ
is half-transitive, and Γ ∼= Γi = Cay(G,Si), where 1 ≤ i ≤ m−1

2 , (m, i) = 1, and

Si = {agi, a−1gi, (agi)−1, (a−1gi)−1}, where a ∈ N \ {1}.
Moreover, Γi

∼= Γj if and only if pri ≡ j or −j (mod m) for some r ≥ 0.

The following result is a by-product of analysing PGL(2, 7)-arc-transitive graphs
of valency 4. (For two graphs Γ and Σ which have the same vertex set V and
disjoint edge sets E1 and E2, respectively, denote by Γ + Σ the graph with vertex
set V and edge set E1 ∪ E2. For a positive integer n and a cycle Cm of size m,
denote by nCm the vertex disjoint union of n copies of Cm.)

Proposition 1.5. Let p be a prime such that p ≡ −1 (mod 8), and let T =
PSL(2, p) and X = PGL(2, p). Then there exists an X-arc-transitive graph Γ
of valency 4 such that the following hold:

(i) Γ = ∆1 + ∆2, ∆1
∼= ∆2

∼= p(p2−1)
48 C3, T ≤ Aut∆1 ∩ Aut∆2, and both ∆1

and ∆2 are T -arc-transitive; in particular, Γ is not T -edge-transitive;
(ii) Γ is a Cayley graph if and only if p = 7.

Part (i) of this proposition is proved by Lemma 4.3, and part (ii) follows from
Theorem 1.1.
Remark on Proposition 1.5: The factorisation Γ = ∆1 +∆2 is an isomorphic 2-
factorisation of Γ . The group X is transitive on {∆1,∆2} with T being the kernel.
Such isomorphic factorisations are called homogeneous factorisations, introduced
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and studied in [18, 9]. The factorisation given in Proposition 1.5 are the first
known example of non-Cayley graphs which have a homogeneous 2-factorisation,
refer to [9, Lemma2.7] for a characterisation of homogeneous 1-factorisations.

This paper is organized as follows. Section 2 collects some preliminary results
which will be used later. Section 3 gives some examples of graphs appeared in
Theorem 1.1. Then Section 4 constructs the graphs stated in Proposition 1.5.
Finally, in Sections 5 and 6, Theorems 1.1 and 1.4 are proved, respectively.

2. Preliminary results

For a core-free subgroup H of X and an element a ∈ X \ H, let [X : H] =
{Hx | x ∈ X}, and define the coset graph Γ := Cos(X, H,H{a, a−1}H) to be the
graph with vertex set [X : H] such that {Hx,Hy} is an edge of Γ if and only if
yx−1 ∈ H{a, a−1}H. The properties stated in the following lemma are well-known.

Lemma 2.1. For a coset graph Γ = Cos(X, H,H{a, a−1}H), we have
(i) Γ is X-edge-transitive;
(ii) Γ is X-arc-transitive if and only if HaH = Ha−1H, or equivalently,

HaH = HbH for some b ∈ X \H such that b2 ∈ H ∩Hb;
(iii) Γ is connected if and only if 〈H, a〉 = X;
(iv) the valency of Γ equals

val(Γ ) =
{ |H : H ∩Ha|, if HaH = Ha−1H,

2|H : H ∩Ha|, otherwise.

Lemma 2.2. Let Γ be a connected X-vertex-transitive graph where X ≤ AutΓ,
and let N ¢ X be intransitive on V Γ. Assume that Γ is a cover of ΓN . Then N is
semiregular on V Γ, and the kernel of X acting on V ΓN equals N .

Proof. Let K be the kernel of X acting on V ΓN . Then N ¢ K ¢ X. Suppose
that Kv 6= 1, where v ∈ V Γ . Then since Γ is connected and K ¢ X, it follows
that K

Γ(v)
v 6= 1. Thus the number of Kv-orbits in Γ (v) is less than |Γ (v)|, and so

the valency of ΓN is less than the valency of Γ , which is a contradiction. Hence
Kv = 1, and it follows that N = K is semiregular on V Γ . ¤

For a Cayley graph Γ = Cay(G,S), let Aut(G,S) = {α ∈ Aut(G) | Sα = S}. For
the normal edge-transitive case, we have a simple lemma.

Lemma 2.3. Let Γ = Cay(G,S) be connected of valency 4. Assume that AutΓ has
a subgroup X such that Γ is X-edge-transitive and G¢X. Then X ≤ NAutΓ (G) =
Go Aut(G,S), and either X1 ≤ D8, or Γ is (X, 2)-transitive and |G| is even.

Proof. Since Γ is connected, 〈S〉 = G, and so Aut(G,S) acts faithfully on S. Hence
Aut(G,S) ≤ S4. By [8, Lemma 2.1], we have that X ≤ NAutΓ (G) = GoAut(G,S).
Thus X1 ≤ Aut(G,S) ≤ S4. Suppose that 3 divides |X1|. Then X1 is 2-transitive
on S. Hence Γ is (X, 2)-transitive, and all elements in S are involutions, see for
example [16]. In particular, |G| is even. On the other hand, if 3 does not divide
|X1|, then X1 is a 2-group, and hence X1 ≤ D8. ¤

Lemma 2.4. Let G be a finite group of odd order, and let Γ = Cay(G,S) be
connected and of valency 4. Assume that N ¢ X ≤ AutΓ such that G ≤ X and Γ
is X-edge-transitive. Then one of the following statements holds:
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(i) N has odd order and N ≤ G;
(ii) N has even order, and either N is transitive on V Γ, or GN is transitive

on EΓ.

Proof. Let Y = GN . Then Y is transitive on V Γ . Suppose that N 6≤ G. Then Y
is not regular on V Γ . It follows that Y1 is a nontrivial {2, 3}-group. If Y1 has an
orbit of size 3 on Γ (1) = S, then Y has an orbit on EΓ which is a 1-factor of Γ ,
which is not possible since |V Γ | = |G| is odd. It follows that either Y1 is transitive
on S, or Y1 has an orbit of size 2 on S. In particular, |Y1| is even, so |N | is even.
Therefore, either N has odd order and N ≤ G, as in part(i), or N has even order.

Assume now that |N | is even. If Y1 is transitive on S, then Γ is Y -arc-transitive
and hence Y -edge-transitive, so part (ii) holds. Thus assume that Y1 has an orbit
of size 2 on S. Noting that N ¢ X, N1 6= 1 and Γ is connected and X-vertex-
transitive, it is easily shown that N1 is non-trivial on S. Since N1 ≤ Y1, N1 has
an orbit {x, y} of size 2 on S. Suppose that N is intransitive on V Γ . Let H = 1N

be the N -orbit containing 1. Then H ∩ S = ∅ as Γ is X-edge-transitive. Further,
xN = (1x)N = 1(xNx−1)x = (1N )x = Hx and yN = (1y)N = 1(yNy−1)y = (1N )y =
Hy , and so Hx = xN = yN = Hy. It is easily shown that H forms a subgroup of
G. In particular, xy−1 ∈ H. If y = x−1, then x2 = xy−1 ∈ H, and x ∈ H as |H|
is odd, a contradiction. Thus S = {x, y, x−1, y−1}. Clearly, {x, y} is an orbit of Y1

on S. It follows that Y is transitive on EΓ , as in part (ii). ¤

By the result of [14], there is no 4-arc-transitive graph of valency at least 3 on
odd number of vertices. Then by the known results about 2-arc-transitive graphs
(see for example [25] or [15, Subsection 3.1]), the following result holds.

Lemma 2.5. Let Γ be a connected (X, s)-transitive graph of valency 4. Then either
s ≤ 4 or s = 7, and further, s and the stabliser Xv are listed as following:

s Xv

1 2-group
2 A4 ≤ Xv ≤ S4

3 A4 × Z3 ≤ Xv ≤ S4 × S3

4 Z2
3.SL(2, 3) ≤ Xv ≤ Z2

3.GL(2, 3)
7 [35].SL(2, 3) ≤ Xv ≤ [35].GL(2, 3)

Moreover, if |V Γ | is odd, then s ≤ 3.

Finally, we quote a result about simple groups, which will be used later.

Lemma 2.6. ([12]) Let T be a non-abelian simple group which has a 2′-Hall sub-
group. Then T = PSL(2, p), where p = 2e− 1 is a prime. Further, T = GH, where
G = Zp o Z p−1

2
and H = Dp+1 = D2e .

3. Existence of graphs satisfying Theorem 1.1

In this section, we construct examples of graphs satisfying Theorem 1.1.
First consider part (1) of Theorem 1.1. We observe that if Γ is a connected

normal edge-transitive Cayley graph of a group G of valency 4, then G = 〈a, aτ 〉,
where τ ∈ Aut(G) such that aτ2

= a or a−1. Conversely, if G is a group that has a
presentation G = 〈a, aτ 〉, where τ ∈ Aut(G) such that aτ2

= a or a−1, then G has
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a connected normal edge-transitive Cayley graph of valency 4, that is, Cay(G,S)
where S = {a, a−1, aτ , (aτ )−1}. Thus we have the following conclusion:

Lemma 3.1. Let G be a group of odd order. Then G has a connected normal edge-
transitive Cayley graph of valency 4 if and only if G = 〈a, aτ 〉, where τ ∈ Aut(G)
such that aτ2

= a or a−1.

See Construction 6.1 for an example of such construction.
The following construction produces edge-transitive graphs admitting a group

X satisfying part (3) of Theorem 1.1 with O = 1.

Construction 3.2. Let X = N o (H o R) ∼= Zk
p o (Zl

2 o Zm), where p is an odd
prime, m is odd and 2 ≤ l ≤ k, such that N ∼= Zk

p, H ∼= Zl
2 and R ∼= Zm satisfy

(a) N is the unique minimal normal subgroup of X;
(b) there exist x ∈ N\{1} and τ ∈ H such that xτ = x−1 and H = 〈τ〉×CH(x);
(c) R does not centralise H.

Let R = 〈σ〉 ∼= Zm, and let y = xσ. Set

Γ (p, k, l, m) = Cos(X, H,H{y, y−1}H).

The next lemma shows that the graphs constructed here are as required.

Lemma 3.3. Let Γ = Γ (p, k, l, m) be a graph constructed in Construction 3.2, and
let G = N oR ∼= Zk

p o Zm. Then Γ is a connected X-edge-transitive Cayley graph
of G of valency 4, and G is not normal in X.

Proof. By the definition, H is core-free in X, and hence X ≤ AutΓ . Now X = GH
and G ∩ H = 1, and thus G acts regularly on the vertex set [X : H]. So Γ is a
Cayley graph of G, which has odd order pkm. Obviously, G is not normal in X.

For x and σ defined in Construction 3.2, set xi = xσi−1
for i = 1, 2, · · · ,m, and

let α = (σ−1)τσ. Then, as y = xσ, x2 = σ−1xσ and τ ∈ H, we have

αx2
2 = ((σ−1)τσ)(σ−1xσ)2 = (σ−1)τx2σ = (x−1στ )−1(xσ) = (yτ )−1y ∈ 〈H, y〉.

As τ ∈ H and σ normalises H, we have α = (σ−1)τσ = τ(τσ) ∈ H. Thus
x2

2 = α−1(αx2
2) ∈ 〈H, y〉, and as x2 has odd order, x2 ∈ 〈H, y〉. Then x3 = xσ

2 =
xx1σ

2 = xy
2 ∈ 〈H, y〉. Similarly, we have that xi ∈ 〈H, y〉 for i = 2, 3, · · · ,m. Then

calculation shows that ym = x1x2 · · ·xm ∈ 〈H, y〉. Thus x = x1 = ymx−1
2 · · ·x−1

m ∈
〈H, y〉, and so σ = x−1y ∈ 〈H, y〉. Since N is a minimal normal subgroup of X,
we conclude that N = 〈xhσi | h ∈ H, 0 ≤ i ≤ m − 1〉, and hence N ≤ 〈H, y〉. So
〈H, y〉 ≥ 〈N, H, σ〉 = X, and Γ is connected.

Finally, as σ normalises H and by condition (b) of Construction 3.2, we have that
Hx∩H = CH(x) has index 2 in H. Thus Hy ∩H = (Hx∩Hσ−1

)σ = (Hx∩H)σ =
CH(x)σ, which has index 2 in H. Since X ≤ AutΓ , Γ is not a cycle. By Lemma 2.1,
Γ is connected, X-edge-transitive and of valency 4. ¤

We end this section with presenting several groups satisfying (a), (b) and (c) of
Construction 3.2, so we obtain examples of graphs satisfying Theorem 1.1 (3).

Example 3.4. Let p be an odd prime, and m an odd integer.
(i) Let X = (〈x1, τ1〉× 〈x2, τ2〉× · · ·× 〈xm, τm〉)o 〈σ〉 ∼= D2p oZm = Dm

2poZm,
where 〈xi, τi〉 ∼= D2p and (xi, τi)σ = (xi+1, τi+1) (reading the subscripts
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modulo m). Then N = 〈x1, x2, . . . , xm〉 ∼= Zm
p is a minimal normal sub-

group of X, and H = 〈τ1, τ2, . . . , τm〉 ∼= Zm
2 is such that H = 〈τi〉×CH(xi)

for 1 ≤ i ≤ m.
(ii) Let Y < X with X as in part (i) such that Y = 〈x1, x2, . . . , xm〉 o

〈τ1τ2, τ2τ3, . . . , τm−1τm〉o〈σ〉 ∼= Zm
p o(Zm−1

2 oZm). Then N = 〈x1, x2, . . . , xm〉
is a minimal normal subgroup of Y , and L := 〈τ1τ2, τ2τ3, . . . , τm−1τm〉 ∼=
Zm−1

2 is such that L = 〈τiτi+1〉 ×CL(xi) for 1 ≤ i ≤ m.

Thus both X and Y satisfy the conditions of Construction 3.2.

Example 3.5. Let N = 〈x1, · · · , xk〉 = Zk
p, where p is an odd prime and k ≥ 3.

Let l be a proper divisor of k. Let σ ∈ Aut(N) be such that

xσ
i =

{
xi+1, if 1 ≤ i ≤ k − 1,
x1xl+1, if i = k.

Let τ ∈ Aut(N) be such that

xτ
j =

{
x−1

j , if l | j − 1,

xj , otherwise.

Let o(σ) = m, H = 〈τσi−1 | 1 ≤ i ≤ m〉 and X = N o 〈τ, σ〉. Then N is a minimal
normal subgroup of X and H = 〈τ〉×CH(x1) ∼= Zl

2. Thus X satisfies the conditions
of Construction 3.2.

For instance, taking p = 3, k = 9 and l = 3, so m = 39, and then applying
Construction 3.2, we obtain an X-edge-transitive Cayley graph Γ (3, 9, 3, 39) of
valency 4 of the group Z9

3 o Z39, where X = Z9
3 o (Z3

2 o Z39).

4. A family of arc-transitive graphs of valency 4

Here we construct a family of 4-arc-transitive cubic graphs and their line graphs.
The smallest line graph is PGL(2, 7)-arc-transitive but not PSL(2, 7)-edge-transitive,
which is one of the graphs stated in Theorem 1.1 (4).

Construction 4.1. Let p be a prime such that p ≡ −1 (mod 8), and let T =
PSL(2, p) and X = PGL(2, p). Then T has exactly two conjugacy classes of maxi-
mal subgroups isomorphic to S4 which are conjugate in X. Let L,R < T be such
that L,R ∼= S4, L∩R ∼= D8, and L,R are not conjugate in T but Lτ = R for some
involution τ ∈ X \ T .

(1) Let Σ = Cos(T, L,R) be the coset graph defined as: the vertex set V Σ =
[T : L] ∪ [T : R] such that Lx is adjacent to Ry if and only if yx−1 ∈ LR.

(2) Let Γ be the line graph of Σ , that is, the vertices of Γ are the edges of Σ
and two vertices of Γ are adjacent if and only if the corresponding edges of
Σ have exactly one common vertex.

Then it follows from the definition that Σ is bipartite with parts [T : L] and
[T : R], and T acts by right multiplication transitively on the edge set EΣ . Further,
we have the following properties.

Lemma 4.2. The following statements hold for the graph Σ defined above:
(i) Σ is connected and of valency 3;
(ii) Σ may also be represented as the coset graph Cos(X, L, LτL);
(iii) Σ is (X, 4)-arc-transitive;
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(iv) Σ is T -vertex intransitive and locally (T, 4)-arc-transitive.

Proof. Since 〈L,R〉 = T , part (i) follows from the definition, see [10, Lemma2.7].
Part (ii) follows from the definitions of Cos(T,L, R) and Cos(X, L, LτL).
See [1] or [15, Example 3.5] for part (iii).
It follows from the definition that T is not transitive on the vertex set V Σ , and

so part (iv) follows from part (iii). ¤

Next we study the line graph Γ in the following lemma.

Lemma 4.3. Let Γ be the line graph of Σ defined as in Costruction 4.1. Let v be
the vertex of Γ corresponding to the edge {L,R} of Σ. Then we have the following
statements:

(i) Γ is connected, and has valecy 4 and girth 3;
(ii) Γ is X-arc-transitive, and Xv

∼= D16;
(iii) T is transitive on V Γ and intransitive on EΓ, and Tv

∼= D8;
(iv) T has exactly two orbits E1, E2 on EΓ, and letting ∆1 = (V Γ , E1) and

∆2 = (V Γ , E2), we have ∆1
∼= ∆2

∼= p(p2−1)
48 C3, and Γ = ∆1 + ∆2.

Proof. We first look at the neighbors of the vertex v in Γ . Let a ∈ L be of order
3, and let b = aτ ∈ R. Then the 3 neighbors of L in Σ are R, Ra and Ra−1; and
the 3 neighbors of R are L,Lb and Lb−1. Write the corresponding vertices of Γ
as: u1 = {Lb,R}, u2 = {Lb−1, R}, w1 = {L,Ra} and w2 = {L,Ra−1}. Then the
neighborhood Γ (v) = {u1, u2, w1, w2}.

Thus Γ is of valency 4. By the definition of a line graph, u1 is adjacent to u2,
and w1 is adjacent to w2. Hence the girth of Γ is 3. Since Σ is connected, Γ is
connected too, proving part (i).

Now Tv = L ∩ R ∼= D8 and Xv = 〈L ∩ R, τ〉 ∼= D16. Since T is transitive on
EΣ and is not transitive on the vertex set V Σ , there is no element of T maps
the arc (L,R) to the arc (R, L). Since Tv = L ∩ R, there exist σ1, σ2 ∈ Tv such
that aσ1 = a−1 and bσ2 = b−1. Thus uσ1

1 = u2 and wσ2
1 = w2. So Tv has exactly

two orbits on Γ (v), that is, {u1, u2} and {w1, w2}. Further, 〈b〉 acts transitively
on {v, u1, u2}. It follows that E1 := {u1, u2}T is a self-paired orbital of T on V Γ .
Therefore, Γ is not T -edge-transitive. Further, since τ interchanges L and R and
also interchages a and b, it follows that τ ∈ Xv and {u1, u2}τ = {w1, w2}. Thus Γ
is X-arc-transitive.

Let E2 = {w1, w2}T , and let ∆i = (V Γ , Ei) with i = 1, 2. Then Γ = ∆1 + ∆2,
and ∆i consists of cycles of size 3. Thus |E1| = |E2| = |V Γ | = |X|

|Xv| = p(p2−1)
16 , and

∆i consists of |Ei|
3 cycles of size 3, that is, ∆i

∼= p(p2−1)
48 C3. Finally, Eτ

1 = E2 and
so τ is an isomorphism between ∆1 and ∆2. ¤

5. Proof of Theorem 1.1

Let G be a finite group of odd order, and let Γ = Cay(G,S) be connected and of
valency 4. Assume that Γ is X-edge-transitive, where G ≤ X ≤ AutΓ , and assume
further that G is not normal in X.

We first treat the case where Γ has no non-trivial normal quotient of valency 4
in Subsection 5.1 and 5.2.

Suppose that each non-trivial normal quotient of Γ is a cycle. Let N be a
minimal normal subgroup of X. Then N = T k for some simple group T and some
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integer k ≥ 1. Since |V Γ | = |G| is odd, X has no nontrivial normal 2-subgroups.
In particular, N is not a 2-group. Further we have the following simple lemma.

Lemma 5.1. Either N is soluble, or CX(N) = 1.

Proof. Suppose that N is insoluble and C := CX(N) 6= 1. Then NC = N ×C and
C ¢ X. Since |N | is not semiregular on V Γ , C is intransitive. By the assumption
that any non-trivial normal quotient of Γ is a cycle, ΓC is a cycle. Let K be
the kernel of X acting on V ΓC . Then X/K ≤ AutΓC

∼= D2c, where c = |V ΓC |.
It follows that N ≤ K. Let ∆ be an arbitrary C-orbit on V Γ . Then ∆ is N -
invariant. Consider the action of NC on ∆, and let D be the kernel of NC acting
on ∆. Then NC/D = (ND/D) × (CD/D). Since C is transitive on ∆, CD/D is
also transitive on ∆. Then ND/D is semireglar on ∆. Noting that |∆| is odd and
ND/D ∼= N/(N ∩D) ∼= T k′ for some k′ ≥ 0, it follows that ND/D is trivial on ∆,
and hence N ≤ D. Thus N is trivial on every C-orbit, and so N is trivial on V Γ ,
which is a contradiction. Therefore, either N is soluble, or CX(N) = C = 1. ¤

5.1. The case where N is transitive. Assume that N is transitive on the vertices
of Γ . Our goal is to prove that N = A5, PSL(2, 7), PSL(2, 11) or PSL(2, 23) by a
series of lemmas. The first shows that N is nonabelian simple.

Lemma 5.2. The minimal normal subgroup N is a nonabelian simple group, X is
almost simple, and N = soc(X).

Proof. Suppose that N is abelian. Since N is transitive, N is regular, and hence
|N | = |G| is odd. By Lemma 2.3, we have that N ≤ G, and so G = N ¢ X, which
is a contradiction. Thus N = T k is nonabelian. Suppose that k > 1. Let L be
a normal subgroup of N such that L ∼= T k−1. Since N1 ≤ X1 is a {2, 3}-group,
it follows that L is intransitive on V Γ ; further, since |V Γ | is odd and |T | is even,
L is not semiregular. It follows from Lemma 2.2 that ΓL is a cycle. Then AutΓL

is a dihedral group. Thus N lies in the kernel of X acting on V ΓL, and so N is
intransitive on V Γ , which is a contradiction. Thus k = 1, and N = T is nonabelian
simple. By Lemma 5.1, CX(N) = 1, and hence N is the unique minimal normal
subgroup of X. Thus X is almost simple, and N = soc(X). ¤

The 2-arc-transitive case is determined by the following lemma.

Lemma 5.3. Assume Γ is (X, 2)-arc-transitive. Then one of the following holds:
(i) X = A5 or S5, and X1 = A4 or S4, respectively, and G = Z5;
(ii) X = PSL(2, 11) or PGL(2, 11), and X1 = A4 or S4, respectively, and

G = Z11 o Z5;
(iii) X = PSL(2, 23), X1 = S4, and G = Z23 o Z11.

Proof. Note that X = GX1 and G ∩ X1 = 1. By Lemma 2.5, |X1| is a divisor
of 2432 = 144, and hence a Sylow 2-subgroup of X is isomorphic to a subgroup of
D8 × Z2. Further, |N : (G ∩ N)| = |GN : G| divides |X : G| = |X1|. Let M be
a maximal subgroup of N containing G ∩N . Then [N : M ] has size dividing 144,
and N is a primitive permutation group on [N : M ]. Inspecting the list of primitive
permutation groups of small degree given in [3, Appendix B], we conclude that N
is one of the following groups:

A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 11), M11, PSL(2, 17), PSL(2, 23),
PSL(2, 47), PSL(2, 71) and PSL(3, 3).
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It is known that the groups M11, PSL(2, 17), PSL(2, 47) and PSL(3, 3) have a
Sylow 2-subgroup isomorphic to Q8.Z2, D16, D16 and Z2.Q8, respectively. Thus
N is none of these groups. Suppose that N = A6 or PSL(2, 8). Then X = A6,
S6, PSL(2, 8) or PSL(2, 8).Z3. However, X has no factorisation X = GX1 such
that G ∩X1 = 1, and X1 is a {2, 3}-group, which is a contradiction. Suppose that
N = PSL(2, 71). Then X = PSL(2, 71) or PGL(2, 71), and X1 = D72 or D144,
respectively, and G = Z71oZ35. Thus X1 is a maximal subgroup of X, and X acts
primitively on the vertex set V Γ = [X : X1]. This is not possible, see [24] or [17].
If N = PSL(2, 7), then G = Z7 and N1 = S4. Then, however, N is 2-transitive on
V Γ = [N : N1], and so Γ ∼= K7, which is a contradiction.

Therefore, N = A5, PSL(2, 11) or PSL(2, 23). Now either X is primitive on V Γ ,
or X = N = PSL(2, 11) and G = Z11 o Z5. Then, by [23] and [11], we obtain the
conclusion stated in the lemma. ¤

The next lemma determines X for the case where Γ is not (X, 2)-arc-transitive.

Lemma 5.4. Suppose that Γ is not (X, 2)-arc-transitive. Then X = PGL(2, 7),
X1 = D16 and G = Z7 o Z3.

Proof. Since Γ is not (X, 2)-arc-transitive, X1 is a 2-group. Since X = GX1 and
G ∩ X1 = 1, G is a 2′-Hall subgroup of X. Then G ∩ N is a 2′-Hall subgroup
of N . By Lemma 5.2, N is nonabelian simple. By Lemma 2.6, N = PSL(2, p),
G∩N = ZpoZ p−1

2
, and N1 = Dp+1, where p = 2e−1 is a prime. If e > 3, then N1

is a maximal subgroup of N . Thus N is a primitive permutation group on V Γ and
has a self-paired suborbit of length 4, which is not possible, see [24] or [17]. Thus
e = 3, N = PSL(2, 7), G = Z7oZ3, and N1 = D8. So X = PSL(2, 7) or PGL(2, 7).

Suppose that X = PSL(2, 7). Now write Γ as coset graph Cos(X, H,H{x, x−1}H),
where H = X1 = D8, and x ∈ X is such that 〈H, x〉 = X. Let P = H ∩Hx. Then
|H : P | = 2 or 4.

Assume that |H : P | = 4. Then Γ is X-arc-transitive and P = Z2. By
Lemma 2.1, we may assume that x2 ∈ P = H ∩ Hx and x normalises P . If
P ¢ H, then P ¢ 〈H, x〉 = X = PSL(2, 7), which is a contradiction. Thus P is not
normal in H, and so Z2

2
∼= NH(P ) ¢ H. Since NX(P ) ∼= D8, we have NX(P ) 6= H.

So NH(P ) ¢ 〈H,NX(P )〉 = X, which is a contradiction. Thus |H : P | = 2, and
hence P ¢L := 〈H, Hx〉. We conclude that L ∼= S4. Then H and Hx are two Sylow
2-subgroups of L, and hence Hx = Hy for some y ∈ L. Thus Hxy−1

= H, that
is, xy−1 ∈ NX(H) = H, hence x ∈ Hy ⊆ L. Then 〈x,H〉 ≤ L 6= X, which is a
contradiction. Thus X 6= PSL(2, 7), and so X = PGL(2, 7). ¤

5.2. The case where N is intransitive. Assume now that the minimal normal
subgroup N ¢ X is intransitive on V Γ . We are going to prove that part (3) of
Theorem 1.1 occurs.

Lemma 5.5. The minimal normal subgroup N is soluble, and N < G.

Proof. Suppose that N is insoluble. Then N = T k and N 6≤ G, where T is
nonabelian simple and k ≥ 1. Let Y = NG. Then by Lemma 2.4 Y is transitive
on both of V Γ and EΓ . Let L ≤ N be a non-trivial normal subgroup of Y .
Then L is intransitive, and since |V Γ | is odd, L is not semi-regular on V Γ . Thus
the valency of the quotient graph ΓL is less than 4. Since |V Γ | is odd, ΓL is a
cycle of size m ≥ 3. Let K be the kernel of Y acting on the L-orbits in V Γ . Then
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Y/K ≤ AutΓL
∼= D2m, where m = |V ΓL|. Further, since NK/K ∼= N/(N∩K) ∼= T l

for some l, we conclude that l = 0 and N ≤ K. Considering the action of N on an
abitrary L-orbit, we have that L = N . This particularly shows that N is a minimal
normal subgroup of Y . As ΓN is a cycle, Γ is not (X, 2)-arc-transitive, and X1 is
a nontrivial 2-group. In particular, K1 is a 2-group. Since K = NK1 ≤ Y and
|Y : N | is odd, we know that K = N . Thus N itself is the kernel of X acting on
V ΓN . It follows that Y/N is the cyclic regualr subgroup of AutΓN acting on V ΓN .
Thus Y = NG = N〈a〉 ∼= N.Zm for some a ∈ G \N .

Since X1 is a nontrivial 2-group, it is easily shown that G∩N is a 2′-Hall subgroup
of N , and N = (G ∩N)N1. Then G ∩ T = G ∩N ∩ T is a 2′-Hall subgroup of T .
By Lemma 2.6, T = PSL(2, p) for a prime p = 2e − 1. In particular, Out(T ) ∼= Z2.
By Lemma 5.1, CX(N) = 1, and hence CY (N) = 1. Then N is the only minimal
normal subgroup of Y and of X. So the element a ∈ Y ≤ X ≤ Aut(N) = Aut(T )oSk.
Write N = T1×· · ·×Tk, where Ti

∼= T . Then Aut(N) = (Aut(T1)×Aut(T2)×· · ·×
Aut(Tk))oSk, and a = bπ, where b ∈ Aut(T1)×Aut(T2)×· · ·×Aut(Tk) and π ∈ Sk.

Since N is a minimal normal subgroup of Y , we have that 〈a〉 acts by conjugation
transitively on {T1, T2, . . . , Tk}, and hence the permutation π is a k-cycle of Sk.
Relabeling if necessary, we may assume π = (12 . . . k) ∈ Sk. Then T a

k = T1 and
T a

i = Ti+1, where i = 1, . . . , k − 1. Further, ak = bπk · · · bπ ∈ Aut(T1)× Aut(T2)×
· · · × Aut(Tk) = N o Zk

2 . Since ak is of odd order, it follows that ak ∈ N . Thus
Y/N ∼= Zk, and hence m = k. Set ak = t1t2 · · · tk, where ti ∈ Ti. Since a
centralises ak, we have t1t2 · · · tk = ak = (ak)a = ta1ta2 · · · tak. Since tak ∈ T a

k = T1

and tai ∈ T a
i = Ti+1, it follows that tak = t1 and tai = ti+1, where i = 1, . . . , k − 1.

Let g = t−1
1 a. Then Ti = T g

i−1 = T gi−1

1 and gi = ait−1
i+1t

−1
i . . . t−1

2 (reading the
subscripts modular k), where 2 ≤ i ≤ k. In particular, gk = akt−1

1 t−1
k . . . t−1

2 = 1,
and so the order of g is a divisor of k. Noting that Y/N ∼= Zk and N〈g〉 = 〈N, g〉 =
〈N, t−1

1 a〉 = 〈N, a〉 = Y , it follows that Y = N o 〈g〉.
Let H1 = (T1)1 and Hi := Hgi−1

1 for 1 ≤ i ≤ k, and let H = H1 × · · · × Hk.
Then Hi

∼= D2e is a Sylow 2-subgroup of Ti, H is a Sylow 2-subgroup of N ,
and Hg = H. Since ΓN is a k-cycle and Y/N ∼= Zk, it follows that Γ is not
Y -arc-transitive. Since Γ is Y -edge-transitive, we may write Γ as a coset graph
Γ = Cos(Y, H, H{gjx, (gjx)−1}H), where 1 ≤ j < k and x = x1 · · ·xk ∈ N for
xi ∈ Ti, such that |H : (H ∩ Hgjx)| = 2 and 〈H, gjx〉 = Y . Now Hgjx = Hx =
Hx1

1 ×Hx2
2 × · · · ×Hxk

k and H ∩Hgjx = (H1 ∩Hx1
1 )× · · · × (Hk ∩Hxk

k ). Thus we
may assume that |H1 : (H1 ∩Hx1

1 )| = 2 and Hi ∩Hxi
i = Hi. Then Hxi

i = Hi for
i = 2, · · · , k. Since NTi

(Hi) = Hi, we know that xi ∈ Hi for i ≥ 2. If e > 3, then
H1 is maximal in T1, and hence H1∩Hx1

1 ¢〈H1,H
x1
1 〉 = T1, which is a contradiction.

Thus e = 3, T1
∼= PSL(2, 7). Let U1 = 〈H1, x1〉 and Ui = Ugi−1

1 for i = 2, 3, . . . , k.
Then S4

∼= Ui < Ti. It follows that 〈U1, g〉 = (U1 × · · · × Uk) o 〈g〉 ∼= (S4)k o Zk.
Since Γ is connected, Y = 〈H, gjx〉 ≤ 〈H1, x1, g〉 = 〈U1, g〉 ∼= (S4)k o Zk, which is
again a contradiction.

Thus N is soluble. Then by Lemma 2.4, we have N < G, completing the proof. ¤

We notice that, since N is intransitive on V Γ , the N -orbits in V Γ form an
X-invariant partition V ΓN . The next lemma determines the structure of X.

Lemma 5.6. Let K be the kernel of X acting on V ΓN . Then the following state-
ments hold:
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(i) X/K ∼= Zm or D2m for an odd integer m > 1, K1 6= 1, and Γ is X-arc-
transitive if and only if X/K ∼= D2m;

(ii) G = N o R, X = N o ((K1 o R).O) and R does not centralise K1, where
R ∼= Zm, and O = 1 or Z2;

(iii) N ∼= Zk
p for an odd prime p, and K1

∼= Zl
2, where 2 ≤ l ≤ k;

(iv) there exist x1, · · · , xk ∈ N and τ1, · · · , τk ∈ K1 such that N = 〈x1, · · · , xk〉,
〈xi, τi〉 ∼= D2p and K1 = 〈τi〉 ×CK1(xi) for 1 ≤ i ≤ k.

(v) N is the unique minimal normal subgroup of X;

Proof. By Lemma 5.5, N < G is soluble, hence N ∼= Zk
p for an odd prime p and an

integer k ≥ 1. In particular, N is semi-regular on V Γ . Since ΓN is a cycle of size m
say, X/K ≤ AutΓN = D2m. Thus K = N oK1, K1 is a 2-group, and X/K ∼= Zm

or D2m. It follows that G/N ∼= GK/K ∼= Zm. If K1 = 1, then K = N , and hence
G ¢ X, which contradicts that G is not normal in X. Thus K1 6= 1. Further, Γ is
X-arc-transitive if and only if X/K ∼= D2m, so we have part (i).

Set U = NX(K1). Then U 6= X since K1 is not normal in X. Noting that
(|N |, |K1|) = 1, it follows that NX/N (K/N) = NX/N (NK1/N) = NX(K1)N/N =
UN/N . Since K/N is normal in X/N , it follows that X = UN . Since N ¢ X,
N ∩U ¢ U . Further N ∩U ¢ N as N is abelian. Then N ∩U ¢ 〈U,N〉 = UN = X.
If N ≤ U , then K = NK1 = N ×K1, and hence K1 ¢ X, a contradiction. Thus
N ∩ U < N . Further, since N is a minimal normal subgroup of X, we know
that N ∩ U = 1, and hence K ∩ U = NK1 ∩ U = (N ∩ U)K1 = K1. Now
X/K = UN/K = UK/K ∼= U/(K ∩ U) = U/K1, and so U = (K1 o R).O, where
R ∼= Zm and O = 1 or Z2. Then G = N oR, and X1 = K1.O. Further, since G is
not normal in X, we conclude that R does not centralise K1, as in part (ii).

Let Y = KR = N o (K1 o R). Then Y has index at most 2 in X, and
Γ is Y -edge-transitive by Lemma 2.4, but it is not Y -arc-transitive. Thus Γ =
Cos(Y, K1,K1{y, y−1}K1), where y ∈ Y is such that 〈K1, y〉 = Y and K1 ∩Ky

1 has
index 2 in K1. We may choose y ∈ N o R = G such that R = 〈σ〉 and y = σx
where x ∈ N . Then K1 ∩Ky

1 = K1 ∩Kx
1 has index 2 in K1.

We claim that K1 ∩Kx
1 = CK1(x). Let σ ∈ K1 ∩Kx

1 . Then σx−1 ∈ K1, and so
σ−1σx−1 ∈ K1. Since x ∈ N and N ¢ NK1, we have σ−1σx−1

= (σ−1xσ)x−1 ∈ N .
Thus σ−1σx−1 ∈ N ∩K1 = 1, and so σx−1

= σ. Then σ centralises x. It follows
that K1 ∩Kx

1 ≤ CK1(x). Clearly, CK1(x) ≤ K1 ∩Kx
1 . Thus CK1(x) = K1 ∩Kx

1

as claimed.
Since N is a minimal normal subgroup of X and X = NU , we have that N =

〈x〉 × 〈xσ2〉 × · · · × 〈xσk〉 where σi ∈ U . Then CK1(x
σi) = CK1(x)σi < Kσi

1 = K1.
The intersection ∩k

i=1CK1(x
σi) ≤ CK(N) = N , and hence ∩k

i=1CK1(x
σi) = 1.

Since each CK1(x
σi) is a maximal subgroup of K1, the Frattini subgroup Φ(K1) ≤

∩k
i=1CK1(x

σi) = 1. Hence K1 is an elementary abelian 2-group, say K1
∼= Zl

2 for
some l ≥ 1. Noting that ∩k

i=1CK1(x
σi) = 1, it follows that l ≤ k. Suppose that

l = 1. Then K1
∼= Z2 and hence |Y : G| = 2. Then G¢Y , and hence G char Y ¢X.

So G ¢ X, which contradicts the assumption that G is not normal in X. Thus
l > 1, as in part (iii).

Since |K1 : CK1(x)| = 2, there is τ1 ∈ K1 such that K1 = 〈τ1〉 × CK1(x).
Let x1 = x−1xτ1 . Then x1 6= 1, xτ1

1 = x−1
1 and CK1(x) = CK1(x1), and so

K1 = 〈τ1〉 ×CK1(x1). Since N is a minimal normal subgroup of X = NU , there
are µ1 = 1, µ2 . . . , µk ∈ U such that N = 〈xµ1

1 〉 × · · · × 〈xµk

1 〉. Let xi = xµi

1 and
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τi = τµi

1 , where i = 1, 2, . . . , k. Then Zl−1
2

∼= (CK1(x1))µi = CK
µi
1

(xµi

1 ) = CK1(xi),
and K1 = Kµi

1 = 〈τi〉×CK1(xi). Further, xτi
i = xτ1µi

1 = (x−1
1 )µi = x−1

i , and hence
〈xi, τi〉 ∼= D2p, as in part (iv).

Now N ∼= Zk
p for an odd prime p and an integer k > 1. Suppose that X has a

minimal normal subgroup L 6= N . Then N ∩ L = 1, and LK/K ¢ X/K ∼= Zm or
D2m. It follows that either L ≤ K, or L is cyclic and hence |L| is an odd prime. If
L ≤ K, then L is a 2-group, it is not possible. Hence L is cyclic. It follows that L is
intransitive and semiregular on V Γ . Then ΓL is a cycle, and hence N is isomorphic
a subgroup of AutΓL. It follows that N is cyclic, which is a contradiction. Thus N
is the unique minimal normal subgroup of X, as in part (v). ¤

5.3. Proof of Theorem 1.1. If G ¢ X, then by Lemma 2.3, we have X1 ≤ D8.
Thus by Lemma 3.1, S = {a, a−1, aτ , (aτ )−1} for some involution τ ∈ Aut(G), as
in Theorem 1.1 (1).

We assume that G is not normal in X in the following. Let M ¢ X be maximal
subject to that Γ is a normal cover of ΓM . By lemma 2.2, M is semiregular
on V Γ and equals the kernel of X acting on V ΓM . Thus, setting Y = X/M and
Σ = ΓM , Σ is Y -edge-transitive. Since |M | is odd, by Lemma 2.3, we have M ≤ G.
Therefore, Σ is a Y -edge-transitive Cayley graph of G/M , as in Theorem 1.1 (2).

We note that for the normal subgroup defined in the previous paragraph, we have
that G¢X if and only if G/M ¢X/M . Thus, to complete the proof of Theorem 1.1,
we only need to deal with the case where M = 1, that is, Γ has no non-trivial
normal quotients of valency 4. Let N be a minimal normal subgroup of X. If N is
intransitive on V Γ , then by Lemmas 5.5 and 5.6, part (3) of Theorem 1.1 occurs.
If N is transitive on V Γ , then by Lemmas 5.2–5.3, Theorem 1.1 (4) occurs. ¤

6. Proof of Theorem 1.4

Let p be an odd prime, and let k > 1 be an odd integer. Let m be the largest
odd divisor of pk − 1, and let

G = N o 〈g〉 = Zk
p o Zm < AGL(1, pk).

It is easily shown that 〈g〉 acts by conjugation transitively on the set of subgroups
of N of order p. We first construct a family of Cayley graphs of valency 4 of the
group G.

Construction 6.1. Let i be such that 1 ≤ i ≤ m− 1, and let a ∈ N \ {1}. Let

Si = {agi, a−1gi, (agi)−1, (a−1gi)−1},
Γi = Cay(G,Si).

The following lemma gives some basic properties about G and Γi.

Lemma 6.2. Let G be the group and let Γi be the graphs defined above. Then we
have the following statements:

(i) Aut(G) = AΓL(1, pk) ∼= Zk
p o ΓL(1, pk);

(ii) Γi is edge-transitive, and Γi is connected if and only if i is coprime to m;
(iii) Γi

∼= Γm−i, and if pri ≡ j (mod m), then Γi
∼= Γj.

Proof. See [4, Proposition 12.10] for part (i).
Since Aut(G) = AΓL(1, pk) and G < AGL(1, pk), there is an automorphism

τ ∈ Aut(G) such that aτ = a−1 and gτ = g. Thus Sτ
i = Si and (agi)τ = a−1gi
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and ((agi)−1)τ = (a−1gi)−1. It follows that Γi is edge-transitive. It is easily shown
that 〈agi, a−1gi〉 = G if and only if (m, i) = 1. Hence Γi is connected if and only if
i is coprime to m.

Since g normalises N , there exists a′ ∈ N such that (agi)−1 = a′g−i and
(a−1gi)−1 = (a′)−1g−i. Thus Si = {a′g−i, (a′)−1g−i, (a′g−i)−1, ((a′)−1g−i)−1}.
Since GL(1, pk) acts transitively on N \{1}, there exists an element ρ ∈ Aut(G) such
that (a′)ρ = a and gρ = g. Thus Sρ

i = {agm−i, a−1gm−i, (agm−i)−1, (a−1gm−i)−1} =
Sj . So Γi

∼= Γm−i.
Suppose that pri ≡ j or −j(mod m) for some r ≥ 0. Noting that Γm−j

∼=
Γj , we may assume that pri ≡ j(mod m). Since g ∈ GL(1, pk) < ΓL(1, pk),
there exists θ ∈ ΓL(1, pk) such that θ normalises N and gθ = gp. Thus Sθr

i =
{a′gpri, a′−1gpri, (a′gpri)−1, (a′−1gpri)−1}, where a′ = aθr ∈ N . Since GL(1, pk) is
transitive on N \ {1} and fixes g, there exists c ∈ GL(1, pk) such that (Sθr

i )c = Sj ,
and so Γi

∼= Γj . ¤

In the rest of this section, we aim to prove that every connected edge-transitive
Cayley graph of G of valency 4 is isomorphic to some Γi, so completing the proof
of Theorem 1.4.

Let Γ = Cay(G,S) be connected, edge-transitive and of valency 4. We will
complete the proof of Theorem 1.4 by a series of steps, beginning with determining
the automorphism group AutΓ .

Step 1. G is normal in AutΓ, and AutΓ = Go Aut(G,S).
Suppose that G is not normal in AutΓ . Since N is the unique minimal normal

subgroup of G, it follows from Theorem 1.1 that either part (3) of Theorem 1.1
occurs with X = AutΓ , or ΓN is a Cayley graph of G/N and isomorphic to one
of the graphs in part (4) of Theorem 1.1. Assume that the later case holds. Then
G/N ∼= Z5, Z7 o Z3, Z11 o Z5 or Z23 o Z11. Therefore, as G/N ∼= Zm, we have
that G/N ∼= Zm

∼= Z5. By definition, m = 5 is the largest odd divisor of pk − 1,
which is not possible since p is an odd prime and k > 1 is odd. Thus the former
case occurs, and AutΓ = N o ((H o 〈g〉).O) ∼= Zk

p o ((Zl
2 o Zm).Zt), satisfying the

properties in part (3) of Theorem 1.1. In particular, 2 ≤ l ≤ k, and CH(N) = 1.
By Theorem 1.1 (3), there exist τ0 ∈ H \ {1} and z0 ∈ N such that H =

〈τ0〉 × CH(z0). It follows that for each σ ∈ H, we have zσ
0 = z0 or z−1

0 . Since
g normalises H and 〈g〉 acts transitively on the set of subgroups of N of order
p, it follows that for each x ∈ N and each σ ∈ H, we have xσ = x or x−1.
Suppose that there exist x1, x2 ∈ N \ {1} such that xσ

1 = x1 and xσ
2 = x−1

2 . Then
(x1x2)σ = x1x

−1
2 , which equals neither x1x2 nor (x1x2)−1, a contradiction. Thus,

as σ does not centralise N , we have xσ = x−1 for all x ∈ N . Since H ∼= Zl
2 with

l ≥ 2, there exists τ ∈ H \ 〈σ〉. Then similarly, τ inverts all elements of N , that is,
xτ = x−1 for all elements x ∈ N . However, now xστ = x for all x ∈ N , and hence
στ ∈ CH(N) = 1, which is a contradiction.

Therefore, G is normal in AutΓ , and by Lemma 2.3, we have that AutΓ =
Go Aut(G,S).

Step 2. AutΓ = G o 〈σ〉 = Zk
p o (〈σ〉 × 〈f〉) ∼= N o Z2m

∼= G o Z2, and S =
{af i, a−1f i, (af i)−1, (a−1f i)−1} where a ∈ N and f ∈ G has order m such that
aσ = a−1; in particular, Γ is not arc-transitive.
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By Lemma 6.2, we have Aut(G) ∼= AΓL(1, pk) ∼= N o (Zpk−1 o Zk). Since k is
odd, Aut(G) has a cyclic Sylow 2-subgroup, and thus all involutions of Aut(G) are
conjugate. It is easily shown that every involution of Aut(G) inverts all elements of
N . Since Γ is edge-transitive and AutΓ = GoAut(G,S), Aut(G,S) has even order.
On the other hand, since G is of odd order, by Lemma 2.3, we have that Aut(G,S)
is isomorphic to a subgroup of D8. Further, since a Sylow 2-subgroup of Aut(G) is
cyclic, we have that Aut(G,S) = 〈σ〉 ∼= Z2 or Z4. It follows that σ fixes an element
of G of order m, say f ∈ G such that o(f) = m and fσ = f . Then G = N o 〈f〉,
and X = AutΓ = Go 〈σ〉 = N o 〈f, σ〉.

Since Γ is connected, 〈S〉 = G and Aut(G,S) is faithful on S. Hence we may write
S = {x, y, x−1, y−1} such that either o(σ) = 2 and (x, y)σ = (y, x), or o(σ) = 4
and (x, y)σ = (y, x−1), refer to Lemma 3.1. Now x = af i, where a ∈ N and
i is an integer. Suppose that o(σ) = 4. Then y = xσ = (af i)σ = aσf i, and
a′f−i = f−ia−1 = (af i)−1 = x−1 = xσ2

= aσ2
f i = a−1f i. It follows that f2i = 1,

and since f has odd order, f i = 1. Thus x = a and y = xσ = aσ, belonging to
N , and so 〈S〉 ≤ N < G, which is a contradiction. Thus σ is an involution, and
so (x, y)σ = (y, x), x = af i, and y = xσ = aσf i = a−1f i. In particular, Γ is not
arc-transitive, and S = {af i, a−1f i, (af i)−1, (a−1f i)−1}.
Step 3. Γ ∼= Γj for some j such that 1 ≤ j ≤ m−1

2 and (j, m) = 1.
By Step 2, we may assume that AutΓ = N o 〈f, σ〉 ≤ AGL(1, pk). Since g ∈ G

has order m, it follows from Hall’s theorem that there exists b ∈ N such that
gb ∈ 〈f, σ〉. So f b−1

= gr for some integer r. Let τ = σb−1
. Then 〈g, τ〉 ∼=

〈f, σ〉 ∼= Z2m, and G = N o 〈g〉 and AutΓ = N o 〈g, τ〉. Further, T := Sb−1
=

{agir, a−1gir, (agir)−1, (a−1gir)−1}. Let j ≡ ir (mod m) and 1 ≤ j ≤ m − 1.
Then T = {agj , a−1gj , (agj)−1, (a−1gj)−1}, and (j, m) = 1 as Γ ∼= Cay(G,T ) is
connected. By Lemma 6.2 (iii), Γj

∼= Γm−j , and so the statement in Step 3 is true.

Step 4. Let Γi and Γj be as in Construction 6.1 with (i,m) = (j, m) = 1. Then
Γi
∼= Γj if and only if pri ≡ j or −j(mod m) for some r ≥ 0.
By Lemma 6.2, we only need to prove that if Γi

∼= Γj then pri ≡ j or −j(mod m)
for some r ≥ 0. Thus suppose that Γi

∼= Γj . By Step 2, we have AutΓi
∼= AutΓj

∼=
G o Z2. It follows that Γi and Γj are so-called CI-graphs, see [13, Theorem 6.1].
Thus Sγ

i = Sj for some γ ∈ Aut(G). Since N is a characteristic subgroup of G, this
γ induces an automorphism of G/N = 〈g〉 such that S

γ

i = Sj , where Si = {gi, g−i}
and Sj = {gj , g−j} are the images of Si and Sj under G → G/N , respectively.
Thus (gi)γ = gj or g−j . Since Aut(G) = AΓL(1, pk), it follows that for each
element ρ ∈ Aut(G), we have gρ = cgpr

for some c ∈ N and some integer r with
0 ≤ r ≤ k − 1. Thus (gi)γ = gpri, and hence pri ≡ j or −j (mod m).

This completes the proof of Theorem 1.4. ¤
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[17] C. H. Li, Z. P. Lu and D. Marušič, On primitive permutation groups with small suborbits

and their orbital graphs, J. Algebra (to appear).
[18] C. H. Li and C. E. Praeger, On partitioning the orbitals of a transitive permutation group,

Trans. Amer. Math. Soc. 355 (2003), 637–653.
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