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ABSTRACT. A characterisation is given of edge-transitive Cayley graphs of
valency 4 on odd number of vertices. The characterisation is then applied
to solve several problems in the area of edge-transitive graphs: answering a
question proposed by Xu (1998) regarding normal Cayley graphs; providing
a method for constructing edge-transitive graphs of valency 4 with arbitrarily
large vertex-stabiliser; constructing and characterising a new family of half-
transitive graphs. Also this study leads to a construction of the first family
of arc-transitive graphs of valency 4 which are non-Cayley graphs and have a
‘nice’ isomorphic 2-factorisation.

1. INTRODUCTION

A graph I' is a Cayley graph if there exist a group G and a subset S C G with
1¢S=8"1:={g7!|ge S} such that the vertices of I may be identified with
the elements of G in such a way that z is adjacent to y if and only if yz=! € S.
The Cayley graph I' is denoted by Cay(G, S). Throughout this paper, denote by 1
the vertex of Cay(G, S) corresponding to the identity of G.

It is well-known that a graph I" is a Cayley graph of a group G if and only if the
automorphism group Autl’ contains a subgroup which is isomorphic to G and acts
regularly on vertices. In particular, a Cayley graph Cay(G, S) is vertex-transitive
of order |G|. However, a Cayley graph is of course not necessarily edge-transitive.
In this paper, we investigate Cayley graphs that are edge-transitive.

Small valent Cayley graphs have received attention in the literature. For in-
stance, Cayley graphs of valency 3 or 4 of simple groups are investigated in [5, 6, 28];
Cayley graphs of valency 4 of certain p-groups are investigated in [7, 26]. A relation
between regular maps and edge-transitive Cayley graphs of valency 4 is studied in
[20]. In the main result (Theorem 1.1) of this paper, we characterise edge-transitive
Cayley graphs of valency 4 and odd order. To state this result, we need more defi-
nitions.

Let I'" be a graph with vertex set VI" and edge set EI'. If a subgroup X < Autl’
is transitive on VI' or ET', then the graph I' is said to be X -vertez-transitive or
X -edge-transitive, respectively. A sequence vg,v1,...,vs of vertices of I' is called
an s-arc if v;_1 # v;4q for 1 <i < s—1, and {v;,v;41} is an edge for 0 < i < s—1.
The graph I' is called (X, s)-arc-transitive if X is transitive on the s-arcs of I'; if in
addition X is not transitive on the (s+1)-arcs, then I is said to be (X, s)-transitive.
In particular, a 1-arc is simply called an arc, and an (X, 1)-arc-transitive graph is
called X -arc-transitive.
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A typical method for studying vertex-transitive graphs is taking certain quo-
tients. For an X-vertex-transitive graph I' and a normal subgroup N < X, the
normal quotient graph 'y induced by N is the graph that has vertex set VI'y =
{v"N | v € VI'} such that v)¥ and v} are adjacent if and only if v; is adjacent in I’
to some vertex in v. If further the valency of I'y equals the valency of I', then I"
is called a normal cover of I'y.

Theorem 1.1. Let G be a finite group of odd order, and let I' = Cay(G,S) be
connected and of valency 4. Assume that I' is X -edge-transitive, where G < X <
Autl'. Then one of the following holds:

(1) G is mormal in X, X1 < Dg, and S = {a,a™t,a7,(a")" 1}, where 7 €
Aut(G) such that either o(T) = 2, or o(T) =4 and a” =al;
(2) there is a subgroup M < G such that M 1 X, and I" is a cover of I'y;
(3) X has a unique minimal normal subgroup N =2 Zf,' with p odd prime and
k > 2 such that
(1) G:NNR%Z’; X Ln, where m > 1 is odd;
(i) X = N % ((H x R).0) 2 ZF x ((Z % Zp).Zst), and X1 = H.O, where
H =7 with2 <1<k, and O = Z; witht = 1 or 2, satisfying the
following statements:
(a) there exist x1, - ,xx € N and 11, - ,7x € H such that N =
(1, ,xk), (@, Ti) 2 Dop and H = (1) xCp(x;) forl <i<k;
(b) R does not centralise H;
(¢) X/(NH) & Zy, or Doy, and I' is X-arc-transitive if and only
(4) I is (X, s)-transitive, and X, X1, s and G are as in the following table:

X X]_ S G

A5, S5 A4, S4 2 Z5
PGL(27 7) D16 1 Z7 X Z3
PSL(2,11),PGL(2711) A4,S4 2 le X Z5
PSL(Q, 23) S4 2 Z23 X le

Remarks on Theorem 1.1:

(a) The Cayley graph I' in part (1), called normal edge-transitive graph, is
studied in [21]. If further X = Autl’, then I' is called a normal Cayley
graph, introduced in [27]. For this type of Cayley graph, the action of X
on the graph I' is well-understood.

(b) Part (2) is a reduction from the Cayley graph I' to a smaller graph Iy,
which is also an edge-transitive Cayley graph of valency 4. An edge-
transitive Cayley graph is called basic if it is not a normal cover of a smaller
edge-transitive Cayley graph. Theorem 1.1 shows that if I" is not a normal
Cayley graph then I' is a cover of a well-characterised graph, that is a basic
Cayley graph satisfying part (3) or part (4).

(c) Construction 3.2 shows that for every group X satisfying part (3) with
O =1 indeed acts edge-transitively on some Cayley graphs of valency 4.

(d) Part (4) tells us that there are only three 2-arc-transitive basic Cayley
graphs of valency 4 and odd order.
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The following corollary of Theorem 1.1 gives a solution to Problem 4 of [27], in
particular, answering the question stated there in the negative.

Corollary 1.2. There are infinitely many connected basic Cayley graphs of valency
4 and odd order which are not normal Cayley graphs.

The proof of Corollary 1.2 follows from Lemma 3.3.

It is well-known that the vertex-stabiliser for an s-arc-transitive graph of va-
lency 4 with s > 2 has order dividing 2435, see Lemma 2.5. However, in [22, 2],
‘non-trivial’ arc-transitive graphs of valency 4 which have arbitrarily large vertex-
stabiliser are constructed. Part (3) of Theorem 1.1 characterises edge-transitive
Cayley graphs of valency 4 and odd order with this property.

Corollary 1.3. Let I' be a connected Cayley graph of valency 4 and odd order.
Assume that I' is X -edge-transitive for X < Autl’. Then |X1| > 24 if and only if
I is a cover of a graph satisfying part (3) of Theorem 1.1 with 1 > 5.

This characterisation provides a potential method for constructing edge-transitive
graphs of valency 4 with arbitrarily large vertex-stabiliser, see Construction 3.2.

A graph I' is called half-transitive if Autl is transitive on the vertices and the
edges but not transitive on the arcs of I'. Constructing and characterising half-
transitive graphs was initiated by Tutte (1965), and is a currently active topic
in algebraic graph theory, see [19, 20, 17] for references. Theorem 1.1 provides a
method for characterising some classes of half-transitive graphs of valency 4. The
following theorem is such an example.

Theorem 1.4. Let G = N x (g) = Z’; X L < AGL(1,p*), where k > 1 is odd,
p is an odd prime and m is the largest odd divisor of p* — 1. Assume that I' is a

connected edge-transitive Cayley graph of G of valency 4. Then Autl’ = G X Zo, I’
is half-transitive, and I' = I'; = Cay(G, S;), where 1 <i < L (m,i) =1, and

Si={ag';a”'g’, (ag") ™", (a7 g )71}, wherea € N\ {1}.
Moreover, I'; = T’ if and only if p"i = j or —j (mod m) for some r > 0.

The following result is a by-product of analysing PGL(2, 7)-arc-transitive graphs
of valency 4. (For two graphs I' and X~ which have the same vertex set V and
disjoint edge sets E; and Fs, respectively, denote by I' + X' the graph with vertex
set V and edge set E; U FEs. For a positive integer n and a cycle C,, of size m,
denote by nC,, the vertex disjoint union of n copies of C,,.)

Proposition 1.5. Let p be a prime such that p = —1 (mod 8), and let T =
PSL(2,p) and X = PGL(2,p). Then there exists an X-arc-transitive graph I’
of valency 4 such that the following hold:

(1) I = Al + AQ, Al = A2 = 1)(1)427871)03’ T § AUtAl ﬂAutAQ, and both Al
and Ay are T-arc-transitive; in particular, I' is not T-edge-transitive;
(ii) I' is a Cayley graph if and only if p=17.

Part (i) of this proposition is proved by Lemma 4.3, and part (ii) follows from
Theorem 1.1.
Remark on Proposition 1.5: The factorisation I" = A; + A, is an isomorphic 2-
factorisation of I'. The group X is transitive on {A;, Ay} with T being the kernel.
Such isomorphic factorisations are called homogeneous factorisations, introduced
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and studied in [18, 9]. The factorisation given in Proposition 1.5 are the first
known example of non-Cayley graphs which have a homogeneous 2-factorisation,
refer to [9, Lemma 2.7] for a characterisation of homogeneous 1-factorisations.

This paper is organized as follows. Section 2 collects some preliminary results
which will be used later. Section 3 gives some examples of graphs appeared in
Theorem 1.1. Then Section 4 constructs the graphs stated in Proposition 1.5.
Finally, in Sections 5 and 6, Theorems 1.1 and 1.4 are proved, respectively.

2. PRELIMINARY RESULTS

For a core-free subgroup H of X and an element a € X \ H, let [X : H| =
{Hz | x € X}, and define the coset graph I' := Cos(X, H, H{a,a '} H) to be the
graph with vertex set [X : H] such that {Hx, Hy} is an edge of I' if and only if
yr~! € H{a,a '} H. The properties stated in the following lemma are well-known.

Lemma 2.1. For a coset graph I' = Cos(X, H, H{a,a"'}H), we have
(i) I' is X -edge-transitive;
(ii) I' is X-arc-transitive if and only if HaH = Ha 'H, or equivalently,
HaH = HbH for some b€ X \ H such that b> € HN H®;
(iii) I' is connected if and only if (H,a) = X;
(iv) the valency of I' equals

val(ry = { VL HOHC| - if HaH = Ha™'H,
| 2|H:HNH®, otherwise.

Lemma 2.2. Let I' be a connected X -vertex-transitive graph where X < Autl’,
and let N <1 X be intransitive on VI'. Assume that I' is a cover of I'y. Then N is
semireqular on VI, and the kernel of X acting on VI equals N.

Proof. Let K be the kernel of X acting on VIy. Then N <« K <1 X. Suppose
that K, # 1, where v € VI'. Then since I' is connected and K < X, it follows
that K. # 1. Thus the number of K,-orbits in I'(v) is less than |I'(v)|, and so
the valency of I'y is less than the valency of I', which is a contradiction. Hence
K, =1, and it follows that N = K is semiregular on VI (]

For a Cayley graph I' = Cay(G, 5), let Aut(G, S) = {a € Aut(G) | S* = S}. For
the normal edge-transitive case, we have a simple lemma.

Lemma 2.3. Let I' = Cay(G, S) be connected of valency 4. Assume that Autl” has
a subgroup X such that I' is X -edge-transitive and G 9 X. Then X < Naur(G) =
G x Aut(G, S), and either X1 < Dsg, or I' is (X, 2)-transitive and |G| is even.

Proof. Since I' is connected, (S) = G, and so Aut(G, S) acts faithfully on S. Hence
Aut(G, S) < S4. By [8, Lemma 2.1], we have that X < Na,r(G) = G x Aut(G, S).
Thus X7 < Aut(G, S) < S4. Suppose that 3 divides | X7|. Then X; is 2-transitive
on S. Hence I' is (X, 2)-transitive, and all elements in S are involutions, see for
example [16]. In particular, |G| is even. On the other hand, if 3 does not divide
| X1|, then X3 is a 2-group, and hence X3 < Ds. ]

Lemma 2.4. Let G be a finite group of odd order, and let I' = Cay(G,S) be
connected and of valency 4. Assume that N < X < Autl’ such that G < X and I’
is X -edge-transitive. Then one of the following statements holds:
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(i) N has odd order and N < G;
(ii) N has even order, and either N is transitive on VI', or GN is transitive
on ET.

Proof. Let Y = GN. Then Y is transitive on VI'. Suppose that N £ G. Then Y
is not regular on VI'. Tt follows that Y7 is a nontrivial {2, 3}-group. If Y7 has an
orbit of size 3 on I'(1) = S, then Y has an orbit on ET" which is a 1-factor of I',
which is not possible since |[VI'| = |G| is odd. It follows that either Y7 is transitive
on S, or Y7 has an orbit of size 2 on S. In particular, |Y3] is even, so |N| is even.
Therefore, either N has odd order and N < G, as in part(i), or N has even order.

Assume now that |N| is even. If Y7 is transitive on S, then I" is Y-arc-transitive
and hence Y-edge-transitive, so part (ii) holds. Thus assume that Y7 has an orbit
of size 2 on S. Noting that N << X, N7 # 1 and I' is connected and X-vertex-
transitive, it is easily shown that Nj is non-trivial on S. Since N; < Y7, Ny has
an orbit {z,y} of size 2 on S. Suppose that N is intransitive on VI". Let H = 1V
be the N-orbit containing 1. Then H NS = @ as I' is X-edge-transitive. Further,
N = (1ac)N _ 1(2?Nx71)x — (1N)'c — Hz and yN — (1y)N _ 1(yNy71)y _ (1N)y _
Hy , and so Hx = ¥ = yV = Hy. It is easily shown that H forms a subgroup of
G. In particular, xy~' € H. If y = 27!, then 22 = 2y~' € H, and z € H as |H|
is odd, a contradiction. Thus S = {x,y,271,y~1}. Clearly, {x,y} is an orbit of Y;
on S. It follows that Y is transitive on ET, as in part (ii). O

By the result of [14], there is no 4-arc-transitive graph of valency at least 3 on
odd number of vertices. Then by the known results about 2-arc-transitive graphs
(see for example [25] or [15, Subsection 3.1]), the following result holds.

Lemma 2.5. Let I' be a connected (X, s)-transitive graph of valency 4. Then either
s <4 ors=17, and further, s and the stabliser X, are listed as following:

s Xy

1 2-group

2 Ay <X, <85y

3 A4XZ3§XUSS4X83

4 7Z3SL(2,3) < X, <Z3.GL(2,3)
7 [3°].SL(2,3) < X, < [3°].GL(2,3)

Moreover, if |VI'| is odd, then s < 3.
Finally, we quote a result about simple groups, which will be used later.

Lemma 2.6. ([12]) Let T be a non-abelian simple group which has a 2'-Hall sub-
group. Then T' = PSL(2,p), where p = 2¢ —1 is a prime. Further, T = GH, where
G:Zp X ZE andH:Dp+1 :Dge,

2

3. EXISTENCE OF GRAPHS SATISFYING THEOREM 1.1

In this section, we construct examples of graphs satisfying Theorem 1.1.

First consider part (1) of Theorem 1.1. We observe that if I" is a connected
normal edge-transitive Cayley graph of a group G of valency 4, then G = (a,a"),
where 7 € Aut(G) such that a” =aoral. Conversely, if G is a group that has a
presentation G = (a,a”), where 7 € Aut(G) such that a™ =aora!, then G has
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a connected normal edge-transitive Cayley graph of valency 4, that is, Cay(G, S)

where S = {a,a™!,a", (a”)"1}. Thus we have the following conclusion:

Lemma 3.1. Let G be a group of odd order. Then G has a connected normal edge-
transitive Cayley graph of valency 4 if and only if G = {(a,a”), where T € Aut(G)

2
such that a™ =a or a1l

See Construction 6.1 for an example of such construction.
The following construction produces edge-transitive graphs admitting a group
X satisfying part (3) of Theorem 1.1 with O = 1.

Construction 3.2. Let X = N x (H x R) = ZF x (Z % Z,), where p is an odd
prime, m is odd and 2 <[ < k, such that N = Z’;, H =27} and R = Z,, satisfy
(a) N is the unique minimal normal subgroup of X;
(b) there exist x € N\{1} and 7 € H such that 2™ = 2! and H = (1) xCg(z);
(¢) R does not centralise H.

Let R = (0) = Zy,, and let y = zo. Set
I(p,k,l,m) = Cos(X,H, H{y,y '} H).
The next lemma shows that the graphs constructed here are as required.

Lemma 3.3. Let I' = I'(p, k,l,m) be a graph constructed in Construction 3.2, and
letG=NxRZ Z’; X L. Then I' is a connected X -edge-transitive Cayley graph
of G of valency 4, and G is not normal in X.

Proof. By the definition, H is core-free in X, and hence X < Autl’. Now X = GH
and GN H = 1, and thus G acts regularly on the vertex set [X : H]. So I' is a
Cayley graph of G, which has odd order pFm. Obviously, G' is not normal in X.

For x and o defined in Construction 3.2, set z; = 2 fori= 1,2,--- ,m, and
let « = (071)70. Then, as y = xo, 22 = 0 'xo and 7 € H, we have

azi = ((07")7 o) (0™ w0)? = (07") 2’0 = (z7'07) "N (wo) = (y) 'y € (H,y).
As 7 € H and o normalises H, we have a = (071)7c = 7(7°) € H. Thus
73 = a Y(ax3) € (H,y), and as x5 has odd order, 3 € (H,y). Then x5 = 2§ =
x5*? = x¥ € (H,y). Similarly, we have that z; € (H,y) for ¢ = 2,3,--- ,m. Then
calculation shows that y™ = zyxs -z, € (H,y). Thus © = z; = ymxgl . :zr;Ll S
(H,y), and so 0 = 2~ 'y € (H,y). Since N is a minimal normal subgroup of X,
we conclude that N = (" | h € H,0 <i < m — 1), and hence N < (H,y). So
(H,y) > (N,H,o) = X, and I' is connected.

Finally, as o normalises H and by condition (b) of Construction 3.2, we have that
H*NH = Cg(x) has index 2 in H. Thus HYNH = (Hﬁcfﬁltlf‘fl)‘7 =(H*NH)? =
Cpy(x)?, which has index 2 in H. Since X < Autl’, I' is not a cycle. By Lemma 2.1,
I' is connected, X-edge-transitive and of valency 4. (|

We end this section with presenting several groups satistying (a), (b) and (c) of
Construction 3.2, so we obtain examples of graphs satisfying Theorem 1.1 (3).

Example 3.4. Let p be an odd prime, and m an odd integer.
(1) Let X = (<{L‘1,T1> X <$2,’7’2> X X <{Em,’7'm>) X <O'> = DQPZZm = Dg;) X Zm,
where (x;,7;) = Dgp and (2,7;)7 = (@i41,Ti+1) (reading the subscripts
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modulo m). Then N = (z1,22,...,7y) = Z;' is a minimal normal sub-
group of X, and H = (71,72, ..., Tm) = Z5" is such that H = (1;) x Cg(x;)
for1<i<m.

(ii) Let YV < X with X as in part (i) such that ¥V = (x1,z9,...,2m) X
(T172, TaT3, « + s Tin—1Tm ) X {07) & Z;”N(Zgn_l XZpm). Then N = (x1,29,...,ZTm)
is & minimal normal subgroup of Y, and L := (1172, 7273, - - -, Tn—1Tm) =
771 is such that L = (r;7;41) x Cp(z;) for 1 <i < m.

Thus both X and Y satisfy the conditions of Construction 3.2.

Example 3.5. Let N = (zq, -+ ,x%) = Z’;, where p is an odd prime and k > 3.

Let [ be a proper divisor of k. Let o € Aut(N) be such that
g_{l'i+1, 1f1§z§k71,

v 12141, fi=k.

Let 7 € Aut(N) be such that

X

<y

_ [yt it -,
x4, otherwise.

Let o(c) =m, H = <T01_1 |1 <i<m)and X =N x (r,0). Then N is a minimal
normal subgroup of X and H = (7) x Cg(x;) & Z,. Thus X satisfies the conditions
of Construction 3.2.

For instance, taking p = 3, k = 9 and [ = 3, so m = 39, and then applying
Construction 3.2, we obtain an X-edge-transitive Cayley graph I'(3,9,3,39) of
valency 4 of the group Z3 x Zgg, where X = Z3 x (Z3 x1 Zsg).

4. A FAMILY OF ARC-TRANSITIVE GRAPHS OF VALENCY 4

Here we construct a family of 4-arc-transitive cubic graphs and their line graphs.
The smallest line graph is PGL(2, 7)-arc-transitive but not PSL(2, 7)-edge-transitive,
which is one of the graphs stated in Theorem 1.1 (4).

Construction 4.1. Let p be a prime such that p = —1 (mod 8), and let T =
PSL(2,p) and X = PGL(2,p). Then T has exactly two conjugacy classes of maxi-
mal subgroups isomorphic to S; which are conjugate in X. Let L, R < T be such
that L, R =2 Sy, LN R 2= Dg, and L, R are not conjugate in T but L™ = R for some
involution 7 € X \ T.
(1) Let X' = Cos(T, L, R) be the coset graph defined as: the vertex set VX =
[T : L) U [T : R] such that Lz is adjacent to Ry if and only if yz—! € LR.
(2) Let I' be the line graph of X, that is, the vertices of I" are the edges of ¥
and two vertices of I" are adjacent if and only if the corresponding edges of
X’ have exactly one common vertex.

Then it follows from the definition that X' is bipartite with parts [T : L] and
[T : R], and T acts by right multiplication transitively on the edge set EX. Further,
we have the following properties.

Lemma 4.2. The following statements hold for the graph X defined above:

(i) X' is connected and of valency 3;
(ii) X may also be represented as the coset graph Cos(X,L,L7L);
(iil) X is (X,4)-arc-transitive;
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(iv) X is T-vertex intransitive and locally (T, 4)-arc-transitive.

Proof. Since (L, R) =T, part (i) follows from the definition, see [10, Lemma 2.7].
Part (ii) follows from the definitions of Cos(T, L, R) and Cos(X, L, LTL).
See [1] or [15, Example 3.5] for part (iii).
It follows from the definition that T is not transitive on the vertex set VX', and
so part (iv) follows from part (iii). O

Next we study the line graph I" in the following lemma.

Lemma 4.3. Let I' be the line graph of X defined as in Costruction 4.1. Let v be
the vertex of I' corresponding to the edge {L, R} of X. Then we have the following
statements:

(i) I' is connected, and has valecy 4 and girth 3;

(i) I' is X -arc-transitive, and X, = D1g;

(iii) T s transitive on VI' and intransitive on EI', and T, = Ds;

(iv) T has exactly two orbits E1,Ey on ET', and letting Ay = (VI',Ey) and

Ay = (VI By), we have Ay = Ay = P2V 0y and ' = Ay + A,

Proof. We first look at the neighbors of the vertex v in I'. Let a € L be of order
3, and let b = a” € R. Then the 3 neighbors of L in ¥ are R, Ra and Ra~'; and
the 3 neighbors of R are L, Lb and Lb~!. Write the corresponding vertices of I’
as: uy = {Lb, R}, upy = {Lb~Y, R}, wy = {L, Ra} and wy = {L, Ra='}. Then the
neighborhood I'(v) = {u1, ug, wi,ws}.

Thus I is of valency 4. By the definition of a line graph, u; is adjacent to us,
and w is adjacent to ws. Hence the girth of I' is 3. Since Y is connected, I' is
connected too, proving part (i).

Now T, = LN R = Dg and X, = (LN R, 7) = Dyg. Since T is transitive on
EJXY and is not transitive on the vertex set VX' there is no element of 7' maps
the arc (L, R) to the arc (R, L). Since T, = L N R, there exist 01,02 € T, such
that a®* = a~! and 672 = b=, Thus u{* = us and w{? = wy. So T, has exactly
two orbits on I'(v), that is, {u1,us} and {wy,ws}. Further, (b) acts transitively
on {v,uy,us}. It follows that Ey := {uy,u2}7T is a self-paired orbital of T on VI
Therefore, I'" is not T-edge-transitive. Further, since 7 interchanges L and R and
also interchages a and b, it follows that 7 € X,, and {u1,u2}™ = {wy,we}. Thus I
is X-arc-transitive.

Let By = {wy,we}T, and let A; = (VI, E;) with i = 1,2. Then I' = Ay + Ay,

and A; consists of cycles of size 3. Thus |Ey| = |E2|=|VI| = ”XLH = p(pfgl), and

2
A; consists of % cycles of size 3, that is, A; = p(pTgl)Cg. Finally, E] = E» and

so T is an isomorphism between A; and As. O

5. PROOF OF THEOREM 1.1

Let G be a finite group of odd order, and let I" = Cay(G, S) be connected and of
valency 4. Assume that I" is X-edge-transitive, where G < X < Aut!l’, and assume
further that G is not normal in X.

We first treat the case where I' has no non-trivial normal quotient of valency 4
in Subsection 5.1 and 5.2.

Suppose that each non-trivial normal quotient of I' is a cycle. Let N be a
minimal normal subgroup of X. Then N = T* for some simple group T and some
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integer k > 1. Since |VI'| = |G| is odd, X has no nontrivial normal 2-subgroups.
In particular, N is not a 2-group. Further we have the following simple lemma.

Lemma 5.1. Either N is soluble, or Cx(N) = 1.

Proof. Suppose that N is insoluble and C' := Cx(N) # 1. Then NC = N x C and
C < X. Since |N| is not semiregular on VI', C' is intransitive. By the assumption
that any non-trivial normal quotient of I' is a cycle, I'c is a cycle. Let K be
the kernel of X acting on VIe. Then X/K < Autl'c & Dy, where ¢ = |V I¢|.
It follows that N < K. Let A be an arbitrary C-orbit on VI'. Then A is N-
invariant. Consider the action of NC on A, and let D be the kernel of NC acting
on A. Then NC/D = (ND/D) x (CD/D). Since C is transitive on A, CD/D is
also transitive on A. Then ND/D is semireglar on A. Noting that |A| is odd and
ND/D = N/(NND)=T* for some k' > 0, it follows that ND/D is trivial on A,
and hence N < D. Thus N is trivial on every C-orbit, and so N is trivial on VI,
which is a contradiction. Therefore, either N is soluble, or Cx(N)=C=1. O

5.1. The case where N is transitive. Assume that N is transitive on the vertices
of I'. Our goal is to prove that N = Aj, PSL(2,7), PSL(2,11) or PSL(2,23) by a
series of lemmas. The first shows that N is nonabelian simple.

Lemma 5.2. The minimal normal subgroup N is a nonabelian simple group, X is
almost simple, and N = soc(X).

Proof. Suppose that N is abelian. Since N is transitive, N is regular, and hence
|IN| = |G| is odd. By Lemma 2.3, we have that N < G, and so G = N < X, which
is a contradiction. Thus N = T* is nonabelian. Suppose that k > 1. Let L be
a normal subgroup of N such that L = T*~!. Since N; < X; is a {2,3}-group,
it follows that L is intransitive on VI'; further, since |V I'| is odd and |T| is even,
L is not semiregular. It follows from Lemma 2.2 that I';, is a cycle. Then Autl',
is a dihedral group. Thus N lies in the kernel of X acting on VI, and so N is
intransitive on VI, which is a contradiction. Thus &k = 1, and N = T is nonabelian
simple. By Lemma 5.1, Cx(N) = 1, and hence N is the unique minimal normal
subgroup of X. Thus X is almost simple, and N = soc(X). O

The 2-arc-transitive case is determined by the following lemma.

Lemma 5.3. Assume I' is (X, 2)-arc-transitive. Then one of the following holds:
(i) X = Aj or S5, and X1 = Ay or Sy, respectively, and G = Zs;
(i) X = PSL(2,11) or PGL(2,11), and X1 = Ay or S4, respectively, and
G = le X Z5,’
(111) X = PSL(Q, 23), X1 = 84, and G = Zgg X le.

Proof. Note that X = GX; and GN X; = 1. By Lemma 2.5, |X;]| is a divisor
of 2432 = 144, and hence a Sylow 2-subgroup of X is isomorphic to a subgroup of
Dg X Zs. Further, [N : (GNN)| = |GN : G| divides | X : G| = | X1|. Let M be
a maximal subgroup of N containing G N N. Then [N : M| has size dividing 144,
and N is a primitive permutation group on [N : M]. Inspecting the list of primitive
permutation groups of small degree given in [3, Appendix B], we conclude that N
is one of the following groups:
As, Ag, PSL(2,7), PSL(2,8), PSL(2,11), My, PSL(2,17), PSL(2, 23),

PSL(2,47), PSL(2,71) and PSL(3, 3).
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It is known that the groups My;, PSL(2,17), PSL(2,47) and PSL(3,3) have a
Sylow 2-subgroup isomorphic to Qg.Zs, Dig, D1g and Z.Qsg, respectively. Thus
N is none of these groups. Suppose that N = Ag or PSL(2,8). Then X = Ag,
S¢, PSL(2,8) or PSL(2,8).Z3s. However, X has no factorisation X = GX; such
that GN X1 =1, and X7 is a {2, 3}-group, which is a contradiction. Suppose that
N = PSL(2,71). Then X = PSL(2,71) or PGL(2,71), and X1 = Dy or Dy,
respectively, and G = Zr7; X Zss. Thus X; is a maximal subgroup of X, and X acts
primitively on the vertex set VI" = [X : X1]. This is not possible, see [24] or [17].
If N =PSL(2,7), then G = Z7 and N1 = S4. Then, however, N is 2-transitive on
VI =[N : M), and so I" 2 Ky, which is a contradiction.

Therefore, N = Ay, PSL(2,11) or PSL(2,23). Now either X is primitive on VI,
or X = N =PSL(2,11) and G = Z;; X Zs. Then, by [23] and [11], we obtain the
conclusion stated in the lemma. a

The next lemma determines X for the case where I' is not (X, 2)-arc-transitive.

Lemma 5.4. Suppose that I' is not (X, 2)-arc-transitive. Then X = PGL(2,7),
X1 :D16 andG:Z7 NZg.

Proof. Since I' is not (X, 2)-arc-transitive, X is a 2-group. Since X = GX; and
GNX; =1, Gis a 2’-Hall subgroup of X. Then G N N is a 2’-Hall subgroup
of N. By Lemma 5.2, N is nonabelian simple. By Lemma 2.6, N = PSL(2, p),
GNN =7y, x Z%, and N1 = D,41, where p = 2° —1 is a prime. If e > 3, then N;
is a maximal subgroup of N. Thus N is a primitive permutation group on VI" and
has a self-paired suborbit of length 4, which is not possible, see [24] or [17]. Thus
e=3, N=PSL(2,7), G = Z7 x Z3, and N7 = Dg. So X = PSL(2,7) or PGL(2,7).

Suppose that X = PSL(2,7). Now write I" as coset graph Cos(X, H, H{z,x '} H),
where H = X3 = Dg, and = € X is such that (H,z) = X. Let P = HN H®. Then
|H : P| =2 or 4.

Assume that |H : P| = 4. Then I' is X-arc-transitive and P = Zy. By
Lemma 2.1, we may assume that 22 € P = H N H® and z normalises P. If
P < H, then P < (H,z) = X = PSL(2,7), which is a contradiction. Thus P is not
normal in H, and so Z3 = Ny (P) < H. Since Nx(P) = Dg, we have Nx(P) # H.
So Ny (P) < (H,Nx(P)) = X, which is a contradiction. Thus |H : P| = 2, and
hence P< L := (H, H*). We conclude that L = S4. Then H and H” are two Sylow
2-subgroups of L, and hence H* = HY for some y € L. Thus H™ " = H, that
is, 2y~ € Nx(H) = H, hence € Hy C L. Then (z,H) < L # X, which is a
contradiction. Thus X # PSL(2,7), and so X = PGL(2,7). O

5.2. The case where N is intransitive. Assume now that the minimal normal
subgroup N < X is intransitive on VI'. We are going to prove that part (3) of
Theorem 1.1 occurs.

Lemma 5.5. The minimal normal subgroup N is soluble, and N < G.

Proof. Suppose that N is insoluble. Then N = T* and N £ G, where T is
nonabelian simple and & > 1. Let Y = NG. Then by Lemma 2.4 Y is transitive
on both of VI' and EI'. Let L < N be a non-trivial normal subgroup of Y.
Then L is intransitive, and since |V I'| is odd, L is not semi-regular on VI". Thus
the valency of the quotient graph I'y is less than 4. Since |V | is odd, I is a
cycle of size m > 3. Let K be the kernel of Y acting on the L-orbits in VI'. Then
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Y/K < Autl'p = Da,,, where m = |V I';|. Further, since NK/K = N/(NNK) = T"
for some [, we conclude that [ = 0 and NV < K. Considering the action of NV on an
abitrary L-orbit, we have that L = N. This particularly shows that N is a minimal
normal subgroup of Y. As I'y is a cycle, I" is not (X, 2)-arc-transitive, and X7 is
a nontrivial 2-group. In particular, K; is a 2-group. Since K = NK; <Y and
|Y : N|is odd, we know that K = N. Thus N itself is the kernel of X acting on
VI'y. It follows that Y/N is the cyclic regualr subgroup of Autl'y acting on VIy.
Thus Y = NG = N{a) = N.Z,, for some a € G\ N.

Since X is a nontrivial 2-group, it is easily shown that GNN is a 2’-Hall subgroup
of Nyand N = (GNN)Ny. Then GNT =GN NNT is a 2-Hall subgroup of T.
By Lemma 2.6, T' = PSL(2, p) for a prime p = 2° — 1. In particular, Out(7T") & Z,.
By Lemma 5.1, Cx(NN) = 1, and hence Cy (N) = 1. Then N is the only minimal
normal subgroup of Y and of X. So the element a € Y < X < Aut(N) = Aut(T)1Sk.
Write N = T3 x - - - x T, where T; 2 T. Then Aut(N) = (Aut(71) X Aut(Ts) X -+ x
Aut(T})) % Sk, and a = brr, where b € Aut(T7) x Aut(Ts) x - - - x Aut(T}) and 7 € S.

Since N is a minimal normal subgroup of Y, we have that (a) acts by conjugation
transitively on {T7,Ts,...,T;}, and hence the permutation 7 is a k-cycle of Sy.
Relabeling if necessary, we may assume m = (12...k) € S;. Then T = T and

T¢ = Tiy1, where i = 1,... k — 1. Further, a* = b b e Aut(Ty) x Aut(Ty) x
<+ x Aut(Ty) = N x Z&. Since a* is of odd order, it follows that a* € N. Thus
Y/N = Zj, and hence m = k. Set a®¥ = tity---t3, where t; € T;. Since a

centralises a¥, we have t1ty-- -ty = a* = (a¥)® = t{t§---t2. Since t¢ € T2 =T

and t§ € T = Tj4q, it follows that t¢ = ¢; and t§ = t;41, wherei =1,...,k — 1.
i—1 . .
Let g = t;'a. Then T; = T7, = T{  and ¢' = a't;jt;"...t;" (reading the

subscripts modular k), where 2 < i < k. In particular, g* = aktfltlzl e t;l =1,
and so the order of g is a divisor of k. Noting that Y/N = Z;, and N{g) = (N, g) =
(N,t;'a) = (N,a) =Y, it follows that Y = N x (g).

Let Hy = (T1)y and H; .= HY  for 1 <i <k, and let H = Hy x --- x Hj.
Then H; = Dsge is a Sylow 2-subgroup of T;, H is a Sylow 2-subgroup of N,
and H9 = H. Since I'y is a k-cycle and Y/N 2 Zj, it follows that I' is not
Y -arc-transitive. Since I' is Y-edge-transitive, we may write I' as a coset graph
I' = Cos(Y,H,H{¢’z,(¢’x)"*}H), where 1 < j < kand z = z1---2 € N for
x; € Ty, such that |H : (HNHY?)| =2 and (H,¢’z) =Y. Now H9'® = H* =
H{' x Hy? x -+ x Hi¥ and HNH9'® = (Hy N H{Y) x -+ x (Hg N HEF). Thus we
may assume that |[Hy : (Hy N H{")| =2 and H; N H" = H;. Then H;" = H; for
i=2,---,k. Since Np,(H;) = H;, we know that x; € H; for i > 2. If e > 3, then
H, is maximal in Ty, and hence HyNH{* <(Hy, H{*) = Ty, which is a contradiction.
Thus e = 3, T}, = PSL(2,7). Let Uy = (Hy,z1) and U; = U for i =2,3,... k.
Then Sy 2 U; < T;. It follows that (U1, g) = (Uy x -+ x Ug) x (g) = (S4)* x Z,.
Since I' is connected, Y = (H, gz) < (Hy,21,9) = (U1,9) = (S4)* x Zj, which is
again a contradiction.

Thus N is soluble. Then by Lemma 2.4, we have N < G, completing the proof. O

We notice that, since N is intransitive on VI', the N-orbits in VI form an
X-invariant partition VI'y. The next lemma determines the structure of X.

Lemma 5.6. Let K be the kernel of X acting on VI'n. Then the following state-
ments hold:
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(i) X/K = Zy, or Doy, for an odd integer m > 1, K1 # 1, and I' is X -arc-
transitive if and only if X/K = Dop,;

(i) G=N xR, X =N x((K1 x R).O) and R does not centralise K1, where
R=Z,,, and O =1 or Zs;

(i) N = Z’; for an odd prime p, and Ky = 75, where 2 <1 < k;

(iv) there exist x1,--- ,x € N and 11, -+ , 7 € K1 such that N = (xq,- -+ ,z1),
(wi,Ti) 2 Doy and K1 = (1;) X Ck, (x;) for 1 <i<k.

(v) N is the unique minimal normal subgroup of X ;

Proof. By Lemma 5.5, N < G is soluble, hence N = Z’; for an odd prime p and an
integer £ > 1. In particular, N is semi-regular on V I'. Since I'y is a cycle of size m
say, X/K < Autl'y = Dg,;,. Thus K = N x Ky, K is a 2-group, and X/K = Z,,
or Do,,. It follows that G/N = GK/K = Z,,. If K; =1, then K = N, and hence
G <1 X, which contradicts that G is not normal in X. Thus K; # 1. Further, I' is
X-arc-transitive if and only if X/K 2 Dy, so we have part (i).

Set U = Nx(K1). Then U # X since K; is not normal in X. Noting that
(IN1,|K1]) = 1, it follows that Nx,n(K/N) = Nx/n(NK1/N) = Nx(K1)N/N =
UN/N. Since K/N is normal in X/N, it follows that X = UN. Since N < X,
NNU<U. Further NNU <N as N is abelian. Then NNU <(U,N) =UN = X.
If N <U,then K = NK; = N x K;, and hence K; < X, a contradiction. Thus
N NU < N. Further, since N is a minimal normal subgroup of X, we know
that NNU = 1, and hence KNU = NK;NU = (NNU)K; = K;. Now
X/K=UN/K =UK/K 2U/(KNU) =U/Ky, and so U = (K7 x R).O, where
R=7,, and O =1 or Zy. Then G =N x R, and X; = K;1.0. Further, since G is
not normal in X, we conclude that R does not centralise K7, as in part (ii).

Let Y = KR = N x (K1 X R). Then Y has index at most 2 in X, and
I' is Y-edge-transitive by Lemma 2.4, but it is not Y-arc-transitive. Thus I' =
Cos(Y, K1, K1{y,y '} K1), where y € Y is such that (K1,y) =Y and K; N K{ has
index 2 in K7. We may choose y € N X R = G such that R = (o) and y = ox
where z € N. Then K1 N K{ = K3 N K{ has index 2 in Kj.

We claim that K3 N K¥ = Cg, (). Let 0 € K1 N K?. Then 0 € K;, and so
010" € Ky. Since z € N and N < NKq, we have 0~ 10® = (6~ lzo)z~! € N.
Thus 6~ '0® ' € NNK; = 1, and so 0® = = o. Then o centralises x. It follows
that K1 N K§ < Ck, (z). Clearly, Ck, () < K1 N K{. Thus Cg, (z) = K1 N K{
as claimed.

Since N is a minimal normal subgroup of X and X = NU, we have that N =
(x) x (x72) x -+ x (x°%) where 0; € U. Then Ckg, (z7") = Cg, ()7 < K7' = K;.
The intersection Nf_;Cg, (v°7) < Cx(N) = N, and hence Nf_,Cg, (z77) = 1.
Since each Cg, (z7%) is a maximal subgroup of K7, the Frattini subgroup ®(K7) <
ﬂi?:lCKl (7)) = 1. Hence K, is an elementary abelian 2-group, say K; = Z, for
some [ > 1. Noting that N¥_; Cg, (z7¢) = 1, it follows that [ < k. Suppose that
I =1. Then K; & Zy and hence |Y : G| = 2. Then G<Y, and hence G charY < X.
So G < X, which contradicts the assumption that G is not normal in X. Thus
[ >1, as in part (iii).

Since |K7 : Ck,(z)] = 2, there is 4 € Kj such that Ky = (11) x Cg, ().
Let x1 = x7'2™. Then z; # 1, 2]' = a:l_l and Ck, () = Cg,(z1), and so
K7 = (11) x Ck;, (z1). Since N is a minimal normal subgroup of X = NU, there
are gy = 1,po...,up € U such that N = (zf*) x -+ x (z{*). Let z; = z{" and
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7 =7} where i = 1,2,..., k. Then Z5 = (Cg, (x1))" = CKi‘i(IE#t) = Ck, (x;),
and K; = K} = (1;) x C, (z;). Further, 2]" = 27*"" = (z7")"* = 2; ', and hence
(xi, i) = Doy, as in part (iv).

Now N = Zz’f for an odd prime p and an integer k£ > 1. Suppose that X has a
minimal normal subgroup L # N. Then NNL =1, and LK/K < X/K % Z,, or
Dayy,. It follows that either L < K, or L is cyclic and hence |L| is an odd prime. If
L < K, then L is a 2-group, it is not possible. Hence L is cyclic. It follows that L is
intransitive and semiregular on V' I'. Then I, is a cycle, and hence N is isomorphic
a subgroup of Autl',. It follows that N is cyclic, which is a contradiction. Thus N
is the unique minimal normal subgroup of X, as in part (v). [

5.3. Proof of Theorem 1.1. If G < X, then by Lemma 2.3, we have X; < Ds.
Thus by Lemma 3.1, S = {a,a™',a”, (a™)"'} for some involution 7 € Aut(G), as
in Theorem 1.1 (1).

We assume that G is not normal in X in the following. Let M <1 X be maximal
subject to that I' is a normal cover of I'y;. By lemma 2.2, M is semiregular
on VI and equals the kernel of X acting on VI'y;. Thus, setting Y = X/M and
Y =Ty, X is Y-edge-transitive. Since |M| is odd, by Lemma 2.3, we have M < G.
Therefore, X' is a Y-edge-transitive Cayley graph of G/M, as in Theorem 1.1 (2).

We note that for the normal subgroup defined in the previous paragraph, we have
that G<X if and only if G/M <X /M. Thus, to complete the proof of Theorem 1.1,
we only need to deal with the case where M = 1, that is, I' has no non-trivial
normal quotients of valency 4. Let N be a minimal normal subgroup of X. If N is
intransitive on VI', then by Lemmas 5.5 and 5.6, part (3) of Theorem 1.1 occurs.
If N is transitive on VI", then by Lemmas 5.2-5.3, Theorem 1.1 (4) occurs. g

6. PROOF OF THEOREM 1.4

Let p be an odd prime, and let £ > 1 be an odd integer. Let m be the largest
odd divisor of p* — 1, and let

G =N x (g) = Z; x Zn, < AGL(1,p").

It is easily shown that (g) acts by conjugation transitively on the set of subgroups
of N of order p. We first construct a family of Cayley graphs of valency 4 of the
group G.

Construction 6.1. Let ¢ be such that 1 <¢ <m —1, and let a € N \ {1}. Let
Si ={ag',a” g’ (ag") ™", (a7 g") 1},
It = Cay(G, S;).
The following lemma gives some basic properties about G and T.

Lemma 6.2. Let G be the group and let I'; be the graphs defined above. Then we
have the following statements:
(i) Aut(G) = AT'L(1,p*) = ZF x TL(1, p*);
(ii) I; is edge-transitive, and I'; is connected if and only if i is coprime to m;
(ili) I = Iy, and if p"i = j (mod m), then I; = I.
Proof. See [4, Proposition 12.10] for part (i).

Since Aut(G) = ATL(1,p*) and G < AGL(1,p*), there is an automorphism
7 € Aut(G) such that a” = a=! and g = g. Thus ST = S; and (ag®)” = a~1g
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and ((ag’)™1)™ = (atg*)~!. It follows that I is edge-transitive. It is easily shown
that (ag’,a"tg‘) = G if and only if (m,i) = 1. Hence [} is connected if and only if
1 is coprime to m.

Since g normalises N, there exists ' € N such that (ag’)~! = a’¢g~% and
(a—lgi)—l — (a/)—lg—i. Thus Si — {a/g—i7 (a/)—lg—i, (a/g_i)_l, ((a/)_lg_i)_l}.
Since GL(1, p¥) acts transitively on N\ {1}, there exists an element p € Aut(G) such
that (a/)? = aand g = g. Thus S¥ = {ag™ *,a g™ ", (ag™ "), (a= g™ )71} =
Sj. So [’2 = Fm,i.

Suppose that p™i = j or —j(mod m) for some r > 0. Noting that I',_;
I'j, we may assume that p™i = j(mod m). Since g € GL(1,pF) < TL(1,p"
there exists @ € TL(1,p*) such that § normalises N and ¢’ = gP. Thus S?°
{a'gP" /" TgP "t (a/gP )1, ('~ gP )~ 1), where o/ = a? € N. Since GL(1,p") is
transitive on NV \ {1} and fixes g, there exists ¢ € GL(1,p") such that (S¢")¢ = S;,
and so I; = I. O

%

Il

~—

i

In the rest of this section, we aim to prove that every connected edge-transitive
Cayley graph of G of valency 4 is isomorphic to some I, so completing the proof
of Theorem 1.4.

Let I' = Cay(G,S) be connected, edge-transitive and of valency 4. We will
complete the proof of Theorem 1.4 by a series of steps, beginning with determining
the automorphism group Autl'.

Step 1. G is normal in Autl’, and Autl’ = G x Aut(G, S).

Suppose that G is not normal in Autl’. Since N is the unique minimal normal
subgroup of G, it follows from Theorem 1.1 that either part (3) of Theorem 1.1
occurs with X = Autl", or I'y is a Cayley graph of G/N and isomorphic to one
of the graphs in part (4) of Theorem 1.1. Assume that the later case holds. Then
G/N = Z5, Z7 X Z3, le X Z5 or Z23 X le. Therefore, as G/N = Zm7 we have
that G/N = Z,, = Zs. By definition, m = 5 is the largest odd divisor of p* — 1,
which is not possible since p is an odd prime and k£ > 1 is odd. Thus the former
case occurs, and Autl’ = N x ((H x (g)).0) = Z’; X ((ZY % Zy).Zy), satisfying the
properties in part (3) of Theorem 1.1. In particular, 2 <1 <k, and Cy(N) = 1.

By Theorem 1.1(3), there exist 7o € H \ {1} and zp € N such that H =
(10) x Cu(z). It follows that for each o € H, we have 2§ = zy or z;*. Since
g normalises H and (g) acts transitively on the set of subgroups of N of order
p, it follows that for each * € N and each o0 € H, we have z° = z or =~ '.
Suppose that there exist 21,72 € N \ {1} such that 2 = 2, and 2§ = 5. Then
(z122)° = xlxgl, which equals neither zz2 nor (z122)!, a contradiction. Thus,
as o does not centralise N, we have #° = x~! for all z € N. Since H = Z} with
[ > 2, there exists 7 € H \ (o). Then similarly, 7 inverts all elements of N, that is,
27 = 7! for all elements z € N. However, now z°7 = x for all z € N, and hence
ot € Cy(N) =1, which is a contradiction.

Therefore, G is normal in Autl’, and by Lemma 2.3, we have that Autl’ =
G x Aut(G, S).

Step 2. Autl’ = G x (o) = ZE x ((0) x (f)) = N X Loy = G X Ly, and S =

{aft,a=1f% (afH)t, (a7t f)~1} where a € N and f € G has order m such that
a® = a~'; in particular, I' is not arc-transitive.
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By Lemma 6.2, we have Aut(G) = ATL(1,p") = N x (Z,._1 x Zy). Since k is
odd, Aut(G) has a cyclic Sylow 2-subgroup, and thus all involutions of Aut(G) are
conjugate. It is easily shown that every involution of Aut(G) inverts all elements of
N. Since I' is edge-transitive and Autl” = G x Aut(G, S), Aut(G, S) has even order.
On the other hand, since G is of odd order, by Lemma 2.3, we have that Aut(G, S)
is isomorphic to a subgroup of Dg. Further, since a Sylow 2-subgroup of Aut(G) is
cyclic, we have that Aut(G, S) = (o) = Zs or Z4. It follows that o fixes an element
of G of order m, say f € G such that o(f) = m and f = f. Then G = N x (f),
and X = Autl’ =G x (o) = N x (f,0).

Since I" is connected, (S) = G and Aut(G, S) is faithful on S. Hence we may write
S = {z,y, 271, y~1} such that either o(c) = 2 and (7,y)° = (y,7), or o(c) = 4
and (z,y)° = (y,x7!), refer to Lemma 3.1. Now x = af?, where a € N and
i is an integer. Suppose that o(c) = 4. Then y = 27 = (af")’ = a°f*, and
df7i=f"la = (af) L =2t =2 =a fi = a ' fi. It follows that f2 =1,
and since f has odd order, f® = 1. Thus x = a and y = 2° = a°, belonging to
N, and so (S) < N < @G, which is a contradiction. Thus ¢ is an involution, and
so (z,9)” = (y,2), = aft, and y = 2° = a° f* = a~'f*. In particular, I' is not
arc-transitive, and S = {af%, a=f?, (af") 71, (a7 fH) 71},

Step 8. I' = I'; for some j such that 1 < j < ™= and (j,m) = 1.

By Step 2, we may assume that Autl’ = N x (f, o) < AGL(1,p"). Since g € G
has order m, it follows from Hall’s theorem that there exists b € N such that
g® € (f.o). So f" = g" for some integer r. Let T = o¢® . Then (g,7) =
(f,0) = Zoym, and G = N x (g) and Autl’ = N x (g,7). Further, T := §* ' =
{ag™,a=g"", (ag") L, (atg"")~1}. Let j = ir (modm) and 1 < j < m — 1.
Then T = {ag?,a g7, (ag’)™1, (a71g?)7 1}, and (j,m) = 1 as I' = Cay(G,T) is
connected. By Lemma 6.2 (iii), I'; = I),—;, and so the statement in Step 3 is true.

[

Step 4. Let I'; and I'; be as in Construction 6.1 with (i,m) = (j,m) = 1. Then
I'; = T if and only if pi = j or —j(mod m) for some r > 0.

By Lemma 6.2, we only need to prove that if I'; = I'; then p"i = j or —j(mod m)
for some r > 0. Thus suppose that I; = I';. By Step 2, we have Autl}; = Autl; =
G % Zs. Tt follows that I'; and I; are so-called CI-graphs, see [13, Theorem6.1].
Thus S} = S; for some v € Aut(G). Since N is a characteristic subgroup of G, this
~ induces an automorphism of G/N = (g) such that S; = S;, where S; = {7,7 '}
and S; = {g,g 77} are the images of S; and S; under G — G/N, respectively.
Thus (3°)Y = @ or g 7. Since Aut(G) = ATL(1,p"), it follows that for each
element p € Aut(G), we have g° = cg?” for some ¢ € N and some integer r with
0<r<k—1 Thus (g°)" =g* ", and hence p"i = j or —j (mod m).

This completes the proof of Theorem 1.4. O
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