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Abstract. Lin and Chang gave a generating function of convex polyominoes with an m + 1 by n + 1
minimal bounding rectangle. Gessel showed that their result implies that the number of such polyominoes
is

m + n + mn

m + n

(
2m + 2n

2m

)
− 2mn

m + n

(
m + n

m

)2

.

We show that this result can be derived from some binomial coefficients identities related to the generating
function of Jacobi polynomials.

Some (binomial coefficients) identities arise from alternative solutions of combinato-
rial problems and incidentally give added significance to doing problems the “hard”
way.
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1 Introduction

A polyomino is a connected union of squares in the plane whose vertices are lattice points
such that the interior is also connected. A polyomino is called convex if its intersection with
any horizontal or vertical line is either empty or a line segment. Any convex polyomino has
a minimal bounding rectangle whose perimeter is the same as that of the polyomino. Delest
and Viennot [4] found a generating function for counting convex polyominoes by perimeter and
derived that the number of convex polyominoes with perimeter 2n + 8, for n ≥ 0, is

(2n + 11)4n − 4(2n + 1)
(

2n

n

)
. (1)
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An elementary proof of (1) was later given by Kim [9]. Furthermore, a refinement of Delest and
Viennot’s formula was obtained by Gessel [6] (see also Bousquet-Mélou [2]), who showed that
the number of convex polyominoes with an (m + 1)× (n + 1) minimal bounding rectangle is

m + n + mn

m + n

(
2m + 2n

2m

)
− 2mn

m + n

(
m + n

m

)2

. (2)

Since Gessel derived (2) from the generating function of Lin and Chang [10] (see Bousquet-
Mélou and Guttman [3] for a different proof), it is natural to ask whether Kim’s elementary
approach can be generalized to prove (2). The aim of this paper is to give an affirmative answer
to this question. It turns out that the resulting binomial coefficients identities are related to the
generating function of Jacobi polynomials.

In the next section, we translate the enumeration of convex polyominoes with fixed minimal
bounding rectangle into that of two pairs of non-intersecting lattice paths, which results in the
evaluation of a quadruple sum of binomial coefficients. In Section 3, we establish some binomial
coefficients identities which lead to the evaluation of the desired sums.

2 Non-Intersecting lattice paths and determinant formula

A lattice path is a sequence of points (s0, s1, . . . , sn) in the plane Z2 such that either si − si−1 =
(1, 0), (0, 1) for all i = 1, . . . , n or si − si−1 = (1, 0), (0,−1) for all i = 1, . . . , n. Let Pm,n be the
set of convex polyominoes with an m + 1 by n + 1 minimal bounding rectangle. As illustrated
in Figure 1, any polyomino in Pm,n can be characterized by the following four lattice paths L1,
L2, L3 and L4:

L1 : (0, b1) −→ (a1, 0),
L2 : (m + 1− a2, n + 1) −→ (m + 1, n + 1− b2),
L3 : (a1 + 1, 0) −→ (m + 1, n− b2),
L4 : (0, b1 + 1) −→ (m− a2, n + 1),

such that any two of them have no points in common.

n + 1

m + 1

s
L4

s

L1 s
L3

sL2 s

a1

b1

m + 1− a2

n + 1− b2

s

s
s

s

Figure 1: A convex polyomino with an m + 1 by n + 1 minimal bounding rectangle.
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The following lemma can be readily proved by switching the tails of two lattice paths, which
is also a special case of a more general result in [7].

Lemma 1. Let a, b, c, d and a′, b′, c′, d′ be nonnegative integers such that a′ > a, b′ < b, c > a,
d > b, c′ > a′ and d′ > b′. Then the number of pairs of non-intersecting lattice paths (P1,P2)
such that P1 : (a, b) −→ (c, d) and P2 : (a′, b′) −→ (c′, d′) is equal to(

c− a + d− b

c− a

)(
c′ − a′ + d′ − b′

c′ − a′

)
−

(
c− a′ + d− b′

c− a′

)(
c′ − a + d′ − b

c′ − a

)
.

From Lemma 1 it follows that the cardinality of Pm,n is given by

m∑
a1,a2=0

n∑
b1,b2=0

[(
a1 + b1 − 2

a1 − 1

)(
a2 + b2 − 2

a2 − 1

)
−

(
a1 + a2 + n−m− 2

n− 1

)(
b1 + b2 + m− n− 2

m− 1

)]

×
[(

m + n− a2 − b1

m− a2

)(
m + n− a1 − b2

m− a1

)
−

(
m + n− a1 − a2

n + 1

)(
m + n− b1 − b2

m + 1

)]
, (3)

Note that in (3) we have adopted the convention that
(−2
−1

)
= 1, which corresponds to a1 = b1 = 0

or a2 = b2 = 0. In this case the path L1 or L2 reduces to a point.

We next split the sum (3) into three parts: the a1 = a2 = b1 = b2 = 0 term,

S0 =
(

m + n

m

)2

−
(

m + n

m + 1

)(
m + n

n + 1

)
; (4)

the sum over (a1, a2, b1, b2) such that a1 = b1 = 0 and a2, b2 > 0 or a2 = b2 = 0 and a1, b1 > 0,

S1 = 2
m∑

a=1

n∑
b=1

(
a + b− 2

a− 1

) [(
m + n− a

m− a

)(
m + n− b

m

)
−

(
m + n− a

n + 1

)(
m + n− b

m + 1

)]
;

and the sum over a1, a2, b1, b2 ≥ 1. Expanding the product (a11a22−a12a21)(b11b22− b12b21) and
summing the corresponding terms we can rewrite the last part as S2 − S3 − S4 + S5, where

S2 =
m∑

a1,a2=1

n∑
b1,b2=1

(
a1 + b1 − 2

a1 − 1

)(
a2 + b2 − 2

a2 − 1

)(
m + n− a2 − b1

m− a2

)(
m + n− a1 − b2

m− a1

)
,

S3 =
m∑

a1,a2=1

n∑
b1,b2=1

(
a1 + a2 + n−m− 2

n− 1

)(
b1 + b2 + m− n− 2

m− 1

)

×
(

m + n− a2 − b1

m− a2

)(
m + n− a1 − b2

m− a1

)
,

S4 =
m∑

a1,a2=1

n∑
b1,b2=1

(
a1 + b1 − 2

a1 − 1

)(
a2 + b2 − 2

a2 − 1

)(
m + n− a1 − a2

n + 1

)(
m + n− b1 − b2

m + 1

)
,

and the last sum S5 is 0 because the sum of the numerator parameters of binomial coefficients
are less than that of the denominator parameters.
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We now proceed to evaluate the four sums S1, S2, S3 and S4 by using the following form of
the Chu-Vandermonde formula ∑

i+j=p

(
i

r

)(
j

s

)
=

(
p + 1

r + s + 1

)
.

• Applying the Chu-Vandermonde formula to the b-sums for S1 yields

S1 = 2
m∑

a=1

[(
m + n− a

n

)(
m + n + a− 1

n− 1

)
−

(
m + n− a

n + 1

)(
m + n + a− 1

n− 2

)]
.

As (
m + n− a

n

)(
m + n + a− 1

n− 1

)
−

(
m + n− a

n + 1

)(
m + n + a− 1

n− 2

)
=

(
m + n− a + 1

n + 1

)(
m + n + a− 1

n− 1

)
−

(
m + n− a

n + 1

)(
m + n + a

n− 1

)
,

by telescoping it follows that

S1 = 2
(

m + n

n + 1

)(
m + n

n− 1

)
. (5)

The numbers S0 and S1 have combinatorial interpretations in terms of parallelogram poly-
nominoes and directed and convex polyominoes (see [3, 4]).

• By the Chu-Vandermonde formula we have
n∑

b1=1

(
a1 + b1 − 2

a1 − 1

)(
m + n− a2 − b1

m− a2

)
=

(
m + n + a1 − a2 − 1

n− 1

)
,

n∑
b2=1

(
a2 + b2 − 2

a2 − 1

)(
m + n− a1 − b2

m− a1

)
=

(
m + n− a1 + a2 − 1

n− 1

)
.

Hence

S2 =
m∑

a1,a2=1

(
m + n + a1 − a2 − 1

n− 1

)(
m + n− a1 + a2 − 1

n− 1

)
.

Setting a = a1 − a2 we can rewrite the above sum as

S2 =
m−1∑

a=1−m

#{(a1, a2) ∈ [1,m]2 | a1 − a2 = a} ·
(

m + n + a− 1
n− 1

)(
m + n− a− 1

n− 1

)

=
m∑

a=−m

(m− |a|)
(

m + n + a− 1
n− 1

)(
m + n− a− 1

n− 1

)

= m

m∑
a=−m

(
m + n + a− 1

n− 1

)(
m + n− a− 1

n− 1

)

− 2
m∑

a=1

a

(
m + n + a− 1

n− 1

)(
m + n− a− 1

n− 1

)
.
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By the Chu-Vandermonde formula we have

m∑
a=−m

(
m + n + a− 1

n− 1

)(
m + n− a− 1

n− 1

)
=

(
2m + 2n− 1

2n− 1

)
.

Since

2a

(
m + n + a− 1

n− 1

)(
m + n− a− 1

n− 1

)
= n

(
m + n + a− 1

n

)(
m + n− a

n

)
− n

(
m + n + a

n

)(
m + n− a− 1

n

)
,

telescoping yields

m∑
a=1

2a

(
m + n + a− 1

n− 1

)(
m + n− a− 1

n− 1

)
= n

(
m + n

n

)(
m + n− 1

n

)
.

Hence

S2 =
mn

m + n

(
2m + 2n

2m

)
− mn

m + n

(
m + n

m

)2

. (6)

• Summing the a2-sum and b2-sum in S3 by the Chu-Vandermonde formula yields

m∑
a2=1

(
a1 + a2 + n−m− 2

n− 1

)(
m + n− a2 − b1

m− a2

)
=

(
2n + a1 − b1 − 1

a1 − 1

)
,

n∑
b2=1

(
b1 + b2 + m− n− 2

m− 1

)(
m + n− a1 − b2

m− a1

)
=

(
2m− a1 + b1 − 1

b1 − 1

)
.

Hence, replacing a1 and b1 by a and b, respectively, we get

S3 =
m∑

a=1

n∑
b=1

(
2m− a + b− 1

b− 1

)(
2n + a− b− 1

a− 1

)

=
m∑

a=1

n∑
b=1

(
m + n + a− b− 1

m + a− 1

)(
m + n− a + b− 1

n + b− 1

)
,

by the substitutions a → m− a + 1 and b → n− b + 1.

• Summing the a1-sum and b2-sum in S4 by the Chu-Vandermonde formula yields

m∑
a1=1

(
a1 + b1 − 2

a1 − 1

)(
m + n− a1 − a2

n + 1

)
=

(
m + n− a2 + b1 − 1

n + b1 + 1

)
,

n∑
b2=1

(
a2 + b2 − 2

a2 − 1

)(
m + n− b1 − b2

m + 1

)
=

(
m + n + a2 − b1 − 1

m + a2 + 1

)
.
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Replacing a2 and b1 by a and b, respectively, we obtain

S4 =
m−2∑
a=1

n−2∑
b=1

(
m + n + a− b− 1

m + a + 1

)(
m + n− a + b− 1

n + b + 1

)
,

for the summand is zero if a = m− 1,m or b = n− 1, n.

Remark. As pointed out by one of the referees, since the Chu-Vandermonde formula has a
simple combinatorial proof in terms of lattice paths, it may be possible that some of the series
evaluations in this section can be reduced to simple combinatorial arguments.

We shall complete the evaluation of S3 and S4 in the next section.

3 Jacobi polynomials and evaluation of S3 and S4

Set
∆ :=

√
1− 2x− 2y − 2xy + x2 + y2.

The following identity is equivalent to the generating function of Jacobi polynomials:

∞∑
m,n=0

(
m + n + α

m

)(
m + n + β

n

)
xmyn =

2α+β

∆(1− x + y + ∆)α(1 + x− y + ∆)β
. (7)

The reader is referred to [1, p. 298] and [11, p. 271] for two classical analytical proofs and to [5]
for a combinatorial proof.

Applying the operator x ∂
∂x + y ∂

∂y + 2 to the α = β = 1 case of (7) yields:

∑
m,n≥1

m + n

2

(
m + n− 1

m

)(
m + n− 1

n

)
xmyn =

xy

∆3
. (8)

Theorem 2. There holds

S3 =
mn

2(m + n)

(
m + n

m

)2

. (9)

Proof. Consider the generating function of S3:

F (x, y) :=
∞∑

m,n=0

m∑
a=1

n∑
b=1

(
m + n− a + b− 1

m− a

)(
m + n + a− b− 1

n− b

)
xmyn

=
∞∑

a=1

∞∑
b=1

xayb
∞∑

m=a

∞∑
n=b

(
m + n− a + b− 1

m− a

)(
m + n + a− b− 1

n− b

)
xm−ayn−b

=
∞∑

a,b=1

xayb
∞∑

m,n=0

(
m + n + 2b− 1

m

)(
m + n + 2a− 1

n

)
xmyn.
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Applying (7) to the inner double sum yields

F (x, y) =
∞∑

a,b=1

xayb 22a+2b−2

∆(1− x + y + ∆)2b−1(1 + x− y + ∆)2a−1
=

xy

∆3
.

The theorem then follows from (8).

Theorem 3. There holds

S4 =
(

m + n

m

)2

+
(

m + n

m− 1

)(
m + n

n− 1

)
+

mn

2(m + n)

(
m + n

m

)2

−
(

2m + 2n

2n

)
. (10)

Proof. Consider the generating function of S4:

G(x, y) :=
∞∑

m,n=0

m−2∑
a=1

n−2∑
b=1

(
m + n− a + b− 1

m− a− 2

)(
m + n + a− b− 1

n− b− 2

)
xmyn

=
∞∑

a=1

∞∑
b=1

∞∑
m=a+2

∞∑
n=b+2

(
m + n− a + b− 1

m− a− 2

)(
m + n + a− b− 1

n− b− 2

)
xmyn

=
∞∑

a,b=1

xa+2yb+2
∞∑

m,n=0

(
m + n + 2b + 3

m

)(
m + n + 2a + 3

n

)
xmyn.

Applying (7) to the inner double sum yields

G(x, y) =
∞∑

a,b=1

xa+2yb+2 22a+2b+6

∆(1− x + y + ∆)2b+3(1 + x− y + ∆)2a+3

=
16x3y3

∆3(1− x− y + ∆)4
.

Set

f(x, y) :=
∞∑

m,n=0

(
m + n

m

)
xmyn =

1
1− x− y

.

By bisecting twice, we get the terms of even powers of x and y in f(x, y):
∞∑

m,n=0

(
2m + 2n

2m

)
x2my2n =

1
4
(f(x, y) + f(−x, y) + f(x,−y) + f(−x,−y))

i.e.,
∞∑

m,n=0

(
2m + 2n

2m

)
xmyn =

1− x− y

∆2
.

Now, the α = β = 0 and α = β = 2 cases of (7) read:
∞∑

m,n=0

(
m + n

m

)2

xmyn =
1
∆

,

∞∑
m,n=1

(
m + n

m− 1

)(
m + n

n− 1

)
xmyn =

4xy

∆(1− x− y + ∆)2
.
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As
16x3y3

∆3(1− x− y + ∆)4
=

1
∆

+
4xy

∆(1− x− y + ∆)2
+

xy

∆3
− 1− x− y

∆2
,

extracting the coefficients of xmyn in the above equation completes the proof.

Clearly, combining (4)–(6), (9) and (10) we obtain formula (2).

Remark. Further generalizations of identities (9) and (10) have appeared in another paper [8]
of the authors.
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