FACTORIZATION THEOREM FOR PROJECTIVE VARIETIES WITH FINITE QUOTIENT SINGULARITIES

YI HU

1. STATEMENTS OF RESULTS

In this paper, we will assume that the ground field is \mathbb{C} .

Theorem 1.1. Let $\phi: X \to Y$ be a birational morphism between two projective varieties with at worst finite quotient singularities. Then there is a smooth polarized projective $(GL_n \times \mathbb{C}^*)$ -variety (M, \mathcal{L}) such that

- (1) \mathcal{L} is a very ample line bundle and admits two (general) linearizations \mathcal{L}_1 and \mathcal{L}_2 with $M^{ss}(\mathcal{L}_1) = M^s(\mathcal{L}_1)$ and $M^{ss}(\mathcal{L}_2) = M^s(\mathcal{L}_2)$.
- (2) The geometric quotient $M^s(\mathcal{L}_1)/(\operatorname{GL}_n \times \mathbb{C}^*)$ is isomorphic to X and the geometric quotient $M^s(\mathcal{L}_2)/(\operatorname{GL}_n \times \mathbb{C}^*)$ is isomorphic to Y.
- (3) The two linearizations \mathcal{L}_1 and \mathcal{L}_2 differ only by characters of the \mathbb{C}^* -factor, and \mathcal{L}_1 and \mathcal{L}_2 underly the same linearization of the GL_n -factor. Let $\underline{\mathcal{L}}$ be this underlying GL_n linearization. Then we have $M^{ss}(\underline{\mathcal{L}}) = M^s(\underline{\mathcal{L}})$.

As a consequence, we obtain

Theorem 1.2. Let X and Y be two birational projective varieties with at worst finite quotient singularities. Then Y can be obtained from X by a sequence of GIT weighted blowups and weighted blowdowns.

The factorization theorem for *smooth* projective varieties was proved by Wlodarczyk and Abramovich-Karu-Matsuki-Wlodarczyka a few years ago ([AKMW02], [Wlodarczyk00], [Wlodarczyk03]). Hu and Keel, in [Hu-Keel99], gave a short proof by interpreting it as VGIT wall-crossing flips of \mathbb{C}^* -action. My attention to varieties with finite quotient singularities was brought out by Yongbin Ruan. The proof here uses the same idea of [Hu-Keel99] coupled with a key suggestion of Dan Abramovich which changed the route of my original approach. Only the first paragraph of §2 uses a construction of [Hu-Keel99] which we reproduce for completeness. The rest is independent. Theorem 1.1 reinforces the philosophy that began in [Hu-Keel98]: Birational geometry of \mathbb{Q} -factorial projective varieties is a special case of VGIT.

I thank Yongbin Ruan for asking me about the factorization problem of projective orbifolds in the summer of 2002 when I visited Hong Kong University of Science and Technology. I sincerely thank Dan Abramovich for suggesting to me to use the results of Edidin-Hassett-Kresch-Vistoli ([EHKV01]) and the results of Kirwan ([Kirwan85]). I knew

the results of [EHKV01] and have had the paper with me since it appeared in the ArXiv, but I did not realize that it can be applied to this problem until I met Dan in the Spring of 2004.

2. Proof of Theorem 1.1.

By the construction of [Hu-Keel99] (cf. $\S 2$ of [Hu-Keel98]) , there is a polarized \mathbb{C}^* -projective normal variety (Z,L) such that L admits two (general) linearizations L_1 and L_2 such that

- (1) $Z^{ss}(L_1) = Z^s(L_1)$ and $Z^{ss}(L_2) = Z^s(L_2)$.
- (2) \mathbb{C}^* acts freely on $Z^s(L_1) \cup Z^s(L_2)$.
- (3) The geometric quotient $Z^s(L_1)/\mathbb{C}^*$ is isomorphic to X and the geometric quotient $Z^s(L_2)/\mathbb{C}^*$ is isomorphic to Y.

The construction of Z is short, so we reproduce it here briefly. Choose an ample cartier divisor D on Y. Then there is an effective divisor E on X whose support is exceptional such that $\phi^*D = A + E$ with A ample on X. Let C be the image of the injection $\mathbb{N}^2 \to N^1(X)$ given by $(a,b) \to aA + bE$. The edge generated by ϕ^*D divides C into two chambers: the subcone C_1 generated by A and A and A and the subcone A generated by A and A and the subcone A generated by A and A and A and the subcone A generated by A and A and A and the subcone A generated by A and A and A and the subcone A generated by A and A and A and the subcone A generated by A and A and A and the subcone A and is acted upon by A and A we subtract A and A are subtracted by A and A and A and A are subtracted by an ample line bundle A and A and A and A are subtracted by an ample line bundle A and A and A and A and A are subtracted by algebra, and A and A and the projection formula.

Now, since \mathbb{C}^* acts freely on $Z^s(L_1) \cup Z^s(L_2)$, we deduce that $Z^s(L_1) \cup Z^s(L_2)$ has at worse finite quotient singularities. By Corollary 2.20 and Remark 2.11 of [EHKV01], there is a *smooth* GL_n - algebraic space U such that the geometric quotient $\pi: U \to U/\operatorname{GL}_n$ exists and is isomorphic to $Z^s(L_1) \cup Z^s(L_2)$ for some n>0. Since $Z^s(L_1) \cup Z^s(L_2)$ is quasiprojective, we see that so is U. In fact, since $Z^s(L_1) \cup Z^s(L_2)$ admits a \mathbb{C}^* -action, all of the above statements can be made \mathbb{C}^* -equivariant. In other words, U admits a $\operatorname{GL}_n \times \mathbb{C}^*$ action and a very ample line bundle $L_U = \pi^*(L^k|_{Z^s(L_1) \cup Z^s(L_2)})$ (for some fixed sufficiently large k) with two $(\operatorname{GL}_n \times \mathbb{C}^*)$ - linearizations $L_{U,1}$ and $L_{U,2}$ such that

- (1) $U^{ss}(L_{U,1}) = U^s(L_{U,1})$ and $U^{ss}(L_{U,2}) = U^s(L_{U,2})$.
- (2) The geometric quotient $U^s(L_{U,1})/(\operatorname{GL}_n \times \mathbb{C}^*)$ is isomorphic to X and the geometric quotient $U^s(L_{U,2})/(\operatorname{GL}_n \times \mathbb{C}^*)$ is isomorphic to Y. Moreover,
- (3) the two linearizations $L_{U,1}$ and $L_{U,2}$ differ only by characters of the \mathbb{C}^* factor.

Since we assume that L_U is very ample, we have an $(GL_n \times \mathbb{C}^*)$ - equivariant embedding of U in a projective space such that the pullback of $\mathcal{O}(1)$ is L_U . Let \overline{U} be the compactification of U which is the closure of U in the projective space. Let $L_{\overline{U}}$ be the pullback of $\mathcal{O}(1)$ to \overline{U} . This extends L_U and in fact extends the two linearizations $L_{U,1}$ and $L_{U,2}$ to $L_{\overline{U},1}$ and

 $L_{\overline{U},2}$, respectively, such that

$$\overline{U}^{ss}(L_{\overline{U},1}) = \overline{U}^{s}(L_{\overline{U},1}) = U^{ss}(L_{U,1}) = U^{s}(L_{U,1})$$

and

$$\overline{U}^{ss}(L_{\overline{U},2}) = \overline{U}^{s}(L_{\overline{U},2}) = U^{ss}(L_{U,2}) = U^{s}(L_{U,2}).$$

It follows that the geometric quotient $\overline{U}^s(L_{\overline{U},1})/(\mathrm{GL}_n \times \mathbb{C}^*)$ is isomorphic to X and the geometric quotient $\overline{U}^s(L_{\overline{U},2})/(\mathrm{GL}_n \times \mathbb{C}^*)$ is isomorphic to Y.

Resolving the singularities of \overline{U} , $(\operatorname{GL}_n \times \mathbb{C}^*)$ -equivariantly, we will obtain a smooth projective variety M. Notice that $\overline{U}^s(L_{\overline{U},1}) \cup \overline{U}^s(L_{\overline{U},2}) = U^s(L_{U,1}) \cup U^s(L_{U,2}) \subset U$ is smooth, hence we can arrange the resolution so that it does not affect this open subset. Let $f: M \to \overline{U}$ be the resolution morphism and Q be any relative ample line bundle over M. Then, by the relative GIT (Theorem 3.11 of [Hu96]), there is a positive integer m_0 such that for any fixed integer $m \geq m_0$, we obtain a very ample line bundle over M, $\mathcal{L} = f^*L^m_{\overline{U}} \otimes Q$, with two linearizations \mathcal{L}_1 and \mathcal{L}_2 such that

- $(1) \ M^{ss}(\mathcal{L}_1) = M^s(\mathcal{L}_1) = f^{-1}(\overline{U}^s(L_{\overline{U},1})) \text{ and } M^{ss}(\mathcal{L}_2) = M^s(\mathcal{L}_2) = f^{-1}(\overline{U}^s(L_{\overline{U},2})).$
- (2) The geometric quotient $M^s(\mathcal{L}_1)/(\mathrm{GL}_n \times \mathbb{C}^*)$ is isomorphic to $\overline{U}^s(L_{\overline{U},1})/(\mathrm{GL}_n \times \mathbb{C}^*)$ which is isomorphic to X, and, the geometric quotient $M^s(\mathcal{L}_2)/(\mathrm{GL}_n \times \mathbb{C}^*)$ is isomorphic to $\overline{U}^s(L_{\overline{U},2})/(\mathrm{GL}_n \times \mathbb{C}^*)$ which is isomorphic to Y.

Finally, we note from the construction that the two linearizations \mathcal{L}_1 and \mathcal{L}_2 differ only by characters of the \mathbb{C}^* -factor, and \mathcal{L}_1 and \mathcal{L}_2 underly the same linearization of the GL_n -factor. Let $\underline{\mathcal{L}}$ be this underlying GL_n - linearization. It may happen that $M^{ss}(\underline{\mathcal{L}}) \neq M^s(\underline{\mathcal{L}})$. But if this is the case, we can then apply the method of Kirwan's canonical desingularization ([Kirwan85]), but we need to blow up ($\mathrm{GL}_n \times \mathbb{C}^*$)-equivarianly instead of just GL_n -equivariantly. More precisely, if $M^{ss}(\underline{\mathcal{L}}) \neq M^s(\underline{\mathcal{L}})$, then there exists a reductive subgroup R of GL_n of dimension at least 1 such that

$$M_R^{ss}(\underline{\mathcal{L}}) := \{ m \in M^{ss}(\underline{\mathcal{L}}) : m \text{ is fixed by } R \}$$

is not empty. Now, because the action of \mathbb{C}^* and the action of GL_n commute, using the Hilbert-Mumford numerical criterion (or by manipulating invariant sections, or by other direct arguments), we can check that

$$\mathbb{C}^* M^{ss}(\underline{\mathcal{L}}) = M^{ss}(\underline{\mathcal{L}}),$$

in particular,

$$\mathbb{C}^*M_R^{ss}(\underline{\mathcal{L}}) = M_R^{ss}(\underline{\mathcal{L}}).$$

Hence, we have

$$(\operatorname{GL}_n \times \mathbb{C}^*)M_R^{ss} = \operatorname{GL}_n M_R^{ss} \subset M \setminus M^s(\underline{\mathcal{L}}).$$

Therefore, we can resolve the singularities of the closure of the union of $GL_n M_R^{ss}$ in M for all R with the maximal $r = \dim R$ and blow M up along the proper transform of this closure. Repeating this process at most r times gives us a desired nonsingular $(GL_n \times \mathbb{C}^*)$ -variety with GL_n -semistable locus coincides with the GL_n -stable locus (see pages 157-158 of [GIT94]). Obviously, Kirwan's process will not affect the open subset $M^{ss}(\mathcal{L}_1) \cup$

 $M^{ss}(\mathcal{L}_2) = M^s(\mathcal{L}_1) \cup M^s(\mathcal{L}_2) \subset M^s(\underline{\mathcal{L}})$. Hence, this will allow us to assume that $M^{ss}(\underline{\mathcal{L}}) = M^s(\underline{\mathcal{L}})$.

This completes the proof of Theorem 1.1.

The proof implies the following

Corollary 2.1. Let $\phi: X \to Y$ be a birational morphism between two projective varieties with at worst finite quotient singularities. Then there is a polarized projective \mathbb{C}^* -variety $(\underline{M}, \underline{L})$ with at worst finite quotient singularities such that X and Y are isomorphic to two geometric GIT quotients of $(\underline{M}, \underline{L})$ by \mathbb{C}^* .

3. Proof of Theorem 1.2

Let $\phi: X - --> Y$ be the birational map. By passing to the (partial) desingularization of the graph of ϕ , we may assume that ϕ is a birational morphism. This reduces to the case of Theorem 1.1.

We will then try to apply the proof of Theorem 4.2.7 of [Dolgachev-Hu98], see also [Thaddeus96]. Unlike the torus case for which Theorem 4.2.7 applies almost automatically, here, because $(GL_n \times \mathbb{C}^*)$ involves a non-Abelian group, the validity of Theorem 4.2.7 must be verified.

From the last section, the two linearizations \mathcal{L}_1 and \mathcal{L}_2 differ only by characters of the \mathbb{C}^* -factor, and \mathcal{L}_1 and \mathcal{L}_2 underly the same linearization of the GL_n -factor. We denote this common GL_n -linearized line bundle by $\underline{\mathcal{L}}$. For any character χ of the \mathbb{C}^* factor, let \mathcal{L}_χ be the corresponding $(\mathrm{GL}_n \times \mathbb{C}^*)$ -linearization. Note that \mathcal{L}_χ also underlies the GL_n -linearization $\underline{\mathcal{L}}$. From the constructions of the compactification $\overline{\mathcal{U}}$ and the resolution M, we know that $M^{ss}(\underline{\mathcal{L}}) = M^s(\underline{\mathcal{L}})$. In particular, GL_n acts with only finite isotropy subgroups on $M^{ss}(\underline{\mathcal{L}}) = M^s(\underline{\mathcal{L}})$. Now to go from \mathcal{L}_1 to \mathcal{L}_2 , we will (only) vary the characters of the \mathbb{C}^* -factor, and we will encounter a "wall" when a character χ gives $M^{ss}(\mathcal{L}_\chi) \setminus M^s(\mathcal{L}_\chi) \neq \emptyset$. In such a case, since $M^{ss}(\mathcal{L}_\chi) \subset M^{ss}(\underline{\mathcal{L}}) = M^s(\underline{\mathcal{L}})$ which implies that GL_n operates on $M^{ss}(\mathcal{L}_\chi)$ with only finite isotropy subgroups, the only isotropy subgroups of $(\mathrm{GL}_n \times \mathbb{C}^*)$ of positive dimensions have to come from the factor \mathbb{C}^* , and hence we conclude that such isotropy subgroups of $(\mathrm{GL}_n \times \mathbb{C}^*)$ on $M^{ss}(\mathcal{L}_\chi)$ have to be one-dimensional (possibly disconnected) diagonalizable subgroups. This verifies the condition of Theorem 4.2.7 of [Dolgachev-Hu98] and hence its proof goes through without changes.

4. GIT ON PROJECTIVE VARIETIES WITH FINITE QUOTIENT SINGULARITES

The proof in §2 can be modified slightly to imply the following.

¹Theorem 4.2.7 of [Dolgachev-Hu98] assumes that the isotropy subgroup corresponding to a wall is a one-dimensional (possibly disconnected) diagonalizable group. The main theorems of [Thaddeus96] assume that the isotropy subgroup is \mathbb{C}^* (see his Hypothesis (4.4), page 708).

Theorem 4.1. Assume that a reductive algebraic group G acts on a polarized projective variety (X, L) with at worst finite quotient singularities. Then there exists a <u>smooth</u> polarized projective variety (M, \mathcal{L}) which is acted upon by $(G \times \operatorname{GL}_n)$ for some n > 0 such that for any linearization L_{χ} on X, there is a corresponding linearization \mathcal{L}_{χ} on M such that $M^{ss}(\mathcal{L}_{\chi})//(G \times \operatorname{GL}_n)$ is isomorphic to $X^{ss}(L_{\chi})//G$. Moreover, if $X^{ss}(L_{\chi}) = X^{s}(L_{\chi})$, then $M^{ss}(\mathcal{L}_{\chi}) = M^{s}(\mathcal{L}_{\chi})$.

This is to say that all GIT quotients of the singular(X, L) (L is fixed) by G can be realized as GIT quotients of the smooth(M, L) by $G \times GL_n$. In general, this realization is a strict inclusion as (M, \mathcal{L}) may have more GIT quotients than those coming from (X, L).

When the underlying line bundle L is changed, the compatification \overline{U} is also changed, so will M. Nevertheless, it is possible to have a similar construction to include a finitely many different underlying ample line bundles. However, Theorem 4.1 should suffice in most practical problems because: (1) in most natural quotient and moduli problems, one only needs to vary linearizations of a fixed ample line bundle; (2) Variation of the underlying line bundle often behaves so badly that the condition of Theorem 4.2.7 of [Dolgachev-Hu98] can not be verified.

REFERENCES

[AKMW02] Dan Abramovich, Kalle Karu, Kenji Matsuki, Jaroslaw Wlodarczyk *Torification and Factorization of Birational Maps*, J. Amer. Math. Soc. **15** (2002), no. 3, 531–572.

[Dolgachev-Hu98] I. Dolgachev and Y. Hu: *Variation of Geometric Invariant Theory*, with an appendix by Nicolas Ressayr. Publ. Math. I.H.E.S. **78** (1998), 1 – 56.

[EHKV01] D. Edidin, B. Hassett, A. Kresch, A. Vistoli, *Brauer Groups and Quotient Stacks*. Amer. J. Math. 123 (2001), no. 4, 761–777.

[Hu96] Y. Hu, Relative geometric invariant theory and universal moduli spaces. Internat. J. Math. 7 (1996), no. 2, 151–181.

[Hu-Keel98] Y. Hu and S. Keel, *Mori dream spaces and GIT*. Dedicated to William Fulton on the occasion of his 60th birthday. Michigan Math. J. 48 (2000), 331–348.

[Hu-Keel99] Y. Hu and S. Keel, *A GIT proof of Włodarczyk's weighted factorization theorem*, math.AG/9904146. [Kirwan85] F. Kirwan, *Partial desingularisations of quotients of nonsingular varieties and their Betti numbers*. Ann. of Math. (2) 122 (1985), no. 1, 41–85.

[GIT94] D. Mumford, J. Fogarty, and F. Kirwan, *Geometric Invariant Theory*, Third Edition. Springer-Verlag, Berlin, New York, 1994.

[Thaddeus96] M. Thaddeus, *Geometric Invariant Theory and Flips*. Journal of the A. M. S. **9** (1996), 691–723. [Wlodarczyk00] Jaroslaw Wlodarczyk, *Birational cobordisms and factorization of birational maps*. J. Algebraic

Geom. 9 (2000), no. 3, 425–449.

[Wlodarczyk03] Jaroslaw Wlodarczyk, *Toroidal varieties and the weak factorization theorem*. Invent. Math. 154 (2003), no. 2, 223–331.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ARIZONA, TUCSON, AZ 85721, USA

E-mail address: yhu@math.arizona.edu

CENTER FOR COMBINATORICS, LPMC, NANKAI UNIVERSITY, TIANJIN 300071, CHINA