FACTORIZATION THEOREM FOR PROJECTIVE VARIETIES WITH FINITE QUOTIENT SINGULARITIES

YI HU

1. Statements of Results

In this paper, we will assume that the ground field is \mathbb{C}.
Theorem 1.1. Let $\phi: X \rightarrow Y$ be a birational morphism between two projective varieties with at worst finite quotient singularities. Then there is a smooth polarized projective $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-variety (M, \mathcal{L}) such that
(1) \mathcal{L} is a very ample line bundle and admits two (general) linearizations \mathcal{L}_{1} and \mathcal{L}_{2} with $M^{s s}\left(\mathcal{L}_{1}\right)=M^{s}\left(\mathcal{L}_{1}\right)$ and $M^{s s}\left(\mathcal{L}_{2}\right)=M^{s}\left(\mathcal{L}_{2}\right)$.
(2) The geometric quotient $M^{s}\left(\mathcal{L}_{1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to X and the geometric quotient $M^{s}\left(\mathcal{L}_{2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to Y.
(3) The two linearizations \mathcal{L}_{1} and \mathcal{L}_{2} differ only by characters of the \mathbb{C}^{*}-factor, and \mathcal{L}_{1} and \mathcal{L}_{2} underly the same linearization of the GL_{n}-factor. Let $\underline{\mathcal{L}}$ be this underlying GL_{n} - linearization. Then we have $M^{s s}(\underline{\mathcal{L}})=M^{s}(\underline{\mathcal{L}})$.

As a consequence, we obtain
Theorem 1.2. Let X and Y be two birational projective varieties with at worst finite quotient singularities. Then Y can be obtained from X by a sequence of GIT weighted blowups and weighted blowdowns.

The factorization theorem for smooth projective varieties was proved by Wlodarczyk and Abramovich-Karu-Matsuki-Wlodarczyka a few years ago ([AKMW02], [Wlodarczyk00], [Wlodarczyk03]). Hu and Keel, in [Hu-Keel99], gave a short proof by interpreting it as VGIT wall-crossing flips of \mathbb{C}^{*}-action. My attention to varieties with finite quotient singularities was brought out by Yongbin Ruan. The proof here uses the same idea of [Hu-Keel99] coupled with a key suggestion of Dan Abramovich which changed the route of my original approach. Only the first paragraph of $\S 2$ uses a construction of [Hu-Keel99] which we reproduce for completeness. The rest is independent. Theorem 1.1 reinforces the philosophy that began in [Hu-Keel98]: Birational geometry of \mathbb{Q}-factorial projective varieties is a special case of VGIT.

I thank Yongbin Ruan for asking me about the factorization problem of projective orbifolds in the summer of 2002 when I visited Hong Kong University of Science and Technology. I sincerely thank Dan Abramovich for suggesting to me to use the results of Edidin-Hassett-Kresch-Vistoli ([EHKV01]) and the results of Kirwan ([Kirwan85]). I knew
the results of [EHKV01] and have had the paper with me since it appeared in the ArXiv, but I did not realize that it can be applied to this problem until I met Dan in the Spring of 2004.

2. Proof of Theorem 1.1.

By the construction of [Hu-Keel99] (cf. §2 of [Hu-Keel98]), there is a polarized \mathbb{C}^{*} projective normal variety (Z, L) such that L admits two (general) linearizations L_{1} and L_{2} such that
(1) $Z^{s s}\left(L_{1}\right)=Z^{s}\left(L_{1}\right)$ and $Z^{s s}\left(L_{2}\right)=Z^{s}\left(L_{2}\right)$.
(2) \mathbb{C}^{*} acts freely on $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$.
(3) The geometric quotient $Z^{s}\left(L_{1}\right) / \mathbb{C}^{*}$ is isomorphic to X and the geometric quotient $Z^{s}\left(L_{2}\right) / \mathbb{C}^{*}$ is isomorphic to Y.

The construction of Z is short, so we reproduce it here briefly. Choose an ample cartier divisor D on Y. Then there is an effective divisor E on X whose support is exceptional such that $\phi^{*} D=A+E$ with A ample on X. Let C be the image of the injection $\mathbb{N}^{2} \rightarrow N^{1}(X)$ given by $(a, b) \rightarrow a A+b E$. The edge generated by $\phi^{*} D$ divides C into two chambers: the subcone C_{1} generated by A and $\phi^{*} D$, and the subcone C_{2} generated by $\phi^{*} D$ and E. The ring $R=\oplus_{(a, b) \in \mathbb{N}^{2}} H^{0}(X, a A+b E)$ is finitely generated and is acted upon by $\left(\mathbb{C}^{*}\right)^{2}$ with weights (a, b) on $H^{0}(X, a A+b E)$. Let $Z=\operatorname{Proj}(R)$ with R graded by total degree $(a+b)$. Then a subtorus \mathbb{C}^{*} of $\left(\mathbb{C}^{*}\right)^{2}$ complementary to the diagonal subgroup Δ acts naturally on Z. The very ample line bundle $L=\mathcal{O}_{Z}(1)$ has two linearizations L_{1} and L_{2} descended from two interior integral points in the chambers C_{1} and C_{2}, respectively. One verifies (1), (2) by algebra, and (3) by algebra and the projection formula.

Now, since \mathbb{C}^{*} acts freely on $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$, we deduce that $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$ has at worse finite quotient singularities. By Corollary 2.20 and Remark 2.11 of [EHKV01], there is a smooth GL_{n} - algebraic space U such that the geometric quotient $\pi: U \rightarrow U / \mathrm{GL}_{n}$ exists and is isomorphic to $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$ for some $n>0$. Since $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$ is quasiprojective, we see that so is U. In fact, since $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$ admits a \mathbb{C}^{*}-action, all of the above statements can be made \mathbb{C}^{*}-equivariant. In other words, U admits a $\mathrm{GL}_{n} \times \mathbb{C}^{*}$ action and a very ample line bundle $L_{U}=\pi^{*}\left(\left.L^{k}\right|_{Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)}\right)$ (for some fixed sufficiently large k) with two $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ - linearizations $L_{U, 1}$ and $L_{U, 2}$ such that
(1) $U^{s s}\left(L_{U, 1}\right)=U^{s}\left(L_{U, 1}\right)$ and $U^{s s}\left(L_{U, 2}\right)=U^{s}\left(L_{U, 2}\right)$.
(2) The geometric quotient $U^{s}\left(L_{U, 1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to X and the geometric quotient $U^{s}\left(L_{U, 2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to Y. Moreover,
(3) the two linearizations $L_{U, 1}$ and $L_{U, 2}$ differ only by characters of the \mathbb{C}^{*} factor.

Since we assume that L_{U} is very ample, we have an $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ - equivariant embedding of U in a projective space such that the pullback of $\mathcal{O}(1)$ is L_{U}. Let \bar{U} be the compactification of U which is the closure of U in the projective space. Let $L_{\bar{U}}$ be the pullback of $\mathcal{O}(1)$ to \bar{U}. This extends L_{U} and in fact extends the two linearizations $L_{U, 1}$ and $L_{U, 2}$ to $L_{\bar{U}, 1}$ and
$L_{\bar{U}, 2}$, respectively, such that

$$
\bar{U}^{s s}\left(L_{\bar{U}, 1}\right)=\bar{U}^{s}\left(L_{\bar{U}, 1}\right)=U^{s s}\left(L_{U, 1}\right)=U^{s}\left(L_{U, 1}\right)
$$

and

$$
\bar{U}^{s s}\left(L_{\bar{U}, 2}\right)=\bar{U}^{s}\left(L_{\bar{U}, 2}\right)=U^{s s}\left(L_{U, 2}\right)=U^{s}\left(L_{U, 2}\right) .
$$

It follows that the geometric quotient $\bar{U}^{s}\left(L_{\bar{U}, 1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to X and the geometric quotient $\bar{U}^{s}\left(L_{\bar{U}, 2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to Y.

Resolving the singularities of $\bar{U},\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-equivariantly, we will obtain a smooth projective variety M. Notice that $\bar{U}^{s}\left(L_{\bar{U}, 1}\right) \cup \bar{U}^{s}\left(L_{\bar{U}, 2}\right)=U^{s}\left(L_{U, 1}\right) \cup U^{s}\left(L_{U, 2}\right) \subset U$ is smooth, hence we can arrange the resolution so that it does not affect this open subset. Let $f: M \rightarrow \bar{U}$ be the resolution morphism and Q be any relative ample line bundle over M. Then, by the relative GIT (Theorem 3.11 of [Hu96]), there is a positive integer m_{0} such that for any fixed integer $m \geq m_{0}$, we obtain a very ample line bundle over M, $\mathcal{L}=f^{*} L_{\bar{U}}^{m} \otimes Q$, with two linearizations \mathcal{L}_{1} and \mathcal{L}_{2} such that
(1) $M^{s s}\left(\mathcal{L}_{1}\right)=M^{s}\left(\mathcal{L}_{1}\right)=f^{-1}\left(\bar{U}^{s}\left(L_{\bar{U}, 1}\right)\right)$ and $M^{s s}\left(\mathcal{L}_{2}\right)=M^{s}\left(\mathcal{L}_{2}\right)=f^{-1}\left(\bar{U}^{s}\left(L_{\bar{U}, 2}\right)\right)$.
(2) The geometric quotient $M^{s}\left(\mathcal{L}_{1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to $\bar{U}^{s}\left(L_{\bar{U}, 1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ which is isomorphic to X, and, the geometric quotient $M^{s}\left(\mathcal{L}_{2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to $\bar{U}^{s}\left(L_{\bar{U}, 2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ which is isomorphic to Y.

Finally, we note from the construction that the two linearizations \mathcal{L}_{1} and \mathcal{L}_{2} differ only by characters of the \mathbb{C}^{*}-factor, and \mathcal{L}_{1} and \mathcal{L}_{2} underly the same linearization of the GL_{n} factor. Let $\underline{\mathcal{L}}$ be this underlying GL_{n} - linearization. It may happen that $M^{s s}(\underline{\mathcal{L}}) \neq M^{s}(\underline{\mathcal{L}})$. But if this is the case, we can then apply the method of Kirwan's canonical desingularization ([Kirwan85]), but we need to blow up $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-equivarianly instead of just GL_{n} equivariantly. More precisely, if $M^{s s}(\underline{\mathcal{L}}) \neq M^{s}(\underline{\mathcal{L}})$, then there exists a reductive subgroup R of $G L_{n}$ of dimension at least 1 such that

$$
M_{R}^{s s}(\underline{\mathcal{L}}):=\left\{m \in M^{s s}(\underline{\mathcal{L}}): m \text { is fixed by } R\right\}
$$

is not empty. Now, because the action of \mathbb{C}^{*} and the action of GL_{n} commute, using the Hilbert-Mumford numerical criterion (or by manipulating invariant sections, or by other direct arguments), we can check that

$$
\mathbb{C}^{*} M^{s s}(\underline{\mathcal{L}})=M^{s s}(\underline{\mathcal{L}}),
$$

in particular,

$$
\mathbb{C}^{*} M_{R}^{s s}(\underline{\mathcal{L}})=M_{R}^{s s}(\underline{\mathcal{L}}) .
$$

Hence, we have

$$
\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right) M_{R}^{s s}=\mathrm{GL}_{n} M_{R}^{s s} \subset M \backslash M^{s}(\underline{\mathcal{L}}) .
$$

Therefore, we can resolve the singularities of the closure of the union of $\mathrm{GL}_{n} M_{R}^{s s}$ in M for all R with the maximal $r=\operatorname{dim} R$ and blow M up along the proper transform of this closure. Repeating this process at most r times gives us a desired nonsingular $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ variety with GL_{n}-semistable locus coincides with the GL_{n}-stable locus (see pages $157-$ 158 of [GIT94]). Obviously, Kirwan's process will not affect the open subset $M^{s s}\left(\mathcal{L}_{1}\right) \cup$
$M^{s s}\left(\mathcal{L}_{2}\right)=M^{s}\left(\mathcal{L}_{1}\right) \cup M^{s}\left(\mathcal{L}_{2}\right) \subset M^{s}(\underline{\mathcal{L}})$. Hence, this will allow us to assume that $M^{s s}(\underline{\mathcal{L}})=$ $M^{s}(\underline{\mathcal{L}})$.

This completes the proof of Theorem 1.1.
The proof implies the following
Corollary 2.1. Let $\phi: X \rightarrow Y$ be a birational morphism between two projective varieties with at worst finite quotient singularities. Then there is a polarized projective \mathbb{C}^{*}-variety $(\underline{M}, \underline{L})$ with at worst finite quotient singularities such that X and Y are isomorphic to two geometric GIT quotients of $(\underline{M}, \underline{L})$ by \mathbb{C}^{*}.

3. Proof of Theorem 1.2

Let $\phi: X--->Y$ be the birational map. By passing to the (partial) desingularization of the graph of ϕ, we may assume that ϕ is a birational morphism. This reduces to the case of Theorem 1.1.

We will then try to apply the proof of Theorem 4.2 .7 of [Dolgachev-Hu98], see also [Thaddeus96]. Unlike the torus case for which Theorem 4.2.7 applies almost automatically, here, because $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ involves a non-Abelian group, the validity of Theorem 4.2.7 must be verified.

From the last section, the two linearizations \mathcal{L}_{1} and \mathcal{L}_{2} differ only by characters of the \mathbb{C}^{*}-factor, and \mathcal{L}_{1} and \mathcal{L}_{2} underly the same linearization of the GL_{n}-factor. We denote this common GL_{n}-linearized line bundle by $\underline{\mathcal{L}}$. For any character χ of the \mathbb{C}^{*} factor, let \mathcal{L}_{χ} be the corresponding $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-linearization. Note that \mathcal{L}_{χ} also underlies the GL_{n}-linearization $\underline{\mathcal{L}}$. From the constructions of the compactification \bar{U} and the resolution M, we know that $M^{s s}(\underline{\mathcal{L}})=M^{s}(\underline{\mathcal{L}})$. In particular, GL_{n} acts with only finite isotropy subgroups on $M^{s s}(\underline{\mathcal{L}})=M^{s}(\underline{\mathcal{L}})$. Now to go from \mathcal{L}_{1} to \mathcal{L}_{2}, we will (only) vary the characters of the \mathbb{C}^{*}-factor, and we will encounter a "wall" when a character χ gives $M^{s s}\left(\mathcal{L}_{\chi}\right) \backslash M^{s}\left(\mathcal{L}_{\chi}\right) \neq \emptyset$. In such a case, since $M^{s s}\left(\mathcal{L}_{\chi}\right) \subset M^{s s}(\underline{\mathcal{L}})=M^{s}(\underline{\mathcal{L}})$ which implies that GL_{n} operates on $M^{s s}\left(\mathcal{L}_{\chi}\right)$ with only finite isotropy subgroups, the only isotropy subgroups of $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ of positive dimensions have to come from the factor \mathbb{C}^{*}, and hence we conclude that such isotropy subgroups of $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ on $M^{s s}\left(\mathcal{L}_{\chi}\right)$ have to be one-dimensional (possibly disconnected) diagonalizable subgroups. This verifies the condition ${ }^{1}$ of Theorem 4.2 .7 of [Dolgachev-Hu98] and hence its proof goes through without changes.

4. Git on Projective Varieties with Finite Quotient Singularites

The proof in $\S 2$ can be modified slightly to imply the following.

[^0]Theorem 4.1. Assume that a reductive algebraic group G acts on a polarized projective variety (X, L) with at worst finite quotient singularities. Then there exists a smooth polarized projective variety (M, \mathcal{L}) which is acted upon by $\left(G \times \mathrm{GL}_{n}\right)$ for some $n>0$ such that for any linearization L_{χ} on X, there is a corresponding linearization \mathcal{L}_{χ} on M such that $M^{s s}\left(\mathcal{L}_{\chi}\right) / /\left(G \times \mathrm{GL}_{n}\right)$ is isomorphic to $X^{s s}\left(L_{\chi}\right) / / G$. Moreover, if $X^{s s}\left(L_{\chi}\right)=X^{s}\left(L_{\chi}\right)$, then $M^{s s}\left(\mathcal{L}_{\chi}\right)=M^{s}\left(\mathcal{L}_{\chi}\right)$.

This is to say that all GIT quotients of the singular (X, L) (L is fixed) by G can be realized as GIT quotients of the smooth (M, L) by $G \times G L_{n}$. In general, this realization is a strict inclusion as (M, \mathcal{L}) may have more GIT quotients than those coming from (X, L).

When the underlying line bundle L is changed, the compatification \bar{U} is also changed, so will M. Nevertheless, it is possible to have a similar construction to include a finitely many different underlying ample line bundles. However, Theorem 4.1 should suffice in most practical problems because: (1) in most natural quotient and moduli problems, one only needs to vary linearizations of a fixed ample line bundle; (2) Variation of the underlying line bundle often behaves so badly that the condition of Theorem 4.2.7 of [Dolgachev-Hu98] can not be verified.

References

[AKMW02] Dan Abramovich, Kalle Karu, Kenji Matsuki, Jaroslaw Wlodarczyk Torification and Factorization of Birational Maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531-572.
[Dolgachev-Hu98] I. Dolgachev and Y. Hu: Variation of Geometric Invariant Theory, with an appendix by Nicolas Ressayr. Publ. Math. I.H.E.S. 78 (1998), 1 - 56.
[EHKV01] D. Edidin, B. Hassett, A. Kresch, A. Vistoli, Brauer Groups and Quotient Stacks. Amer. J. Math. 123 (2001), no. 4, 761-777.
[Hu96] Y. Hu, Relative geometric invariant theory and universal moduli spaces. Internat. J. Math. 7 (1996), no. 2, 151-181.
[Hu-Keel98] Y. Hu and S. Keel, Mori dream spaces and GIT. Dedicated to William Fulton on the occasion of his 60th birthday. Michigan Math. J. 48 (2000), 331-348.
[Hu-Keel99] Y. Hu and S. Keel, A GIT proof of Włodarczyk's weighted factorization theorem, math.AG/9904146.
[Kirwan85] F. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers. Ann. of Math. (2) 122 (1985), no. 1, 41-85.
[GIT94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, Third Edition. SpringerVerlag, Berlin, New York, 1994.
[Thaddeus96] M. Thaddeus, Geometric Invariant Theory and Flips. Journal of the A. M. S. 9 (1996), 691-723.
[Wlodarczyk00] Jaroslaw Wlodarczyk, Birational cobordisms and factorization of birational maps. J. Algebraic Geom. 9 (2000), no. 3, 425-449.
[Wlodarczyk03] Jaroslaw Wlodarczyk, Toroidal varieties and the weak factorization theorem. Invent. Math. 154 (2003), no. 2, 223-331.

Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
E-mail address: yhu@math.arizona.edu

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, China

[^0]: ${ }^{1}$ Theorem 4.2 .7 of [Dolgachev-Hu98] assumes that the isotropy subgroup corresponding to a wall is a one-dimensional (possibly disconnected) diagonalizable group. The main theorems of [Thaddeus96] assume that the isotropy subgroup is \mathbb{C}^{*} (see his Hypothesis (4.4), page 708).

