ON MOLECULAR GRAPHS WITH SMALLEST AND GREATEST ZEROTH-ORDER GENERAL RANDIĆ INDEX*

Yumei Hu, Xueliang Li, Yongtang Shi, Tianyi Xu

Center for Combinatorics and LPMC Nankai University, Tianjin 300071, P.R. China

Ivan Gutman

Faculty of Science, University of Kragujevac, Kragujevac Serbia and Montenegro

(Received April 8, 2005)

Abstract

A molecular (n, m)-graph G is a connected simple graph with n vertices, m edges and vertex degrees not exceeding 4. If d(v) denotes the degree of the vertex v, then the zeroth-order general Randić index ${}^{0}\!R_{\alpha}$ of the graph G is defined as $\sum_{v \in V(G)} d(v)^{\alpha}$, where α is a pertinently chosen real number. We characterize, for any α , the molecular (n, m)-graphs with smallest and greatest ${}^{0}\!R_{\alpha}$.

^{*}Supported by the National Science Foundation of China.

1 Introduction

The Randić (or connectivity) index was introduced by Randić in 1975 and is defined as [25]

$$R = R(G) = \sum_{uv \in E(G)} (d(u) \, d(v))^{-1/2}$$

where d(u) denotes the degree of the vertex u of the graph G, and E(G) is the edge set of G. Randić himself demonstrated [25] that this index is well correlated with a variety of physico-chemical properties of various classes of organic compounds. Eventually, this structure-descriptor became one of the most popular topological indices to which two books [15, 17], several reviews [7, 24, 26] and countless research papers are devoted.

Like other successful structure–descriptors, the Randić index received considerable attention also from mathematical chemists and mathematicians. In particular, bounds for R and graphs extremal with regard to R were extensively studied [1, 2, 4, 8, 9, 10, 11, 12].

In 1998 Bollobás and Erdös [3] generalized R(G) by replacing the exponent -1/2by an arbitrary real number α . This graph invariant is called *the general Randić index* and will be denoted by $R_{\alpha} = R_{\alpha}(G)$. Li and Yang [20] studied R_{α} for general *n*-vertex graphs, obtained lower and upper bounds for it, and characterized the corresponding extremal graphs. Later Hu, Li and Yuan [13, 14] determined the trees extremal with regard to R_{α} , whereas Li, Wang and Wei [19] gave lower and upper bounds for R_{α} of molecular (n, m)-graphs. Other mathematical studies of the general Randić index are found in [5, 6].

The zeroth-order Randić index, conceived by Kier and Hall [16], is

$${}^{0}R = {}^{0}R(G) = \sum_{v \in V(G)} d(v)^{-1/2}$$

Eventually, Li and Zheng [22] defined the zeroth-order general Randić index of a graph G as

$${}^{0}\!R_{\alpha} = {}^{0}\!R_{\alpha}(G) = \sum_{v \in V(G)} d(v)^{\alpha}$$

for any real number α .

Pavlović determined the graphs with maximum ${}^{0}R$ -index [23]. Li et al. [18] investigated the same problem for the topological index $M_1(G)$, one of the Zagreb indices, that is defined as $M_1(G) = \sum_{v \in V(G)} d(v)^2$. (Evidently, $M_1 \equiv {}^{0}R_{\alpha}$ for $\alpha = +2$.) They obtained sufficient and necessary conditions under which (n, m)-graphs have minimum M_1 , and a necessary condition for an (n, m)-graph having maximum $M_1(G)$. Li and Zhao [21] characterized trees with the first three smallest and largest zeroth-order general Randić index, with the exponent α being equal to k, -k, 1/k, and -1/k, where $k \geq 2$ is an integer.

In this paper we investigate the zeroth-order general Randić index of molecular (n, m)-graphs, i. e., connected simple graphs with n vertices, m edges and maximum vertex degree at most 4. We characterize the molecular (n, m)-graphs with extremal (maximum or minimum) zeroth-order general Randić index.

First we need to introduce some notation.

Denote by $D(G) = [d_1, d_2, \dots, d_n]$ the degree sequence of the graph G, where d_i stands the degree of the *i*-th vertex of G, and $d_1 \ge d_2 \ge \dots \ge d_n$.

If there is a graph G, such that $d_i \ge d_j + 2$, let G' be the graph obtained from G by replacing the pair (d_i, d_j) by the pair $(d_i - 1, d_j + 1)$. In other words, if $D(G) = [d_1, d_2, \cdots, d_{i-1}, d_i, d_{i+1}, \cdots, d_{j-1}, d_j, d_{j+1}, \cdots, d_n]$, then $D(G') = [d_1, d_2, \cdots, d_{i-1}, d_i - 1, d_{i+1}, \cdots, d_{j-1}, d_j + 1, d_{j+1}, \cdots, d_n]$.

Note that if $\alpha = 0$ then ${}^{0}R_{\alpha}(G) = n$, and if $\alpha = 1$ then ${}^{0}R_{\alpha}(G) = 2m$. Therefore, in the following we always assume that $\alpha \neq 0, 1$.

Lemma 1.1 For the two graphs G and G', specified above, we have

(i) ${}^{0}R_{\alpha}(G) > {}^{0}R_{\alpha}(G')$ for $\alpha < 0$ or $\alpha > 1$ (ii) ${}^{0}R_{\alpha}(G) < {}^{0}R_{\alpha}(G')$ for $0 < \alpha < 1$. *Proof.* Since ${}^{0}\!R_{\alpha}(G) = \sum_{v \in V(G)} d(v)^{\alpha}$, we have

$${}^{0}R_{\alpha}(G) - {}^{0}R_{\alpha}(G') = d_{i}^{\alpha} + d_{j}^{\alpha} - (d_{i} - 1)^{\alpha} - (d_{j} + 1)^{\alpha}$$
$$= [d_{i}^{\alpha} - (d_{i} - 1)^{\alpha}] - [(d_{j} + 1)^{\alpha} - d_{j}^{\alpha}]$$
$$= \alpha \left(\xi_{1}^{\alpha - 1} - \xi_{2}^{\alpha - 1}\right)$$

where $\xi_1 \in (d_i - 1, d_i)$, and $\xi_2 \in (d_j, d_j + 1)$. So, by $d_i \ge d_j + 2$, we have $\xi_1 > \xi_2$. Then ${}^0\!R_{\alpha}(G) > {}^0\!R_{\alpha}(G')$ for $\alpha < 0$ or $\alpha > 1$, whereas ${}^0\!R_{\alpha}(G) < {}^0\!R_{\alpha}(G')$ for $0 < \alpha < 1$.

2 Extremal molecular (n, m)-graphs

Denote by n_i the number of vertices of degree i in a molecular (n, m)-graph G. Then we have

$${}^{0}R_{\alpha}(G) = n_1 + 2^{\alpha} n_2 + 3^{\alpha} n_3 + 4^{\alpha} n_4$$
(2.1)

Theorem 2.1 Let C^* be a molecular (n, m)-graph with degree sequence $[d_1, d_2, \dots, d_n]$, such that $|d_i - d_j| \leq 1$ for any $i \neq j$. Then for $\alpha < 0$ or $\alpha > 1$, C^* has the minimum zeroth-order general Randić index among all molecular (n, m)-graphs, whereas for $0 < \alpha < 1$, C^* has the maximum zeroth-order general Randić index among all molecular (n, m)-graphs. Moreover,

$${}^{0}R_{\alpha}(C^{*}) = \begin{cases} 2 + 2^{\alpha} (n-2) & \text{if } m = n-1 \\ 2^{\alpha} (3n-2m) + 3^{\alpha} (2m-2n) & \text{if } n \le m \le \lfloor 3n/2 \rfloor \\ 3^{\alpha} (4n-2m) + 4^{\alpha} (2m-3n) & \text{if } \lfloor 3n/2 \rfloor < m \le 2n \end{cases}$$

Proof. We only consider the case $0 < \alpha < 1$, because the proof for the other case is fully analogous. Let G be a molecular graph and $D(G) = [d_1, d_2, \dots, d_n]$. If $G \not\cong C^*$, then there must exist a pair (d_i, d_j) such that $d_i \ge d_j + 2$. By Lemma 1.1, the graph G', obtained by replacing the pair (d_i, d_j) by the pair $(d_i - 1, d_j + 1)$, has a greater ${}^0R_{\alpha}$ -value than G. Consequently, G is not a molecular (n, m)-graph with maximum zeroth-order general Randić index. To show the existence, we construct the extremal (n, m)-graph C^* (with minimum ${}^{0}R_{\alpha}$ for $\alpha < 0$ or $\alpha > 1$, and with maximum ${}^{0}R_{\alpha}$ for $0 < \alpha < 1$) by adding edges one by one. First, we start from a tree. There must be at least two 1-degree vertices in a tree. By Lemma 1.1, there does not exist any 3-degree vertex, and so the extremal tree must be the path P_n . Next we add an edge joining the two leaves of the path. In this way the degrees of all vertices become equal to two, and then we get a cycle. We continue by adding edges one by one, so as to maximize the number of 3-degree vertices, until either there remain no 2-degree vertices, or remains exactly one. If more edges need to be added, then we first connect the 2-degree vertex (if such does exist) with a non-adjacent 3-degree vertex, and continue by connecting pairs of nonadjacent 3-degree vertices. The construction is shown in Figure 2.1.

Figure 2.1 Constructing molecular graphs with extremal zeroth-order general Randić index, according to Theorem 2.1.

Theorem 2.2 Let G^* be a molecular (n, m)-graph with at most one vertex of degree 2 or 3. If one of the following conditions holds:

- (*I*) m = n 1
- (II) $m \ge n \ge 6$, for n = 6, $m \ge 10$, and for n = 7, $m \ne 8$

then for $\alpha < 0$ or $\alpha > 1$, G^* has the maximum zeroth-order general Randić index among all molecular (n,m)-graphs, whereas for $0 < \alpha < 1$, the same graph has the minimum zeroth-order general Randić index among all molecular (n,m)-graphs. Moreover,

$${}^{0}\!R_{\alpha}(G^{*}) = \begin{cases} (4n-2m)/3 + 4^{\alpha} (2m-n)/3 & \text{if } 2m-n \equiv 0 \pmod{3} \\ (4n-2m-2)/3 + 2^{\alpha} + 4^{\alpha} (2m-n-1)/3 & \text{if } 2m-n \equiv 1 \pmod{3} \\ (4n-2m-1)/3 + 3^{\alpha} + 4^{\alpha} (2m-n-2)/3 & \text{if } 2m-n \equiv 2 \pmod{3} \end{cases}$$

Proof. Again, we only consider the case $0 < \alpha < 1$, because the proof for the other case is similar. Let G' be a molecular (n, m)-graph and $D(G') = [d_1, d_2, \cdots, d_n]$. Let G' possess two vertices of degree 2 or 3, i. e., let there be a pair (d_i, d_j) , such that $3 \ge d_i \ge d_j \ge 2$. Then by Lemma 1.1, there is a graph G, obtained by replacing the pair (d_i, d_j) by the pair (d_i+1, d_j-1) , that has a smaller ${}^{0}R_{\alpha}$ -value than G'. Repeating the above operation until there is no pair (d_i, d_j) , such that $3 \ge d_i \ge d_j \ge 2$, we arrive at G^* with minimum zeroth-order general Randić index. In view of (2.1), for G^* we have

$$\begin{cases} n_1 + n_2 + n_3 + n_4 &= n \\ n_1 + 2n_2 + 3n_3 + 4n_4 &= 2m \\ n_2 + n_3 &\leq 1 \end{cases}$$

From the above equations, we have one of the following three options:

- (1) $n_2 = n_3 = 0$, implying $n_1 = (4n 2m)/3$, $n_4 = (2m n)/3$, and $2m n \equiv 0 \pmod{3}$
- (2) $n_2 = 1$, $n_3 = 0$, implying $n_1 = (4n 2m 2)/3$, $n_4 = (2m n 1)/3$, and $2m n \equiv 1 \pmod{3}$
- (3) $n_2 = 0$, $n_3 = 1$, implying $n_1 = (4n 2m 1)/3$, $n_4 = (2m n 2)/3$, and $2m n \equiv 2 \pmod{3}$.

In order to show the existence, we construct G^* by distinguishing the following cases:

- (I) m = n 1, i. e., G^* is a tree.
 - (I.1) If $2m n \equiv 0 \pmod{3}$, we first construct a path with n_4 vertices, and then add n_1 pendent vertices, taking care that no vertex gets degree greater than 4.
 - (I.2) If $2m n \equiv 1 \pmod{3}$, we first construct a path with n_4 vertices, then add n_1 pendent vertices, taking care that no vertex gets degree greater than 4, and finally subdivide an edge by inserting to it a vertex of degree 2.
 - (I.3) If $2m n \equiv 2 \pmod{3}$, we first construct a path with $n_4 + 1$ vertices, and then add n_1 pendent vertices, taking care that no vertex gets degree greater than 4.

(II) $m \ge n \ge 6$, for n = 6 and $m \ge 10$, or for n = 7 and $m \ne 8$.

In Figure 2.2 we show one of the possible graphs G^* for $n_4 \leq 4$, that is for $\lfloor (2m-n)/3 \rfloor \leq 4$. For $n_4 \geq 5$, we construct G^* as follows:

- (II.1) If $2m n \equiv 0 \pmod{3}$, we first construct a 4-regular graph on n_4 vertices, then delete $n_1/2$ edges from it, and then add n_1 pendent vertices, taking care that no vertex gets degree greater than 4.
- (II.2) If $2m n \equiv 1 \pmod{3}$, we first construct a 4-regular graph on n_4 vertices, then delete $n_1/2$ edges from it, then add n_1 pendent vertices, taking care that no vertex gets degree greater than 4, and finally subdivide an edge inserting to it a vertex of degree 2.
- (II.3) If $2m n \equiv 2 \pmod{3}$, we first construct a 4-regular graph on $n_4 + 1$ vertices, then delete $(n_1 + 1)/2$ edges from it, and then add n_1 pendent vertices, taking care that no vertex gets degree greater than 4.

This completes the proof.

Note that Theorem 2.2 holds under the conditions m = n-1, or n = 6 and $m \ge 10$, or n = 7 and $m \ne 8$, or $m \ge n \ge 8$, since for the other pairs of n and m the extremal degree sequences obtained in Theorem 2.2 are not graphic. It is easy to check that for n = 1, 2, 3, and for $n \ge 4$ and $m = \binom{n}{2} - 1$ or $m = \binom{n}{2}$ the (n, m)-graph is unique. For n = 4 and m = 4, or n = 5 and $5 \le m \le 8$, or n = 6 and $6 \le m \le 9$, or n = 7 and m = 8 we can characterize the extremal graphs by examining all possible degree sequences. These extremal graphs are depicted in Figure 2.3 (minimum ones for $0 < \alpha < 1$, maximum ones for $\alpha < 0$ or $\alpha > 1$, except for n = 5 and m = 7, in which case (a) is the minimum graph for $0 < \alpha < 1$ and maximum graph for $\alpha < 0$ or $1 < \alpha < 2$, and (b) is the maximum graph for $\alpha \ge 2$).

Figure 2.2 Molecular graphs with extremal zeroth-order general Randić index, having four or fewer vertices of degree 4.

Figure 2.3 Some graphs with extremal zeroth-order general Randić index; for details see text.

References

- O. Araujo, J. A. de la Peña, Some bounds for the connectivity index of a chemical graph, J. Chem. Inf. Comput. Sci. 38 (1998) 827–831.
- [2] O. Araujo, J. Rada, Randić index and lexicographic order, J. Math. Chem. 27 (2000) 201–212.
- [3] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225–233.
- [4] G. Caporossi, I. Gutman, P. Hansen, L. Pavlović, Graphs with maximum connectivity index, *Comput. Biol. Chem.* 27 (2003) 85–90.
- [5] L. H. Clark, J.W. Moon, On the general Randić index for certain families of trees, Ars Combin. 54 (2000) 223–235.
- [6] M. Fischermann, A. Hoffmann, D. Rautenbach, L. Volkmann, A linear-programming approach to the generalized Randić index, *Discr. Appl. Math.* **128** (2003) 375–385.
- [7] S. P. Gupta, Quantitative structure-activity relationship studies on local anesthetics, *Chem. Rev.* 91 (1991) 1109–1119.
- [8] I. Gutman, O. Araujo, D. A. Morales, Bounds for the Randić connectivity index, J. Chem. Inf. Comput. Sci. 40 (2000) 572–579.
- [9] I. Gutman, O. Araujo, D. A. Morales, Estimating the connectivity index of a saturated hydrocarbon, *Indian J. Chem.* **39A** (2000) 381–385.
- [10] I. Gutman, O. Miljković, Molecules with smallest connectivity indices, MATCH Commun. Math. Comput. Chem. 41 (2000) 57–70.

- [11] I. Gutman, O. Miljković, G. Caporossi, P. Hansen, Alkanes with small and large Randić connectivity index *Chem. Phys. Lett.* **306** (1999) 366–372.
- [12] P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 6: Analyzing bounds for the connectivity index, J. Chem. Inf. Comput. Sci. 43 (2003) 1–14.
- [13] Y. Hu, X. Li, Y. Yuan, Trees with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 52 (2004) 119–128.
- [14] Y. Hu, X. Li, Y. Yuan, Trees with maximum general Randić index, MATCH Commun. Math. Comput. Chem. 52 (2004) 129–146.
- [15] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- [16] L. B. Kier, L. H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, *Europ. J. Med. Chem.* 12 (1977) 307–312.
- [17] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure-Analysis, Research Studies Press, Wiley, Chichester, UK, 1986.
- [18] R. Lang, X. Li, S. Zhang, Inverse problem for Zagreb index of molecular graphs, *Appl. Math. J. Chinese Univ.* A18 (2003) 487–493 (in Chinese).
- [19] X. Li, X. Q. Wang, B. Wei, On the lower and upper bounds for general Randic index of chemical (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 52 (2004) 157–166.
- [20] X. Li, Y. Yang, Sharp bounds for the general Randic index, MATCH Commun. Math. Comput. Chem. 51 (2004) 155–166.
- [21] X. Li, H. Zhao, Trees with the first three smallest and largest generalized toplogical indeices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57–62.
- [22] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
- [23] L. Pavlović, Maximal value of the zeroth-order Randić index, Discr. Appl. Math.
 127 (2003) 615–626.
- [24] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors, *Chem. Rev.* 100 (2000) 3827–3858.
- [25] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [26] M. Randić, The connectivity index 25 years after, J. Mol. Graphics Modell. 20 (2001) 19–35.