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Abstract

For a group T and a subset S of T , the bi-Cayley graph BCay(T, S)
of T with respect to S is the bipartite graph with vertex set T×{0, 1}
and edge set {{(g, 0), (sg, 1)} | g ∈ T, s ∈ S}. In this paper, we inves-
tigate cubic bi-Cayley graphs of finite nonabelian simple groups. We
give several sufficient or necessary conditions for a bi-Cayley graph
to be semisymmetric, and construct several infinite families of cubic
semisymmetric graphs.
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1 Introduction

All graphs considered here are assumed to be connected, undirected, finite
and simple unless stated otherwise. For a graph Γ, we use V (Γ), E(Γ),
and A := Aut(Γ) to denote its vertex set, edge set and full automorphism
group respectively. A graph Γ is said to be T -semisymmetric if it is regular
and T acts transitively on its edge set but not on its vertex set, where T
is a subgroup of A . In particular, an A-semisymmetric graph is called a
semisymmetric graph. The class of semisymmetric graphs was introduced
by Folkman in [5]. He constructed several infinite families of such graphs
and posed eight open problems. Afterwards, Bouwer, Titov, Klin, Iofi-
nova, A. A. Ivanov, A. V. Ivanov, Du, Xu and orthers did much work on
semisymmetric graphs (see [1, 2, 12, 11, 8, 9, 4] etc.). They gave new con-
structions of such graphs by combinatorial or group-theoretical methods.
By now, the answers to most of Folkman’s problems are known. As we
can see, in recent papers on semisymmetric graphs, group-theoretical con-
structions played a significant role. In 1985, Iofinova and Ivanov classified
biprimitive semisymmetric cubic graphs (see [8]) using group-theoretical
methods. In 2000, Du and Xu classified semisymmetric graphs of order 2pq
by using some deep results on finite simple groups (see [4]). Let Γ be a
T -semisymmetric graph. It is well-known that Γ is a bipartite graph with
two bipartition sets, say U and W , of equal size and T acts transitively on
both bipartition sets. Clearly, for every v ∈ V (Γ), the stabilizer Tv acts
transitively on the neighborhood Γ1(v) of v in Γ. Let

A+ = {a ∈ A |Ua = U, W a = W}.
Then A = A+ or |A : A+| = 2 depending on whether or not there exists
an automorphism of Γ which interchanges the two bipartition sets. These
two cases imply that Γ is a symmetric graph and a semisymmetric graph,
respectively.

When we studied T -semisymmetric graphs of prime degree, we found
a class of graphs whose full automorphism groups have a subgroup act-
ing regularly on both bipartition sets. In this paper, we shall consider
semisymmetric cubic graphs with this property.

Now let us mention several definitions which will be used in the following
sections. For a group T , and a subset S of T such that 1T /∈ S, the Cayley
digraph Cay(T, S) of T with respect to S is the digraph with vertex set
T and arc set {(x, sx) |x ∈ T, s ∈ S}. If S is inverse-closed, that is , if
S = S−1 := {s−1 | s ∈ S}, then (x, y) is an arc if and only if (y, x) is an arc.
In this case, we identify two arcs (x, y) and (y, x) with an undirected edge
{x, y}, and get an undirected graph. We call this graph a Cayley graph of T .
For a group T , and a subset S (possibly, containing the identity element 1T )
of T , the bi-Cayley graph BCay(T, S) of T with respect to S is the bipartite
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graph with vertex set T × {0, 1} and edge set {{(g, 0), (sg, 1)} | g ∈ T, s ∈
S}. Let Γ = BCay(T, S). Each g ∈ T induces an automorphism of Γ as
follows:

R(g) : (x, 0) 7−→ (xg, 0), (x, 1) 7−→ (xg, 1), ∀x ∈ T.

Set R(T ) = {R(g) | g ∈ T}. Finally, a bi-Cayley graph Γ = BCay(T, S) is
said to be normal if R(T ) is normal in Aut(Γ).

2 Preliminaries

Let T be a finite group and S be a subset of T . Set Γ = BCay(T, S). By
[4], we know that BCay(T, S) is connected if and only if 〈SS−1〉 = T if
and only if 〈S−1S〉 = T , and that a bipartite graph X is a bi-Cayley graph
if and only if there exists a subgroup of Aut(X) which acts regularly on
both bipartition sets. Let α ∈ Aut(Cay(T, S \ {1T })). Then α induces an
automorphism

(x, 0) 7−→ (xα, 0), (x, 1) 7−→ (xα, 1),∀x ∈ T

of BCay(T, S). So we can identify Aut(Cay(T, S \ {1T })) with a subgroup
of A = Aut(Γ). Furthermore, we have the following lemma.

Lemma 2.1 Let T be a finite group and S be a subset of T .

(1) If 1T /∈ S and the Cayley digraph Cay(T, S) is arc-transitive, then the
bi-Cayley graph BCay(T, S) is either semisymmetric or symmetric;

(2) If S is an orbit of some subgroup of Aut(T ), then BCay(T, S) is edge-
transitive.

(3) If β ∈ Aut(T ), then BCay(T, S) ∼= BCay(T, Sβ);

(4) If Cay(T, S \{1T }) ∼= Cay(T, S−1 \{1T }), then BCay(T, S) is vertex-
transitive;

(5) If Sσ = S−1g for some σ ∈ Aut(T ) and some g ∈ T , then BCay(T, S)
is vertex-transitive.

Proof (1) and (2) are obvious.
(3) We define β∗ as follows:

β∗ : (x, 0) 7−→ (xβ , 0), (x, 1) 7−→ (xβ , 1), ∀x ∈ T.

It is easy to check that β∗ is an isomorphism from BCay(T, S) to BCay(T, Sβ).
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(4) Let ρ be an isomorphism from Cay(T, S\{1T }) to Cay(T, S−1\{1T })
such that 1ρ

T = 1T . We define ρ∗ as follows:

ρ∗ : (x, 0) 7−→ (xρ, 1), (x, 1) 7−→ (xρ, 0), ∀x ∈ T.

It is easy to prove that ρ∗ is an automorphism of BCay(T, S). It follows
that (4) is true.

(5) Let us define σ∗ as follows:

σ∗ : (x, 0) 7−→ (gxσ, 1), (x, 1) 7−→ (xσ, 0), ∀x ∈ T.

Then σ∗ is an automorphism of BCay(T, S). It follows that BCay(T, S) is
vertex-transitive. 2

By Lemma 2.1(4), we know that the bi-Cayley graphs of abelian groups
are vertex-transitive.

Lemma 2.2 Let T be a finite group and S be a subset of T . For each
g ∈ T , we have

BCay(T, S) ∼= BCay(T, gS) ∼= BCay(T, Sg).

Proof We define φ and ψ as follows:

φ : (x, 0) 7−→ (x, 0), (x, 1) 7−→ (gx, 1), ∀x ∈ T ;
ψ : (x, 0) 7−→ (g−1xg, 0), (x, 1) 7−→ (g−1xg, 1), ∀x ∈ T.

It is easy to check that φ is an isomorphism from BCay(T, S) to BCay(T, gS),
and that ψ is an isomorphism from BCay(T, S) to BCay(T, g−1Sg). It fol-
lows that

BCay(T, S) ∼= BCay(T, gS) ∼= BCay(T, g−1(gS)g) = BCay(T, Sg).

2

3 Cubic Bi-Cayley Graphs

By Lemma 2.2, we may, sometime for convenience, assume that S =
{1T , a, b} for a, b ∈ T when we consider cubic bi-Cayley graphs.

Theorem 3.1 Let T be a finite nonabelian group and S = {1T , a, b} be
a subset of T such that T = 〈a, b〉, and let Γ = BCay(T, S). Suppose that
R(T ) is normal in Aut(Γ). If Γ is edge-transitive, then Γ is symmetric if
and only if there exists α ∈ Aut(T ) such that Sα = S−1.
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Proof First, we assume that Γ is symmetric. Then there exists ρ ∈
Aut(Γ) such that (1T , 0)ρ = (1T , 1), and (1T , 1)ρ = (1T , 0). It follows that
ρ interchanges two sets {(a, 1), (b, 1)} and {(a−1, 0), (b−1, 0)}. We consider
the action of ρ on the set {(1T , 0), (1T , 1), (a−1, 0), (b−1, 0), (a, 1), (b, 1)}.
Then one of the following statements holds:

(1) ρ : (1T , 0) ←→ (1T , 1), (a−1, 0) ←→ (a, 1), (b−1, 0) ←→ (b, 1);

(2) ρ : (1T , 0) ←→ (1T , 1), (a−1, 0) ←→ (b, 1), (b−1, 0) ←→ (a, 1);

(3) ρ : (1T , 0) ←→ (1T , 1), (a−1, 0) 7→ (a, 1) 7→ (b−1, 0) 7→ (b, 1) 7→
(a−1, 0);

(4) ρ : (1T , 0) ←→ (1T , 1), (a−1, 0) 7→ (b, 1) 7→ (b−1, 0) 7→ (a, 1) 7→
(a−1, 0).

Since R(T ) is normal in Aut(Γ), for any given x ∈ T , there exists unique
x∗ ∈ T such that R(x∗) = ρ−1R(x)ρ. Let α : x 7−→ x∗, ∀x ∈ T . It is easy
to check that α is an automorphism of T .

If (1) holds, then

(a−1(a−1)α, 0) = (a−1, 0)R((a−1)∗) = (a−1, 0)ρ−1R(a−1)ρ

= (a, 1)R(a−1)ρ = (1T , 1)ρ = (1T , 0) =⇒ (a−1)α = a.

Similarly, we have aα = a−1, (b−1)α = b, and bα = b−1. If (2) holds, we
have

α : a−1 ←→ b, b−1 ←→ a.

If (3) holds, we have a−1 = aα, and b−1 = bα. But

(b−1(a−1)α, 0) = (b−1, 0)ρ−1R(a−1)ρ = (a, 1)R(a−1)ρ = (1T , 0) =⇒ (a−1)α = b.

It follows that a = b, and that T is a cyclic group, a contradiction. (4) also
leads to a contradiction as above. So we have Sα = S−1.

Conversely, by Lemma 2.1(5), Γ is vertex-transitive, and hence sym-
metric. 2

Let Γ be a connected cubic G-semisymmetric graph. By [6], for any
v ∈ V (Γ), the order of vertex-stabilizer Gv is 3 · 2s for some s ≤ 7. In
particular, A+

v ≤ 3 · 2s. Suppose that A = Aut(Γ) has a subgroup T acting
transitively on both bipartition sets. Then |A+ : T | = 3 · 2t for some
t ≤ 7. We consider the permutation representation of A+ acting on the
right cosets of T by right multiplication. Then A+/TA+ is isomorphic to
a subgroup of the symmetric group S3·2t , where TA+ is the core of T in
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A+ (i.e. TA+ =
⋂

x∈A+ T x). If T is a finite nonabelian simple group, then
either T is normal in A+ and hence in A, or T ≤ A3·2t . It follows that the
connected edge-transitive cubic bi-Cayley graphs for most of nonabelian
simple finite groups are normal. More precisely, we have the following
theorem.

Theorem 3.2 Let T be a nonabelian simple finite group, and let α be an
automorphism of T with |α| = 3. For a ∈ T , set S = {a, aα, aα2}. Suppose
that T = 〈S−1S〉. If Γ = BCay(T, S) is not normal then |T | ≤ (3 · 27)!,
and T is one of the following groups:

An, n = 5, 6, 7, 8, 9, 15, 31, 63, 127;

M11, M12, M22, J1, J2;

PSL2(q), q = 7, 11, 13, PSp4(3), PSU4(3), PSU3(3);

PSLn(q) (n ≤ 7), PSUn(q) (n ≤ 15), PSp2m(q) (m = 2, 3),
PΩ+

6 (q), PΩ−2m(q) (m = 2, 3, 4), G2(q), and 2B2(q), where q is a
power of 2.

Proof First, we prove the following statement by induction on the order
of the group.

Suppose that a finite group G has a nonabelian simple subgroup T , and
that |G : T | = 3l2s for l = 0 or 1, and |G : NG(T )| = 2t. If T is not
normal in G, then either T ∼= A2r−1 for some r ≤ s, or T has a non-trivial
representation of degree at most s over the field GF (2).

Let N be a minimal normal subgroup of G. Then T ≤ N or T ∩N = 1.
By checking the order of G, we know that N is either a nonabelian simple
group or an elementary abelian group. First, we assume that T ≤ N .
Then |N : NN (T )| is a power of 2. If |NN (T ) : T | is a power of 2, then
|N : T | = 2r for some r ≤ s. It follows from [7] that T ∼= A2r−1. Assume
that |NN (T ) : T | is not a power of 2. Then there exists an element x ∈
NN (T ) \T with x3 ∈ T . Then H = T 〈x〉 is a subgroup of N and the index
of H in N is a power of 2. It follows that H ∼= A2r1−1 for some r1 ≤ s. On
the other hand, H has a subgroup T of index 3, which is impossible. Now
we assume that T ∩N = 1. If N ≤ CG(T ), we consider the quotient group
G/N . Note T is a characteristic subgroup of TN . It follows that TN is not
normal in G, and hence TN/N is not normal in G/N . By induction, either
T ∼= TN/N ∼= A2r2−1, or T has a non-trivial representation of degree at
most s over the field GF (2). If N 6≤ CG(T ), then |N | must be a power
of 2. Consider the conjugate action of T on N , we can get a non-trivial
representation of degree at most s over the field GF (2).

Let T and S be as the hypotheses in our theorem. Then |A+| = |T |·3·2r

for some r ≤ 7. Clearly, 〈α〉 ≤ NA+(R(T )) and hence |A+ : NA+(R(T ))| is
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a power of 2. It follows, from checking the degrees of nontrivial irreducible
representations of finite simple groups over fields of characteristic 2 (see,
for example, [10]), that our theorem is true. 2

By Lemma 2.2 and Theorem 3.1, 3.2, we have the following corollary.

Corollary 3.3 Let T be a nonabelian simple finite group, and let α be an
automorphism of T such that |α| = 3. For a ∈ T , set S = {a, aα, aα2}.
Suppose that T = 〈S−1S〉. If T is not one of simple groups listed in The-
orem 3.2, then BCay(T, S) is semisymmetric if and only if there are no
automorphisms of T which map {a−1aα, a−1aα2} to {(aα)−1a, (aα2

)−1a}.

4 Examples

In this section, we shall construct several infinite families of semisymmetric
graphs from the bi-Cayley graphs of the alternating group An for some
special n. Let S = {a, ab, ab2} such that 〈a−1ab, a−1ab2〉 = An, where b

is an element in An of order 3. We set x = a−1ab and y = a−1ab2 . It
is well-know that Aut(An) = Sn except for n = 6. By the results of last
section BCay(An, S) (n > 9, n 6= 15, 31, 63, 127) is semisymmetric if and
only if {xσ, yσ} 6= {x−1, y−1} for every σ ∈ Sn. In this section we always
write a permutation as a product of disjoint cycles.

Example 4.1 n = 3k+2, where k is even, and k > 5. Let S = {a, ab, ab2},
where

a = (1 2 3 4 5)(6 7 8 9 · · · 3k 3k+1 3k+2),
b = (2 k+3 k+4)(4 k+5 k+6)(5 k+7 k+8) · · ·

(i k+2i−3 k+2i−2) · · · (k+2 3k+1 3k+2).

Then Γ = BCay(An, S) is a semisymmetric cubic graph.

Proof By calculation, we have

ab = (1 k+3 3 k+5 k+7)(k+9 k+11 · · · k+2i−3 · · · 3k+1 k+4 2 k+6
4 k+8 5 k+10 · · · i k+2i · · · k+1 3k+2 k+2),

ab2 = (1 k+4 3 k+6 k+8)(k+10 k+12 · · · k+2i−2 · · · 3k+2 2 k+3
4 k+5 · · · i k+2i−3 · · · k+2 3k+1).
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Set x = a−1ab, and y = a−1ab2 . Then

x = (1 k+10 k+11 6 k+2 3k+2 k+4 3 k+6 k+7 4 k+5 2 k+3 k+9 5 k+8)
(7 k+12 k+13) · · · (i k+2i−2 k+2i−1) · · · (k+1 3k 3k+1),

y = (1 k+7 k+8 6 2 k+4 4 k+6 5 k+5 3 k+3 3k+1 3k+2 k+10 7 k+9)
(8 k+11 k+12) · · · (i k+2i−5 k+2i−4) · · · (k+2 3k−1 3k),

(x9)−1y = (2)(1 5 4 7 k+9 k+10 k+8 k+3 3k−1 3k k+2 k+4)(k+7)
(3 k+5 k+12 8 k+11 k+6 6)
(3k+1 3k+2)(9 k+13 k+14)(10 k+15 k+16) · · · (k+2 3k−1 3k),

y10 = (1 3 6 3k+2 4 k+9 k+5 k+8 3k+1 k+4 7 5 k+7 k+3 2 k+10 k+6)
(8 k+11 k+12) · · · (i k+2i−5 k+2i−4) · · · (k+2 3k−1 3k),

xy10 = (2)(3k+2 7 8 9 · · · k k+1 k+2 4 k+8 3 1 k+6 k+3 k+5
k+10 k+12 · · · k+2i−4 k+2i−2 k+2i · · · 3k−2 3k
k+4 6 3k−1 3k−5 3k−9 · · · 3k−4i−1 3k−4i−5 · · ·) · · · .

It is easy to see that 〈x, y〉 is 2-transitive on {1, 2, · · · , 3k + 2}. As x3 is a
17-cycle, 〈x, y〉 = A3k+2 (see, for example, Theorem 3.3E of [3]). So Γ is
connected.

Obviously S is an orbit of the inner automorphism induced by b, and
so Γ is edge-transitive.

Assume that Γ is not semisymmetric. Then there is some σ ∈ S3k+2

such that {xσ, yσ} = {x−1, y−1}. Note that σ also maps 17-cycles to 17-
cycles (under the conjugate action). Consider the symbols appeared in only
one 17-cycle. They are k + 11, k + 2, 3k + 1, and 7. Then σ either fixes
{k + 11, k + 2} and {3k + 1, 7} setwise or interchanges these two sets. As
k + 11 and k + 2 has distance 2 in the first 17-cycle, and 3k + 1 and 7 has
distance 3 in the second 17-cycle, σ fixes {k + 11, k + 2} and {3k + 1, 7}
setwise. It follows that xσ = x−1 and yσ = y−1. By checking these two
17-cycles we can easily obtain a contradiction. 2

Example 4.2 n = 3k +2, where k is odd, and k > 3. Let S = {a, ab, ab2},
where

a = (1 2 3 4 5 6 7 8 9 · · · 3k 3k+1 3k+2),
b = (1 k+2 k+3)(3 k+4 k+5) · · · (i k+2i+2 k+2i−1) · · · (k+1 3k 3k+1).

Then Γ = BCay(An, S) is a semisymmetric cubic graph.

Proof First, we have

ab = (1 k+5 3 k+7 4 k+9 · · · i k+2i+1 · · · k 3k+1
k+1 3k+2 k+2 2 k+4 k+6 · · · k+2i−2 · · · 3k−2 3k k+3),

ab2 = (1 k+2 3 k+4 · · · i k+2i−2 · · · k 3k−2 k+1 3k 3k+2
k+3 2 k+5 · · · k+2i−1 · · · 3k+1).
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Set x = a−1ab, y = a−1ab2 , and z = x−1y = (ab)−1ab2 . Then

x = (1 k+2 3k+2 k+1 3k+1 k+3 2 k+5 k+6 3 k+4)
(4 k+7 k+8) · · · (i k+2i−1 k+2i) · · · (k 3k−1 3k),

y = (1 k+3 3 k+5 4 k+4 2 k+2 3k 3k+1 3k+2)
(5 k+6 k+7) · · · (i k+2i−4 k+2i−3) · · · (k+1 3k−2 3k−1),

z = (1 2 3 k+7 k+4 k+5 k+2 k+3 3k+2 3k k+1)
(4 k+9 k+6) · · · (i k+2i+1 k+2i−2) · · · (k 3k+1 3k−2),

zx5 = (1)(2 k+1 k+3 k+5)(3 4 · · · k)(k+2 k+4)(k+6 k+8 · · ·
k+2i k+2i+2 · · · 3k+2 3k−1 3k−5 3k−9 · · ·) · · · .

Together with the formula of x11 we know that 〈x, y〉 is 2-transitive on the
set {1, 2, · · · , 3k+2}. As x3 is a 11-cycle, 〈x, y〉 = A3k+1. So Γ is connected.
Obviously S is an orbit of the inner automorphism induced by b, and so Γ
is edge-transitive.

Assume that Γ is not semisymmetric. Then there is some σ ∈ S3k+2

such that {xσ, yσ} = {x−1, y−1}. Note that σ also maps 11-cycles to 11-
cycles. Since the symbols appeared in only one 11-cycle are k + 1, k + 6, 4,
and 3k, the permutation σ either fixes {k + 1, k + 6} and {4, 3k} setwise or
interchanges these two sets. As k+1 and k+6 has distance 5 in one 11-cycle,
and 4 and 3k has distance 4 in the other 11-cycle, σ fixes {k +1, k +6} and
{4, 3k} setwise. It follows that xσ = x−1 and yσ = y−1. Checking these
two 11-cycles we can easily obtain a contradiction. 2

Example 4.3 n = 3k + 1, where k is odd, and k ≥ 7, k 6= 10, 42. Let
S = {a, ab, ab2}, where

a = (1 2 3)(4 5 6 7 8 · · · 3k 3k+1),
b = (2 k+2 k+3) · · · (i k+2i−2 k+2i−1) · · · (k+1 3k 3k+1).

Then Γ = BCay(An, S) is a semisymmetric cubic graph.

Proof By calculation, we have

ab = (1 k+2 k+4)(k+6 k+8 · · · k+2i−2 k+2i · · · 3k
k+3 2 · · · k+2i−1 i · · · 3k+1 k+1),

ab2 = (1 k+3 k+5)(k+7 k+9 · · · k+2i−1 · · · 3k+1 2 k+2
3 k+4 · · · i k+2i−2 · · · k+1 3k).
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Set x = a−1ab, and y = a−1ab2 . Then

x = (1 k+7 k+8 4 k+1 3k+1 k+3 k+4 2 k+2 k+6 3 k+5)(5 k+9 k+10)
· · · (i k+2i−1 k+2i) · · · (k 3k−1 3k),

y = (1 k+4 k+5 4 2 k+3 3 k+2 3k 3k+1 k+7 5 k+6)(6 k+8 k+9)
· · · (i k+2i−4 k+2i−3) · · · (k+1 3k−2 3k−1),

yx6 = (1)(3k+1 k+4)(2 k+5 k+2 3k 3 k+8 k+9 6)
(k+1 3k−2 3k−1 k+6 k+3)(4 k+7 5)
(7 k+10 k+11) · · · (i k+2i−4 k+2i−3) · · · (k 3k−4 3k−3).

Together with the formula of x3 we know that that 〈x, y〉 is 2-transitive
on the set {1, 2, · · · , 3k+1}. As x3 is a 13-cycle, 〈x, y〉 = A3k+1. So Γ is
connected. Obviously S is an orbit of the inner automorphism induced by
b, and hence Γ is edge-transitive.

Assume that Γ is not semisymmetric. Then there is some σ ∈ S3k+1

such that {xσ, yσ} = {x−1, y−1}. Note that σ also maps 13-cycles to 13-
cycles. Since the symbols appeared in only one 13-cycle are k +8, k +1, 3k,
and 5, the permutation σ either fixes {k + 8, k + 1} and {3k, 5} setwise
or interchanges these two sets. Since k + 8 and k + 1 has distance 2 in
one 13-cycle, and 3k + 1 and 7 has distance 3 in the other 13-cycle, the
permutation σ fixes {k + 8, k + 1} and {3k, 5} setwise. It follows that
xσ = x−1 and yσ = y−1. By checking these two 13-cycles, we can easily
obtain a contradiction. 2
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