
ar
X

iv
:m

at
h.

C
O

/0
50

80
08

 v
1 

  3
0 

Ju
l 2

00
5

Stable Equivalences of Giambelli Type Matrices of Schur
Functions

William Y. C. Chen1 and Arthur L. B. Yang2

Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, P. R. China

Email: 1chen@nankai.edu.cn, 2yang@nankai.edu.cn

Abstract. By using cutting strips and transformations on outside decompositions of
a skew diagram, we show that the Giambelli type matrices of a skew Schur function
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1. Introduction

Let R be a commutative ring with unit. Recall that two matrices M and M ′ over
R are called to be stably equivalent to each other, if and only if M and M ′ can be
transformed from each other by the following three fundamental matrix operations:

(i) general row operation: M  AM = M ′;

(ii) general column operation: M  MA = M ′;

(iii) stabilization: M 

(

1 0
0 M

)

= M ′, and its inverse,

where A is an invertible matrix over R.

This paper is motivated by Kuperberg’s problem [5] on the stable equivalence
property between the Jacobi-Trudi matrix and the dual Jacobi-Trudi matrix of skew
Schur functions over the ring Λ of symmetric functions. We assume that the reader
is familiar with the notation and terminology on symmetric functions in [7]. Given
a partition λ with weakly decreasing components, let ℓ(λ) denote the length of λ.
The Jacobi-Trudi matrix for the skew Schur function sλ/µ is given by

Jλ/µ =
(

hλi−µj−i+j

)ℓ(λ)

i,j=1
, (1.1)
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where hk denotes the k-th complete symmetric function, h0 = 1 and hk = 0 for
k < 0. The dual Jacobi-Trudi matrix for sλ/µ is given by

Dλ/µ =
(

eλ′

i−µ′

j−i+j

)ℓ(λ′)

i,j=1
, (1.2)

where λ′ is the partition conjugate to λ, ek denotes the k-th elementary symmetric
function, e0 = 1 and ek = 0 for k < 0.

Kuperberg showed that the Jacobi-Trudi matrix and the dual Jacobi-Trudi ma-
trix are stably equivalent over the polynomial ring [5, Theorem 14]. He raised the
question whether they are stably equivalent over the ring of symmetric functions.
We give an affirmative answer to this problem.

This paper is organized as follows. First we review some concepts of outside
decompositions for a given skew diagram. Utilizing the cutting strips for a given
edgewise connected skew shape as introduced by Chen, Yan and Yang [1], we demon-
strate how a twist transformation changes the set of contents of the initial boxes of
border strips in an outside decomposition, and how it changes the set of the contents
of the terminal boxes. In Section 3, we construct the canonical form of the Giambelli
type matrix of the skew Schur function assuming that the outside decomposition is
fixed. Using this canonical form we establish the stable equivalence property of the
Giambelli type matrix for the edgewise connected skew diagram. In Section 4, we
show that for a general skew diagram the Jacobi-Trudi matrix and its dual form of
Schur functions are stably equivalent over the ring of symmetric functions.

2. Twist transformations

Let λ be a partition of n with k parts, i.e., λ = (λ1, λ2, . . . , λk) where λ1 ≥ λ2 ≥
. . . ≥ λk > 0 and λ1 + λ2 + . . . + λk = n. A Young diagram of λ may be defined
as the set of points (i, j) ∈ Z

2 such that 1 ≤ j ≤ λi and 1 ≤ i ≤ k. A Young
diagram can also be represented in the plane by an array of boxes justified from the
top and left corner with k rows and λi boxes in row i. A box (i, j) in the diagram
is the box in row i from the top and column j from the left. The content of (i, j),
denoted τ((i, j)), is given by j − i. Given two partitions λ and µ, we say that µ ⊆ λ
if µi ≤ λi for all i. If µ ⊆ λ, we define a skew partition λ/µ, whose Young diagram is
obtained from the Young diagram of λ by peeling off the Young diagram of µ from
the upper left corner. The conjugate of a skew partition λ/µ, which we denote by
λ′/µ′, is defined to be the transpose of the skew diagram λ/µ.

A skew diagram λ/µ is connected if it can be regarded as a union of an edgewise
connected set of boxes, where two boxes are said to be edgewise connected if they
share a common edge. A border strip is a connected skew diagram with no 2 × 2
block of boxes. If no two boxes lie in the same row, we call such a border strip a
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vertical border strip. If no two boxes lie in the same column, we call such a border
strip a horizontal border strip. An outside decomposition of λ/µ is a partition of the
boxes of λ/µ into pairwise disjoint border strips such that every border strip in the
decomposition has a starting box on the left or bottom perimeter of the diagram
and an ending box on the right or top perimeter of the diagram, see Figure 2.1 (d).
This concept was used by Hamel and Goulden [2] to give a lattice path proof for
the Giambelli type determinant formulas of the skew Schur function.

Recall that a diagonal with content c of λ/µ is the set of all the boxes in λ/µ
having content c. Starting from the lower left corner of the skew diagram λ/µ,
we use consecutive integers 1, 2, . . . , d to number these diagonals. Chen, Yan and
Yang [1] obtained the following characterization of outside decompositions of a skew
shape.

Theorem 2.1 ([1, Theorem 2.2]) Suppose that λ/µ is an edgewise connected skew
partition and has d diagonals. Then there is a one-to-one correspondence between
the outside decompositions of λ/µ and border strips with d boxes.

For each outside decomposition Π, the corresponding border strip T is called
the cutting strip of Π in [1], which is given by the rule: for i = 1, 2, . . . , d − 1, the
relative position between the i-th box and the (i+1)-th box in T coincides with the
relative position between the two boxes in the same border strip of Π, one of which
is on the i-th diagonal and the other on the (i + 1)-th diagonal, see Figure 2.1.

(c) (d)

(a) (b)
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r
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r

r

r

Figure 2.1 The cutting strip of an outside decomposition

Notice that the relative position between the i-th box and the (i+1)-th box of the
border strip imposes an up or right direction to the i-th box according to the (i+1)-
th box lies above or to the right of the i-th box. Throughout this paper, we will read
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the diagram from the bottom right corner to the top left corner. In the same manner,
each diagonal may be endowed with a direction for a given outside decomposition.
From the cutting strip characterization of outside decompositions, one can obtain
any outside decomposition from another by a sequence of basic transformations
of changing the directions of the boxes on a diagonal, which corresponds to the
operation of changing the direction of a box in the cutting strip. This transformation
is called the twist transformation on border strips.

Let λ/µ be an edgewise connected skew shape. Let L be the diagonal of λ/µ
consisting of the boxes with content i. Note that L must be one of the four possible
diagonal types classified by whether the first diagonal box has a box at the top, and
whether the last diagonal box has a box on the right. These four types are depicted
by Figure 2.2.

L L
. . .
. . .

r

r

r

r

. . .. . .

r

r

r

r

Type 1 Type 2

L
L

. . .

. . .

r

r

r

r

. . .
. . .

r

r

r

Type 3 Type 4

Figure 2.2 Four possible types of diagonals of λ/µ

Given an outside decomposition Π = (θ1, θ2, . . . , θm) of λ/µ and a strip θ in Π,
we denote the content of the initial box of θ and the content of the terminal box of
θ respectively by p(θ) and q(θ). Let φ be the cutting strip of Π. It is known that θ
can be regarded as the segment of φ with the initial content p(θ) and the terminal
content q(θ) [1], denoted φ[p(θ), q(θ)].

Given two skew diagrams I and J , let I ◮ J be the diagram obtained by gluing
the lower left-hand corner box of diagram J to the right of the upper right-hand
corner box of diagram I, and let I ↑ J be the diagram obtained by gluing the
lower left-hand corner box of diagram J to the top of the upper right-hand corner
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box of diagram I. Suppose that the strip θ has a box of L, then θ can be written
as φ[p(θ), i] ◮ φ[i + 1, q(θ)] if L has the right direction, and θ can be written as
φ[p(θ), i] ↑ φ[i + 1, q(θ)] if L has the up direction.

Let ωi denote the twist transformation acting on an outside decomposition Π by
changing the direction of the diagonal L. Let

Init(Π) = {p(θ1), p(θ2), . . . , p(θm)}, (2.3)

Term(Π) = {q(θ1), q(θ2), . . . , q(θm)}. (2.4)

The following theorem describes the actions of ωi on Init(Π) and Term(Π).

Theorem 2.2 Given an outside decomposition Π, let Π′ be the outside decomposi-
tion obtained from Π by applying the twist transformation ωi. Then we have

(a) i 6∈ Term(Π), i + 1 6∈ Init(Π), Init(Π′) = Init(Π) ∪ {i + 1} and Term(Π′) =
Term(Π) ∪ {i}, or

(b) i ∈ Term(Π), i + 1 ∈ Init(Π), Init(Π′) = Init(Π) \ {i + 1} and Term(Π′) =
Term(Π) \ {i}, or

(c) i ∈ Term(Π), i + 1 6∈ Init(Π), Init(Π′) = Init(Π) and Term(Π′) = Term(Π), or

(d) i 6∈ Term(Π), i + 1 ∈ Init(Π), Init(Π′) = Init(Π) and Term(Π′) = Term(Π).

Proof. Suppose that L has r boxes. Since the twist transformation ωi only changes
the strips which contain a box in L, we may suppose that θit , 1 ≤ t ≤ r, is the
strip in Π that contains the t-th diagonal box in L. Without loss of generality we
may assume that the diagonal boxes have the up direction, since we can reverse the
transformation process for the case when the diagonal boxes have the right direction.

Let φ′ be the cutting strip corresponding to the outside decomposition Π′. Now
we see the changes of Init(Π) and Term(Π) under the action of the twist transfor-
mation ωi according to the type of L:

(a) If L is of Type 1, then we have i 6∈ Term(Π) and i+1 6∈ Init(Π). As illustrated
in Figure 2.3, under the operation of ωi, the strip

θi1 = φ[p(θi1), q(θi1)] = φ[p(θi1), i] ↑ φ[i + 1, q(θi1)]

breaks into two strips

φ′[p(θi1), q(θi2)] = φ[p(θi1), i] ◮ φ[i + 1, q(θi2)] and φ′[i + 1, q(θi1)].
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If r > 1 then the last strip

θir = φ[p(θir), q(θir)] = φ[p(θir), i] ↑ φ[i + 1, q(θir)]

will be cut off into φ′[p(θir), i], and the other strips

θit = φ[p(θit), q(θit)] = φ[p(θit), i] ↑ φ[i + 1, q(θit)], 2 ≤ t ≤ r − 1,

will be twisted into

φ′[p(θit), q(θit+1
)] = φ[p(θit), i] ◮ φ[i + 1, q(θit+1

)].

Thus

Init(Π′) = Init(Π) ∪ {i + 1} and Term(Π′) = Term(Π) ∪ {i}.

6
6

6
6

i

i + 1

. . .

. . .
-

-
-

. . .. . .

r

r

i

i + 1

L ωi(L)

Figure 2.3 ωi acts on a Type 1 diagonal L

(b) If L is of Type 2, then we have i ∈ Term(Π) and i + 1 ∈ Init(Π). Let θir+1
be

the unique strip of Π with the initial content i+1. Under the operation of ωi,
the strip θi1 = φ[p(θi1), i] becomes a part of the new strip

φ′[p(θi1), q(θi2)].

The strip θir+1
= φ[i + 1, q(θir+1

)] becomes a part of the new strip

φ′[p(θir), q(θir+1
)] = φ[p(θir), i] ◮ φ[i + 1, q(θir+1

)].

For 2 ≤ t ≤ r − 1, the strips

θit = φ[p(θit), q(θit)] = φ[p(θit), i] ↑ φ[i + 1, q(θit)]

will be twisted into

φ′[p(θit), q(θit+1
)] = φ[p(θit), i] ◮ φ[i + 1, q(θit+1

)].

Thus

Init(Π′) = Init(Π) \ {i + 1} and Term(Π′) = Term(Π) \ {i}.
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(c) If L is of Type 3, then we have i ∈ Term(Π) and i + 1 6∈ Init(Π). Under the
operation of ωi, the first strip θi1 = φ[p(θi1), i] becomes

φ′[p(θi1), q(θi2)] = φ[p(θi1), i] ◮ φ[i + 1, q(θi2)].

If r > 1, the last strip

θir = φ[p(θir), q(θir)] = φ[p(θir), i] ↑ φ[i + 1, q(θir)]

will be cut off into φ′[p(θir), i], and the other strips

θit = φ[p(θit), q(θit)] = φ[p(θit), i] ↑ φ[i + 1, q(θit)],

will be twisted into

φ′[p(θit), q(θit+1
)] = φ[p(θit), i] ◮ φ[i + 1, q(θit+1

)], 2 ≤ t ≤ r − 1.

Thus
Init(Π′) = Init(Π) and Term(Π′) = Term(Π).

(d) If L is of Type 4, then we have i 6∈ Term(Π) and i + 1 ∈ Init(Π). Let θir+1
be

the unique strip of Π with the initial content i + 1. Under the operation ωi,
the first strip

θi1 = φ[p(θi1), q(θi1)] = φ[p(θi1), i] ↑ φ[i + 1, q(θi1)]

breaks into two strips

φ′[p(θi1), q(θi2)] = φ[p(θi1), i] ◮ φ[i + 1, q(θi2)] and φ′[i + 1, q(θi1)].

The strip θir+1
becomes a part of the new strip

φ′[p(θr), qθr+1
] = φ[p(θr), r] ◮ φ[i + 1, q(θir+1

)].

The other strips

θit = φ[p(θit), q(θit)] = φ[p(θit), i] ↑ φ[i + 1, q(θit)], 2 ≤ t ≤ r − 1,

will be twisted into

φ′[p(θit), q(θit+1
)] = φ[p(θit), i] ◮ φ[i + 1, q(θit+1

)].

Thus
Init(Π′) = Init(Π) and Term(Π′) = Term(Π).
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3. Giambelli type matrices for connected shapes

By using the lattice path methodology, Hamel and Goulden [2] give a combinatorial
proof for the Giambelli type determinant formulas of the skew Schur function. In
this section, we prove the stable equivalence of the Giambelli type matrices of the
Schur function indexed by an edgewise connected skew partition λ/µ.

Given an outside decomposition Π = (θ1, θ2, . . . , θm) of λ/µ and a strip θ in Π,
let φ be the cutting strip of Π. Recall that the strip θ coincides with the segment
φ[p(θ), q(θ)] of φ. Following the treatment of [1], given any two contents p, q we may
define the strip φ[p, q] as follows:

(i) If p ≤ q, then φ[p, q] is the segment of φ starting with the box having content
p and ending with the box having content q;

(ii) If p = q + 1, then φ[p, q] is the empty strip ∅.

(iii) If p > q + 1, then φ[p, q] is undefined.

Hamel and Goulden proved the following result.

Theorem 3.1 ([2, Theorem 3.1]) The skew Schur function sλ/µ can be evaluated
by the following determinant:

D(Π) = det(sφ[p(θj),q(θi)])
m
i,j=1 (3.5)

where s∅ = 1 and sundefined = 0.

Let us denote the Giambelli type matrix in (3.5) by M(Π). Chen, Yan and
Yang [1] have obtained the canonical form C(Π) = (sφ[pi,qj])

m
i,j=1 of M(Π), where the

sequence (p1, p2, . . . , pm) is the decreasing reordering of (p(θ1), p(θ2), . . . , p(θm)) and
(q1, q2, . . . , qm) is the decreasing reordering of (q(θ1), q(θ2), . . . , q(θm)). It is clear
that if s[pi,qj] = 0 then s[pi, qj ′ ] = 0 and s[pi ′ , qj ] = 0 for j ≤ j ′ ≤ m and 1 ≤ i ′ ≤ i.

Since M(Π) and C(Π) can be obtained from each other by permutations of rows
and columns. Thus we have

Lemma 3.2 For an outside decomposition Π of the skew diagram λ/µ, the two ma-
trices M(Π) and C(Π) are stably equivalent over the ring Λ of symmetric functions.

In order to show that the two Giambelli type matrices M(Π) and M(Π′) are
stably equivalent over Λ, it suffices to prove that their canonical forms C(Π) and
C(Π′) are stably equivalent. To this end, we need the following lemma:
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Lemma 3.3 ([3, 6, 8]) Let I and J be two skew diagrams. Then

sIsJ = sI◮J + sI↑J . (3.6)

We now come to the main theorem of this paper:

Theorem 3.4 Let Π and Π′ be two outside decompositions of the edgewise connected
skew diagram λ/µ. Then the Giambelli type matrices M(Π) and M(Π′) are stably
equivalent over the ring Λ of symmetric functions.

Proof. By Lemma 3.2, we only need to prove that C(Π) and C(Π′) are stably
equivalent over Λ. Since any two outside decompositions can be transformed from
each other by a sequence of twist transformations, it suffices to prove the case when
Π′ = ωi(Π) for any twist transformation ωi. Let φ be the cutting strip of Π, and let
φ′ be the cutting strip of Π′. Without loss of generality, we assume that the box of
content i in φ has the up direction. Thus the box of content i in φ′ has the right
direction. By Theorem 2.2, we only need to consider the stable equivalence between
C(Π) and C(Π′). Here are four cases:

(a) i 6∈ Term(Π), i + 1 6∈ Init(Π), Init(Π′) = Init(Π) ∪ {i + 1} and Term(Π′) =
Term(Π) ∪ {i}. Suppose that k and k′ are the two indices such that

pk > i + 1 and pk+1 < i + 1; while qk′ > i and qk′+1 < i.

Then the canonical matrix C(Π) has the following form



















sφ[p1,q1] · · · sφ[p1,qk′ ]
0 · · · 0

...
...

...
...

...
...

sφ[pk,q1] · · · sφ[pk,qk′ ]
0 · · · 0

sφ[pk+1,i]↑φ[i+1,q1] · · · sφ[pk+1,i]↑φ[i+1,qk′ ]
sφ[pk+1,qk′+1]

· · · sφ[pk+1,qm]

...
...

...
...

...
...

sφ[pm,i]↑φ[i+1,q1] · · · sφ[pm,i]↑φ[i+1,qk′]
sφ[pm,qk′+1]

· · · sφ[pm,qm]



















,

and the canonical matrix C(Π′) has the following form























sφ[p1,q1] · · · sφ[p1,qk′ ]
0 0 · · · 0

...
...

...
...

...
...

...
sφ[pk,q1] · · · sφ[pk,qk′ ]

0 0 · · · 0
sφ[i+1,q1] · · · sφ[i+1,qk′ ]

1 0 · · · 0
sφ[pk+1,i]◮φ[i+1,q1] · · · sφ[pk+1,i]◮φ[i+1,qk′]

sφ[pk+1,i] sφ[pk+1,qk′+1] · · · sφ[pk+1,qm]

...
...

...
...

...
...

...
sφ[pm,i]◮φ[i+1,q1] · · · sφ[pm,i]◮φ[i+1,qk′]

sφ[pm,i] sφ[pm,qk′+1]
· · · sφ[pm,qm]























.
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For j : 1 ≤ j ≤ k′ subtracting the (k′ + 1)-th column of C(Π) multiplied by
sφ[i+1,qj ] from the j-th column, then for j : k + 2 ≤ j ≤ m + 1, subtracting the
(k + 1)-th row multiplied by sφ[pj−1,i] from the j-th row, we get the following
matrix due to Lemma 3.3























sφ[p1,q1] · · · sφ[p1,qk′ ]
0 0 · · · 0

...
...

...
...

...
...

...
sφ[pk,q1] · · · sφ[pk,qk′ ]

0 0 · · · 0
0 · · · 0 1 0 · · · 0

−sφ[pk+1,i]↑φ[i+1,q1] · · · −sφ[pk+1,i]↑φ[i+1,qk′ ]
0 sφ[pk+1,qk′+1] · · · sφ[pk+1,qm]

...
...

...
...

...
...

...
−sφ[pm,i]↑φ[i+1,q1] · · · −sφ[pm,i]↑φ[i+1,qk′ ]

0 sφ[pm,qk′+1]
· · · sφ[pm,qm]























.

By multiplying −1 for the last m − k rows and the last m− k′ columns, then
permuting rows and columns, and the inverse operation of stabilization, we
find that the above matrix is stably equivalent to C(Π) over the ring Λ of
symmetric functions. Thus C(Π) and C(Π′) are stably equivalent over Λ.

(b) i ∈ Term(Π), i + 1 ∈ Init(Π), Init(Π′) = Init(Π) \ {i + 1} and Term(Π′) =
Term(Π) \ {i}. In this case, we only need to reverse the process of the op-
erations of case (a), where ωi is regarded as a transformation from the right
direction to the up direction. Notice that each inverse operation is still over
the ring Λ of symmetric functions. Thus C(Π) and C(Π′) are stably equivalent
over Λ.

(c) i ∈ Term(Π), i + 1 6∈ Init(Π), Init(Π′) = Init(Π) and Term(Π′) = Term(Π).
Suppose that k and k′ are the two indices such that

pk > i + 1 and pk+1 < i + 1; while qk′ = i.

Then the canonical matrix C(Π) has the following form





















sφ[p1,q1] · · · sφ[p1,qk′−1]
0 0 · · · 0

...
...

...
...

...
...

...
sφ[pk,q1] · · · sφ[pk,qk′−1] 0 0 · · · 0

sφ[pk+1,i]↑φ[i+1,q1] · · · sφ[pk+1,i]↑φ[i+1,qk′−1] sφ[pk+1,i] sφ[pk+1,qk′+1]
· · · sφ[pk+1,qm]

...
...

...
...

...
...

...
sφ[pm,i]↑φ[i+1,q1] · · · sφ[pm,i]↑φ[i+1,qk′−1]

sφ[pm,i] sφ[pm,qk′+1] · · · sφ[pm,qm]





















,
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and the canonical matrix C(Π′) has the following form





















sφ[p1,q1] · · · sφ[p1,qk′−1] 0 0 · · · 0
...

...
...

...
...

...
...

sφ[pk,q1] · · · sφ[pk,qk′−1]
0 0 · · · 0

sφ[pk+1,i]◮φ[i+1,q1] · · · sφ[pk+1,i]◮φ[i+1,qk′−1] sφ[pk+1,i] sφ[pk+1,qk′+1]
· · · sφ[pk+1,qm]

...
...

...
...

...
...

...
sφ[pm,i]◮φ[i+1,q1] · · · sφ[pm,i]◮φ[i+1,qk′−1] sφ[pm,i] sφ[pm,qk′+1]

· · · sφ[pm,qm]





















.

For j : 1 ≤ j ≤ k′ − 1 subtracting the k′-th column of C(Π) multiplied by
sφ[i+1,qj ] from the j-th column, and then multiplying −1 for the last m−k rows
and the last m − k′ + 1 columns, we obtain the matrix C(Π). This implies
that C(Π) and C(Π′) are stably equivalent over Λ.

(d) i 6∈ Term(Π), i+1 ∈ Init(Π), Init(Π′) = Init(Π) and Term(Π′) = Term(Π). We
omit the proof here since it is similar to Case (c).

By summarizing, we have completed the proof.

4. Jacobi-Trudi matrices

In this section we will prove that the Jabobi-Trudi matrix and the dual Jacobi-Trudi
matrix are stably equivalent over the ring Λ of symmetric functions for a general skew
partition λ/µ. Theorem 3.4 states that this is true when λ/µ is edgewise connected,
where we do not allow the existence of empty strips in the outside decomposition
Π. The Jacobi-Trudi matrix Jλ/µ corresponds to the Giambelli type matrix M(Π)
when the cutting strip φ of Π is a horizontal border strip, and the dual Jacobi-Trudi
matrix Dλ/µ corresponds to the matrix M(Π) when φ is a vertical border strip.

For a general skew partition λ/µ, we need to be more careful when dealing
with the empty strip. Let cmin = −λ′

1 + 1 and cmax = λ1 − 1. Let φh (or φe) be
the horizontal (resp. vertical) border strip starting with the box having content
cmin and ending with the box having content cmax. Let Πh = (θ1, · · · , θℓ(λ)) be
the horizontal outside decomposition of λ/µ, where θi is a horizontal strip of row i
from the (µi + 1)-th box to the λi-th box. When λi = µi, we take θi as the empty
strip. Clearly, each θi corresponds to a substrip φh[µi − i + 1, λi − i] of φh. Now
we see that the Jacobi-Trudi matrix Jλ/µ coincides with the Giambelli type matrix
M(Πh) defined in (3.5). Similarly, let Πe = (θ′1, · · · , θ′λ1

) be the vertical outside
decomposition of λ/µ, where θ′i is a vertical strip of column i from the λ′

i-th box to
the (µ′

i + 1)-th box. When λ′
i = µ′

i, we take θ′i as the empty strip. Clearly, each θ′i
corresponds to a substrip φe[−λ′

i + i,−µ′
i + i− 1] of φe. Then the dual Jacobi-Trudi
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matrix Dλ/µ coincides with the Giambelli type matrix M(Πe). The following lemma
is straightforward.

Lemma 4.1 Let λ/µ be a partition with λ′
1 = µ′

1. Let ρ/ν be the skew partition by
removing the first column of the skew diagram λ/µ. Then the Jacobi-Trudi matri-
ces of λ/µ and ρ/ν are stably equivalent over Λ, and so are the dual Jacobi-Trudi
matrices.

Therefore, we may assume that λ′
1 6= µ′

1. Let Π be an outside decomposition
of λ/µ, and let φ be the cutting strip of Π. For i : cmin ≤ i ≤ cmax, let ωi denote
the twist transformation at the box of content i from the right direction to the up
direction. Now we define the outside decomposition ωi(Π) by the following rule:

(a’) If λ/µ has both a box with content i and a box with content i + 1, then let
ωi(Π) = Π \ Π(i) ∪ ωi(Π

(i)), where Π(i) is the outside decomposition of the
edgewise connected region of λ/µ which has a box with content i and ωi(Π

(i))
is defined as in Section 2.

(b’) If λ/µ has a box with content i and but it does not have a box with content
i + 1, then let ωi(Π) = Π.

(c’) If λ/µ neither have a box with content i nor have a box with content i + 1
while it has a box with content less than i, then put ωi(Π) = Π ∪ {φ[i + 1, i]}
if φ[i + 1, i] 6∈ Π, otherwise put ωi(Π) = Π \ {φ[i + 1, i]}.

(d’) If λ/µ has a box with content i + 1 and a box with content less than i, but it
does not have a box with content i, then let ωi(Π) = Π.

The following lemma is a direct verification of the action of ωi on outside decom-
positions

Lemma 4.2 Let λ/µ be a skew partition with λ′
1 6= µ′

1. Let Πh and Πe be the
horizontal outside decomposition and the vertical outside decomposition of λ/µ re-
spectively. Then

Πe = ωcmax−1(ωcmax−2(· · · (ωcmin
(Πh)) · · · )). (4.7)

We now reach the following conclusion as an answer to Kuperberg’s problem [5,
Question 15].

Theorem 4.3 For a skew partition λ/µ, the Jacobi-Trudi matrix Jλ/µ and Dλ/µ are
stably equivalent over the ring of symmetric functions.
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Proof. Due to Lemma 3.2, we only need to prove that the canonical matrices C(Πh)
and C(Πe) are stably equivalent over Λ. Due to Lemma 4.1, we only deal with the
case of λ′

1 6= µ′
1. By Lemma 4.2, it suffices to prove that C(Π) and C(ωi(Π)) are

stably equivalent under any twist transformation ωi of the above four cases.

Let Init(Π) = {p1, p2, . . . , pm} and Term(Π) = {q1, q2, . . . , qm} be strictly de-
creasing. Now we see the transformations between the matrices according to the
type of ωi.

If ωi is of type (c’), then the proof is similar to the proof of case (a) and (b) in
Theorem 3.4.

For the case of ωi being of type (a’), the stably equivalent transformation will
be one of the cases of the proof of Theorem 3.4.

If ωi is of type (b’), then i ∈ Term(Π). Now the proof is similar to the proof of
case (c) in Theorem 3.4.

If ωi is of type (d’), then i + 1 ∈ Init(Π). Now the proof is similar to the proof
of case (d) in Theorem 3.4.

Combining all the cases, we have completed the proof.

Remark. The above proof only gives the stably equivalent transformations from the
Jacobi-Trudi matrix to the dual Jacobi-Trudi matrix. In fact, we can also transform
the dual Jacobi-Trudi matrix into the Jacobi-Trudi matrix.

For instance, we take λ/µ = (6, 5, 3, 1)/(4, 4, 3) to illustrate the proof of the above
theorem, see Appendix. The skew diagram λ/µ = (6, 5, 3, 1)/(4, 4, 3) is shown in
Figure 4.1.

Figure 4.1 The skew partition (6, 5, 3, 1)/(4, 4, 3)
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Appendix

Note that the Jacobi-Trudi matrix is the transpose of the first Giambelli type matrix,
and the dual Jacobi-Trudi matrix is the transpose of the last Giambelli type matrix.
Here we use [p, q] denote the corresponding border strip in the outside decomposition.
The dots in the matrix represent 0.

Cutting strip and
outside decomposition

Canonical form of
Giambelli type matrix

−3−2−1 0 1 2 3 4 5

{[4, 5], [3, 3], [1, 0], [−3,−3]}









s2 1 · ·
s3 s1 · ·
s5 s3 1 ·
s9 s7 s4 s1









−2−1 0 1 2 3 4 5
−3

{[4, 5], [3, 3], [1, 0], [−3,−3]}









s2 1 · ·
s3 s1 · ·
s5 s3 1 ·
s81 s61 s31 s1









−1 0 1 2 3 4 5
−2
−3

{[4, 5], [3, 3], [1, 0], [−1,−2], [−3,−3]}













s2 1 · · ·
s3 s1 · · ·
s5 s3 1 · ·
s7 s5 s2 1 ·

s712 s512 s212 s12 s1













0 1 2 3 4 5
−1
−2
−3

{[4, 5], [3, 3], [1, 0], [0,−1],
[−1,−2], [−3,−3]}

















s2 1 · · · ·
s3 s1 · · · ·
s5 s3 1 · · ·
s6 s4 s1 1 · ·
s61 s41 s12 s1 1 ·
s613 s413 s14 s13 s12 s1

















1 2 3 4 5
0
−1
−2
−3

{[4, 5], [3, 3], [0,−1], [−1,−2], [−3,−3]}













s2 1 · · ·
s3 s1 · · ·
s51 s31 1 · ·
s512 s312 s1 1 ·
s514 s314 s13 s12 s1













Continuing to the twist transformation, we have the following
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Cutting strip and
outside decomposition

Canonical form of
Giambelli type matrix

2 3 4 5
1
0
−1
−2
−3

{[4, 5], [3, 3], [2, 1],
[0,−1], [−1,−2], [−3,−3]}

















s2 1 · · · ·
s3 s1 · · · ·
s4 s2 1 · · ·

s412 s212 s12 1 · ·
s413 s213 s13 s1 1 ·
s415 s215 s15 s13 s12 s1

















3 4 5
2
1
0
−1
−2
−3

{[4, 5], [3, 3], [2, 1],
[0,−1], [−1,−2], [−3,−3]}

















s2 1 · · · ·
s3 s1 · · · ·
s31 s12 1 · · ·
s313 s14 s12 1 · ·
s314 s15 s13 s1 1 ·
s316 s17 s15 s13 s12 s1

















4 5
3
2
1
0
−1
−2
−3

{[3, 5], [2, 1], [0,−1], [−1,−2], [−3,−3]}













s21 · · · ·
s212 1 · · ·
s214 s12 1 · ·
s215 s13 s1 1 ·
s217 s15 s13 s12 s1













5
4
3
2
1
0
−1
−2
−3

{[5, 5], [3, 4], [2, 1], [0,−1], [−1,−2], [−3,−3]}

















s1 1 · · · ·
s13 s12 · · · ·
s14 s13 1 · · ·
s16 s15 s12 1 · ·
s17 s16 s13 s1 1 ·
s19 s18 s15 s13 s12 s1
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