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ABSTRACT. For a finite abelian group G, we investigate the invariant s(G) (resp. the invariant so(G))
which is defined as the smallest integer I € N such that every sequence S in G of length |S| > [ has a
subsequence T with sum zero and length |T| = exp(G) (resp. length |T| =0 mod exp(Q)).

1. INTRODUCTION

Let G be a finite abelian group with exp(G) = n > 2. Let s(G) ( resp. so(G)) denote the smallest
integer | € N such that every sequence S in G with length |S| > [ contains a zero-sum subsequence T'
with length |T'| = n ( resp. with length |T| =0 mod n).

The invariant s(G) was first studied for cyclic groups by Erdos, Ginzburg and Ziv. For every n € N
we denote by C,, a cyclic group with n elements. In [3], Erdos et. al. proved that s(C,) =2n —1. In
1983, A. Kemnitz conjectured that s(C’f)) = 4p — 3 for every prime p € N. This conjecture is still open
and a positive answer would imply immediately that s(C2) = 4n — 3 for every n € N. The best result
known so far states that s(Cy, ® C,;) < 4¢ — 2 for every prime power ¢ € N. For further results on s(G),
also for groups with higher rank, we refer to [11], [1], [4], [14], [6], [7], [2]-

The invariant so(G) was introduced recently in [9]. It was studied in groups of the form G = C,, & C,,,
and it turned out to be an important tool for a detailed investigation of sequences in C,, & C,. By
definition, we have sp(G) < s(G), and it is easy to see that equality holds for cyclic groups and for
elementary 2-groups, for which we have s(C}) = so(C5) = 2" 4+ 1. The situation is different for groups
G with rank two. We conjecture that so(C2) = 3n — 2 for all n > 2. This conjecture holds true if n is
either a product of at most two distinct prime powers or s(Cg) = 4p — 3 for all primes p dividing n (cf.
[9, Theorem 3.7]).

The Davenport constant D(G) of G is defined as the smallest integer I € N such that every sequence
S in G with length |S| > [ contains a zero-sum subsequence. A simple argument shows that 3n — 2 <
s0(C?) < D(C3) (see [9, Lemma 3.5]). It is well known, that equality holds if n is a prime power. However,
it is still unknown whether D(C2) = 3n — 2 holds for every n € N.

The aim of this paper is to derive some unconditional results on so(C,, @ C,,) (i.e., results which do
not rest on any unproved assumptions on s(-) or D(-)). We formulate a main result.

Theorem 1.1. Let m,n € N> with n > ’”2_%“ If 50(C2) = 3m — 2 and D(C2) = 3n — 2, then
s0(C2,,) = 3mn — 2.

The following corollary is known for [ € {1,2} (cf. [9, Theorem 3.7]).

Corollary 1.2. Let n = Hézl ¢; € N>o where Il € N and q1,...,q € N are pairwise distinct prime
powers. If 3qi1 > ¢ ... @2 —qi-...-qi+ 1 for every i € [2,1 — 1], then so(C,, & Cy,) = 3n — 2.
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The proof of Theorem 1.1 rests on the recent result that s(C, & C,) < 4¢q — 2 for every prime power
g € N (see [5]) and a suitable multiplication formula giving an upper bound for s(C,, & C,,) for every
n € N, which may be of its own interest.

2. PRELIMINARIES

Let N denote the set of positive integers and No = N U {0}. For integers a,b € Z we set [a,b] = {z €
Z|a <z <b}, and for c € N let N>, = N\ [1,¢ — 1]. Throughout, all abelian groups will be written
additively and for n € N let C), denote a cyclic group with n elements.

Let F(G) denote the (multiplicatively written) free abelian monoid with basis G. An element S € F(G)
is called a sequence in G and will be written in the form

!
S=]1]9"® =]]9 € 7.
geG i=1
A sequence S’ € F(Q) is called a subsequence of S, if there exists some S” € F(G) such that S = 5’5"
(equivalently, S” | S or v4(S") < vy(S) for every g € G). If this holds, then S” = 5’71 5. Subsequences
S1,...,8, of S are said to be pairwise disjoint, if their product Hle S; is a subsequence of S. For a
sequence T' € F(G) we set
ged(S,T) = H gnintve (v (D} ¢ F(@).
e
As usual

l
o(S) =) v(S)g=) g €GC
geG i=1

denotes the sum of .S,
S| =) " vy(S) =1€N,
geqG
denotes the length of S and
2S) ={> g |0AI LU} CG
icl

the set of all possible subsums of S. Clearly, |S| = 0 if and only if S =1 is the empty sequence. We say
that the sequence S is

o zero-sumfree, if 0 ¢ 3(5),

e a zero-sum sequence (resp. has sum zero), if o(S) = 0,

e a minimal zero-sum sequence, if it is a non-empty zero-sum sequence and each proper subsequence

is zero-sumfree.

For a finite abelian group H and a map f: G — H, we set f(S) = Hizl flg:) € F(H). If fis a
homomorphism, then f(S) has sum zero if and only if o(5) € ker(f).

Suppose that G = C,,, @ -+ & Cp,, with 1 <mnq |-+ | n,. It is well known that
1+ Z(nl —1) < D(G) = max{|S] | S is a minimal zero-sum sequence in G}
i=1

(e.g., [8, Section 3]). If G is a p-group or r < 2, then 1 +>_!_,(n; — 1) = D(G) (cf. [12] and [13]).
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3. PROOF OF THEOREM 1.1 AND COROLLARY 1.2

We start with the announced multiplication formula, which generalizes an old result of Harborth (see
[10, Hilfssatz 2]).

Proposition 3.1. Let G be a finite abelian group, H < G a subgroup and S € F(G) a sequence with length
|S| > (s(H)—1)exp(G/H)+s(G/H). Then S has a zero-sum subsequence with length exp(H) exp(G/H).
In particular, if exp(G) = exp(H) exp(G/H), then

s(G) < (s(H) — 1)exp(G/H) +s(G/H).
Proof. Let ¢: G — G/H denote the canonical epimorphism. Then S has pairwise disjoint subsequences
S1,. .., Ssary with length |S;| = exp(G/H) such that ¢(S;) has sum zero for every i € [1,s(H)]. Then
the sequence

s(H)

[] (50 € Fler())

i=1
contains a zero-sum subsequence S’ with length [S'| = exp(H), say S" = [[;c;0(S:) where I C
[1,s(H)] with |I| = exp(H). Then [[,; S; is a zero-sum subsequence of S with length |I|exp(G/H) =
exp(H) exp(G/H). O

Corollary 3.2. Let ni,ne € Nyo with ny | ng and G = C,, @ C,,.

(1) Letl € N;q1,...,q € N>g, ny = Hi:1 q; and a,b € Ny such that S(qui) < ag; — b for every
i €[1,1]. Then
-1 i

s(G)§2n2+(a—2)n1—b+(a—b—1)Zqu.

i=1j=1

(2) If ng = Hi'=1 q; with pairwise distinct prime powers q1 < ... < q, then

-1 1
s(@) §2n1+2n2—2—|—Zqu.

i=1j=1
Proof. 1. We set H = {q1g | g € G} whence H = Cny & Cn2 and G/H = Cy, & Cy,. We proceed by
induction on [. If [ = 1, then the Theorem of Erdos-Ginzburg-Ziv and Proposition 3.1 imply that
$(G) < (s(Ca2) = 1) a1 +5(Cy, © Cy)

< (2% —2)q1 + (aq1 — b) = 2ns + (a — 2)ny — b.
1

If [ > 2, then induction hypothesis and Proposition 3.1 imply that
S(G) < (S(Cox ® Ca) = 1) 1 +5(Cyy @ Cy)

-2 4

n n
2(7124‘(@—2)[711—b"'(a—b—l)ZHQjH—l q1 + (ag1 —b)

IN

i=1 j=1
-1 i
:2n2+(a—2)n1—b+(a—b—1)Zqu.

i=1 j=1

2. For every prime power ¢ € N we have s(C2) < 4¢ — 2 by [5]. Thus the assertion follows from 1.
with a =4 and b = 2. O
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Proposition 3.3. Let m € N>o and S € F(Cyp, ® Cy,) with length |S| > 4m — 3. If S contains some
element g with multiplicity vy(S) > m — 5| —1, then S contains a zero-sum subsequence with length m.

Proof. This is a special case of [7, Proposition 2.7]. |

Proof of Theorem 1.1. Let m,n € N>o with n > w, so(C2%) = 3m — 2 and D(C?) = 3n — 2. We
set G = Cpup @ Cryy, and have to show that so(G) < 3mn — 2.

Let S € F(G) be a sequence with length |S| = 3mn — 2, H = G @ (e) = C3,, a group containing G
and let f: G — H be defined by f(g) = g+ e for every g € G. Let ¢: H — H denote the multiplication
by n. Then ker(¢) =2 C2, o(G) =2 C2, and ¢(H) = C3. If U’ € F(GQ) with length |[U’| =0 mod m such
that ¢(U’) has sum zero, then o(U’) € ker(p) and o(f(U’)) € ker(p). Obviously, it suffices to verify that
f(S) contains a zero-sum subsequence. We proceed in three steps.

1. For every I/ € ¢(G) let
Sh’ = H gvg(s)’

geG
w(g)=h'

and let h € ¢(G) be such that
S| = max{|Sy| | B’ € ¢(G)}.
Since 3n > m? — m + 1, we obtain that
IS|  3mn—2
(@) m?

Let Uy, ..., U, be pairwise disjoint subsequences of S, ' - S with length |U;| = ... = |Uj,| = m such that

Sh] > > 2(m — |m/2] - 1).

o(U1),...,¢(Uy,) have sum zero and W = (Hi‘:1 U; - Sp)~1 - S contains no subsequence U’ with length
|U’| = m such that ¢(U’) has sum zero. Then

S=Uy-...-Uy - Sp-W,
and if m = Hﬁzl ¢; with pairwise distinct prime powers ¢; < ... < q;, then Corollary 3.2 implies that
W <4m =243 TTjmy a5 < 4m — 2+ [m/2].

2. If |W|>4m —3 — (m — |m/2] — 1), then by Proposition 3.3 there exists a subsequence Uj, 41 of
Sy - W with length |Uj, 41| = m such that ¢(U;,+1) has sum zero, |ged(Up, 11, S)] < (m — |[m/2] — 1)
and | ged(Up, 41, W)| > |m/2]| + 1.

We iterate this argument: if | ged(Uy, 41, W)™t W| > 4m — 3 — (m — |m/2] — 1), then by Proposition
3.3 there exists a subsequence Uy, 4o of Ul:il - Sp - W with length |U, 12| = m such that ¢(Uj, +2) has
sum zero, | ged(Ui, 42, 5k)| < (m — [m/2] — 1) and |ged(Uy, 42, W)| = [m/2] + 1.

Since

[W| —=2(|m/2] +1) <4dm —2+ |m/2] —2(|m/2] +1) <4dm —4— (m — |[m/2| — 1),

there exist some Iy € [0,2] and pairwise disjoint subsequences Uy, 41, ...,U, 41, of S, - W with length
Uiy 41| = ... = |Ui, 41,| = m such that (U, 41), ..., (Ui, +1,) have sum zero and
(%) lgcd(Uy 1o Upysiy, W)™ 1 W[ < dm —4 — (m — |m/2] —1).
3. Let Uy, 4iy41,-- -, Ul 41,41, be pairwise disjoint subsequences of ged(Sh, Upy 41+« - Upy4i,) " - Sh
such that |Up, 41,41 = - = |Uly+is+15| = m and
lged(Sh, Ups1 -+ Uniy) ™ (Ui tag1 -« Unytg i) ' - Sh| <m — 1.

By construction of Sy, the sequence (U, +1,+4) has sum zero for every i € [1,13].
Thus we obtain that

|(U11+1 . ""Ull+l2+l3)_l -Sh W| <4m —4 — (m— Lm/ZJ - 1)—|—(m— 1) =4m —4 + Lm/2j
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We distinguish two cases.

Case 1: |(Up 41 Ul tintis) " - Sp- W[ < 4m — 4. Then it follows that
U1 U L8, W) TS| 3nm -2 — (4m — 4
Lty 4l — | (U141 I o) W) | , Snm m—4) .
m m
whence ll +12 +l3 Z 3n—3. If ll +12+l3 = 37173, then |(Ul1+1 RPN ’Ull+l2+l3)71 'Sh W‘ = 3TH,72, and
since so(p(GQ)) = 3m —2, the sequence (Up, 11+ ..-Up, 1,415) "+ Sk W contains a subsequence Us,, o with

length |Us,—2| =0 mod m such that ¢(Us,—2) has sum zero. Thus S has pairwise disjoint subsequences
Ui,...,Us,—o with length |U;| = 0 mod m and such that ¢(U;) has sum zero for every i € [1,3n — 2].
Since [[2'7 2 o(f(Uy)) € ker(p) = C? and D(C3) = 3n — 2, the sequence [[-" > o (f(Ui)) contains a
zero-sum subsequence whence Hfﬁ;z fU)=f (Hfzfz U;) and f(S) contain a zero-sum subsequence.

Case 2: (U, 41+ U siys1s) "L Sp- W| > 4m — 3. Then () implies that
| gcd(Sh, (Uya1 - - Upyqigsty) "S- W) = m — [m/2] — 1.
Therefore, by Proposition 3.3, the sequence (U, 1. . .-UlleHS)_l -Sp-W has a subsequence Up, 41,4145+1
with length |Uj, 41,415+1] = m such that (U, +1,415+1) has sum zero. Then
(U1 Ulyttgitss1) ~-Sn-W|<dm —4+ |m/2] —m < 4m — 4

and we continue as in Case 1.
O

Proof of Corollary 1.2. We proceed by induction on {. If I € [1,2], then the assertion follows from [9,
Theorem 3.7]. Suppose that | > 3 and that for m = Hi: q; we have so(Cy, ® Cy,) = 3m — 2. Since
D(C3?) = 3q; — 2, the assertion follows from Theorem 1.1. O
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