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Abstract. For a finite abelian group G, we investigate the invariant s(G) (resp. the invariant s0(G))

which is defined as the smallest integer l ∈ N such that every sequence S in G of length |S| ≥ l has a
subsequence T with sum zero and length |T | = exp(G) (resp. length |T | ≡ 0 mod exp(G)).

1. Introduction

Let G be a finite abelian group with exp(G) = n ≥ 2. Let s(G) ( resp. s0(G)) denote the smallest
integer l ∈ N such that every sequence S in G with length |S| ≥ l contains a zero-sum subsequence T
with length |T | = n ( resp. with length |T | ≡ 0 mod n).

The invariant s(G) was first studied for cyclic groups by Erdös, Ginzburg and Ziv. For every n ∈ N
we denote by Cn a cyclic group with n elements. In [3], Erdös et. al. proved that s(Cn) = 2n − 1. In
1983, A. Kemnitz conjectured that s(C2

p) = 4p − 3 for every prime p ∈ N. This conjecture is still open
and a positive answer would imply immediately that s(C2

n) = 4n − 3 for every n ∈ N. The best result
known so far states that s(Cq ⊕ Cq) ≤ 4q − 2 for every prime power q ∈ N. For further results on s(G),
also for groups with higher rank, we refer to [11], [1], [4], [14], [6], [7], [2].

The invariant s0(G) was introduced recently in [9]. It was studied in groups of the form G = Cn ⊕Cn,
and it turned out to be an important tool for a detailed investigation of sequences in Cn ⊕ Cn. By
definition, we have s0(G) ≤ s(G), and it is easy to see that equality holds for cyclic groups and for
elementary 2-groups, for which we have s(Cr

2) = s0(Cr
2) = 2r + 1. The situation is different for groups

G with rank two. We conjecture that s0(C2
n) = 3n − 2 for all n ≥ 2. This conjecture holds true if n is

either a product of at most two distinct prime powers or s(C2
p) = 4p − 3 for all primes p dividing n (cf.

[9, Theorem 3.7]).
The Davenport constant D(G) of G is defined as the smallest integer l ∈ N such that every sequence

S in G with length |S| ≥ l contains a zero-sum subsequence. A simple argument shows that 3n − 2 ≤
s0(C2

n) ≤ D(C3
n) (see [9, Lemma 3.5]). It is well known, that equality holds if n is a prime power. However,

it is still unknown whether D(C3
n) = 3n− 2 holds for every n ∈ N.

The aim of this paper is to derive some unconditional results on s0(Cn ⊕ Cn) (i.e., results which do
not rest on any unproved assumptions on s(·) or D(·)). We formulate a main result.

Theorem 1.1. Let m,n ∈ N≥2 with n ≥ m2−m+1
3 . If s0(C2

m) = 3m − 2 and D(C3
n) = 3n − 2, then

s0(C2
mn) = 3mn− 2.

The following corollary is known for l ∈ {1, 2} (cf. [9, Theorem 3.7]).

Corollary 1.2. Let n =
∏l

i=1 qi ∈ N≥2 where l ∈ N and q1, . . . , ql ∈ N are pairwise distinct prime
powers. If 3qi+1 ≥ q2

1 · . . . · q2
i − q1 · . . . · qi + 1 for every i ∈ [2, l − 1], then s0(Cn ⊕ Cn) = 3n− 2.
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The proof of Theorem 1.1 rests on the recent result that s(Cq ⊕ Cq) ≤ 4q − 2 for every prime power
q ∈ N (see [5]) and a suitable multiplication formula giving an upper bound for s(Cn ⊕ Cn) for every
n ∈ N, which may be of its own interest.

2. Preliminaries

Let N denote the set of positive integers and N0 = N ∪ {0}. For integers a, b ∈ Z we set [a, b] = {x ∈
Z | a ≤ x ≤ b}, and for c ∈ N let N≥c = N \ [1, c − 1]. Throughout, all abelian groups will be written
additively and for n ∈ N let Cn denote a cyclic group with n elements.

Let F(G) denote the (multiplicatively written) free abelian monoid with basis G. An element S ∈ F(G)
is called a sequence in G and will be written in the form

S =
∏
g∈G

gvg(S) =
l∏

i=1

gi ∈ F(G).

A sequence S′ ∈ F(G) is called a subsequence of S, if there exists some S′′ ∈ F(G) such that S = S′ · S′′
(equivalently, S′ | S or vg(S′) ≤ vg(S) for every g ∈ G). If this holds, then S′′ = S′

−1 · S. Subsequences
S1, . . . , Sk of S are said to be pairwise disjoint, if their product

∏k
i=1 Si is a subsequence of S. For a

sequence T ∈ F(G) we set
gcd(S, T ) =

∏
g∈G

gmin{vg(S),vg(T )} ∈ F(G).

As usual

σ(S) =
∑
g∈G

vg(S)g =
l∑

i=1

gi ∈ G

denotes the sum of S,
|S| =

∑
g∈G

vg(S) = l ∈ N0

denotes the length of S and
Σ(S) = {

∑
i∈I

gi | ∅ 6= I ⊂ [1, l]} ⊂ G

the set of all possible subsums of S. Clearly, |S| = 0 if and only if S = 1 is the empty sequence. We say
that the sequence S is

• zero-sumfree, if 0 /∈ Σ(S),
• a zero-sum sequence (resp. has sum zero), if σ(S) = 0,
• a minimal zero-sum sequence, if it is a non-empty zero-sum sequence and each proper subsequence

is zero-sumfree.
For a finite abelian group H and a map f : G → H, we set f(S) =

∏l
i=1 f(gi) ∈ F(H). If f is a

homomorphism, then f(S) has sum zero if and only if σ(S) ∈ ker(f).

Suppose that G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · | nr. It is well known that

1 +
r∑

i=1

(ni − 1) ≤ D(G) = max{|S| | S is a minimal zero-sum sequence in G}

(e.g., [8, Section 3]). If G is a p-group or r ≤ 2, then 1 +
∑r

i=1(ni − 1) = D(G) (cf. [12] and [13]).
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3. Proof of Theorem 1.1 and Corollary 1.2

We start with the announced multiplication formula, which generalizes an old result of Harborth (see
[10, Hilfssatz 2]).

Proposition 3.1. Let G be a finite abelian group, H < G a subgroup and S ∈ F(G) a sequence with length
|S| ≥ (s(H)−1) exp(G/H)+s(G/H). Then S has a zero-sum subsequence with length exp(H) exp(G/H).
In particular, if exp(G) = exp(H) exp(G/H), then

s(G) ≤ (s(H)− 1) exp(G/H) + s(G/H).

Proof. Let ϕ : G → G/H denote the canonical epimorphism. Then S has pairwise disjoint subsequences
S1, . . . , Ss(H) with length |Si| = exp(G/H) such that ϕ(Si) has sum zero for every i ∈ [1, s(H)]. Then
the sequence

s(H)∏
i=1

σ(Si) ∈ F(ker(ϕ))

contains a zero-sum subsequence S′ with length |S′| = exp(H), say S′ =
∏

i∈I σ(Si) where I ⊂
[1, s(H)] with |I| = exp(H). Then

∏
i∈I Si is a zero-sum subsequence of S with length |I| exp(G/H) =

exp(H) exp(G/H). �

Corollary 3.2. Let n1, n2 ∈ N≥2 with n1 | n2 and G = Cn1 ⊕ Cn2 .

(1) Let l ∈ N, q1, . . . , ql ∈ N≥2, n1 =
∏l

i=1 qi and a, b ∈ N0 such that s(C2
qi

) ≤ aqi − b for every
i ∈ [1, l]. Then

s(G) ≤ 2n2 + (a− 2)n1 − b + (a− b− 1)
l−1∑
i=1

i∏
j=1

qj .

(2) If n1 =
∏l

i=1 qi with pairwise distinct prime powers q1 ≤ . . . ≤ ql, then

s(G) ≤ 2n1 + 2n2 − 2 +
l−1∑
i=1

i∏
j=1

qj .

Proof. 1. We set H = {q1g | g ∈ G} whence H ∼= Cn1
q1

⊕ Cn2
q1

and G/H ∼= Cq1 ⊕ Cq1 . We proceed by
induction on l. If l = 1, then the Theorem of Erdös-Ginzburg-Ziv and Proposition 3.1 imply that

s(G) ≤
(
s(Cn2

q1
)− 1

)
q1 + s(Cq1 ⊕ Cq1)

≤ (2
n2

q1
− 2)q1 + (aq1 − b) = 2n2 + (a− 2)n1 − b.

If l ≥ 2, then induction hypothesis and Proposition 3.1 imply that

s(G) ≤
(
s(Cn1

q1
⊕ Cn2

q1
)− 1

)
q1 + s(Cq1 ⊕ Cq1)

≤

2
n2

q1
+ (a− 2)

n1

q1
− b + (a− b− 1)

l−2∑
i=1

i∏
j=1

qj+1 − 1

 q1 + (aq1 − b)

= 2n2 + (a− 2)n1 − b + (a− b− 1)
l−1∑
i=1

i∏
j=1

qj .

2. For every prime power q ∈ N we have s(C2
q ) ≤ 4q − 2 by [5]. Thus the assertion follows from 1.

with a = 4 and b = 2. �
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Proposition 3.3. Let m ∈ N≥2 and S ∈ F(Cm ⊕ Cm) with length |S| ≥ 4m − 3. If S contains some
element g with multiplicity vg(S) ≥ m−bm

2 c− 1, then S contains a zero-sum subsequence with length m.

Proof. This is a special case of [7, Proposition 2.7]. �

Proof of Theorem 1.1. Let m,n ∈ N≥2 with n ≥ m2−m+1
3 , s0(C2

m) = 3m − 2 and D(C3
n) = 3n − 2. We

set G = Cmn ⊕ Cmn and have to show that s0(G) ≤ 3mn− 2.
Let S ∈ F(G) be a sequence with length |S| = 3mn − 2, H = G ⊕ 〈e〉 ∼= C3

mn a group containing G
and let f : G → H be defined by f(g) = g + e for every g ∈ G. Let ϕ : H → H denote the multiplication
by n. Then ker(ϕ) ∼= C3

n, ϕ(G) ∼= C2
m and ϕ(H) ∼= C3

m. If U ′ ∈ F(G) with length |U ′| ≡ 0 mod m such
that ϕ(U ′) has sum zero, then σ(U ′) ∈ ker(ϕ) and σ(f(U ′)) ∈ ker(ϕ). Obviously, it suffices to verify that
f(S) contains a zero-sum subsequence. We proceed in three steps.

1. For every h′ ∈ ϕ(G) let
Sh′ =

∏
g∈G

ϕ(g)=h′

gvg(S),

and let h ∈ ϕ(G) be such that
|Sh| = max{|Sh′ | | h′ ∈ ϕ(G)}.

Since 3n ≥ m2 −m + 1, we obtain that

|Sh| ≥
|S|

|ϕ(G)|
=

3mn− 2
m2

≥ 2(m− bm/2c − 1).

Let U1, . . . , Ul1 be pairwise disjoint subsequences of S−1
h · S with length |U1| = . . . = |Ul1 | = m such that

ϕ(U1), . . . , ϕ(Ul1) have sum zero and W = (
∏l1

i=1 Ui · Sh)−1 · S contains no subsequence U ′ with length
|U ′| = m such that ϕ(U ′) has sum zero. Then

S = U1 · . . . · Ul1 · Sh ·W,

and if m =
∏l

i=1 qi with pairwise distinct prime powers q1 ≤ . . . ≤ ql, then Corollary 3.2 implies that
|W | ≤ 4m− 2 +

∑l−1
i=1

∏i
j=1 qj ≤ 4m− 2 + bm/2c.

2. If |W | ≥ 4m − 3 − (m − bm/2c − 1), then by Proposition 3.3 there exists a subsequence Ul1+1 of
Sh · W with length |Ul1+1| = m such that ϕ(Ul1+1) has sum zero, | gcd(Ul1+1, Sh)| ≤ (m − bm/2c − 1)
and | gcd(Ul1+1,W )| ≥ bm/2c+ 1.

We iterate this argument: if | gcd(Ul1+1,W )−1 ·W | ≥ 4m− 3− (m− bm/2c − 1), then by Proposition
3.3 there exists a subsequence Ul1+2 of U−1

l1+1 · Sh · W with length |Ul1+2| = m such that ϕ(Ul1+2) has
sum zero, | gcd(Ul1+2, Sh)| ≤ (m− bm/2c − 1) and | gcd(Ul1+2,W )| ≥ bm/2c+ 1.

Since

|W | − 2(bm/2c+ 1) ≤ 4m− 2 + bm/2c − 2(bm/2c+ 1) ≤ 4m− 4− (m− bm/2c − 1),

there exist some l2 ∈ [0, 2] and pairwise disjoint subsequences Ul1+1, . . . , Ul1+l2 of Sh · W with length
|Ul1+1| = . . . = |Ul1+l2 | = m such that ϕ(Ul1+1), . . . , ϕ(Ul1+l2) have sum zero and

(∗) | gcd(Ul1+1 · . . . · Ul1+l2 ,W )−1 ·W | ≤ 4m− 4− (m− bm/2c − 1).

3. Let Ul1+l2+1, . . . , Ul1+l2+l3 be pairwise disjoint subsequences of gcd(Sh, Ul1+1 · . . . · Ul1+l2)
−1 · Sh

such that |Ul1+l2+1| = . . . = |Ul1+l2+l3 | = m and

| gcd(Sh, Ul1+1 · . . . · Ul1+l2)
−1 · (Ul1+l2+1 · . . . · Ul1+l2+l3)

−1 · Sh| ≤ m− 1.

By construction of Sh, the sequence ϕ(Ul1+l2+i) has sum zero for every i ∈ [1, l3].
Thus we obtain that

|(Ul1+1 · . . . · Ul1+l2+l3)
−1 · Sh ·W | ≤ 4m− 4− (m− bm/2c − 1) + (m− 1) = 4m− 4 + bm/2c.
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We distinguish two cases.

Case 1: |(Ul1+1 · . . . · Ul1+l2+l3)
−1 · Sh ·W | ≤ 4m− 4. Then it follows that

l1 + l2 + l3 =
|
(
(Ul1+1 · . . . · Ul1+l2+l3)

−1 · Sh ·W
)−1 · S|

m
≥ 3nm− 2− (4m− 4)

m
> 3n− 4

whence l1 + l2 + l3 ≥ 3n−3. If l1 + l2 + l3 = 3n−3, then |(Ul1+1 · . . . ·Ul1+l2+l3)
−1 ·Sh ·W | = 3m−2, and

since s0(ϕ(G)) = 3m−2, the sequence (Ul1+1 · . . . ·Ul1+l2+l3)
−1 ·Sh ·W contains a subsequence U3n−2 with

length |U3n−2| ≡ 0 mod m such that ϕ(U3n−2) has sum zero. Thus S has pairwise disjoint subsequences
U1, . . . , U3n−2 with length |Ui| ≡ 0 mod m and such that ϕ(Ui) has sum zero for every i ∈ [1, 3n − 2].
Since

∏3n−2
i=1 σ(f(Ui)) ∈ ker(ϕ) ∼= C3

n and D(C3
n) = 3n − 2, the sequence

∏3n−2
i=1 σ(f(Ui)) contains a

zero-sum subsequence whence
∏3n−2

i=1 f(Ui) = f(
∏3n−2

i=1 Ui) and f(S) contain a zero-sum subsequence.

Case 2: |(Ul1+1 · . . . · Ul1+l2+l3)
−1 · Sh ·W | ≥ 4m− 3. Then (∗) implies that

| gcd(Sh, (Ul1+1 · . . . · Ul1+l2+l3)
−1 · Sh ·W )| ≥ m− bm/2c − 1.

Therefore, by Proposition 3.3, the sequence (Ul1+1 · . . . ·Ul1+l2+l3)
−1 ·Sh ·W has a subsequence Ul1+l2+l3+1

with length |Ul1+l2+l3+1| = m such that ϕ(Ul1+l2+l3+1) has sum zero. Then

|(Ul1+1 · . . . · Ul1+l2+l3+1)−1 · Sh ·W | ≤ 4m− 4 + bm/2c −m < 4m− 4

and we continue as in Case 1.
�

Proof of Corollary 1.2. We proceed by induction on l. If l ∈ [1, 2], then the assertion follows from [9,
Theorem 3.7]. Suppose that l ≥ 3 and that for m =

∏l−1
i=1 qi we have s0(Cm ⊕ Cm) = 3m − 2. Since

D(C3
ql

) = 3ql − 2, the assertion follows from Theorem 1.1. �
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