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Abstract

Let G be a simple graph and f : V (G) �→ {1, 3, 5, ..., } an odd integer
valued function defined on V (G). A spanning subgraph F of G is called
a (1, f)-odd factor if dF (v) ∈ {1, 3, ..., f(v)} for all v ∈ V (G), where dF (v)
is the degree of v in F . For an odd integer k, if f(v) = k for all v, then
a (1, f)-odd factor is called a [1, k]-odd factor. In this paper, the structure
and properties of a graph with a unique (1, f)-odd factor is investigated,
and the maximum number of edges in a graph of a given order which has
a unique [1, k]-odd factor is determined.
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1 Introduction

Let G = (V (G), E(G)) be a finite simple graph with the vertex-set V (G)
and the edge-set E(G), and f : V (G) �→ {1, 3, 5, ...} an odd integer valued
function defined on V (G). The neighborhood NG(v) of a vertex v is the
set of all vertices adjacent to v. The degree of v is dG(v) = |NG(v)|. A
subgraph H of G is called a (1, f)-odd subgraph if dH(v) ∈ {1, 3, ..., f(v)}
for all v ∈ V (H) and a spanning (1, f)-odd subgraph is called a (1, f)-odd
factor. An odd factor is a spanning subgraph with all degrees odd. For an
odd integer k, if f(v) = k for all v ∈ V (G), a (1, f)-odd factor is refereed
to as a [1, k]-odd factor. In particular, (1, 1)-odd factors are precisely the
usual 1-factors. It should be noted that a graph with a (1, f)-odd factor
must be of even order.

In [5], Cui and Kano presented a Tutte-like characterization for a (1, f)-
odd factors by showing that G has a (1, f)-odd factor if and only if

o(G− S) ≤
∑
x∈S

f(x) for all S ⊆ V (G),

where o(G − S) is the number of odd components of G − S. This result
is a natural extension of the well-known Tutte’s 1-Factor Theorem, and
generalizes the characterization for the existence of [1, k]-odd factors by
Amahashi [2]. In [6], Kano and Katona showed that the size of a maximum
(1, f)-odd subgraph H of G is

|H| = |G| − max
S⊆V (G)

{o(G− S)−
∑
x∈S

f(x)},

which resembles Berge’s Formula for the size of a maximum 1-factor. Some
other properties of (1, f)-odd subgraphs were studied in [2, 4, 5, 6, 7, 8, 11].
Many of these properties are very similar to those of 1-factors. In view of
these similarities, one would expect that some other results on 1-factors
can be generalized to those on (1, f)-odd factors.

The task of extending the fundamental properties of 1-factors to those
for (1, f)-odd factors have been on-going study contributed by several re-
searchers, notably many good results by Kano. The extensions are both
mathematically meaningful and techniquely challenge. Often, some new
concepts or techniques have to be introduced to handle the more com-
plicated structures posed by (1, f)-odd factor than its counterpart – 1-
factor. One of recent significant progress in this aspect is the work of
Gallai-Edmonds type structure theorem for (1, f)-odd factors in [7].

In this paper, we are interested in the structure of a graph with a unique
(1, f)-odd factor. It was proved by Topp and Vestergaard that in a 2-edge-
connected graph G which has a unique (1, f)-odd factor F , there exists
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a vertex v which is saturated in G, i.e., dF (v) = dG(v) (see [11]). We
shall show in Section 2 that with an additional condition on f , a graph
G with a unique (1, f)-odd factor always has a leaf vertex v, i.e., dF (v) =
dG(v) = 1. As a corollary, such graphs have minimum degree 1. Some other
structural results are also discussed in Section 2, including a necessary and
sufficient condition for G having a unique (1, f)-odd factor. In Section 3,
we determine the maximum number of edges in a graph with given order
which has a unique [1, k]-odd factor, and characterize all extremal graphs.

The undefined terminologies will follow [1] and [3].

2 Properties of graphs with a unique (1, f)-
odd factor

In this section, we always assume that G is a graph with a unique (1, f)-
odd factor F unless otherwise stated. If F is the unique (1, f)-odd factor
of G, then each component of F must be a tree. Otherwise, if F contains
a cycle C, then we have dF−E(C)(v) ≡ 1 (mod 2) for any v ∈ V (G) since
dF (v) ≡ 1 (mod 2). In other words, F − E(C) will be another (1, f)-
odd factor of G. So the unique (1, f)-odd factor F consists of trees with
odd degrees. Without loss of generality, we assume f(v) ≤ dG(v) for all
v ∈ V (G). Write EF (v) for the set of edges of F incident with the vertex
v. Let W be a walk in G. A vertex v is said to be of type i with respect to
F and W , if |EF (v) ∩ E(W )| = i (see Figure 1). For simplicity, F and/or
W are omitted if there is no confusion occurred. The same omission are
applied to other terminologies as well.
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� �
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� �

v0 v1

v3 v2

Figure 1. F is the subgraph induced by the bold edges and W =

(v0v1v2v3). vi is of type i for i = 0, 1, 2, and v3 is of type 1 with

respect to W .

Suppose C is a cycle in G. Let F ′ be the subgraph of G induced by
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E(F )∆E(C), where ∆ denotes the symmetric difference. Then,

dF ′(v) =



dF (v), v ∈ V (C) or v is of type 1;
dF (v)− 2, v is of type 2;
dF (v) + 2, v is of type 0.

Since both f(v) and dF (v) are odd and F is a spanning subgraph, we see
that

(i) dF ′(v) ≥ 1 for all v ∈ V (G), and
(ii) if dF (v) < f(v), then dF (v) + 2 ≤ f(v).
So, if dF (v) < f(v) holds for every vertex v of type 0, then F ′ is another

(1, f)-odd factor. Since we assume that G has a unique (1, f)-odd factor
F , every cycle of G has a vertex v with dF (v) = f(v). This leads to the
following definitions. A vertex v ∈ V (G) is called saturated with respect to
F , if dF (v) = f(v). A saturated vertex of type 0 with respect to a cycle C
is a blocking vertex on C. A cycle C is blocked with respect to F , if there is
at least one blocking vertex on C.

Theorem 1. F is the unique (1, f)-odd factor of G if and only if every
cycle in G is blocked with respect to F .

Proof. The necessity follows from the previous arguments.
To show the sufficiency, suppose G has two distinct (1, f)-odd factors

F1 and F2. We will choose a sequence of vertices W = u0u1... such that
(i) ujuj+1 ∈ E(F1)∆E(F2) (j = 0, 1, ...), and
(ii) every vertex of type 0 with respect to Fi and W (i = 1, 2) is unsat-

urated,
in the following way. Suppose u0, u1, ..., ui have been chosen and ui−1ui ∈
E(F1) \ E(F2), say. Since dF1(ui) and dF2(ui) are both odd, it is always
possible to choose a vertex ui+1 with uiui+1 ∈ E(F1)∆E(F2). Furthermore,
if EF2(ui) ⊂ EF1(ui), choose ui+1 such that uiui+1 ∈ E(F2) \ E(F1). In
this case, ui is of type 1 with respect to both F1 and F2. When EF2(ui) ⊂
EF1(ui), since EF1(ui) has at least two more edges ui−1ui and uiui+1 than
EF2(ui), we see that ui is of type 2 with respect to F1, and is unsaturated
with respect to F2. Since G is finite, this sequence must be back to itself,
creating an unblocked cycle with respect to both F1 and F2.

As a consequence of Theorem 1, we have the following

Corollary 1. Every component of F is an induced tree in G.

Proof. Suppose uv is an edge in E(G) \ E(F ) with u, v ∈ V (F ). Then uv
together with the unique path on F from u to v form an un-blocked cycle
in G with respect to F , contradicting Theorem 1.
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It is well-known (see [10]) that a connected graph has an odd factor if
and only if its order is even. Obviously, G has a unique odd factor if and
only if it has a unique (1, f)-odd factor, where f(v) ∈ {dG(v), dG(v) − 1}
is an odd integer for all v ∈ V (G). In this case, no cycle in G is blocked.
Thus we obtained a simple characterization of uniqueness of odd factors.

Theorem 2. A connected graph G has a unique odd factor if and only if
G is a tree of even order.

Next we continue our investigation to the structure belonging to the
graphs with a unique (1, f)-odd factor. At first, we prove the following
lemma.

Lemma 1. There exists a component H of F such that every vertex in H
is saturated.

Proof. Firstly one notes that every unsaturated vertex u is adjacent to at
least two vertices outside of the component of F which it belongs to. This
can be seen from the observation that dF (u) ≤ f(u) − 2 ≤ dG(u) − 2 and
Corollary 1.

If F has only one component, then by Corollary 1, G = F , and thus
every vertex is saturated. In the following discussion we assume that F has
at least two components.

Suppose, to the contrary, that every component of F has an unsaturated
vertex. Let H0 be a component of F , and u0 an unsaturated vertex in
H0. Suppose v1 is a vertex in G \H0 adjacent to u0 in G, and H1 is the
component of F containing v1; u1 is an unsaturated vertex in H1 and P1

is the unique path in H1 connecting v1 and u1. Proceeding in this fashion,
we can find a sequence of components H0,H1,H2, ..., a sequence of vertices
u0v1u1v2u2..., and a sequence of paths P1, P2, ..., such that

(i) ui is an unsaturated vertex in Hi;
(ii) vi+1 is a vertex in G \ Hi adjacent to ui in G, and Hi+1 is the

component of F containing vi+1;
(iii) Pi is the unique path in Hi connecting vi and ui. Note that ui may

coincide with vi, in which case |Pi| = 0.
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Figure 2. The path on Hi with bold edges is Pi. The path with

wave lines is Ps+1.

Since the number of components of F is finite, there exist two indices
t < s, such that Hs+1 = Ht. Write the path in Ht from vs+1 to ut as Ps+1.
Set C = (utvt+1Pt+1ut+1vt+2Pt+2 ut+2...vsPsusvs+1Ps+1ut). If |Pi| > 0,
then every vertex v ∈ V (Hi) ∩ V (C) is of type 1 or type 2. If |Pi| = 0,
then vi = ui is the unique vertex in V (Hi) ∩ V (C) which is unsaturated.
It follows that C is an unblocked cycle with respect to F , a contradiction
to Theorem 1.

Suppose H is a component of F . Then F − H is the unique (1, f)-
odd factor of G − H. So, by recursively applying Lemma 1, we have the
following

Theorem 3. Let G be a graph with a unique (1, f)-odd factor F . Then
every vertex in G is saturated with respect to F .

Denote by L(H) the set of leaves in a component H of F .

Theorem 4. Let f be a function from V (G) to {1, 3, 5, ...} such that f(v) ≥
3 for any vertex v with dG(v) ≥ 3. Suppose G has a unique (1, f)-odd factor
F . Then there exists a component H of F such that at least |L(H)| − 1
leaves of H have degree 1 in G.

Proof. Suppose, as a contrary, that each component H of F has at least
2 leaves of degree greater than 1 in G. Similar to the proof of Lemma 1,
except that ui is now taken as a leaf of Hi with dG(ui) > 1, we obtain a
cycle C = (utvt+1Pt+1ut+1...vs+1 Ps+1ut). By our hypothesis, it can be
managed that ui = vi for i = t + 1, ..., s. Hence, every vertex u ∈ V (C)
with u = ut is of type 1 or type 2. Note that ut may be of type 0 when
vs+1 is the same as ut. In this case, dG(ut) ≥ 3. By the assumption,
f(ut) ≥ 3 > 1 = dF (ut), that is, ut is unsaturated. So, C is an unblocked
cycle, a contradiction.
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Remark 1. The restriction on f is necessary, which can be seen from the
example in Figure 3.
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Figure 3. f(u) = 3 and f(v) = 1 for v �= u. The graph G has a

unique (1, f)-odd factor indicated by the bold edges. But no vertex

of G is of degree 1.

From Theorem 4, a graph with a unique (1, f)-odd factor has many
vertices of degree 1. In other words, the existence of leaves is a necessary
condition for the uniqueness of (1, f)-odd factor. We state this result as a
contrapositive version in the following corollary.

Corollary 2. Let G be a graph with minimum degree at least 2, and f a
function as in Theorem 4. Then the number of (1, f)-odd factors in G is
either 0 or at least 2.

3 Extremal graphs with a unique [1, k]-odd
factor

Based on the properties and the structure developed in the last section,
now we are able to characterize the class of extremal graphs with unique
(1, f)-odd factor. For simplicity, we only consider the extremal graphs
with unique [1, k]-odd factors but the class of extremal graphs with unique
(1, f)-odd factors can be discussed similarly.

Given an even integer n, let εk(n) be the maximum number of edges in
a graph of order n which has a unique [1, k]-odd factor and Ek(n) the set of
extremal graphs. For k = 1, it was proved by Hetyei (see [9]) that ε1(n) =
n2/4, and the unique extremal graph G(n) is inductively constructed by
setting G(2) = K2 and G(n) = K1 + (K1 ∪ G(n − 2)), where ‘∪’ and ‘+’
are the union and the join of two graphs, respectively. In this section, we
will determine εk(n) by characterizing all graphs in Ek(n).

In the following, we always assume that k ≥ 3 is an odd integer, and G
is an extremal graph with a unique [1, k]-odd factor F .
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Remark 2. If n ≤ k+1, then we can prove that G is a tree. The proof of
Lemma 1 implies that this is true when F has only one component. Sup-
pose the number of components of F is more than one. Then dG(v) < k
for every vertex v. Since dF (v) and k are both odd, we have dF (v) ≤ k−2.
Hence, if G has a cycle C, then E(F )∆E(C) induces another [1, k]-odd
factor. So, G is acyclic. Because K1,n−1 has a unique [1, k]-odd factor with
n− 1 edges, the claim follows from the maximality of G.

Note that k may be greater than dG(v) for some vertex v. So, results
in Section 2 can not be applied directly here. Nevertheless, the ideas are
similar.

A vertex v is called k-saturated with respect to F , if dF (v) = k holds
for all v having dG(v) ≥ k, and dF (v) ∈ {dG(v)− 1, dG(v)} (depending on
the parity of dG(v)) holds for all v having dG(v) < k. Let C be a cycle. A
k-saturated vertex v is a k-blocking vertex on C, if dG(v) ≥ k and v is of
type 0 with respect to C. If there is at least one k-blocking vertex on C,
then C is called k-blocked with respect to F . Note that a k-saturated vertex
v with dG(v) < k can not be of type 0 with respect to any cycle. What
prevents us from using symmetric difference to create another [1, k]-odd
factor is the presence of saturated vertices with degree at least k and type
0. As in Section 2, we can prove

Theorem 5. F is the unique [1, k]-odd factor of G if and only if any cycle
in G is k-blocked with respect to F . Moreover, each component of F is an
induced tree in G.

Note that Theorem 3 can not be extended to that of [1, k]-odd factors.
For [1, k]-odd factors, we have the following

Lemma 2. Suppose G ∈ Ek(n) and |V (G)| ≥ k + 3. Then there exists a
component H of F , such that

(i) H = K1,k,
(ii) every leaf of H has degree 1 in G, and
(iii) the center of H is adjacent to every vertex in G−H.

Proof. We start with a two claims.
Claim 1. There exists a componentH of F , all of whose internal vertices

are k-saturated, and all but at most one of whose leaves have degree 1 in
G.

Suppose this is not true. Then every component of F has either a k-
unsaturated vertex or at least two leaves of degree greater than 1 in G.
Similar to the proofs of Lemma 1 and Theorem 4, except that ui is taken
to be either a k-unsaturated vertex of Hi, or a leaf of Hi with dG(ui) > 1
and ui = vi, we obtain a cycle C. By Theorem 5, C is k-blocked. Let v
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be a k-blocking vertex on C. Since v is of type 0, we have v = vi = ui for
some i (if v ∈ Ht, then v = vs+1 = ut). But then, by the choice of ui, v is
k-unsaturated, contradicting the definition of k-blocking vertex.

Claim 2. For each component R of F − H, there exists at most one
vertex uR ∈ V (H), which may have neighbors in R.

Suppose there are two vertices v1, v2 ∈ V (H) with NG(vi) ∩ V (R) =
∅ (i = 1, 2). To avoid a k-unblocked cycle, we see that NG(v1) ∩ V (R) =
NG(v2) ∩ V (R) = {w}, where dF (w) = k. Add a new edge wx to G,
where x is a leaf of H with dG(x) = 1 (such a vertex x exists). Let the
resulting graph be G′. Clearly, F is also a [1, k]-odd factor of G′. Suppose
G′ has another [1, k]-odd factor. Then there is a k-unblocked cycle C ′ with
respect to F in G′. Obviously, xw ∈ E(C ′). Since dF (w) = k, w must be
of type 1 with respect to F and C ′. So, there exits a vertex y ∈ V (R) such
that wy ∈ E(R) ∩ E(C). Starting from w, going along C ′ in accordance
with the direction from w to y, let pq be the first edge on C ′ leaving
G − H, where p ∈ V (G − H) and q ∈ V (H). Write P the section on C ′

between w and p, Qvi
the unique path on H from q to vi (i = 1, 2). If

q = v1, let C = v1wPpqQv1v1, otherwise let C = v2wPpqQv2v2. Then
C is a k-unblocked cycle in G, a contradiction. So, G′ is a graph with a
unique [1, k]-odd factor and one more edge than G, which contradicts the
maximality of G. The claim follows.

By Claim 2 and Corollary 1, there are at most (|V (H)| − 1) + ε(n −
|V (H)|)+(n−|V (H)|) = n−1+ε(n−|V (H)|) edges in G. Then, H has the
required structure by the maximality of G and by observing the following:

(1) ε(n) is an increasing function on n;
(2) all internal vertices of H are k-saturated;
(3) a k-saturated vertex v with dG(v) < k provides at most one edge

between H and G−H;
(4) to avoid a k-unblocked cycle, a leaf v of H has degree dG(v) ≤ 2.

Remark 3. As a consequence of Lemma 2, every graph G in Ek(n) has
the following structure: let n = r(k + 1) + t (0 ≤ t ≤ k) (note that since
both n and k + 1 are even, t is also even), and G0 a tree of order t with a
unique [1, k]-odd factor (for example, G0 = K1,t−1). For i = 0, 1, ..., r − 1,
Gi+1 is the graph obtained from Gi by adding a k-star Hi, and joining the
center of Hi to every vertex of Gi. Then, G = Gr.

Based on Lemma 2, we can determine εk(n) by a simple counting argu-
ment.

Theorem 6. Let k ≥ 3 be an odd integer. The maximum number of edges
in a graph G of order n with a unique [1, k]-odd factor is

k + 1
2

r2 + (t+
k − 1
2

)r + T,
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where n = r(k + 1) + t (0 ≤ t ≤ k), and

T =
{
0, t = 0;
t− 1, 2 ≤ t ≤ k.
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