science (d)difect.

Discrete Mathematics III (IIII) III-III

DISCRETE MATHEMATICS

Note

A short proof of the q-Dixon identity

Victor J.W. Guo ${ }^{\text {a }}$, Jiang Zeng ${ }^{\text {b }}$
${ }^{a}$ Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, People's Republic of China
${ }^{\text {b }}$ Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622 Villeurbanne Cedex, France

Received 1 May 2004; received in revised form 7 April 2005; accepted 28 April 2005

Abstract

We give a simple proof of Jackson's terminating q-analogue of Dixon's identity. © 2005 Elsevier B.V. All rights reserved.

Keywords: Dixon; q-binomial coefficient; Polynomial

In the last twenty years several short proofs of Dixon's identity have been published [3-5]. However, there are not so many proofs of Jackson's terminating q-analogue of Dixon's identity [2,6]:

$$
\sum_{k}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{l}
a+b \tag{1}\\
a+k
\end{array}\right]\left[\begin{array}{l}
a+c \\
c+k
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right]=\frac{[a+b+c]!}{[a]![b]![c]!},
$$

where $[n]!=\prod_{i=1}^{n}\left(1-q^{i}\right) /(1-q)$ and the q-binomial coefficient $\left[\begin{array}{l}x \\ k\end{array}\right]$ is defined by

$$
\left[\begin{array}{l}
x \\
k
\end{array}\right]= \begin{cases}\prod_{i=1}^{k} \frac{1-q^{x-i+1}}{1-q^{i}} & \text { if } k \geqslant 0 \\
0 & \text { if } k<0\end{cases}
$$

[^0]
ARTICLE IN PRESS

The aim of this note is to give a short proof of (1) by generalizing the argument of [5]. Note that $\left[\begin{array}{l}n \\ k\end{array}\right]=[n]!/([k]![n-k]!)$ for $0 \leqslant k \leqslant n$. So (1) can be written as follows:

$$
\sum_{k}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{l}
a+b \tag{2}\\
b-k
\end{array}\right]\left[\begin{array}{l}
a+c \\
c+k
\end{array}\right]\left[\begin{array}{c}
b+c \\
b+k
\end{array}\right]=\left[\begin{array}{c}
b+c \\
b
\end{array}\right]\left[\begin{array}{c}
a+b+c \\
b+c
\end{array}\right] .
$$

Clearly, both sides of (2) are polynomials in q^{a} of degree $b+c$. It suffices to verify (2) for $b+c+1$ distinct values of a. Suppose $b \leqslant c$.

For $a=0$ the two sides of (2) are equal to $\left[\begin{array}{c}c+c \\ b\end{array}\right]$. For $a=-p$ with $1 \leqslant p \leqslant b+c$ the right-hand side of (2) vanishes, while the left-hand side of (2) is equal to

$$
L=\sum_{k}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{l}
b-p \\
b-k
\end{array}\right]\left[\begin{array}{c}
c-p \\
c+k
\end{array}\right]\left[\begin{array}{c}
b+c \\
b+k
\end{array}\right] .
$$

We now show that $L=0$ for $1 \leqslant p \leqslant b+c$ as follows:

- If $p \in[1, b]$, then $\left[\begin{array}{c}b-p \\ b-k\end{array}\right]=0$ for $k<0$ and $\left[\begin{array}{c}c-p \\ c+k\end{array}\right]=0$ for $k \geqslant 0$.
- If $p \in[b+1, c]$, then $\left[\begin{array}{c}c-p \\ c+k\end{array}\right]=0$ for any k such that $-b \leqslant k \leqslant b$.
- If $p \in[c+1, b+c]$, since $\left[\begin{array}{c}-x \\ k\end{array}\right]=(-1)^{k} q^{-k x-\binom{k}{2}}\left[\begin{array}{c}x+k-1 \\ k\end{array}\right]$ we have

$$
\begin{align*}
L & \left.=\sum_{k}(-1)^{k+b+c} q^{(c-k} 2\right)+A\left[\begin{array}{l}
p-k-1 \\
p-b-1
\end{array}\right]\left[\begin{array}{l}
p+k-1 \\
p-c-1
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right] \\
& =\sum_{k}(-1)^{k+p+c-1} q^{\left(\frac{c-k}{2}\right)+B}\left[\begin{array}{l}
k-b-1 \\
p-b-1
\end{array}\right]\left[\begin{array}{l}
p+k-1 \\
p-c-1
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right], \tag{3}
\end{align*}
$$

where

$$
A=b(b+1) / 2-b p-c(p-1)+c k
$$

and

$$
B=A+(p-k-1)(p-b-1)-\binom{p-b-1}{2} .
$$

Since

$$
q^{B}\left[\begin{array}{l}
k-b-1 \\
p-b-1
\end{array}\right]\left[\begin{array}{l}
p+k-1 \\
p-c-1
\end{array}\right]
$$

is a polynomial in q^{k} of degree

$$
c-(p-b-1)+2 p-b-c-2=p-1 \leqslant b+c-1,
$$

the right-hand side of (3) vanishes if we can show that

$$
\left.\sum_{k}(-1)^{k} q^{(c-k} 2^{(-k}\right)\left[\begin{array}{l}
b+c \tag{4}\\
b+k
\end{array}\right] q^{i k}=0 \quad \text { for } 0 \leqslant i \leqslant b+c-1 .
$$

Applying the well-known identity

$$
\sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \tag{5}\\
k
\end{array}\right] q^{\left(\frac{k}{2}\right)} z^{k}=\prod_{i=0}^{n-1}\left(1-z q^{i}\right)
$$

(see, for example, [1, p. 36]) with $z=q^{-i}$ and replacing k by $n-k$, we obtain

$$
\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \tag{6}\\
k
\end{array}\right] q^{\left(n_{2}^{-k}\right)+i k}=0 \quad \text { for } 0 \leqslant i \leqslant n-1
$$

which gives (4) by setting $n=b+c$ and shifting k to $k+b$.

Remark. The q-Dixon identity (1) is usually derived from the q-Pfaff-Saalschütz identity [7]:

$$
\left[\begin{array}{l}
a+b \tag{7}\\
a+k
\end{array}\right]\left[\begin{array}{l}
a+c \\
c+k
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right]=\sum_{n} q^{n^{2}-k^{2}} \frac{[a+b+c-n]!}{[a-n]![b-n]![c-n]![n+k]![n-k]!} .
$$

Indeed, substituting (7) into the left-hand side of (1) we get

$$
\sum_{n} \frac{[a+b+c-n]!q^{n^{2}}}{[a-n]![b-n]![c-n]![2 n]!} \sum_{k=-n}^{n}(-1)^{k} q^{\left(\frac{k+1}{2}\right)}\left[\begin{array}{c}
2 n \\
n-k
\end{array}\right]
$$

but (5) implies that

$$
\sum_{k=-n}^{n}(-1)^{k} q^{\binom{k+1}{2}}\left[\begin{array}{c}
2 n \\
n-k
\end{array}\right]=(-1)^{n} q^{n(n-1) / 2} \sum_{k=0}^{2 n}(-1)^{k}\left(q^{1-n}\right)^{k} q^{\binom{k}{2}}\left[\begin{array}{c}
2 n \\
k
\end{array}\right]=\delta_{n 0}
$$

Hence, our polynomial argument is somehow equivalent to the role played by the q -Pfaff-Saalschütz identity in the proof of the q-Dixon identity. Note that Zeilberger [7] has given a nice combinatorial proof of (7).

References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[2] W.N. Bailey, A note on certain q-identities, Q. J. Math. 12 (1941) 173-175.
[3] S.B. Ekhad, A very short proof of Dixon's theorem, J. Combin. Theory Ser. A 54 (1990) 141-142.
[4] I. Gessel, D. Stanton, Short proofs of Saalschütz and Dixon's theorems, J. Combin. Theory Ser. A 38 (1985) 87-90.
[5] V.J.W. Guo, A simple proof of Dixon's identity, Discrete Math. 268 (2003) 309-310.
[6] F.H. Jackson, Certain q-identities, Q. J. Math. 12 (1941) 167-172.
[7] D. Zeilberger, A q-Foata proof of the q-Saalschütz identity, European J. Combin. 8 (1987) 461-463.

[^0]: E-mail addresses: jwguo@eyou.com (V.J.W. Guo), zeng@igd.univ-lyon1.fr (J. Zeng).

 0012-365X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2005.04.006

