On Zero-sum sequences of prescribed length

Weidong Gao and Ravindranathan Thangadurai

Summary. Let $k \geq 1$ be any integer. Let G be a finite abelian group of exponent n. Let $s_{k}(G)$ be the smallest positive integer t such that every sequence S in G of length at least t has a zero-sum subsequence of length $k n$. We study this constant for groups $G \cong \mathbb{Z}_{n}^{d}$ when $d=3$ or 4 . In particular, we prove, as a main result, that $s_{k}\left(\mathbb{Z}_{p}^{3}\right)=k p+3 p-3$ for every $k \geq 4,5 p+\frac{p-1}{2}-3 \leq s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3$ and $6 p-3 \leq s_{3}\left(\mathbb{Z}_{p}^{3}\right) \leq 8 p-7$ for every prime $p \geq 5$.

Mathematics Subject Classification (2000). Primary 11B75 (11D79).
Keywords. Higher dimensional zero-sum sequences, Finite abelian groups.

1. Introduction

Let G be an, additively written, finite abelian group. From the structure theorem of finite abelian groups, we know that $G \cong \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{d}}$ with $1<n_{1}\left|n_{2}\right| \cdots \mid n_{d}$, where $n_{d}=\exp (G)=n$ is the exponent of G and d is the rank of G. A sequence in G is a formal product $S=\prod_{i=1}^{\ell} g_{i}$ of elements $g_{i} \in G$ (that is, an element of the free abelian monoid with basis G). We denote by $|S|=\ell$, the length of S, by $v_{g}(S)$ the number of times $g \in G$ appears in S, by $\sigma(S)=\sum_{i=1}^{\ell} g_{i}$, the sum of S and by $T \mid S$, a subsequence T of S. We say that the sequence is a zero-sum sequence, if $\sigma(S)=0$ in G. Also, if $T \mid S$, then the deleted sequence $S T^{-1}$, we mean the sequence after removing the elements of T from S. Let $R \mid S$ and $T \mid S$ be two subsequences of $S=\prod_{i=1}^{\ell} g_{i}$. We say R and T are disjoint subsequences of S, if there exists two disjoint non-empty subsets I and J of $\{1,2, \cdots, \ell\}$ such that $R=\prod_{i \in I} g_{i}$ and $T=\prod_{j \in J} g_{j}$.

Definition 1.1. For any positive integer k, we define $s_{k}(G)$ as the smallest positive integer t such that every sequence S in G of length at least t has a zero-sum subsequence of length $k \exp (G)$.

This constant was first studied by the first author [6] and by Adhikari and Rath [1].

Let \mathbb{Z}_{n} be the cyclic group of order n. Let \mathbb{Z}_{n}^{d} be the finite abelian group of order n^{d} such that it is isomorphic to the direct sum of d copies of \mathbb{Z}_{n}.

The study of $s_{1}\left(\mathbb{Z}_{n}^{d}\right)$ stems from an integer lattice point problem (See, e.g., [2] and [9]). In 1961, Erdős, Ginzburg and Ziv [4] proved that $s_{1}\left(\mathbb{Z}_{n}\right)=2 n-1$ and hence $s_{k}\left(\mathbb{Z}_{n}\right)=k n+n-1$ for all integers $k>1$. Recently, C. Reiher [13] proved that $s_{1}\left(\mathbb{Z}_{n}^{2}\right)=4 n-3$ which together with a result in [8] ([8], Theorem 3.7) implies $s_{k}\left(\mathbb{Z}_{n}^{2}\right)=k n+2 n-2$ for all integers $k>1$.

In this paper, we shall mainly investigate $s_{k}\left(\mathbb{Z}_{n}^{3}\right)$ and $s_{k}\left(\mathbb{Z}_{n}^{4}\right)$. For $k>1$, we obtain the following main results.

Theorem 1.1. (1) Let $p \geq 5$ be an odd prime number. Then we have, (i) $5 p+\frac{p-1}{2}-3 \leq s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3$; (ii) $6 p-3 \leq s_{3}\left(\mathbb{Z}_{p}^{3}\right) \leq 8 p-7$, and (iii) $s_{k}\left(\mathbb{Z}_{p}^{3}\right)=k p+3 p-3$ for every $k \geq 4$.
(2) We have, $s_{2}\left(\mathbb{Z}_{3}^{3}\right)=13 ; 15 \leq s_{3}\left(\mathbb{Z}_{3}^{3}\right) \leq 17$ and $s_{k}\left(\mathbb{Z}_{3}^{3}\right)=3 k+6 \forall k \geq 4$.
(3) We have $s_{k}\left(\mathbb{Z}_{2}^{3}\right)=2 k+3$ for every integer $k \geq 2$.

Theorem 1.2. For every integer $k \geq 1$ and every prime $p \geq 7$, we have

$$
s_{6 k}\left(\mathbb{Z}_{p}^{4}\right) \leq 6(k+1) p-4 .
$$

Concerning the lower bound of $s_{1}\left(\mathbb{Z}_{n}^{d}\right)$, recently, C. Elsholtz [3] proved the following:

$$
s_{1}\left(\mathbb{Z}_{n}^{d}\right) \geq\left(\frac{9}{8}\right)^{[d / 3]}(n-1) 2^{d}+1
$$

for $d>2$ and odd $n>2$. Thus, when $d=3$, the above lower bound implies $s_{1}\left(\mathbb{Z}_{n}^{3}\right) \geq 9 n-8$ for odd $n>2$, which is seemingly the optimal one and so we formally write this as the following conjecture.

Conjecture 0 . For any odd integer $n>1$, we have

$$
s_{1}\left(\mathbb{Z}_{n}^{3}\right)=9 n-8 .
$$

Note that Conjecture 0 is proved for $n=3$ by Harborth [9]. Also, Conjecture 0 is multiplicative, that is, it is enough to prove Conjecture 0 for all primes $p>2$. However, an easy observation shows that $s_{1}\left(\mathbb{Z}_{2^{a}}^{3}\right)=8 \cdot 2^{a}-7$. We shall prove the following theorem which is related to conjecture 0 .

Theorem 1.3. Let $p \geq 5$ be a prime number. Let S be a sequence in \mathbb{Z}_{p}^{3} of length $9 p-3$. Suppose S has at most two disjoint zero-sum subsequences of length $2 p$. Then S has a zero-sum subsequence of length p.

Remark 1.1. Since $s_{2}\left(\mathbb{Z}_{p}^{3}\right)>5 p-3$ for every prime $p \geq 5$, there exists a class of sequences of length $5 p-3$ which do not have any zero-sum subsequence of length $2 p$. Thus, Theorem 1.3 is valid in this class.

2. Preliminaries

Definition 2.1. Davenport's constant, $D(G)$, stands for the smallest positive integer t such that every sequence S in G of length at least t has a nonempty zero-sum subsequence in it.

It is clear that $D(G) \leq|G|$. The constant $D(G)$ was coined by H. Davenport in connection with non-unique factorization in the ring of integers of number fields. Finding the exact values of $D(G)$ for all groups G seems to be a very difficult problem. Till now, we know the exact value of $D(G)$ only for very few groups. For example, $D\left(\mathbb{Z}_{n}\right)=n, D\left(\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}\right)=m+n-1$ (where $m \mid n$), $D\left(\mathbb{Z}_{2 p^{\ell}}^{3}\right)=6 p^{\ell}-2, D\left(\mathbb{Z}_{32^{\ell}}^{3}\right)=92^{\ell}-2, D\left(\oplus_{i=1}^{k} \mathbb{Z}_{p^{e_{i}}}\right)=1+\sum_{i=1}^{k}\left(p^{e_{i}}-1\right)$. For more information and conjectures, we refer to [5]. The best known upper bound for $D\left(\mathbb{Z}_{n}^{d}\right)$ with $d \geq 3$ is $n(1+(d-1) \log n)$ and the following conjecture is well-known,

Conjecture 1. $D\left(\mathbb{Z}_{n}^{d}\right)=d(n-1)+1$ for any integers $n>1$ and $d \geq 3$.
W. D. Gao [6] proved that

$$
\begin{equation*}
s_{k}(G) \geq k n+D(G)-1, \tag{1}
\end{equation*}
$$

and if $k<D(G) / n$, then $s_{k}(G) \geq k n+D(G)$. Moreover, he proved that equality of (1) holds for all k such that $k \geq|G| / n$. We discuss the problem to determine for which k equality holds in (1), and related questions, in more detail at the end of this paper

Lemma 2.1. Let $n \geq 2$ be an integer and d be a positive integer. If $D\left(\mathbb{Z}_{n}^{d+1}\right)=$ $(d+1)(n-1)+1$, then any sequence S in \mathbb{Z}_{n}^{d} of length $(d+1)(n-1)+1$ has a zero-sum subsequence T of length $k n$ for some integer k satisfying $1 \leq k \leq d$.
Proof. Assume that $D\left(\mathbb{Z}_{n}^{d+1}\right)=(d+1)(n-1)+1$. Let $S=\prod_{i} a_{i}$ be any sequence in \mathbb{Z}_{n}^{d} of length $(d+1)(n-1)+1$. Set $b_{i}=\left(1, a_{i}\right)$ in \mathbb{Z}_{n}^{d+1} for every $i=1,2, \cdots,(d+1)(n-1)+1$. Then $W=\prod_{i} b_{i}$ is a sequence in \mathbb{Z}_{n}^{d+1} of length $(d+1)(n-1)+1$. Since $D\left(\mathbb{Z}_{n}^{d+1}\right)=(d+1)(n-1)+1$, we have, W has a nonempty zero-sum subsequence T of length t with $1 \leq t \leq(d+1)(n-1)+1$. That is, if necessary by renaming the indices, we see that

$$
0=\sigma(T)=\sum_{i=1}^{t} b_{i}=\left(\sum_{i=1}^{t} 1, \sum_{i=1}^{t} a_{i}\right)=\left(t, \sum_{i=1}^{t} a_{i}\right) \text { in } \mathbb{Z}_{n}^{d+1}
$$

This implies, $t=k n$ and $T^{\prime}=\prod_{i=1}^{k n} a_{i}$ is a zero-sum subsequence of S of length $k n$ with $1 \leq k \leq d$.

Corollary 2.1.1. Let p be any prime number and r be any positive integer. Let S be a sequence in $\mathbb{Z}_{p^{r}}^{d}$ of length $(d+1)\left(p^{r}-1\right)+1$. Then S has a zero-sum subsequence of length $k p^{r}$ with $1 \leq k \leq d$.
Proof. Since $D\left(\mathbb{Z}_{p^{r}}^{d}\right)=d\left(p^{r}-1\right)+1$ for any positive integer d, the result follows from Lemma 2.1.

Definitions 2.2. Let $S=\prod_{i=1}^{\ell} g_{i}$ be a sequence in \mathbb{Z}_{p}^{d}. Then

$$
\begin{gathered}
\left.f_{E}(S)=|\{I \subset\{1,2, \cdots, \ell\}\}| \sum_{i \in I} g_{i}=0,|I| \text { even }\right\} \mid, \\
\left.f_{O}(S)=|\{I \subset\{1,2, \cdots, \ell\}\}| \sum_{i \in I} g_{i}=0,|I| \text { odd }\right\} \mid
\end{gathered}
$$

and

$$
\left.r(S ; l)=|\{I \subset\{1,2, \cdots, \ell\}\}| \sum_{i \in I} g_{i}=0,|I|=l p\right\} \mid .
$$

Here, we follow the usual convention that the empty sequence (that is, when $I=\emptyset)$ is a zero-sum sequence and hence $f_{E}(S) \geq 1$.

Theorem A. (Olson, [12]) Let S be a sequence in \mathbb{Z}_{p}^{d} such that $|S| \geq d(p-1)+1$. Then $f_{E}(S) \equiv f_{O}(S) \quad(\bmod p)$.

The following Lemma 2.2, Theorem 2.1 and Theorem 2.3 are interesting in itself; but we need these results for our main results.

Lemma 2.2. Let $d \geq 2$ be a positive integer, and let l be an integer such that $1 \leq l \leq d$. Let $p \geq d+2$ be a prime number. Let T be a sequence in \mathbb{Z}_{p}^{d} with $(d+1)(p-1)+1 \leq|T| \leq(d+2) p-1$. Suppose that T has no zero-sum subsequences of length $k p$ for every $k \in\{1,2, \cdots, d+1\} \backslash\{l\}$. Then

$$
r(T ; l) \equiv(-1)^{l+1} \quad(\bmod p)
$$

Proof. Set $t=|T|$, and suppose $T=\prod_{i=1}^{t} a_{i}$ with $(d+1)(p-1)+1 \leq t \leq$ $(d+2) p-1$. Set $b_{i}=\left(1, a_{i}\right) \in \mathbb{Z}_{p}^{d+1}$ for every $i=1,2, \cdots, t$. Put $W=\prod_{i=1}^{t} b_{i}$. Let V^{\prime} be a non-empty zero-sum subsequence of W. Such a sequence exists, as $t \geq D\left(\mathbb{Z}_{p}^{d+1}\right)=(d+1)(p-1)+1$. By the making of b_{i}, it is clear that $p \| V^{\prime} \mid$. Let V be corresponding zero-sum subsequence of T, then $p \| V \mid$ and $|V|=k p$ with $k \in\{1,2, \cdots, d+1\}$. Since T contains no zero-sum subsequence of length $k p$ with $k \in\{1,2, \cdots, d+1\} \backslash\{l\}$, we have $|V|=l p$. Therefore, either $r(T ; l)=f_{E}(W)-1$, if $2 \mid l$ or $r(T ; l)=f_{O}(W)$, if $2 \nless l$. By Theorem A, we know that $f_{O}(W) \equiv f_{E}(W)$ $(\bmod p)$ which implies that either $r(T ; l)+1=f_{E}(W) \equiv f_{O}(W)=0 \quad(\bmod p)$
provided that $2 \mid l$, or $r(T ; l)=f_{O}(W) \equiv f_{E}(W)=1 \quad(\bmod p)$ provided that 2 久l. Therefore, $r(T ; l) \equiv(-1)^{l+1} \quad(\bmod p)$.

Note. In the statement of Lemma 2.2, we have assumed an upper bound for $|T|$ to ensure that $|V| \neq(d+2) p$.

Theorem 2.1. Let $d \geq 2$ be an integer and let $p \geq d+2$ be a prime number. Let l be an integer such that $1 \leq l \leq d$. Let S be a sequence in \mathbb{Z}_{p}^{d} of length at least $(d+2)(p-1)+2$. Then S contains a zero-sum subsequence of length $k p$ for some integer $k \in\{1,2, \cdots, d+1\} \backslash\{l\}$. Moreover, for every $l \in\{1,2, \cdots, d\} \backslash\left\{\frac{d+1}{2}\right\}$, S contains a zero-sum subsequence of length $k p$ with $k \in\{1,2, \cdots, d\} \backslash\{l\}$.

Proof. Assume to the contrary that, there is a sequence S in \mathbb{Z}_{p}^{d} with $|S|=$ $(d+2)(p-1)+2$ and S contains no zero subsequences of length $k p$ for every integer $k \in\{1,2, \cdots, d+1\} \backslash\{l\}$. By Lemma 2.1, we have

$$
r(T ; l) \equiv(-1)^{l+1} \quad(\bmod p)
$$

holds for every subsequence T of S with $|T| \geq(d+1)(p-1)+1$. We, clearly, have

$$
\sum_{T|S,|T|=(d+1)(p-1)+1} r(T ; l)=\binom{(d+2)(p-1)+2-l p}{(d+1)(p-1)+1-l p} r(S ; l) .
$$

Therefore,

$$
\sum_{T|S,|T|=(d+1)(p-1)+1}(-1)^{l+1} \equiv\binom{(d+2-l) p-d}{(d+1-l) p-d}(-1)^{l+1} \quad(\bmod p)
$$

This gives that

$$
\binom{(d+2)(p-1)+2}{(d+1)(p-1)+1} \equiv\binom{(d+2-l) p-d}{(d+1-l) p-d}(\bmod p) .
$$

Since $p \geq d+2$,

$$
\begin{aligned}
d+1 & \equiv\binom{(d+2)(p-1)+2}{p} \equiv\binom{(d+2)(p-1)+2}{(d+1)(p-1)+1} \\
& \equiv\binom{(d+2-l) p-d}{(d+1-l) p-d} \equiv\binom{(d+2-l) p-d}{p} \\
& \equiv d+1-l \quad(\bmod p),
\end{aligned}
$$

which is a contradiction. This proves the first part of the theorem.
To prove the moreover part of the theorem, suppose $l \neq \frac{d+1}{2}$. By the first part of the theorem, there is a zero-sum subsequence V with $|V|=k p$ and
$k \in\{1,2, \cdots, d+1\} \backslash\{l\}$. If $k \leq d$ then we are done. Otherwise, $|V|=(d+1) p$ and by Corollary 2.1.1 the sequence V contains a zero-sum subsequence W with $|W|=h p$ and $1 \leq h \leq d$. Therefore, $V W^{-1}$ is also a zero-sum subsequence of $|T|$ with $\left|V W^{-1}\right|=(d+1-h) p$. By assuming that $h=l$ and $d+1-h=l$, we get $l=\frac{d+1}{2}$, a contradiction. Hence the proof completes.

Definition 2.3. Let k be any positive integer. By $E_{k}(G)$, we denote the smallest positive integer t such that every sequence in G of length at least t contains a zero-sum subsequence T with $k \nmid|T|$.

Theorem B. If p is an odd prime and k is any positive integer such that $(k, p)=1$, then

$$
E_{k}\left(\mathbb{Z}_{p}^{d}\right)=\left[\frac{k}{k-1} d(p-1)\right]+1
$$

For $k=2$, this was first proved by the first author in [7] and for general k by Wolfgang A. Schmid [15].

Theorem 2.2. If p is an odd prime and k is any positive integer such that $(k, p)=1$, then every sequence of length $\left[\frac{k}{k-1}(d+1)(p-1)\right]+1$ in \mathbb{Z}_{p}^{d} has a zero-sum subsequence of length rp with k Xr.

Proof. Let $\ell=\left[\frac{k}{k-1}(d+1)(p-1)\right]+1$ and let $S=\prod_{i=1}^{\ell} a_{i}$ be a sequence in \mathbb{Z}_{p}^{d} of length ℓ. Let $b_{i}=\left(1, a_{i}\right) \in \mathbb{Z}_{p}^{d+1}$ for $i=1,2, \cdots, \ell$. By Theorem B, we see that there exists a zero-sum subsequence T of $\prod_{i=1}^{\ell} b_{i}$ such that $k \nmid|T|$. Set $l=|T|$. That is, by rearranging the indices, if necessary, we have,

$$
0=\sum_{i=1}^{l} b_{i}=\sum_{i=1}^{l}\left(1, a_{i}\right)=\left(l, \sum_{i=1}^{l} a_{i}\right) \text { in } \mathbb{Z}_{p}^{d+1}
$$

which implies, p divides l and $T^{\prime}=\prod_{i=1}^{l} a_{i}$ is a zero-sum subsequence of S. Therefore, it is clear that $\left|T^{\prime}\right|=r p$ for some integer r with $k \nmid r$.

Lemma 2.3. Let S be a sequence in \mathbb{Z}_{3}^{3} of length 12. Suppose S is not a zerosum sequence. Then S contains a zero-sum subsequence of length 6 .
Proof. It is enough to assume that $v_{g}(S) \leq 5$ for every $g \in \mathbb{Z}_{3}^{3}$. Otherwise, we obviously have a zero subsequence of length 6 . Then there exists a subsequence T of S of length 9 such that T is not a zero-sum subsequence. Now, by Corollary 2.2.1, T has a zero-sum subsequence T_{1} of length 3 or 6 . Assume that $\left|T_{1}\right|=3$. Consider the sequence $S T_{1}^{-1}$ which is of length 9 . Since S is not a zero-sum sequence, $S T_{1}^{-1}$ is not a zero-sum subsequence of S. Once again by Corollary
2.2.1, there exists a zero-sum subsequence T_{2} of $S T_{1}^{-1}$ of length 3 or 6 . If $\left|T_{2}\right|=3$, then $T_{1} T_{2}$ is the required zero-sum subsequence of length 6 . Otherwise T_{2} does the job. This completes the proof of the lemma.

Lemma 2.4. Let $d>1$ be an integer and let ℓ be an integer such that $1 \leq \ell \leq$ $d-1$. Then for any positive integer n we have

$$
s_{\ell}\left(\mathbb{Z}_{n}^{d}\right) \geq n(d+\ell)+\left[\frac{(d-\ell) n-1}{d-1}\right]-d .
$$

Proof. Let

$$
T=(1,1, \cdots, 1)^{s} \prod_{i=1}^{d} e_{i}^{n-1},
$$

where $e_{i}=(0,0, \cdots, 0,1,0, \cdots, 0)$ for all $i=1,2, \cdots, d$ and $s=\left[\frac{(d-\ell) n-1}{d-1}\right]$. Note that any zero-sum subsequence W of T will be of the form

$$
W=(1,1, \cdots, 1)^{i} \prod_{j=1}^{d} e_{j}^{n-i}
$$

and hence $|W|=d(n-i)+i=d n-(d-1) i$. Since $s=\left[\frac{(d-\ell) n-1}{d-1}\right]$, it is clear that $|W|>\ell n$. Now, let $S=T(0,0, \cdots, 0)^{\ell n-1}$ be a sequence in \mathbb{Z}_{n}^{d} whose length is $|T|+\ell n-1=d(n-1)+s+n \ell-1=(d+\ell) n+s-d-1$. Clearly, by the construction of S, we see that S doesn't have a zero-sum subsequence of length ℓn. Hence we have the desired inequality.

Lemma 2.5. Let $k, \ell \geq 1$ be integers. Then

$$
s_{k \ell}(G) \leq(\ell-1) k \exp (G)+s_{k}(G) .
$$

Proof. Let $m=(\ell-1) k \exp (G)+s_{k}(G)$ and let $S=\prod_{i=1}^{m} g_{i}$ be any sequence in G of length m. To prove the lemma, we shall prove that S has a zero-sum subsequence of length $k \ell \exp (G)$. By the definition of m, we can extract ℓ disjoint zero-sum subsequences, say, $T_{1}, T_{2}, \cdots, T_{\ell}$ of S such that $\left|T_{i}\right|=k \exp (G)$ for each i. Hence the sequence $T_{1} T_{2} \cdots T_{\ell}$ is the desired zero-sum subsequence of S.

3. Proof our main results

Proof of Theorem 1.1. (1) (i) Put $d=3, \ell=2$ and $n=p$ in Lemma 2.4, we get $5 p+\frac{p-1}{2}-3 \leq s_{2}\left(\mathbb{Z}_{p}^{3}\right)$.

Now we shall prove that $s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3$. Let S be a sequence in \mathbb{Z}_{p}^{3} of length $6 p-3$. Put $d=l=3$ in Theorem 2.1. We get a zero-sum subsequence T of S of length p or $2 p$. Assume that $|T|=p$. Then the deleted sequence $S_{1}=S T^{-1}$, which is of length $5 p-3$, has a zero-sum subsequence T_{1} of length either p or $2 p$ by Theorem 2.1, with $l=3$. Assuming that $\left|T_{1}\right|=p$, we get a zero-sum sequence $T_{2}=T T_{1}$ which is of length $2 p$. Thus, $s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3$.
(ii) In view of Equation (1), it is enough to prove that $s_{3}\left(\mathbb{Z}_{p}^{3}\right) \leq 8 p-7$ for all prime $p \geq 5$. Let S be a sequence in \mathbb{Z}_{p}^{3} of length $8 p-7$. By Theorem 2.2, there exists a zero-sum subsequence T of S with $|T|=p, 3 p, 5 p$ or $7 p$.

If $|T|=p$, then the deleted sequence $S T^{-1}$ is of length $7 p-7$. Applying $s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3$, we see that the sequence $S T^{-1}$ has a zero-sum subsequence T_{1} of length $2 p$. Thus $T T_{1}$ is the required zero-sum subsequence of S of length $3 p$.

If $|T|=5 p$, then by putting $d=3$ and $l=1$ in Theorem 2.1, we get, T has zero-sum subsequence T_{5} of length $2 p$, or $3 p$. Assume that $\left|T_{5}\right|=2 p$. Then look at the deleted sequence $T T_{5}^{-1}$ which is a zero-sum sequence of length $3 p$.

If $|T|=7 p$, then as $s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3$, there exists a zero-sum subsequence T_{2} of T of length $2 p$. That is, T breaks into two zero-sum subsequences T_{2} and T_{3} of lengths $2 p$ and $5 p$ respectively. Since $\left|T_{3}\right|=5 p$, by the previous case, we are done again. Thus we have proved that $s_{3}\left(\mathbb{Z}_{p}^{3}\right) \leq 8 p-7$ for all primes $p \geq 5$.
(iii) First we shall prove that $s_{2 k}\left(\mathbb{Z}_{p}^{3}\right)=2 k p+3 p-3$ and then prove that $s_{2 k+1}\left(\mathbb{Z}_{p}^{3}\right)=(2 k+1) p+3 p-3$ for every integer $k \geq 2$.

Let S be a sequence in \mathbb{Z}_{p}^{3} of length $2 k p+3 p-3$. If $k=2$, then $|S|=7 p-3$. Since $s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3, S$ contains a zero-sum subsequence T_{1} of length $2 p$. Note that $\left|S T_{1}^{-1}\right|=5 p-3$. Using Theorem 2.1 with $l=3$, we see that $S T_{1}^{-1}$ has a zero-sum subsequence T_{2} of length p or $2 p$. If $\left|T_{2}\right|=2 p$, then $T_{1} T_{2}$ is a zero-sum subsequence of S of length $4 p$ and we are done. So, we may assume that $\left|T_{2}\right|=p$. Since $\left|S T_{1}^{-1} T_{2}^{-1}\right|=4 p-3$, by Corollary 2.1.1, there is a zero subsequence T_{3} of $S T_{1}^{-1} T_{2}^{-1}$ of length $p, 2 p$ or $3 p$. Therefore, $T_{1} T_{2} T_{3}, T_{1} T_{3}$ or $T_{2} T_{3}$ is a zero subsequence of S of length $4 p$. Hence $s_{4}\left(\mathbb{Z}_{p}^{3}\right) \leq 7 p-3$. Thus, by the inequality (1), we see that $s_{4}\left(\mathbb{Z}_{p}^{3}\right)=4 p+3 p-3$.

Now, we shall assume the result is true for any $k \geq 2$ and prove it for $k+1$. By the virtue of inequality (1), it is enough to prove that $s_{2(k+1)}\left(\mathbb{Z}_{p}^{3}\right) \leq$ $2(k+1) p+3 p-3$. Consider a sequence S_{4} in \mathbb{Z}_{p}^{3} of length $2(k+1) p+3 p-3$. As $k \geq 2$, one can find a zero-sum subsequence T_{4} of S_{4} with $\left|T_{4}\right|=2 p$, as $s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3$. Now, since the deleted sequence $S_{5}=S_{4} T_{4}^{-1}$ has length $2 k p+2 p+3 p-3-2 p=2 k p+3 p-3$, by induction hypothesis, S_{5} has a zerosum subsequence W such that $|W|=2 k p$. Then $T_{4} W$ is a zero-sum subsequence of S_{4} with $|T W|=2(k+1) p$. Thus it follows that $s_{2 k}\left(\mathbb{Z}_{p}^{3}\right)=2 k p+3 p-3$ for every integer $k \geq 2$.

First we shall prove that $s_{5}\left(\mathbb{Z}_{p}^{3}\right)=8 p-3$. It is enough to prove that $s_{5}\left(\mathbb{Z}_{p}^{3}\right) \leq$ $8 p-3$. Let S be a sequence in \mathbb{Z}_{p}^{3} of length $8 p-3$. By Theorem $2.2, S$ contains a
zero-sum subsequence T of length $l p$ with $l \in\{1,3,5,7\}$. Therefore it is enough to assume that $|T|=p, 3 p$ or $7 p$. If $|T|=p$, then apply $s_{4}\left(\mathbb{Z}_{p}^{3}\right)=7 p-3$ to get a zero-sum subsequence T_{1} of $S T^{-1}$ of length $4 p$ and we are done. Hence it is enough to assume that $|T|=3 p$ or $7 p$. If $|T|=7 p$, again by using $s_{4}\left(\mathbb{Z}_{p}^{3}\right)=7 p-3$, one can get a zero-sum subsequence T_{2} of T length $4 p$ and its complement is of length $3 p$. Thus, we may assume that S contains a zero-sum subsequence T of length $3 p$. Note that $\left|S T^{-1}\right|=5 p-3$, by Theorem 2.1, (by putting $d=l=3$), there is a zero-sum subsequence W of $S T^{-1}$ such that $|W|=k p$ with $k \in\{1,2\}$. If $|W|=2 p$, then $|T W|=5 p$ and we are done. Otherwise, $|W|=p$ and it reduces to the above case. Thus $s_{5}\left(\mathbb{Z}_{p}^{3}\right)=8 p-3$.

Now to prove $s_{k}\left(\mathbb{Z}_{p}^{3}\right)=k p+3 p-3$ for every odd integer $k \geq 7$, consider a sequence S in \mathbb{Z}_{p}^{3} of length $k p+3 p-3$. Since $k \geq 7$, as $s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq 6 p-3, S$ has a zero-sum subsequence T of length $2 p$. Since the sequence $S T^{-1}$ has length $(k-2) p+3 p-3$, by the induction hypothesis, $S T^{-1}$ has a zero-sum subsequence T_{1} of length $(k-2) p$ (as $k-2 \geq 5$ and odd). Thus $T T_{1}$ is the required zero-sum subsequence of length $k p$.
(2) From the inequality (1), it is clear that $s_{2}\left(\mathbb{Z}_{3}^{3}\right) \geq 13$ and hence it is enough to prove that $s_{2}\left(\mathbb{Z}_{3}^{3}\right) \leq 13$. Let S be a sequence in \mathbb{Z}_{3}^{3} of length 13. If $v_{g}(S) \geq 6$ for some $g \in \mathbb{Z}_{3}^{3}$, then we are done. So, we can assume that $v_{g}(S) \leq 5$ for every $g \in \mathbb{Z}_{3}^{3}$. Then one can find a subsequence T of S such that $|T|=12$ and T is not a zero-sum subsequence of S. Therefore, by Lemma 2.3, we have a zero-sum subsequence of length 6 . Thus, $s_{2}\left(\mathbb{Z}_{3}^{3}\right)=13$.

Now, we shall prove that $s_{3}\left(\mathbb{Z}_{3}^{3}\right) \leq 17$. Let S be a sequence in \mathbb{Z}_{3}^{3} of length 17. By putting $k=2$ in Theorem 2.2, we see that S does have a zero-sum subsequence T of length 3,9 or 15 . It is enough to assume that $|T|=3$ or 15 . If $|T|=3$, then consider $S_{1}=S T^{-1}$ which is of length 14 . Since $s_{2}\left(\mathbb{Z}_{3}^{3}\right)=13$, there exists a zero-sum subsequence of length 6 in $S T^{-1}$ and hence there is a zero-sum subsequence of length 9 in S. Now, it remains to consider the case $|T|=15$. Again by the value $s_{2}\left(\mathbb{Z}_{3}^{3}\right)=13$, there exists a zero-sum subsequence T_{1} of T of length 6 and hence $T T_{1}^{-1}$ is a zero-sum subsequence of S and is of length 9 . Hence $s_{3}\left(\mathbb{Z}_{3}^{3}\right) \leq 17$.

To complete the proof, we shall proceed by induction on k. When $k=4$, by the inequality (1), it suffices to prove that $s_{4}\left(\mathbb{Z}_{3}^{3}\right) \leq 18$. Let S be a sequence in \mathbb{Z}_{3}^{3} of length 18 . We have to prove that S contains a zero-sum subsequence of length 12 . As $s_{2}\left(\mathbb{Z}_{3}^{3}\right)=13, S$ contains a zero-sum subsequence T of length 6. If $S T^{-1}$ is a zero-sum subsequence, then we are done as its length is 12. If $S T^{-1}$ is not a zero-sum subsequence, then by Lemma 2.3, we have a zerosum subsequence T_{1} of $S T^{-1}$ of length 6 . Thus $T T_{1}$ is the required zero-sum subsequence of S of length 12 .

So, we shall assume that $s_{k}\left(\mathbb{Z}_{3}^{3}\right)=3 k+6$ for some $k \geq 4$ and prove it for $k+1$. Let S be a sequence in \mathbb{Z}_{3}^{3} of length $3(k+1)+6$. Since (see for instance, [9] and [10]) $s_{1}\left(\mathbb{Z}_{3}^{3}\right)=19<3(k+1)+6, S$ contains a zero-sum subsequence
T of length 3. As the length of the sequence $S T^{-1}$ is $3 k+6$, by the induction hypothesis, we see that $S T^{-1}$ has a zero-sum subsequence of length $3 k$. Hence S has a zero-sum subsequence of length $3 k+3=3(k+1)$. Thus $s_{k}\left(\mathbb{Z}_{3}^{3}\right)=3 k+6$ for every $k \geq 4$.
(3) By inequality (1), we have $s_{2}\left(\mathbb{Z}_{2}^{3}\right) \geq 7$. So, we shall prove that $s_{2}\left(\mathbb{Z}_{2}^{3}\right) \leq 7$. Let S be a sequence in \mathbb{Z}_{2}^{3} of length 7 . By Corollary 2.1.1, we see that S contains a zero-sum subsequence T_{1} of length 2 or 4 . Assume that $\left|T_{1}\right|=2$. Since $S T_{1}^{-1}$ is of length 5 , once again by Corollary 2.1.1, we get a zero-sum subsequence T_{2} of length 2 or 4 . If $\left|T_{2}\right|=2$, then $T_{1} T_{2}$ is the required zero-sum subsequence of length 4 of S. Otherwise T_{2} will do. Thus, $s_{2}\left(\mathbb{Z}_{2}^{3}\right)=7$. Now, $s_{3}\left(\mathbb{Z}_{2}^{3}\right)=9$ follows easily because we know that $s_{1}\left(\mathbb{Z}_{2}^{3}\right)=9$ (see for instance, [9]) and $s_{2}\left(\mathbb{Z}_{2}^{3}\right)=7$. Now the rest follows by a straight forward induction.

Proof of Theorem 1.2. First let us prove that $s_{6}\left(\mathbb{Z}_{p}^{4}\right) \leq 12 p-4$. Then by Lemma 2.5 , the result follows. Let p be any prime with $p \geq 7$. Let S be a sequence in \mathbb{Z}_{p}^{4} of length $12 p-4$. By Theorem 2.1, we know that every sequence in \mathbb{Z}_{p}^{4} of length $6 p-4$ has a zero-sum subsequence of length ℓp with $\ell \in\{1,2,3,4\} \backslash\{r\}$ for every $r \in\{1,2,3,4\}$. We distinguish cases as follows:

Case 1. (S has two disjoint zero-sum subsequences T_{1} and T_{2} of length $3 p$.)
In this case, it is clear that $T_{1} T_{2}$ forms a zero-sum subsequence of S of length $6 p$ and we are done.

Case 2. (Case 1 doesn't hold but S has a zero-sum subsequence T of length $3 p$.)
Then consider the deleted sequence $S T^{-1}$ which is of length $9 p-4$. Clearly $S T^{-1}$ does not have zero-sum subsequence of length $3 p$. By letting $l=4=d$ in Theorem 2.1, we get, $S T^{-1}$ has disjoint zero-sum subsequences of lengths p, p, p or $p, 2 p$ or $2 p, 2 p$. For the first two cases, we clearly have the desired zero-sum subsequence of length $6 p$ of S. So, we may assume that $S T^{-1}$ has two disjoint zero-sum subsequences T_{1} and T_{2} each of length $2 p$. Note that $\left|S T^{-1} T_{1}^{-1} T_{2}^{-1}\right|=5 p-4$. By Corollary 2.1.1, the sequence $S T^{-1} T_{1}^{-1} T_{2}^{-1}$ has a zero-sum subsequence of length $r p$ with $r \in\{1,2,3,4\}$ and we always get a zero-sum subsequence of length $6 p$ of S for whatever value of r.

Case 3. (S does not have any zero-sum subsequence of length $3 p$.)
By the assumption, it is only possible that S has disjoint zero subsequences of lengths $2 p, 2 p, 2 p$ by letting $l=4=d$ in Theorem 2.1. Hence S has a zero-sum subsequence of length $6 p$.

Proof of Theorem 1.3. Let $p \geq 5$ be any prime and let S be a sequence in \mathbb{Z}_{p}^{3} of length $9 p-3$. Suppose S has at most two disjoint zero-sum subsequences of length $2 p$. By Theorem 1.1 (1), we know that $s_{6}\left(\mathbb{Z}_{p}^{3}\right)=9 p-3$. Hence there exists
a zero-sum subsequence T of S of length $6 p$. Again using the value $s_{2}\left(\mathbb{Z}_{p}^{3}\right) \leq$ $6 p-3$, there exists a zero-sum subsequence T_{1} of T of length $2 p$. Thus $T_{2}=T T_{1}^{-1}$ is a zero-sum subsequence of T of length $4 p$. By Corollary 2.1.1, we know that T_{2} has a zero-sum subsequence T_{3} of length p or $2 p$ or $3 p$. If $\left|T_{3}\right|=2 p$, then $T_{2} T_{3}^{-1}$ is also a zero subsequence of T_{2} of length $2 p$. Thus S has $T_{1}, T_{2} T_{3}^{-1}, T_{3}$ disjoint zero-sum subsequence of length $2 p$ which is a contradiction to the assumption. Hence $\left|T_{3}\right|=p$ or $3 p$. In either case, we have a zero-sum subsequence T_{3} or $T_{2} T_{3}^{-1}$ of length p of S. This completes the proof of the theorem.

Before we conclude this section, we shall discuss the following open problems and applications of our results.

Definition 3.1. By $\ell(G)$, we denote the smallest positive integer t such that $s_{k}(G)-k \exp (G)=D(G)-1$ for every $k \geq t$.

Gao [6] proved that

$$
\begin{equation*}
\frac{D(G)}{\exp (G)} \leq \ell(G) \leq \frac{|G|}{\exp (G)} \tag{2}
\end{equation*}
$$

It is clear from the upper bound of the inequality (2) that the sequence $\left\{s_{k}(G)-k \exp (G)\right\}_{k=1}^{\infty}$ is eventually constant. Since $\ell\left(\mathbb{Z}_{n}\right)=1$, the sequence $\left\{s_{k}\left(\mathbb{Z}_{n}\right)-k n\right\}$ is a constant sequence. From the introduction, it follows that $\ell\left(\mathbb{Z}_{n}^{2}\right)=2$ and we see that the $s_{1}\left(\mathbb{Z}_{n}^{2}\right)-n>s_{2}\left(\mathbb{Z}_{n}^{2}\right)-2 n$ is strictly decreasing. So, the following conjecture seems to be plausible.

Conjecture 2. The sequence $\left\{s_{k}(G)-k \exp (G)\right\}_{k=1}^{\ell(G)-1}$ is strictly decreasing.
In [6], the following two conjectures have been posed.
Conjecture 3. (W. D. Gao, [6]) If $k \leq \ell(G)-1$, then $s_{k}(G)-k \exp (G) \geq D(G)$.
We mentioned in the Preliminaries that Conjecture 3 is true for every $k<$ $D(G) / n$. Also, one can easily see that if Conjecture 2 is true, then so is Conjecture 3 .

Conjecture 4. (W. D. Gao, [6]) If $G \notin\left\{\mathbb{Z}_{n}, \mathbb{Z}_{2}^{2}\right\}$, then $\ell(G)<|G| / \exp (G)$.
Referee pointed out that the following recent work of S. Kubertin [11] related to this problem. Indeed, S. Kubertin [11] conjectured the following.

Conjecture 5. (S. Kubertin, [11]) For positive integers $k \geq d$ and n we have

$$
s_{k}\left(\mathbb{Z}_{n}^{d}\right)=(k+d) n-d .
$$

Conjecture 5 has been verified for all prime powers n and $k \geq n^{d-1}$ by Gao [6]. Also, Conjecture 5 has been verified in [11] for all $k=\ell p, n=p^{r}$ and for any integer $d>1$. Also, he verifies Conjecture 5 for $n=p^{r}$ when $d=3$ or 4 .

If both Conjecture 1 and Conjecture 5 are true, then one easily see that $\ell\left(\mathbb{Z}_{n}^{d}\right) \leq d$. Therefore, Conjecture 4 is true for $G=\mathbb{Z}_{n}^{d}$.

Acknowledgment. This work was done under the auspices of the 973 Project on Mathematical Mechanization, the Ministry of Education, the Ministry of Science and Technology, the National Science Foundation of China and Nankai University. We are thankful to the referees for their suggestions to make the article readable and pointing out the recent result [11].

References

[1] S. D. Adhikari and P. Rath, Remarks on some zero-sum problems, Expo. Math., 21 (2003), no. 2, 185-191.
[2] N. Alon and M. Dubiner, Zero-sum sets of prescribed size, in "Combinatorics, Paul Erdős is eighty, Vol. I, keszthely", pp. 33-50, Bolyai Soc. Math. Stud., Janos Bolyai Math. Soc., Budapest, 1993.
[3] C. Elshotz, Lower bounds for multidimensional zero-sums, Combinatorica, 24 (2004), 351-358.
[4] P. Erdös, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel, 10 F(1961), 41-43.
[5] W. D. Gao, On Davenport's constant of finite abelian groups with rank three, Discrete Math., 222 (2000), no. 1-3, 111-124.
[6] W. D. Gao, On zero-sum subsequences of restricted size - II, Discrete Math., 271 (2003), no. 1-3, 51-59.
[7] W. D. Gao, On zero-sum subsequences of restricted size - III, Ars Combin., 61 (2001), 65-72.
[8] W. D. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$, Integers, 3 (2003), \#A8, 45 pp . (electronic).
[9] H. Harborth, Ein Extremalproblem Für Gitterpunkte, J. Reine Angew. Math., 262/263 (1973), 356-360.
[10] A. Kemnitz, On a lattice point problem, Ars Combin., 16 b (1983), 151160.
[11] S. Kubertin, Zero-sums of length $k q$ in \mathbb{Z}_{q}^{d}, Acta. Arith. 116 (2005), no. 2, 145-152.
[12] J. E. Olson, On a combinatorial problem on finite Abelian groups I and II, J. Number Theory, 1(1969), 8-10, 195-199.
[13] C. Reiher, On Kemnitz' conjecture concerning lattice points in the plane, Ramanujan J., to appear.
[14] L. Rónyai, On a conjecture of Kemnitz, Combinatorica, 20 (2000), no. 4, 569-573.
[15] W. A. Schmid, On zero-sum subsequences in finite abelian groups, Integers, 1 (2001), A1, 8 pp. (electronic).
[16] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite Abelian groups III, Z. W. (1969-008) Math. Centrum-Amsterdam.
W. D. Gao

Center for Combinatorics
Nankai University
Tianjin 300071
China
email: gao@cfc.nankai.edu.cn
R. Thangadurai

School of Mathematics Harish-Chandra Research Institute Chhatnag Road, Jhunsi Allahabad - 211019, India. email: thanga@mri.ernet.in

