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Abstract

Several authors have examined connections among 132-avoiding permutations, continued fractions,
and Chebyshev polynomials of the second kind. In this paper we find analogues for some of these
results for permutations π avoiding 132 and 1223 (there is no occurrence πi < πj < πj+1 such
that 1 ≤ i ≤ j − 2) and provide a combinatorial interpretation for such permutations in terms of
lattice paths. Using tools developed to prove these analogues, we give enumerations and generating
functions for permutations which avoid both 132 and 1223, and certain additional patterns. We also
give generating functions for permutations avoiding 132 and 1223 and containing certain additional
patterns exactly once. In all cases we express these generating functions in terms of Chebyshev
polynomials of the second kind.
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1. Introduction

1.1. Background. Let Sn denote the set of permutations of {1, . . . , n}, written in one-line notation,
and suppose π ∈ Sn and τ ∈ Sk. We say a subsequence of π is order-isomorphic to τ whenever it
has all of the same pairwise comparisons as τ . For example, the subsequence 2865 of the permutation
32184765 is order isomorphic to 1432. An occurrence of τ in π is a subsequence of π which is order-
isomorphic to τ ; in such a context, τ is usually called a pattern. We denote the number of occurrences
of τ in π by (τ)π. For example, if π = 5473162 and τ = 132 then τ(π) = 3, namely, 576, 476 and
162. We say π avoids τ (or π is τ -avoiding) if τ(π) = 0, that is, there is no occurrence of τ in π.
In this paper we will be interested in permutations which avoid several patterns, so for any set T of
permutations we write Sn(T ) to denote the elements of Sn which avoid every pattern in T . When
T = {τ1, τ2, . . . , τr} we often write Sn(T ) = Sn(τ1, τ2, . . . , τr). For any subset A ⊆ Sn and any set
of patterns T , define A(T ) := A ∩ Sn(T ).

While the case of permutations avoiding a single pattern has attracted much attention, the case of
multiple pattern avoidance remains less investigated. In particular, it is natural, as the next step, to
consider permutations avoiding pairs of patterns τ1, τ2. This problem was solved completely for τ1, τ2 ∈
S3 (see [28]) and for τ1 ∈ S3 and τ2 ∈ S4 (see [30, 31]). Several recent papers [6, 15, 20, 21, 22, 23]
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2 HORSE PATHS AND HORSE PERMUTATIONS

deal with the case τ1 ∈ S3, τ2 ∈ Sk for various pairs τ1, τ2. The tools involved in these papers include
Catalan numbers, Chebyshev polynomials, and continued fractions.

Babson and Steingŕımsson [1] introduced generalized patterns that allow the requirement that two
adjacent letters in a pattern must be adjacent in the permutation. For example, in an occurrence of
the pattern 21-3-4 in a permutation π, the letters in π that correspond to 1 and 2 are adjacent. Thus,
the permutation π = 5234617 has only one occurrence of the pattern 21-3-4, namely the subsequence
5267, whereas π has three occurrences of the pattern 2-1-3-4, namely the subsequences 5267, 5367, and
5467. Claesson [7] presented a complete solution for the number of permutations avoiding any single
3-letter generalized pattern with exactly one adjacent pair of letters. Elizalde and Noy [9] studied
some cases of avoidance of patterns where all letters have to occur in consecutive positions. Claesson
and Mansour [8] (see also [17, 18, 19]) presented a complete solution for the number of permutations
avoiding any pair of 3-letter generalized patterns with exactly one adjacent pair of letters. Besides,
Kitaev [13] investigated simultaneous avoidance of two or more 3-letter generalized patterns without
internal dashes.

A remark about notation: throughout the paper, a pattern represented with no dashes will always
denote a classical pattern (i.e., with no requirement about elements being consecutive). All the
generalized patterns that we will consider will have at least one dash.

1.2. Basic tools. Catalan numbers are defined by Cn = 1
n+1

(

2n
n

)

for all n ≥ 0. The generating

function for the Catalan numbers is given by C(x) = 1−
√

1−4x
2x .

Chebyshev polynomials of the second kind (in what follows just Chebyshev polynomials) are defined by

Ur(cos θ) = sin(r+1)θ
sin θ for r ≥ 0. Clearly, Ur(t) is a polynomial of degree r in t with integer coefficients,

and the following recurrence holds:

(1.1) U0(t) = 1, U1(t) = 2t, and Ur(t) = 2tUr−1(t) − Ur−2(t) for all r ≥ 2.

The same recurrence is used to define Ur(t) for r < 0 (for example, U−1(t) = 0 and U−2(t) = −1).
Chebyshev polynomials were invented for the needs of approximation theory, but are also widely
used in various other branches of mathematics, including algebra, combinatorics, and number theory
(see [27]). Apparently, the relation between restricted permutations and Chebyshev polynomials was
discovered for the first time by Chow and West in [6], and later by Mansour and Vainshtein [20, 21, 23],
Krattenthaler [15].

Permutations which avoid 132 are known to have many properties. For instance, it is well known that
|Sn(132)| = Cn = 1

n+1

(

2n
n

)

for all n ≥ 0, where Cn is the nth Catalan number. As a result, for all

n ≥ 0, the set Sn(132) is in bijection with the set of Dyck paths (see [15]). Recall that a Dyck path of
length 2n is a lattice path in Z

2 between (0, 0) and (2n, 0) consisting of up-steps (1, 1) and down-steps
(1,−1) which never goes below the x-axis. Denote by Dn the set of Dyck paths of length 2n.

We say the permutation π ∈ Sn avoids the pattern 12231 if there is no occurrence πi < πj < πj+1

of π such that 1 ≤ i ≤ j − 2 ≤ n − 2. The permutation π is said to be a Horse permutations2 if π

avoids both 132 and 1223. We denote the set of all Horse permutations in Sn by Hn. In this paper,

1The pattern 1223 is an instance of so called partially ordered generalized patterns introduced in [14]. In the original
terminology, 1223 is the pattern 1-1′-23, or 1-1′23, or 11′-23, where 1′ is incomparable with the letters 1,2, and 3. Thus,
to avoid 1223 is the same as to avoid four generalized patterns simultaneously, e.g., the patterns 1-234, 2-134, 3-124,
and 4-123.

2The expression “Horse permutations” indicates a class of permutations in one-to-one correspondence with “Horse
paths” to be discussed below. In turn, we use “Horse paths” because of allowance of the steps (1, 2) and (2, 1) on the
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we give enumerations and generating functions for Horse permutations which avoid certain additional
patterns. We also give generating functions for Horse permutations which contain certain additional
patterns exactly once.

As a result, for all n ≥ 0, the set Hn is in bijection with the set Hn of Horse paths. These are the
lattice paths from (0, 0) to (n, n) which contain only north (0, 1), diagonal (1, 1), east-Knight (2, 1),
and north-Knight (1, 2) steps and which do not pass above the line y = x. We write H to denote the
set of all Horse paths (including the empty path). Sometimes it will be convenient to encode each
(0, 1)-step by a letter u, each (1, 1)-step by d, each (1, 2)-step by h1, and each (2, 1)-step by h2. The
generating function for these paths is (see [24])

H(x) =
∑

n≥0

|Hn|xn =
1 − x −

√
1 − 2x − 3x2 − 4x3

2x2(1 + x)
.

1.3. Organization of the paper. In Section 2 we exhibit a bijection between the set of Horse
permutations and the set of Horse paths. Then we use it to obtain generating functions of Horse
permutations with respect to the length of the longest decreasing subsequences.

In Section 3 we consider additional restrictions on Horse permutations. Using a block decomposi-
tion, we enumerate Horse permutations avoiding the pattern 12 . . . k, and we find the distribution of
occurrences of this pattern in Horse permutations. Then we obtain generating functions for Horse per-
mutations avoiding patterns of more general shape. We conclude the section considering two classes
of generalized patterns (as described above), and we study its distribution in Horse permutations.

2. A bijection between Horse permutations and Horse paths

In this section we establish a bijection Θ : Hn → Hn between Horse permutations and Horse paths.
This bijection allows us to give the distribution of some interesting statistics on the set of Horse
permutation. First let us describe the block decompositions of an arbitrary Horse permutations in
Hn.

2.1. Block decomposition of Horse permutations. The core of this approach initiated by Man-
sour and Vainshtein [22] lies in the study of the structure of 132-avoiding permutations, and permu-
tations containing a given number of occurrences of 132.

n

n

β

β

n−t+1

α

     (1)                                                       (2) (3)

n−t+1

n−t+1

n

α

β

Figure 1. The block decomposition for π ∈ Hn

integer lattice in the plane. Since we allow two other steps, (0, 1) and (1, 1), we use the word “Horse” rather than
“Knight”.
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It was noticed in [22] that if π ∈ Sn(132) and πt = n, then π = (α, n, β) where α is a permutation of
the numbers n − t + 1, n− t + 2, . . . , n, β is a permutation of the numbers 1, 2, . . . , n− t, and both α

and β avoid 132. Now let us restrict our attention to Horse permutations. Let π = (α, n, β) ∈ Hn and
πt = n where t = 2, 3, . . . , n. Since π avoids 1223 there are two possibilities for α as follows: either
αt−1 = n − t + 1, or αt−1 = n − t + 2 and αt−2 = n − t + 1. This representation is called the block
decomposition of π ∈ Hn, see Figure 1, and these decompositions are described in Lemma 2.1.

Lemma 2.1. Let π ∈ Hn. Then one of the following holds:

(i) π = (n, β) where β ∈ Hn−1,

(ii) there exists t, 2 ≤ t ≤ n, such that π = (α, n − t + 1, n, β), where

(α1 − (n − t + 1), . . . , αt−2 − (n − t + 1)) ∈ Ht−2 and β ∈ Hn−t.

(iii) there exists t, 3 ≤ t ≤ n, such that π = (α, n − t + 1, n − t + 2, n, β), where

(α1 − (n − t + 2), . . . , αt−3 − (n − t + 2)) ∈ Ht−3 and β ∈ Hn−t.

2.2. The bijection Θ. Now we are ready to define Θ recursively. For this, we denote (i, j) + H the
translation of a path H by the vector (i, j) ∈ Z

2.

As the foundation, the empty permutation maps to the empty path, which gives the bijection Θ: H0 7→
H0.

Suppose we have defined the bijection Θ: Hm 7→ Hm for all m < n. For π ∈ Hn, according to
Lemma 2.1, there are three cases:

(i) π = (n, β) where β ∈ Hn−1. We define Θ(π) to be the joint of the path (0, 0) → (1, 1) and the
path (1, 1) + Θ(β). See Figure 2(1).

(ii) there exists t, 2 ≤ t ≤ n, such that π = (α, n − t + 1, n, β), where

α′ = (α1 − (n − t + 1), . . . , αt−2 − (n − t + 1)) ∈ Ht−2 and β ∈ Hn−t.

Then Θ(π) is defined to be the joint of (0, 0) → (2, 1), (2, 1)+Θ(α′), (t, t−1) → (t, t) and (t, t)+Θ(β).
See Figure 2(2).

(iii) there exists t, 3 ≤ t ≤ n, such that π = (α, n − t + 1, n − t + 2, n, β), where

α′ = (α1 − (n − t + 2), . . . , αt−3 − (n − t + 2)) ∈ Ht−3 and β ∈ Hn−t.

Under this situation, Θ(π) is defined to be the joint of (0, 0) → (2, 1), (2, 1)+Θ(α′), (t−1, t−2) → (t, t)
and (t, t) + Θ(β). See Figure 2(3).

Conversely, given a Horse path H of length n, there are also three cases.

(i) The first step of H is (0, 0) → (1, 1). By the induction hypotheses, there exists β ∈ Hn−1 such that
Θ((n, β)) = H .

(ii) The first intersection of H and the diagonal line is at point (t, t) and the step to (t, t) is (t, t−1) →
(t, t). Then t ≥ 2 and we recover α and β such that

(α1 − (n − t + 1), . . . , αt−2 − (n − t + 1)) ∈ Ht−2, β ∈ Hn−t,

and Θ((α, n − t + 1, n, β)) = H .
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Figure 2. Bijection between Horse permutations and Horse paths.

(iii) The first intersection of H and the diagonal line is at point (t, t) and the step to (t, t) is (t−1, t−
2) → (t, t). Then t ≥ 3 and we recover α and β such that

(α1 − (n − t + 2), . . . , αt−3 − (n − t + 2)) ∈ Ht−3, β ∈ Hn−t,

and π = (α, n − t + 1, n − t + 2, n, β).

Thus, we find the inverse of Θ, which makes Θ a bijection.

2.3. Restricted Dyck Path. As well known, 132-avoiding permutations of length n are bijectively
mapped to the Dyck paths of length 2n. One classical bijection is as follows. Let π = π1 · · ·πn.
Denote invi = |{πj : πj > πi, j > i}| and inv0 = 0. Starting from (0, 0), go up (moved by (1, 1))
invi − invi−1 + 1 steps, followed by one down step (moved by (1,−1)) successively for i = 1, . . . , n.

A bijection can also be obtained by recursion. Suppose π = (α, n, β) avoids 132 and the length of α

and β are t−1 and n− t respectively, Then α′ = (α1− (n− t), . . . , α1− (n− t)) and β are 132-avoiding
permutations of length t− 1 and n− t respectively. Denote by D(π) the Dyck path corresponding to
π. Then D(π) is the joint of (0, 0) → (1, 1), (1, 1) + D(α′), (2t − 1, 1) → (2t, 0) and (2t, 0) + D(β).

Since Horse permutations are 132-avoiding permutations with certain restrictions, there is a bijection
between Horse permutations and the Dyck path with certain restrictions.

Definition 2.2. The Dyck paths which do not contain the following two shapes are called Horse Dyck

paths.

Figure 3. Restrictions on Dyck path

Given π ∈ Hn, we get a Dyck path D(π) by the classical bijection. Since π ∈ Hn, there are three
cases.

(i) π = (n, β) where β ∈ Hn−1. The corresponding Dyck path is the joint of the paths (0, 0) →
(1, 1) → (2, 0) and the path (2, 0) + D(β). See Figure 2(1).
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(ii) there exists t, 2 ≤ t ≤ n, such that π = (α, n − t + 1, n, β), where

α′ = (α1 − (n − t + 1), . . . , αt−2 − (n − t + 1)) ∈ Ht−2 and β ∈ Hn−t.

The corresponding Dyck path is the joint of the paths (0, 0) → (1, 1), (1, 1) + D(α′), (2t − 3, 1) →
(2t − 2, 2) → (2t − 1, 1) → (2t, 0) and (2t, 0) + D(β). See Figure 2(2).

(iii) there exists t, 3 ≤ t ≤ n, such that π = (α, n − t + 1, n − t + 2, n, β), where

α′ = (α1 − (n − t + 2), . . . , αt−3 − (n − t + 2)) ∈ Ht−3 and β ∈ Hn−t.

The corresponding Dyck path is the joint of the paths (0, 0) → (1, 1), (1, 1) + D(α′), (2t − 5, 1) →
(2t − 4, 2) → (2t − 3, 3) → (2t − 2, 2) → (2t − 1, 1) → (2t, 0) and (2t, 0) + D(β). See Figure 2(3).

PSfrag replacements

D(β)

PSfrag replacements

D(α′)

D(β)PSfrag replacements

D(α′)

D(β)
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Figure 4. Bijection between Horse permutations and Horse Dyck paths

Thus, by induction, there do not exist four successive down steps or one up step followed by three
successive down steps in D(π), i.e., D(π) is a Horse Dyck path.

Conversely, suppose π ∈ Sn is a permutation such that D(π) is a Horse Dyck path. Consider the first
intersection of D(π) and the line x = 0. Since π is a Horse Dyck path, there are only three cases.

(i) The first intersection lies at the point (2, 0). Then D(π) is the joint of the paths (0, 0) → (1, 1) →
(2, 0) and another Horse Dyck path starting from (2, 0). By induction, there exists β ∈ Hn−1 such
that π = (n, β).

(ii) The first intersection lies at the point (2t, 0) with t ≥ 2 and the last three steps are (2t − 3, 1) →
(2t − 2, 2) → (2t − 1, 1) → (2t, 0). By induction, there exist

α′ = (α1 − (n − t + 1), . . . , αt−2 − (n − t + 1)) ∈ Ht−2 and β ∈ Hn−t

such that π = (α, n − t + 1, n, β).

(iii) The first intersection lies at the point (2t, 0) with t ≥ 3 and the last five steps are (2t − 5, 1) →
(2t − 4, 2) → (2t − 3, 3) → (2t − 2, 2) → (2t − 1, 1) → (2t, 0). Also by induction, there exist

α′ = (α1 − (n − t + 2), . . . , αt−3 − (n − t + 2)) ∈ Ht−3 and β ∈ Hn−t

such that π = (α, n − t + 1, n− t + 2, n, β).

Thus, we set up the bijection between the Horse permutation and the Horse Dyck path.

It is remarkable that the Horse Dyck path are closed under the join operation, which is not obvious
from the recursive construction of a Horse permutation.

From the above two bijections, we can set up a direct bijection between Horse paths and Horse Dyck
paths, which is shown in Figure 2.3.

From Figure 2.3, we see that the number of peaks in a Horse Dyck path equals the number of steps
(1, 1) and (2, 1) in the corresponding Horse path. Let lds (π) be the length of longest decreasing
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(0,0)

(2t−2,2)

(2t−3,1)
(2t,0)(0,0)

(t,t)

(2t,0)
(0,0)

(t,t)

(0,0)

(2t−5,1)

(2t−3,3)

Figure 5. The bijection between Horse paths and Horse Dyck paths.

subsequence in π. It is shown that for 132-avoiding permutation π, lds (π) equals the number of peaks
in corresponding Dyck path. Noting that the number of steps (2, 1) equals the number of steps (1, 2)
and (0, 1) in a Horse path, we derive that

(2.1) lds (π) = # peaks in the Dyck path = # steps (1, 1) + # steps (2, 1) in the Horse path

= # steps (1, 1) + # steps (1, 2) + # steps (0, 1) in the Horse path.

Let des (π) be the descents of a permutation π ∈ Sn, defined by

des(π) = #{πi > πi+1 : i = 1, 2, . . . , n − 1}.

For convenience, we define des (∅) = −1. For any Horse permutation π ∈ Hn, there are three possibil-
ities.

(i) π = (n, β) where β ∈ Hn−1. We have des (π) = des (β) + 1, i.e., des (π) + 1 = (des (β) + 1) + 1.

(ii) there exists t, 2 ≤ t ≤ n, such that π = (α, n − t + 1, n, β), where

α′ = (α1 − (n − t + 1), . . . , αt−2 − (n − t + 1)) ∈ Ht−2 and β ∈ Hn−t.

Then des (π) = des (α′) + 2 + des (β), i.e., des (π) + 1 = (des (α′) + 1) + (des (β) + 1) + 1.

(iii) there exists t, 3 ≤ t ≤ n, such that π = (α, n − t + 1, n − t + 2, n, β), where

α′ = (α1 − (n − t + 2), . . . , αt−3 − (n − t + 2)) ∈ Ht−3 and β ∈ Hn−t.

Thus we have des (π) = des (α′) + 2 + des (β), i.e., des (π) + 1 = (des (α′) + 1) + (des (β) + 1) + 1.

By induction, we derive that

des (π) + 1 = # steps (1, 1) + # steps (2, 1) in the Horse path,

and hence

(2.2)
des (π) + 1 = lds (π) = # peaks in the Dyck path

= # steps (1, 1) + # steps (2, 1) in the Horse path
= # steps (1, 1) + # steps (1, 2) + # steps (0, 1) in the Horse path.
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Theorem 2.3. Let A(x, q) =
∑

n≥0

∑

π∈Hn
xnqlds (π) and B(x, q) =

∑

n≥0

∑

π∈Hn
xnqdes (π)+1. Then

the generating functions A(x, q) and B(x, q) are given by

1 − xq −
√

(1 − xq)2 − 4x2(1 + x)q

2x2(1 + x)q
=

∑

`≥0

1

` + 1

(

2`

`

)

x2`(1 + x)`

(1 − x)`
q`.

Proof. For any Horse path P there exist Horse paths P ′ and Q′ such that either P = (1, 1)P ′, or
P = (2, 1)P ′(0, 1)Q′, or P = (2, 1)P ′(1, 2)Q′. Hence, using (2.1) we get that

A(x, q) = 1 + xqA(x, q) + x2(1 + x)qA2(x, q).

Now, using (2.2) we get the desired result. �

3. Restricted Horse permutations

In this section we consider those Horse permutations in Hn that avoid another pattern τ . More gen-
erally, we enumerate Horse permutations according to the number of occurrences of τ . Subsection 3.2
deals with the increasing pattern τ = 12 . . . k. In Subsection 3.3 we show that if τ has a certain
form, we can express the generating function for τ -avoiding Horse permutations in terms of the the
corresponding generating functions for some subpatterns of τ . Finally, Subsection 3.4 studies the case
of the generalized patterns 12-3- · · · -k and 21-3- · · · -k. We begin by setting some notation. Let Hn(τ)
denote the set of Horse permutations avoiding τ . Let Hτ (n) be the number of Horse permutations in
Hn(τ), and let Hτ (x) =

∑

n≥0 Hτ (n)xn be the corresponding generating function.

3.1. The pattern τ = ∅. Here we show the simplest application of Lemma 2.1, to enumerate Horse
permutations of a given length. This also follows from the bijection to Horse paths in Section 2.

Proposition 3.1. The generating function for the number of Horse permutations of length n is given

by

H∅(x) =
1 − x −

√
1 − 2x − 3x2 − 4x3

2x2(1 + x)
.

Proof. As a consequence of Lemma 2.1, there are three possible block decompositions of an arbitrary
Horse permutation π ∈ Hn. Let us write an equation for H∅(x). The first (resp. second, third) of the
block decompositions above contributes as xH∅(x) (resp. x2H2

∅
(x), x3H2

∅
(x)). Therefore H∅(x) =

1 + xH∅(x) + x2H2
∅

(x) + x3H2
∅

(x), where 1 is the contribution of the empty Horse permutation.
Hence, H∅(x) is the generating function for the Horse paths, as claimed. �

3.2. The increasing pattern τ = 12 . . . k. For the first three values of k, we have from definitions
that H1(x) = 1, H12(x) = 1

1−x and H123(x) = 1−x
1−2x . We now consider the case τ = 12 . . . k for an

arbitrary k. First of all, we define

Vk(x) = (1 − x2)Uk

(

1 − x

2x
√

1 + x

)

− x
√

1 + xUk−1

(

1 − x

2x
√

1 + x

)

,

for all k ≥ 0, where Um(t) is the m-th Chebyshev polynomial of the second kind. Using the block
decomposition of Horse permutations we get the following result.

Theorem 3.2. For all k ≥ 3,

H12...k(x) =
Vk−3(x)

x
√

1 + xVk−2(x)
.
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Proof. By Lemma 2.1, we have three possibilities for the block decomposition of an arbitrary Horse per-
mutation π ∈ Hn. Let us write an equation for H12...k(x). The contribution of the first (resp. second,
third) block decomposition is xH12...k(x) (resp. x2H12...(k−1)(x)H12...k(x), x3H12...(k−1)(x)H12...k(x)).
Therefore,

H12...k(x) = 1 + xH12...k(x) + x2(1 + x)H12...k(x)H12...(k−1)(x),

where 1 comes from the empty Horse permutation. Now, using induction on k and the recursion

(3.1) Um(t) = 2tUm−1(t) − Um−2(t)

together with H123(x) = 1−x
1−2x we get the desired result. �

This theorem can be generalized as follows. Let H(x1, x2, . . .) be the generating function
∑

n≥0

∑

π∈Hn

∏

j≥1
x

12...j(π)
j ,

where 12 . . . j(π) is the number of occurrences of the pattern 12 . . . j in π.

Theorem 3.3. The generating function
∑

n≥0

∑

π∈Hn

∏

j≥1 x
12...j(π)
j is given by the following con-

tinued fraction:

1

1 − x1 −
x2

1x2(1 + x1x
2
2x3)

1 − x1x2 −
x2

1x
3
2x3(1 + x1x

3
2x

3
3x4)

1 − x1x
2
2x3 −

x2
1x

5
2x

4
3x4(1 + x1x

4
2x

6
3x

4
4x5)

. . .

,

in which the n-th numerator is
∏n+1

i=1 x
( n

i−1)+(n−1
i−1)

i

(

1 +
∏n+2

i=1 x
(n+1

i−1)
i

)

and the monomial in the n-th

denominator is
∏n

i=1 x
(n−1

i−1)
i .

Proof. By Lemma 2.1, we have three possibilities for the block decomposition of an arbitrary Horse
permutation π ∈ Hn. Let us write an equation for H(x1, x2, . . .). The contribution of the first decom-
position is x1H(x1, x2, . . .), the second decomposition gives x2

1x2H(x1x2, x2x3, . . .)H(x1, x2, . . .), and
the third decomposition gives x3

1x
3
2x3H(x1x2, x2x3, . . .)H(x1, x2, . . .). Therefore,

H(x1, x2, . . .) = 1 + x1H(x1, x2, . . .) + x2
1x2(1 + x1x

2
2x3)H(x1x2, x2x3, . . .)H(x1, x2, . . .),

where 1 is the contribution of the empty Horse permutation. The theorem follows now by induction.
�

3.2.1. Counting occurrences of the pattern 12 . . . k in Horse permutations. Using Theorem 3.3 we can
enumerate occurrences of the pattern 12 . . . k in Horse permutations.

Theorem 3.4. Let k ≥ 3, and let H12...k;r(x) be the generating function for the number of Horse

permutations which contain 12 . . . k exactly r. Then

(i) for r = 0,

H12...k;0(x) =
Vk−3(x)

x
√

1 + xVk−2(x)
;
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(ii) for r = 1,

H12...k;1(x) =
x(1 + x)

V 2
k−2(x)

;

(iii) for all r = 2, 3, . . . , k,

H12...k,r(x) =
∑

j≥0

(−1)jxr+j(1 + x)r−2−3j/2U
r−2−2j
k−2

(

1−x
2x

√
1+x

)

U
j
k−3

(

1−x
2x

√
1+x

)

Lj(x)

x
√

1 + xV r+1−j(x)
,

where

Lj(x) =
(

r−j
j

)

(1 + x)2U2
k−2

(

1−x
2x

√
1+x

)

Vk−3(x)

+
(

r−1−j
j

)

(1 + x)2Uk−3

(

1−x
2x

√
1+x

)

Uk−2

(

1−x
2x

√
1+x

)

Vk−2(x)

+
(

r−2−j
j

)

x
√

1 + xUk−3

(

1−x
2x

√
1+x

)

V 2
k−2(x).

Proof. Let x1 = x, xk = y, and xj = 1 for all j 6= 1, k. Let Hk(x, y) be the function obtained from
H(x1, x2, . . .) after this substitution. Theorem 3.3 gives

Hk(x, y) =
1

1 − x − x2(1 + x)

. . . −
. . .

1 − x − x2(1 + xy)

1 − x − x2y(1 + xyk)

1 − xy − x2yk+1(1 + xyk(k+1)/2)

. . .

.

So, Hk(x, y) can be expressed as follows. For all k ≥ 2,

Hk(x, y) =
1

1− x − x2(1 + x)Hk−1(x, y)
,

and there exists a continued fraction H(x, y) such that H1(x, y) = 1
1+x · 1+xy

1−x− x2y(1+xyk )

1−xy−yk+1H(x,y)

. Now,

using induction on k together with (3.1) we get that there exists a formal power series J(x, y) such
that

Hk(x, y) =
Vk−3(x) − x(1 + x)yUk−3

(

1−x
2x

√
1+x

)

+ x3
√

1 + xy2Uk−4

(

1−x
2x

√
1+x

)

x
√

1 + x
[

Vk−2(x) − x(1 + x)yUk−2

(

1−x
2x

√
1+x

)

+ x3
√

1 + xy2Uk−3

(

1−x
2x

√
1+x

)]+yk+1J(x, y).

The series expansion of Hk(x, y) about the point y = 0 gives

Hk(x, y) =
Vk−3(x)−x(1+x)yUk−3

(

1−x
2x

√
1+x

)

+x3√1+xy2Uk−4

(

1−x
2x

√
1+x

)

x(1−x2)
√

1+xUk−2

(

1−x

2x
√

1+x

) ·

· ∑

r≥0

∑

j≥0

(

r−j
j

) (−1)jxr+j(1+x)r−3j/2Ur−2j
k−2

(

1−x
2x

√
1+x

)

Uj
k−3

(

1−x
2x

√
1+x

)

V r−j(x) yr + yk+1J(x, y).

Hence, by using the identities U2
k (t) − Uk−1(t)Uk+1(t) = 1 and Uk(t)Uk−1(t) − Uk−2(t)Uk+1(t) = 2t

we get the desired result. �
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3.2.2. More statistics on Horse permutations. We can use the above theorem to find the generating
function for the number of Horse permutations with respect to various statistics.

For another application of Theorem 3.3, recall that i is a free rise of π if there exists j such that
πi < πj . We denote the number of free rises of π by fr(π). Using Theorem 3.3 for x1 = x, x2 = q,
and xj = 1 for j ≥ 3, we get the following result.

Corollary 3.5. The generating function
∑

n≥0

∑

π∈Hn
xnqfr(π) is given by the following continued

fraction:

1

1 − x − x2q(1 + xq2)

1 − xq − x2q3(1 + xq3)

1 − xq2 − x2q5(1 + xq4)

. . .

,

in which the n-th numerator is x2q2n−1(1 + xqn+1) and the monomial in the n-th denominator is

xqn−1.

For our next application, recall that πj is a right-to-left maximum of a permutation π if πi < πj for
all i > j. We denote the number of right-to-left maxima of π by rlm(π).

Corollary 3.6. The generating function
∑

n≥0

∑

π∈Hn
xnqrlm(π) is given by the following continued

fraction:

1

1− xq − x2q(1 + x)

1 − x − x2(1 + x)

1 − x − x2(1 + x)

. . .

=
2

2 − (x + 1)q + q
√

1 − 2x − 3x2 − 4x3
.

Moreover, the generating function for the number of Horse permutations with exactly ` right-to-left-

maxima is given by

1

2`

(

1 + x −
√

1 − 2x − 3x2 − 4x3
)`

.

Proof. Using Theorem 3.3 for x1 = xq, and x2j = x−1
2j+1 = q−1 for j ≥ 1, together with [5, Propo-

sition 5] we get the first equation as claimed. The second equation follows from the fact that the
continued fraction

1

1 − x − x2(1 + x)

1 − x − x2(1 + x)

. . .

is given by the generating function 1−x−
√

1−2x−3x2−4x3

2x2(1+x) . �
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3.3. A general pattern. Let us find the generating function for those Horse permutations which
avoid a pattern τ in terms of the generating function for Horse permutations avoiding a pattern ρ,
where ρ is a permutation obtained by removing some of τ ’s entries.

Theorem 3.7. Let k ≥ 4, τ = (ρ′, 1, k) ∈ Hk, and let ρ ∈ Hk−2 be the permutation obtained by

decreasing each entry of ρ′ by 1. Then

Hτ (x) =
1

1 − x − x2(1 + x)Hρ(x)
.

Proof. By Lemma 2.1, we have three possibilities for block decomposition of a nonempty Horse per-
mutation in Hn. Let us write an equation for Hτ (x). The contribution of the first decomposition is
xHτ (x), from the second decomposition we get x2Hρ(x)Hτ (x), and from the third decomposition we
get x3Hρ(x)Hτ (x). Hence Hτ (x) = 1 + xHτ (x) + x2(1 + x)Hρ(x)Hτ (x), where 1 corresponds to the
empty Horse permutation. Solving the above equation we get the desired result. �

For example, using Theorem 3.7 for τ = 23 . . . (k − 1)1k we have ρ = 12 . . . (k − 2), and thus

H23...(k−1)1k(x) =
1

1 − x − x2(1 + x)H12...(k−2)(x)
.

Hence, by Theorem 3.2 together with (3.1) and the definition of Vk(x) we get

H23...(k−1)1k(x) =
Vk−4(x)

x
√

1 + xVk−3(x)
.

Corollary 3.8. For all k ≥ 1,

Hk(k+1)(k−1)(k+2)(k−2)(k+3)...1(2k)(x) =
Uk−1

(

1−x
2x

√
1+x

)

x
√

1 + xUk

(

1−x
2x

√
1+x

) ,

and

H(k+1)k(k+2)(k−1)(k+3)...1(2k+1)(x) =
Uk

(

1−x
2x

√
1+x

)

+ Uk−1

(

1−x
2x

√
1+x

)

x
√

1 + x
(

Uk+1

(

1−x
2x

√
1+x

)

+ Uk

(

1−x
2x

√
1+x

)) .

Proof. Theorem 3.7 for τ = k(k + 1)(k − 1)(k + 2)(k − 2)(k + 3) . . . 1(2k) gives

Hτ (x) =
1

1 − x − x2(1 + x)H(k−1)k(k−2)(k+1)(k−3)(k+2)...1(2k−2)(x)
.

Now we argue by induction on k, using (3.1) and the fact that H12(x) = 1
1−x . Similarly, we get the

explicit formula for H(k+1)k(k+2)(k−1)(k+3)...1(2k+1)(x). �

Theorem 3.2 and Corollary 3.8 suggest that there should exist a bijection between the sets Hn(12 . . . (k+
1)) and Hn(k(k + 1)(k − 1)(k + 2)(k − 2)(k + 3) . . . 1(2k)). Finding it remains an interesting open
question.

Theorem 3.9. Let τ = (ρ′, t, k, θ′) ∈ Hk such that ρ′
i > t > θ′j for all i, j. Let ρ be the permutation

obtained by decreasing each entry of ρ′ by t. Then

Hτ (x) =
1 − x2(1 + x)Hρ(x)Hθ(x)

1 − x − x2(1 + x)(Hρ(x) + Hθ(x))
.
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Proof. By Lemma 2.1, we have three possibilities for block decomposition of a nonempty Horse per-
mutation π ∈ Hn. Let us write an equation for Hτ (x). The contribution of the first decomposition is
xHτ (x). The second (resp. third) decomposition contributes x2Hρ(x)Hτ (x) (resp. x3Hρ(x)Hτ (x)) if
α avoids ρ, and x2(Hτ (x) − Hρ(x))Hθ(x) (resp. x3(Hτ (x) − Hρ(x))Hθ(x)) if α contains ρ. This last
case follows from Theorem 3.7, since if α contains ρ, β must avoid θ. Hence,

Hτ (x) = 1 + xHτ (x) + x2(1 + x)Hρ(x)Hτ (x) + x2(1 + x)(Hτ (x) − Hρ(x))Hθ(x),

where 1 is the contribution of the empty Horse permutation. Solving the above equation we get the
desired result. �

For example, for τ = 546213 (τ = ρ′46θ′), Theorem 3.9 gives Hτ (x) = 1−x−2x2−2x3

1−2x−2x2−x3+3x4+2x5+x6 .

Corollary 3.10. For all k ≥ 4,

H(k−1)k12...(k−2)(x) =
Vk−4(x)

x
√

1 + xVk−3(x)
.

3.4. Generalized patterns. In this section we consider the case of generalized patterns (see Sub-
section 1.1), and we study some statistics on Horse permutations.

3.4.1. Counting occurrences of the generalized patterns 12-3- · · · -k and 21-3- · · · -k. We denote by

F (t, X, Y )= F (t, x2, x3, . . . , y2, y3, . . .) the generating function
∑

n≥0

∑

π∈Hn
tn

∏

j≥2 x
12-3-···-j(π)
j y

21-3-···-j(π)
j ,

where 12-3- · · · -j(π) and 21-3- · · · -j(π) are the number of occurrences of the pattern 12-3- · · · -j and
21-3- · · · -j in π, respectively.

Theorem 3.11. We have

F (t, X, Y ) = 1 − t

ty2 −
1

1 + tx2(1 + tx2x3)(1 − y2y3) + tx2y2y3(1 + tx2x3)F (t, X ′, Y ′)

,

where X ′ = (x2x3, x3x4, . . .) and Y ′ = (y2y3, y3y4, . . .).

Proof. As usually, we consider the three possible block decompositions for a nonempty Horse permu-
tation π ∈ Hn (see Lemma 2.1). Let us write an equation for F (t, X, Y ). The contribution of the
first decomposition is t + ty2(F (t, X, Y ) − 1). The second decomposition is t2x2, t2x2y2(F (t, X, Y ) −
1), t2x2y2y3(F (t, X ′, Y ′) − 1), and t2x2y

2
2y3(F (t, X, Y ) − 1)(F (t, X ′, Y ′) − 1) for the four possibil-

ities α = β = ∅, α = ∅ 6= β, β = ∅ 6= α, and β, α 6= ∅, respectively. The contribution of
the third decomposition gives t3x2

2x3, t3x2
2x3y2(F (t, X, Y ) − 1), t3x2

2x3y2y3(F (t, X ′, Y ′) − 1), and
t3x2

2x3y
2
2y3(F (t, X, Y ) − 1)(F (t, X ′, Y ′) − 1) for the four possibilities α = β = ∅, α = ∅ 6= β,

β = ∅ 6= α, and β, α 6= ∅, respectively. Hence,

F (t, X, Y ) = 1 + t + ty2(F (t, X, Y ) − 1) + t2x2(1 + tx2x3) + t2x2y2y3(1 + tx2x3)(F (t, X ′Y ′) − 1)
+t2x2y2(1 + tx2x3)(F (t, X, Y ) − 1) + t2x2y

2
2y3(1 + tx2x3)(F (t, X, Y ) − 1)(F (t, X ′, Y ′) − 1),

where 1 is as usually the contribution of the empty Horse permutation. Simplifying the equation
above we get

F (t, X, Y ) = 1 − t

ty2 −
1

1 + tx2(1 + tx2x3)(1 − y2y3) + tx2y2y3(1 + tx2x3)F (t, X ′, Y ′)

.

The second part of the theorem now follows by induction. �
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As a corollary to Theorem 3.11 we recover the distribution of the number of rises and number of
descents on the set of Horse permutations.

Corollary 3.12. We have

∑

n≥0

∑

π∈Hn

tnp#{rises in π}q#{descents in π} =
1 − qt − 2pq(1− q)(1 + tp)t2 −

√

(1 − qt)2 − 4pqt2(1 + tp)

2pq2t2(1 + tp)
.

As an application of Theorem 3.11 let us consider the case of Horse permutations which avoid either
12-3- · · · -k or 21-3- · · · -k.

Theorem 3.13. The generating function for the number of Horse permutations avoiding the gener-

alized pattern 12-3- · · · -k is given by

H12-3-···-k(x) =
Vk−3(x)

x
√

1 + xVk−2(x)
.

Proof. Let xk = 0, yk = 1, and xj = yj = 1 for all j 6= k. Let Fk(t) be the function obtained from
F (t, x2, x3, . . . , y2, y3, . . .) after this substitution. Theorem 3.11 gives

Fk(t) = 1 − t

t − 1

1 + t(1 + t)Fk−1(t)

,

where F3(t) = 1−t
1−2t . Now, using induction on k together with (3.1) we get the desired result. �

Theorem 3.14. The generating function for the number of Horse permutations avoiding the gener-

alized pattern 21-3- · · · -k is given by

H21-3-···-k(x) =
(1 − x − x2 − x3)Uk−4

(

1−x
2x

√
1+x

)

− x
√

1 + xUk−5

(

1−x
2x

√
1+x

)

x
√

1 + x
[

(1 − x − x2 − x3)Uk−3

(

1−x
2x

√
1+x

)

− x
√

1 + xUk−4

(

1−x
2x

√
1+x

)] .

Proof. Let yk = 0, xk = 1, and xj = yj = 1 for all j 6= k. Let Gk(t) be the function obtained from
F (t, x2, x3, . . . , y2, y3, . . .) after this substitution. Theorem 3.11 gives

Gk(t) = 1 − t

t − 1

1 + t(1 + t)Gk−1(t)

,

where G3(t) = 1
1−t−t2−t3 . Now, using induction on k together with (3.1) we get the desired result. �

For example, the number of 21-3-avoiding Horse permutations is given by the (n + 2)-Trifibonacci
number define as Tn+3 = Tn + Tn+1 + Tn+2 with T0 = T1 = 0 and T2 = 1.
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