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Abstract

Let G be a finite abelian group (written additively), and let D(G)
denote the Davenport’s constant of G, i.e. the smallest integer d such
that every sequence of d elements (repetition allowed) in G contains a
nonempty zero-sum subsequence. Let S be a sequence of elements in G
with |S| ≥ D(G). We say S is a normal sequence if S contains no zero-
sum subsequence of length larger than |S|−D(G)+1. In this paper we
obtain some results on the structure of normal sequences for arbitrary
G. If G = Cn ⊕ Cn and n satisfies some well-investigated property,
we determine all normal sequences. With applying these results, we
obtain correspondingly some results on the structure of the sequence
S in G of length |S| = |G| + D(G) − 2 and S contains no zero-sum
subsequence of length |G|.

1 Introduction and Main Results

For n ∈ N let Cn denote the cyclic group with n elements. Let G be a
finite abelian group (written additively), there are n1, · · · , nr ∈ N such that
G = Cn1 ⊕ · · · ⊕ Cnr where either r = n1 = 1 or 1 < n1| · · · |nr, then
r = r(G) is the rank of the group and nr = exp(G) its exponent. When
n1 = · · · = nr = n, we write Cr

n instead of Cn ⊕ · · · ⊕ Cn︸ ︷︷ ︸
r

.

A sequence in G is a multi-set in G and will be written in the form S =∏l
i=1 gi =

∏
g∈G gvg(S), where vg(S) ∈ N0 is the multiplicity of g in S, and a

sequence T is a subsequence of S if vg(T ) ≤ vg(S) for every g ∈ G, denoted
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by T |S. Let ST−1 denote the sequence obtained by deleting the terms of
T from S. We call |S| = l the length of S. By σ(S) we denote the sum of
S, that is σ(S) =

∑l
i=1 gi =

∑
g∈G vg(S)g ∈ G. For every k ∈ {1, · · · , l},

let
∑

k(S) = {gi1 + · · · + gik |1 ≤ i1 < · · · < ir ≤ l}, ∑
≤k(S) = ∪k

i=1

∑
i(S),∑

≥k(S) = ∪l
i=k

∑
i(S), and let

∑
(S) = ∪l

i=1

∑
i(S).

Let S be a sequence in G, we call S a zero-sum sequence if σ(S) = 0; a zero-
sum free sequence if 0 6∈ ∑

(S). We call S a minimal zero-sum sequence if it is
a zero-sum sequence and every proper subsequence is zero-sum free, and S a
short zero-sum sequence if it is a zero-sum sequence with 1 ≤ |S| ≤ exp(G).

Let G be a finite abelian group, let D(G) denote the Davenport’s constant
of G, i.e. the smallest integer d such that every sequence in G of length d
(repetition allowed) contains a nonempty zero-sum subsequence. Let S be a
sequence in G with |S| ≥ D(G) and W be the maximal (in length) zero-sum
subsequence of S. Then, SW−1 is a zero-sum free sequence. Therefore,
|SW−1| ≤ D(G)−1 and |W | ≥ |S|−D(G)+1. If |W | = |S|−D(G)+1 then
we call S a normal sequence. Clearly, S is a normal sequence if and only if
S contains no zero-sum subsequence of length larger than |S|−D(G)+1. A
natural question is to ask what can be said about normal sequences. Here
we suggest the following

Conjecture 1.1 Let G = Cn1 ⊕ · · · ⊕ Cnr be a finite abelian group with
1 < n1| · · · |nr, and k ≤ n1−1 a positive integer. Let S be a normal sequence
in G of length |S| = k+D(G)−1. Then S = 0k ∏D(G)−1

i=1 ai with
∏D(G)−1

i=1 ai

is a zero-sum free sequence.

We shall demonstrate that the restriction of k ≤ n1 − 1 in Conjecture 1.1 is
necessary (see Section 5). In this paper we shall first show some results of
the structure of normal sequences for arbitrary finite abelian groups.

Theorem 1.2 Let G be a finite abelian group , S a normal sequence of
elements in G. Let T be a zero-sum subsequence of S with |T | = |S| −
D(G) + 1, and set W = ST−1. Suppose W =

∏D(G)−1
i=1 ai. Then,

(i). W is a zero-sum free sequence;

(ii). if g ∈ G \ {0} and vg(S) ≥ 1 then vg(W ) ≥ 1, and therefore S =
0l ∏D(G)−1

i=1 ami
i , where l ≥ 0 and mi ≥ 1 for every i ∈ {1, · · · , D(G)− 1}.

We shall show that if G = Cn ⊕ Cn and n satisfies the following well-
investigated property, then we can determine all normal sequences (see The-
orem 1.4).
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Definition 1.3 Let n ≥ 2 be a positive integer. We say that n has Property
B, if every minimal zero-sum sequence in Cn⊕Cn of length 2n− 1 contains
some element with multiplicity n− 1.

Property B has been first formulated and investigated by the first author and
A. Geroldinger in [9]. It has been proved if n has Property B and n ≥ 6 then
2n has Property B [10]. It has been also proved that if n ∈ {2, 3, 4, 5, 6, 7}
then n has Property B [10] . Therefore, if n ∈ {2, 4, 5, 3 · 2λ, 7 · 2λ} with
λ ≥ 0 then n has Property B.

Theorem 1.4 Let G = Cn⊕Cn and suppose that n has Property B. Let S
be a normal sequence in G of length |S| = k. Then, S is one of the following
types (by rearranging the subscripts if necessary):

1. 0k−2n+2T with T is a zero-sum free sequence.

2. 0lamn−1T with |T | = n − 1, an−1T is a zero-sum free sequence and
l + mn + n− 2 = k.

3. 0lamn−1btn−1 with an−1bn−1 is zero-sum free and l + mn + tn− 2 = k.

We also verify Conjecture 1.1 for some special cases in the following two
theorems.

Theorem 1.5 Conjecture 1.1 is true for k ≤ min{6, p− 1}, where p is the
smallest prime divisor of |G|.

Theorem 1.6 Conjecture 1.1 is true for the following cases.
(i). G = Cn

(ii). G = Cn ⊕ Cn with n ∈ {2, 4, 5, 3 · 2λ, 7 · 2λ} and λ ≥ 0.

(iii) G = Cr
p with p ∈ {2, 3, 5, 7}.

Let G be a finite abelian group. In 1961, P. Erdős, A. Ginzburg and A.
Ziv [4] proved that if S is a sequence in G of length |S| = 2|G| − 1, then
0 ∈ ∑

|G|(S). To generalize the above result, in 1996, the first author [6]
showed that |G|+D(G)−1 is the smallest integer t such that every sequence
S in G of length t satisfies that 0 ∈ ∑

|G|(S), which was later generalized
by Hamidoune in [12]. So, a natural question is to describe the structure of
these sequences S in G with |S| = |G|+ D(G)− 2 and 0 6∈ ∑

|G|(S). When
G = Cn, it is well known that D(G) = n, and the structure of these sequences
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was determined by several authors independently (see [15], [1] and [7]). In
Section 4 we shall show that this question is very closed to normal sequences
(see Theorem 1.6). When G = Cn ⊕ Cn and n has Property B, we shall
determine all sequences S in G of length |S| = |G|+D(G)−2 = n2 +2n−3
and 0 6∈ ∑

n2(S) (see Theorem 1.8).

Let G be a finite abelian group, and let S =
∏k

i=1 ai be a sequence in G.
For every g ∈ G, by g + S we denote the sequence

∏k
i=1(g + ai). Define

h(S) = max
g∈G

{vg(S)}.

Theorem 1.7 Let G be a finite abelian group of order n, S a sequence in G
of length |S| = n+D(G)−2 and g ∈ G with vg(S) = h(S). Then 0 6∈ ∑

n(S)
if and only if −g + g−h(S)S is a normal sequence.

Theorem 1.8 Let G be a finite abelian group of order n, S a sequence in
G of length |S| = n+D(G)− 2 and g ∈ G with vg(S) = h(S). If 0 6∈ ∑

n(S)
then S = gh(S) ∏D(G)−1

i=1 bmi
i , where mi ≥ 1 for every i ∈ {1, · · · , D(G)− 1},

and
∏D(G)−1

i=1 (−g + bi) is a zero-sum free sequence.

Theorem 1.9 Let G = Cn ⊕ Cn and suppose that n satisfies Property B.
Let S be a sequence in G of length |S| = n2 + 2n − 3 and let g ∈ G with
vg(S) = h(S). If S has no zero-sum subsequence of length n2, then S has
one of the following two forms (by rearranging the subscripts if necessary):

1. gh(S)amn−1T with |T | = n − 1, (−g + a)n−1(−g + T ) is a zero-sum free
sequence and h(S) = n2 + n−mn− 1.

2. gh(S)amn−1btn−1 with (−g + a)n−1(−g + b)n−1 is zero-sum free and h +
mn + tn = n2 + 2n− 1.

2 Proofs of Theorem 1.2 and Theorem 1.5

The following easy observation will be used often in the proofs of theorems
in this paper.

Lemma 2.1 Let S be a normal sequence of elements in a finite abelian
group G. If T is a zero-sum subsequence of S with 1 ≤ |T | < |S|−D(G)+1
then ST−1 is also a normal sequence.
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Proof. Since |T | < |S| −D(G) + 1 we infer that |ST−1| ≥ D(G). Assume
to the contrary that ST−1 is not a normal sequence. By the definition of
normal sequence we have that ST−1 contains a zero-sum subsequence W
such that |W | ≥ |ST−1| −D(G) + 2 = |S| − |T | −D(G) + 2. Then, WT is
a zero-sum subsequence of S and |WT | = |T | + |W | ≥ |S| − D(G) + 2, a
contradiction on that S is a normal sequence. 2

Proof of Theorem 1.2.
(i). follows from that S contains no zero-sum subsequence of length larger
than |S| −D(G) + 1.

(ii). Set k = |T | = |S|−D(G)+1. Without loss of generality we may assume
that vg(T ) ≥ 1. Suppose that T =

∏k
i=1 gi with g1 = g and W =

∏D(G)−1
i=1 ai.

Set h =
∑k

i=2 gi = −g1 = −g 6= 0 and consider the sequence hW . Since
|hW | = D(G), and note that W is a zero-sum free sequence, we infer that
hW contains a zero-sum subsequence hU with U is a nonempty subsequence
of W . Therefore, g2g3 · · · gkU is a zero-sum subsequence of S. Since S
contains no zero-sum subsequence of length larger than k , we infer that
U = (ai) for some i ∈ {1, · · · , D(G) − 1} and ai = g1 = g. So, vg(W ) ≥ 1
and we are done. 2

Lemma 2.2 Let G be a finite abelian group, and S a sequence in G with
|S| ≥ D(G), set k = |S|−D(G)+1. Suppose that every nonempty zero-sum
subsequence of S is of length k and let T be a zero-sum subsequence of S.
Then,

(i). if vg(S) ≥ 1 then vg(S) > vg(T ) and

(ii). for every g ∈ G, we have that either vg(T ) = 0 or vg(T ) ≥ 2.

Proof. (i). follows from Theorem 1.2.

(ii). Assume to the contrary that vg(T ) = 1 for some g ∈ G. Set S1 = ST−1,
since |gS1| = D(G) and S1 is a zero-sum free sequence, we infer that gS1

contains a zero-sum subsequence gW with W is a nonempty subsequence
of S1. By the assumption of the lemma we obtain that |gW | = k. By
(i), vg(S) > vg(gW ). Hence, TgW is a zero-sum subsequence of S and
|TgW | = 2k, a contradiction. This completes the proof. 2

Proof of Theorem 1.5.
k = 1, trivial.
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Suppose k ≥ 2. If S contains a zero-sum subsequence of length less than k,
then by Lemma 2.1, it reduces to the case of smaller k. Since S contains no
zero-sum subsequence of length larger than k, we derive that every zero-sum
subsequence of S is of length k. Now we consider the cases of distinct k.

k = 2. Let A = ab be a zero-sum subsequence of S. By Lemma 2.2 we get
that a = b. Therefore, 2a = a + b = 0, a contradiction on 2 = k ≤ p− 1.

k = 3. Let A = abc be a zero-sum subsequence of S. By Lemma 2.2,
a = b = c, and thus 3a = 0, a contradiction on 3 = k ≤ p− 1.

k = 4. Similarly to above, we infer that A = a4 or A = u2v2, then we get
4a = 0, which contradicts on 4 = k ≤ p− 1, or 2(u + v) = 0, and thus uv is
a zero-sum subsequence of S, also a contradiction.

k = 5. Let A be a zero-sum subsequence of S. By Lemma 2.2, we have
that A = a5 or A = u2v3. If A = a5, we get a contradiction on 5 = k ≤
p − 1. Suppose every nonempty zero-sum subsequence of S is of the form
A = u2v3. By Lemma 2.2 we have that u3v4|S. Clearly, either u4 6 |S or
v6 6 |S (Otherwise, u4v6 is a zero-sum subsequence of S, a contradiction).
Now we distinguish two cases.
Case 1. u4 6 |S. Since the subsequence S(u3)−1 is of length D(G)+1, which
contains a nonempty zero-sum subsequence C. Since u2 6 |S(u3)−1 we infer
that u 6 |C. If v 6 |C then u2v3C is a zero-sum subsequence of length 10 of S,
a contradiction. Therefore, C = v2w3. If v5|S then u2v3v2w3 is a zero-sum
subsequence of S, a contradiction. Hence, v5 6 |S. Now consider the sequence
S(uv3)−1. Let D be a nonempty zero-sum subsequence of S(uv3)−1. Since
u4 6 |S and v5 6 |S we infer that D = u2x3. Therefore, x = v and v6|S, a
contradiction.
Case 2. u4|S and v6 6 |S. Let E be a nonempty zero-sum subsequence of
S(v4)−1. Similarly to Case 1 we infer that E = u3w2, w 6= v and u5 6 |S.
Let F be a nonempty zero-sum subsequence of S(u4)−1. Then we infer that
F = v2x3 and x = w. It follows from 2u + 3v = 3u + 2w = 2v + 3w = 0
that 5(u + v + w) = 0. Since 5 ≤ p − 1 we infer that u + v + w = 0, a
contradiction.

k = 6. Let A be a zero-sum subsequence of S, we derive that A = a6 or
A = u2v4 or A = x2y2z2. If A = a6, a contradiction on 6 = k ≤ p − 1;
if A = u2v4 or A = x2y2z2, we get zero-sum subsequences uv2 or xyz, a
contradiction. This completes the proof. 2
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3 Proofs of Theorem 1.4 and Theorem 1.6

To prove theorem 1.4 we need some preliminaries.

Lemma 3.1 ([10], Theorem 4.3) Let G = Cn ⊕ Cn with n ≥ 2 and sup-
pose that n satisfies Property B. Let S be a zero-sum free sequence in G
of length 2n − 2. Then, there is an automorphism φ over G such that

φ(S) =

(
0
1

)r (
1
a1

)
· · ·

(
1

a2n−2−r

)
, where r = n− 1 or r = n− 2.

Lemma 3.2 [10] If n has Property B then Conjecture 1.1 is true for G =
Cn ⊕ Cn.

Proof. We present a proof here which is simpler than the proof in [10]. Set
k = |S|−2n+2 then 1 ≤ k ≤ n−1. If k = 1, trivial. Assume that the lemma
has been verified for k < l (2 ≤ l ≤ n − 1). We want to prove the lemma
for k = l. If S contains a nonempty zero-sum subsequence of length less
than l, then by Lemma 2.1 it reduces to the case of k < l and we are done.
Otherwise, S contains no nonempty zero-sum subsequence of length less
than l. Since S is a normal sequence we infer that every nonempty zero-sum
subsequence of S is of length l. We shall derive a contradiction. It follows
from Theorem 1.2 and Lemma 3.1 that there is an automorphism φ over

Cn ⊕ Cn such that φ(S) =

(
0
1

)r+m (
1
a1

)m1

· · ·
(

1
a2n−2−r

)m2n−2−r

,

where r = n−1 or r = n−2, m ≥ 0,mi ≥ 1 and r+m+m1+· · ·+m2n−2−r =
l + 2n− 2. Since S contains no zero-sum subsequence of length larger than
l (≤ n− 1), we infer that r + m ≤ n− 1. We distinguish two cases.

Case 1. r = n−1. Then m = 0 and φ(S) =

(
0
1

)n−1 (
1
a1

)m1

· · ·
(

1
an−1

)mn−1

with m1 + · · · + mn−1 = l + n − 1 ≥ n + 1. Let U be any subsequence of(
1
a1

)m1

· · ·
(

1
an−1

)mn−1

with |U | = n. Then σ(U) =

(
0
u

)
for some

u ∈ {1, 2, · · · , n}. Therefore,

(
0
1

)n−u

U is a zero-sum subsequence of φ(S)

of length n− u + n > l, a contradiction.

Case 2. r = n− 2. If m = 1 then it reduces to Case 1. So, we may assume

that m = 0 and φ(S) =

(
0
1

)n−2 (
1
a1

)m1

· · ·
(

1
an

)mn

with m1 + · · ·+
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mn = l + n ≥ n + 2. Let U be any subsequence of

(
1
a1

)m1

· · ·
(

1
an

)mn

with |U | = n. Then σ(U) =

(
0
u

)
for some u ∈ {1, 2, · · · , n}. Since S

and therefore φ(S) contains no zero-sum subsequence of length larger than
l and l ≤ n− 1 we infer that u = 1. By the arbitrarity of U we derive that

a1 = · · · = an = a (say). Therefore,

(
1
a

)n

is a zero-sum subsequence of S

of length n > l, a contradiction. 2

Lemma 3.3 ([14], [9]) Every sequence S in Cn ⊕ Cn with |S| = 3n − 2
contains a short zero-sum subsequence.

Proof of Theorem 1.4. By rearranging the subscripts one may assume

that S =

(
0
0

)l

W , where W is the subsequence of S consisting of nonzero

elements and l ≥ 0. We assert that

W contains no zero-sum subsequence U with 1 ≤ |U | ≤ n− 1. (1)

Assume to the contrary that W contains a zero-sum subsequence U with

1 ≤ |U | ≤ n−1. Set W1 = WU−1. If |W1| < 2n−2 then

(
0
0

)l

U is a zero-

sum subsequence of S of length l+|U | = k−|W1| > k−2n+2, a contradiction
on that S is a normal sequence. Therefore, |W1| ≥ 2n − 2. Let W0 be the
maximal (in length) zero-sum subsequence of W1. Note that D(Cn⊕Cn) =
2n− 1 and S is a normal sequence, we infer that |W0| = |W1| − 2n + 2, and
thus |W1W

−1
0 | = 2n − 2. By Lemma 2.1 UW1W

−1
0 is a normal sequence.

Note that 2n− 1 ≤ |U |+ |W1W
−1
0 | = |UW1W

−1
0 | ≤ 3n− 3, it follows from

Lemma 3.2 that UW1W
−1
0 contains

(
0
0

)
exactly |U | times, a contradiction

on that W contains no the zero element. This proves Assertion (1). We show
next that

W contains no zero-sum subsequence U with n + 1 ≤ |U | ≤ 2n− 1. (2)

Assume to the contrary that W contains a zero-sum subsequence U with
n + 1 ≤ |U | ≤ 2n − 1. Set W1 = WU−1. Since S is a normal sequence,
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by Lemma 2.1 we infer that W is also a normal sequence. Therefore, U ≤
|W | − 2n + 2 and hence |W1| ≥ 2n− 2. Let W0 be the maximal (in length)
zero-sum subsequence of W1. Similarly to the proof of Assertion (1) we
infer that |W1W

−1
0 | = 2n − 2. Therefore, 3n − 1 ≤ |UW1W

−1
0 | ≤ 4n − 3.

It follows from Lemma 3.3 that UW1W
−1
0 contains a zero-sum subsequence

V with 1 ≤ |V | ≤ n. This together with Assertion (1) forces that |V | = n.
Therefore, 2n − 1 ≤ |UW1W

−1
0 V −1| ≤ 3n − 3. By Lemma 2.1 we infer

that UW1W
−1
0 V −1 is a normal sequence. It follows from Lemma 3.2 that

UW1W
−1
0 V −1 contains the zero element, a contradiction on the making of

W . This proves Assertion (2).

Let W ′
0 be the maximal (in length) zero-sum subsequence of W . Similarly

to the proof of Assertion (1) we can get |WW ′−1
0 | = 2n − 2 and WW ′−1

0 is
zero-sum free. By Assertion (1) and (2) and note that D(Cn⊕Cn) = 2n−1,
we can write W ′

0 = U1 · · ·Ut with Ui is zero-sum sequence and |Ui| = n
for every i ∈ {1, · · · , t}. Therefore, |W ′

0| = tn for some t ≥ 0. By Lemma
3.1, there is an automorphism φ over Cn ⊕ Cn such that φ(WW ′−1

0 ) =(
0
1

)r (
1
a1

)
· · ·

(
1

a2n−2−r

)
, where r = n − 1 or r = n − 2. It follows

from Theorem 1.2 that φ(W ) =

(
0
1

)r+m (
1
a1

)m1

· · ·
(

1
a2n−2−r

)m2n−2−r

,

where r + m + m1 + · · ·+ m2n−2−r = tn + 2n− 2, m ≥ 0, mi ≥ 1 for every
i ∈ {1, · · · , 2n − 2 − r}, and r = n − 1 or r = n − 2. If t = 0 then S is of
Type 1 and we are done. So, we may assume that t ≥ 1. Now we distinguish
cases.

Case 1. r = n−1. Then φ(W ) =

(
0
1

)n−1+m (
1
a1

)m1

· · ·
(

1
an−1

)mn−1

.

If m1 = · · · = mn−1 = 1 then S is of Type 2 and we are done. Otherwise,

m1+· · ·+mn−1 ≥ n. Let U be a subsequence of

(
1
a1

)m1

· · ·
(

1
an−1

)mn−1

,

we assert that

If |U | = n then U is a zero-sum sequence. (3)

Assume to the contrary, we set σ(U) =

(
0
u

)
for some u ∈ {1, · · · , n− 1}.

Therefore,

(
0
1

)n−u

U is a zero-sum subsequence of W , but n + 1 ≤ n −

9



u + |U | = 2n − u ≤ 2n − 1, a contradiction on Assertion (2). This proves
Assertion (3).

If m1+· · ·+mn−1 = n then by Assertion (3),

(
0
0

)l (
0
1

)tn (
1
a1

)m1

· · ·
(

1
an−1

)mn−1

is a zero-sum subsequence of φ(S) with length l + tn + m1 + · · ·+ mn−1 =
k−n+2 > k−2n+2, a contradiction. Therefore, m1 + · · ·+mn−1 ≥ n+1.
It follows from Assertion (3) that a1 = · · · = an−1 = a (say). Therefore,

φ(W ) =

(
0
1

)n−1+m (
1
a

)tn+n−1−m

. Since S is a normal sequence, by

Lemma 2.1 we infer that W and therefore φ(W ) contains no zero-sum sub-
sequence of length larger than |W | − 2n + 2. It forces that n − 1 + m ≡
tn+n− 1−m ≡ n− 1( mod n). Therefore, S is of Type 3 and we are done.

Case 2. r = n − 2. Then φ(W ) =

(
0
1

)n−2+m (
1
a1

)m1

· · ·
(

1
an

)mn

.

If m ≥ 1, similarly to Case 1 we can prove the theorem. So, we may

assume that m = 0 and φ(W ) =

(
0
1

)n−2 (
1
a1

)m1

· · ·
(

1
an

)mn

with

m1 + · · ·+mn = tn+n. Let U be a subsequence of

(
1
a1

)m1

· · ·
(

1
an

)mn

,

similarly to the proof of Assertion (3), we can prove that

If |U | = n then σ(U) =

(
0
0

)
or

(
0
1

)
. (4)

Since t ≥ 1 we infer that tn + n ≥ 2n. This together with Assertion (4)
shows that

φ(W ) =

(
0
1

)n−2 (
1
x

)u (
1
y

)v

with x 6= y, u ≥ v ≥ 0 and u + v = tn + n. Again by using Assertion (4)

we infer that v = 0 or 1. If v = 0, the sequence

(
1
x

)tn+n

is a zero-sum

subsequence of length |W | −n + 2, a contradiction on that W and therefore
φ(W ) is a normal sequence; if v = 1, choose an automorphism ψ over Cn⊕Cn

such that ψ(

(
1
x

)
) =

(
0
1

)
. Then, ψφ(S) =

(
0
0

)l (
0
1

)tn+n−1

T ,
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where T = ψ(

(
0
1

)n−2 (
1
y

)
) is zero-sum free. Therefore, S is of Type 2.

This completes the proof. 2

Lemma 3.4 ([10], Proposition 4.1) If n ∈ {2, 3, 4, 5, 6, 7} then n has Prop-
erty B.

Lemma 3.5 ([10], Theorem 8.1) If n ≥ 6 and n has Property B then 2n
has Property B.

Lemma 3.6 If n ∈ {2, 4, 5, 3 · 2λ, 7 · 2λ} with λ a nonnegative integer, then
n has Property B.

Proof. It follows from Lemma 3.4 and Lemma 3.5 2

Now by Theorem 1.4 and Lemma 3.6 we have

Corollary 3.7 Let n ∈ {2, 4, 5, 3 · 2λ, 7 · 2λ} with λ a nonnegative integer.
Let S be a normal sequence in Cn ⊕Cn with |S| = k. Then, S is one of the
following types (by rearranging the subscripts if necessary):

1. 0k−2n+2T with T is a zero-sum free sequence.

2. 0lamn−1T with |T | = n − 1, an−1T is a zero-sum free sequence and
l + mn + n− 2 = k.

3. 0lamn−1btn−1 with an−1bn−1 is zero-sum free and l + mn + tn− 2 = k.

Proof of Theorem 1.6. (i). Let S be a normal sequence in Cn with
1 ≤ |S| − n + 1 ≤ n − 1. Set k = |S| − n + 1. Let T be the maximal
zero-sum subsequence of S, set W = ST−1. Since S is a normal sequence
we infer that |T | = k and |W | = n−1. By Theorem 1.2, W is zero-sum free.
Therefore, W = gn−1 for some g ∈ Cn with ord(g) = n. Again by Theorem
1.2 we obtain that S = 0lgn−1+m with l ≥ 0,m ≥ 0 and l + m = k. Since S
is a normal sequence we infer that m = 0. This proves (i).

(ii). follows from Lemma 3.2 and Lemma 3.6.

(iii) follows from Theorem 1.5. 2
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4 Proofs of Theorem 1.7, Theorem 1.8 and Theo-
rem 1.9

Lemma 4.1 [5] Let G be a finite abelian group of order n, and let S be a
sequence in G with |S| = n. Set h = h(S). Then, 0 ∈ ∑

≤h(S).

Lemma 4.2 [5] Let G be a finite abelian group of order n, and let S =
0h ∏l

i=1 ai be a sequence in G with |S| ≥ n. Set T =
∏l

i=1 ai. Suppose
that ai 6= 0 for every i ∈ {1, · · · , l} and suppose that h(T ) ≤ h. Then,∑
≥n−h(T ) =

∑
n(S).

Proof. Since the proof is quite short, we present it here for completeness.
Clearly,

∑
n(S) ⊂ ∑

≥n−h(T ). So, it suffices to prove that
∑
≥n−h(T ) ⊂∑

n(S). Take any g ∈ ∑
≥n−h(T ). By the definition of

∑
≥n−h(T ), there is

a subsequence W of T such that g = σ(W ) and |W | ≥ n−h. Let W0 be the
minimal (in length) subsequence of T such that g = σ(W0) and |W0| ≥ n−h.
We assert that

n− h ≤ |W0| ≤ n− 1. (5)

Assume to the contrary that |W0| ≥ n. By Lemma 4.1, there is a zero-sum
subsequence U of W0 such that 1 ≤ |U | ≤ h. Set V = W0U

−1. Then, σ(V ) =
σ(W0) − σ(U) = g and n − h ≤ |W0| − |U | = |V | < |W0|, a contradiction
on the minimality of W0. This proves the assertion (5). Therefore, g =
σ(0n−|W0|W0) ∈

∑
n(S). 2

Proof of Theorem 1.7. Set h = h(S). Let S =
∏n+D(G)−2

i−1 ai and T =

0h ∏n+D(G)−2−h
i=1 (−g + ai). Clearly,

∑
n(S) =

∑
n(T ). Therefore, 0 6∈ ∑

n(S)
if and only if 0 6∈ ∑

n(T ). By Lemma 4.2,
∑

n(T ) =
∑
≥n−h(

∏n+D(G)−2−h
i=1 (−g+

ai)). Hence, 0 6∈ ∑
n(T ) if and only if

∏n+D(G)−2−h
i=1 (−g + ai) is a normal

sequence. Now the theorem follows. 2

Proof of Theorem 1.8. Let S = gh ∏n+D(G)−2−h
i=1 ai (By rearranging the

subscripts if necessary). By Theorem 1.7,
∏n+D(G)−2−h

i=1 (−g+ai) is a normal
sequence. Now the theorem follows from Theorem 1.2. 2

Proof of Theorem 1.9. Since S contains no zero-sum subsequence of
length n2, we infer that h ≤ n2 − 1. Hence, 2 ≤ h ≤ n2 − 1. Let S =
gh ∏n2+2n−3−h

i=1 ai (By rearranging the subscripts if necessary). By Theorem
1.7,

∏n2+2n−3−h
i=1 (−g +ai) is a normal sequence. Since

∏n2+2n−3−h
i=1 (−g +ai)

contains no the zero element, the theorem follows from Theorem 1.4. 2
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Corollary 4.3 Let n ∈ {2, 4, 5, 3 · 2λ, 7 · 2λ} with λ a nonnegative integer.
Let S be a sequence in Cn ⊕ Cn of length n2 + 2n − 3 and let g ∈ Cn ⊕ Cn

such that vg(S) = h(S). If S contains no zero-sum subsequence of length
n2, then S has one of the following two forms (by rearranging the subscripts
if necessary):

1. gh(S)amn−1T with |T | = n − 1, (−g + a)n−1(−g + T ) is a zero-sum free
sequence and h(S) = n2 + n−mn− 1.

2. gh(S)amn−1btn−1 with (−g + a)n−1(−g + b)n−1 is zero-sum free and h +
mn + tn = n2 + 2n− 1.

Proof. It follows from Lemma 3.6 and Theorem 1.9.

5 Concluding Remarks

In this section we show that the assumption ”k ≤ n1− 1” in Conjecture 1.1
is essential.

Proposition 5.1 Let G be a finite abelian group, and let W be a zero-sum
free sequence in G of length |W | = D(G)− 1. If there is an element g ∈ G
such that vg(W ) = ord(g) − 1. Then, the sequence gord(g)W is a normal
sequence.

Proof. Set m = ord(g). Let T be the maximal zero-sum subsequence of
gmW . We have to show that |T | ≤ m. Since W is zero-sum free and
vg(W ) = m − 1 we infer that vg(T ) ≥ m. Set U = T (gm)−1. Then, U is a
subsequence of W . But σ(U) = σ(T ) − σ(gm) = 0. These force that U is
the empty sequence. Hence, |T | = m. 2

Proposition 5.2 Let G = Cn1 ⊕ · · · ⊕ Cnr = 〈e1〉 ⊕ · · · ⊕ 〈er〉 with 1 <
n1| · · · |nr, and 〈ei〉 = Cni for every i ∈ {1, · · · , r}. Set M(G) = 1 +∑r

i=1(ni − 1). If D(G) = M(G), then e2n1−1
1

∏r
i=2 eni−1

i is a normal se-
quence in G of length n1 + D(G)− 1.

Proof. Set W =
∏r

i=1 eni−1
i . Then |W | = M(G)− 1 = D(G)− 1. Clearly,

W is zero-sum free. It follows from Proposition 5.1 that en1
1 W is a normal

sequence. 2

It is well known that D(G) ≥ M(G) for any finite abelian group G. Although
D(G) = M(G) is not true in general, D(G) = M(G) has been verified for
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the following cases, G are p-groups, r(G) ≤ 2, some special G with r(G) = 3
and etc.(see for e.g. [2], [3], [8], [13], and [14]).

Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1| · · · |nr. If there is a zero-sum free
sequence W in G with |W | = D(G) − 1 such that vg(W ) = ord(g) − 1
for some g ∈ G and if ord(g) < n1, then by Proposition 5.1 we have that
gord(g)W is a normal sequence, and hence Conjecture 1.1 is not true for this
G. However, we conjecture that these will never happen. Indeed we suggest
the following

Conjecture 5.3 Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1| · · · |nr. If there
is a zero-sum free sequence W in G of length |W | = D(G) − 1 such that
vg(W ) = ord(g)− 1 for some g ∈ G, then ord(g) ≥ n1.

In fact we do not know any counterexample to the following stronger con-
jecture

Conjecture 5.4 Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1| · · · |nr, W a zero-
sum free sequence in G of length D(G) − 1 and g ∈ G. If vg(W ) ≥ 1, then
ord(g) ≥ n1.

We have verified Conjecture 5.4 for G is a p-group or r(G) ≤ 2 (see [11]).

From Lemma 3.2 we see that Property B implies Conjecture 1.1 for G =
Cn ⊕ Cn. But We are unable to prove that Conjecture 1.1 (if true for
G = Cn ⊕ Cn) implies Property B.
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