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Abstract

We show that the uniqueness of the Gosper-Petkovšek representation of rational func-

tions can be utilized to give a simpler version of Gosper’s algorithm. This method

also applies to Petkovšek’s generalization of Gosper’s algorithm, and its q-analogues by

Abramov-Paule-Petkovšek and Böing-Koepf.
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1 Introduction

Gosper’s algorithm has been extensively studied and widely used to prove hypergeo-
metric identities, see, for example, [4, 5, 6, 8, 10, 12, 13]. The key idea of Gosper’s
algorithm lies in the representation of a rational function which is called the Gosper
representation. As usual, we assume that subject to normalization the gcd (great-
est common divisor) of two polynomials always takes a value as a monic polynomial,
namely, a polynomial with the leading coefficient being 1. Let N be the set of natural
numbers, K be a field of characteristic zero, K(n) be the field of rational functions over
K, and K[n] be the ring of polynomials over K. Recall that a nonzero term tn is called
a hypergeometric term over K if there exists a rational function r ∈ K(n) such that

tn+1

tn
= r(n).
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Gosper showed that any rational function r(n) can be written in the following form,
called the Gosper representation:

r(n) =
a(n)

b(n)

c(n + 1)

c(n)
,

where a, b and c are polynomials over K and

gcd(a(n), b(n + h)) = 1, for all h ∈ N.

Petkovšek [11] realized that the Gosper representation becomes unique, which is called
the Gosper-Petkovšek representation, or GP representation, for short, if we further
require that b, c are monic polynomials such that

gcd(a(n), c(n)) = 1,

gcd(b(n), c(n + 1)) = 1.

Given a hypergeometric term tn, Gosper’s algorithm is a procedure to find a hyper-
geometric term zn satisfying

zn+1 − zn = tn, (1.1)

if it exists, or claiming the nonexistence of any solution of (1.1). In another paper [10],
Paule and Strehl gave a derivation of Gosper’s algorithm by using GP representation.

The main result of this paper is the observation that if we express both tn+1/tn and
zn+1/zn in terms of their GP representations, then the solution of (1.1) reduces to a
polynomial difference equation. Hence the mystery of Gosper’s algorithm disappears
from the uniqueness of the GP representation. We also show that this idea can be
applied to Pekovšek’s generalization of Gosper’s algorithm to find hypergeometric so-
lutions of linear recurrences with the additional restriction that the leading and trailing
coefficients are constants [12], and to the q-analogues by Abramov-Paule-Petkovšek [1],
and later by Böing-Koepf [2]. We should notice that our algorithm is inspired by the
greatest factorial factorization (GFF) of a monic polynomial, introduced by Paule [8],
in the sense that the GFF representation of the unknown monic polynomial is used to
recover its factors.

2 The GP Representation

We present a simplified version of the Gosper algorithm which is quite close to the
version of Paule and Strehl [10]. However, it seems to be neglected that the GP rep-
resentation of the unknown rational function in Gosper’s algorithm plays a key role
in reducing Gosper’s equation to a polynomial difference equation. Given a hypergeo-
metric term tn, we suppose that there exists a hypergeometric term zn satisfying the
equation (1.1). Let

r(n) =
tn+1

tn
, R(n) =

zn+1

zn

. (2.1)
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It follows that r(n) and R(n) are rational functions of n. By using (1.1), we find

zn

tn
=

zn

zn+1 − zn

=
1

zn+1/zn − 1
=

1

R(n) − 1
. (2.2)

From (2.2) it follows that

r(n) =
zn+1

zn

zn/tn
zn+1/tn+1

= R(n)
(R(n + 1) − 1)

(R(n) − 1)
. (2.3)

Let us express r(n) and R(n) in terms of their GP representations:

r(n) =
a(n)

b(n)

c(n + 1)

c(n)
, R(n) =

A(n)

B(n)

C(n + 1)

C(n)
. (2.4)

Then the following theorem can be easily verified:

Theorem 2.1. Suppose that R(n) has the above GP representation. Then the rational

function on the right hand side of (2.3) has the following GP representation:

A(n)

B(n + 1)

A(n + 1)C(n + 2) − B(n + 1)C(n + 1)

A(n)C(n + 1) − B(n)C(n)
. (2.5)

By the uniqueness of the GP representation, we may compare the GP representation
of r(n) in (2.4) and the GP representation in (2.5) to obtain the following equations:
a(n) = A(n), b(n) = B(n + 1), and

A(n)C(n + 1) − B(n)C(n) = c(n).

It follows that
a(n)C(n + 1) − b(n − 1)C(n) = c(n). (2.6)

Therefore, hypergeometric solutions of (1.1) are determined by polynomial solutions of
(2.6) as given by the following relation:

zn =
b(n − 1)C(n)

c(n)
tn. (2.7)

Let us take an example from [13]:

Example 2.1. Let tn = (4n + 1) ·
n!

(2n + 1)!
, then

r(n) =
tn+1

tn
=

1/4

(n + 3/2)

(n + 5/4)

(n + 1/4)
.

Hence a(n) = 1/4, b(n) = n + 3/2, c(n) = n + 1/4. From equation (2.6) we find

1

4
· C(n + 1) −

(

n +
1

2

)

· C(n) = n +
1

4
.

The constant polynomial C(n) = −1 is a solution to this equation. By (2.7), we have

zn = −2 ·
n!

(2n)!
.
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3 Gosper’s Algorithm for Recurrences of Arbitrary Order

In this section, we show that the above approach to Gosper’s algorithm can be gener-
alized to find hypergeometric solutions zn of the recurrence

d
∑

k=0

pk(n)zn+k = tn, (3.1)

where tn is a given hypergeometric term and p0(n), p1(n), . . ., pd(n) are polynomials
with the additional constraints that p0(n) and pd(n) are constants. Suppose that there
exists a hypergeometric solution zn of (3.1). Let r(n) and R(n) be as in (2.1). From
(3.1) we obtain

zn

tn
=

zn

d
∑

k=0

pk(n) · zn+k

=
1

d
∑

k=0

pk(n) ·
zn+k

zn

=
1

d
∑

k=0

pk(n) ·

k−1
∏

j=0

R(n + j)

,

and

r(n) = R(n)

d
∑

k=0

pk(n + 1) ·
k−1
∏

j=0

R(n + j + 1)

d
∑

k=0

pk(n) ·

k−1
∏

j=0

R(n + j)

. (3.2)

Let us express r(n) and R(n) in terms of their GP representations as in (2.4). Since
p0(n) and pd(n) are constants, by the definition of the GP representation, we have

gcd

(

A(n), p0(n) · C(n) ·
d−1
∏

j=0

B(n + j)

)

= 1,

and

gcd

(

B(n + d), pd(n + 1) · C(n + d + 1) ·

d−1
∏

j=0

A(n + j + 1)

)

= 1.

Therefore, we have the following theorem. The proof is a straightforward verification,
hence omitted.

Theorem 3.1. Suppose that R(n) has a GP representation as in (2.4). Then the

rational function on the right hand side of (3.2) has the following GP representation:

A(n)

B(n + d)

d
∑

k=0

pk(n + 1) · C(n + k + 1) ·

k−1
∏

j=0

A(n + j + 1) ·

d−1
∏

j=k

B(n + j + 1)

d
∑

k=0

pk(n) · C(n + k) ·

k−1
∏

j=0

A(n + j) ·

d−1
∏

j=k

B(n + j)

. (3.3)
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By the uniqueness of the GP representation, we may compare the GP representation
of r(n) in (2.4) and the GP representation in (3.3) to obtain the following equations:
a(n) = A(n), b(n) = B(n + d), and

d
∑

k=0

pk(n) · C(n + k) ·
k−1
∏

j=0

A(n + j) ·
d−1
∏

j=k

B(n + j) = c(n).

It follows that

d
∑

k=0

pk(n) · C(n + k) ·

k−1
∏

j=0

a(n + j) ·

d−1
∏

j=k

b(n + j − d) = c(n). (3.4)

Therefore, hypergeometric solutions of (3.1) are determined by polynomial solutions of
(3.4) as given by the following relation:

zn =

d
∏

j=1

b(n − j) · C(n)

c(n)
tn. (3.5)

4 The q-GP Representation

In this section, we consider the q-analogue of Gosper’s algorithm, see Böing-Koepf [2],
Koornwinder [7], Paule and Riese [9], Paule-Strehl [10].

Let F denote the transcendental extension of K by the indeterminate q, i.e., F=K(q)
and let n = qk. A non-zero term fk is called q-hypergeometric over F if there exists a
rational function ρ ∈ F(n) such that

fk+1

fk

= ρ(n).

If fk+1/fk = A(n)/B(n), where A, B ∈ F[n], then the function A/B is called the
rational representation of a q-hypergeometric term fk. If gcd(A, B) = 1, then A/B
is called the reduced rational representation of fk. In [9], Paule and Riese presented
the q-GFF (q-greatest factorial factorization) of q-monic polynomials for finding q-
hypergeometric solutions of the equation

gk+1 − gk = fk, (4.1)

where fk is a given q-hypergeometric term. In [1], Abramov, Paule, and Petkovšek
gave the algorithm qHyper for finding all q-hypergeometric solutions of homogeneous
recurrences with polynomial coefficients. In [2], Böing-Koepf obtained an algorithm
for the same purpose as the algorithm qHyper.
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We adopt the notation of basic hypergeometric series in [3]. The q-shifted factorial
is given by

(a; q)k = (1 − a) (1 − aq) · · · (1 − aqk−1).

Any q-hypergeometric term can be written as follows:

fk = c
(a1; q)k(a2; q)k · · · (ar; q)k

(b1; q)k(b2; q)k · · · (bs; q)k

zk

(q; q)k

qα(k

2
)+βk,

where r, s ≥ 0, ai, bj ∈ F, (1 ≤ i ≤ r, 1 ≤ j ≤ s), c, z ∈ F with z(0) 6= 0, and α, β are
integers. Let A(n)/B(n) be the rational representation of fk. Thus, we have

fk+1

fk

=
A(n)

B(n)
=

(1 − a1n)(1 − a2n) . . . (1 − arn)

(1 − b1n)(1 − b2n) . . . (1 − bsn)(1 − qn)
nαqβz.

Recall that a polynomial p ∈ F[n] is said to be q-monic if p(0) = 1. Any non-zero
rational function ρ(n) = A(n)/B(n) with A, B ∈ F[n] can be written in the form

ρ(n) =
A(n)

B(n)
=

A1(n)

B1(n)
nαqβz,

where A1, B1 ∈ F[n] are q-monic, α and β are integers, and z is a rational function in
F with z(0) 6= 0. For a reduced rational function s, its numerator and denominator are
denoted by num(s) and den(s), respectively. Let µ(n) = nα ∈ K(n) and π(q) = qβ ∈ F.
Paule and Strehl [10] showed that any rational function over F have the following q-
Gosper-Petkovšek representation, or q-GP representation, for short. Note that the
operator ε is defined by εa(n) = a(qn) for a polynomial in n.

Theorem 4.1. For any non-zero rational function ρ ∈ F(n), there exist unique q-monic

polynomials ã, b̃ and c̃ ∈ F[n] such that

A1

B1

=
ã

b̃

εc̃

c̃
,

gcd(ã, c̃) = gcd(b̃, εc̃) = 1 and gcd(ã, εj b̃) = 1 for all j ≥ 0, and

ρ =
a

b

εc

c
,

where

a = ãz num(µ(n))/den(π(q)),

b = b̃ den(µ(n)),

c = c̃ num(π(n)).

Given a q-hypergeometric term fk, suppose that there exists a q-hypergeometric
solutions gk satisfying equation (4.1). Let

ρ(n) = fk+1/fk, τ(n) = gk+1/gk, (4.2)
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It follows that ρ(n) and τ(n) are rational functions of n. From (4.1) it follows that

gk

fk

=
1

τ(n) − 1
,

and

ρ(n) = τ(n)
(τ(qn) − 1)

(τ(n) − 1)
. (4.3)

Assume that ρ(n) and τ(n) have the following q-GP representations:

ρ(n) =
a(n)

b(n)

c(qn)

c(n)
, τ(n) =

A(n)

B(n)

C(qn)

C(n)
. (4.4)

Then we have the following q-GP representation. The proof is straightforward,
hence omitted.

Theorem 4.2. Suppose that τ(n) has the above q-GP representation. Then the rational

function on the right hand side of (4.3) has the following q-GP representation:

A(n)

B(qn)

A(qn)C(q2n) − B(qn)C(qn)

A(n)C(qn) − B(n)C(n)
. (4.5)

By the uniqueness of the q-GP representation, we may compare the q-GP repre-
sentation of ρ(n) in (4.4) and the q-GP representation in (4.5) to obtain the following
equations: a(n) = A(n), b(n) = B(qn), and

A(n)C(qn) − B(n)C(n) = c(n).

It follows that
a(n)C(qn) − b(q−1n)C(n) = c(n). (4.6)

Therefore, q-hypergeometric solutions of (4.1) are determined by polynomial solutions
of (4.6) as given by the following relation:

gk =
b(q−1n)C(n)

c(n)
fk, (4.7)

5 q-Gosper’s Algorithm of Arbitrary Order

This section is concerned with the q-hypergeometric solution gk of the recurrence

d
∑

i=0

λi(n) · gk+i = fk, (5.1)

where fn is a given q-hypergeometric term, and λ0(n), λ1(n), . . . , λd(n) ∈ F[n] are given
polynomials, with additional restrictions that λ0(n) and λd(n) are constants. Suppose
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that there exists a q-hypergeometric solution gk of (5.1). Let ρ(n) and τ(n) be as in
(4.2). From (5.1) it follows that

gk

fk

=
1

d
∑

i=0

λi(n) ·

i−1
∏

j=0

τ(qjn)

,

and

ρ(n) = τ(n)

d
∑

i=0

λi(qn) ·
i−1
∏

j=0

τ(qj+1n)

d
∑

i=0

λi(n) ·

i−1
∏

j=0

τ(qjn)

. (5.2)

Let us express ρ(n) and τ(n) in terms of their q-GP representations as in (4.4). The
following theorem can be easily checked.

Theorem 5.1. Suppose that τ(n) has q-GP representation as in (4.4). Then the ra-

tional function on the right hand side of (5.2) has the following q-GP representation:

A(n)

B(qdn)

d
∑

i=0

λi(qn) · C(qi+1n) ·

i−1
∏

j=0

A(qj+1n) ·

d−1
∏

j=i

B(qj+1n)

d
∑

i=0

λi(n) · C(qin) ·
i−1
∏

j=0

A(qjn) ·
d−1
∏

j=i

B(qjn)

. (5.3)

By the uniqueness of the q-GP representation, we may compare the q-GP repre-
sentation of ρ(n) in (4.4) and the q-GP representation in (5.3) to obtain the following
equations: a(n) = A(n), b(n) = B(qdn), and

d
∑

i=0

λi(n) · C(qin) ·
i−1
∏

j=0

A(qjn) ·
d−1
∏

j=i

B(qjn) = c(n).

It follows that
d
∑

i=0

λi(n) · C(qin) ·

i−1
∏

j=0

a(qjn) ·

d−1
∏

j=i

b(qj−dn) = c(n). (5.4)

Therefore, q-hypergeometric solutions of (5.1) are determined by polynomial solutions
of (5.4) as given by

gk =

d
∏

j=1

b(q−jn) · C(n)

c(n)
fk, (5.5)
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