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Abstract

Let G = (V, E) be a graph. A vertex subversion strat-
egy ofG, X , is a set of vertices ofG whose closed neigh-
borhood is deleted fromG. The survival-subgraph is de-
fined byG/X . A vertex subversion strategy ofG, X , is
called a cut-strategy ofG if the survival-subgraph is discon-
nected, or a clique, or∅. The neighbor-scattering number of
G, S(G), is defined asS(G) = max{ω(G/X) − |X | : X
is a cut-strategy ofG, ω(G/X) ≥ 1}, whereω(G/X) is
the number of connected components in the graphG/X .
As a new graphic parameter, neighbor-scattering num-
ber can be used to measure the vulnerability of spy
networks. In this paper, we prove that the problem of com-
puting the neighbor-scattering number of a graph is
NP-complete and discuss the upper and lower bounds
for the neighbor-scattering number via some other
well-known graphic parameters. Finally, we give formu-
las for the neighbor-scattering numbers of the join and
union of two disjoint graphs.

1. Introduction

Throughout the paper, we use Bondy and Murty [2] for
terminology and notations not defined here and consider fi-
nite simple connected graphs only. LetG = (V, E) be a
graph. Byω(G) we denote the number of components of
G. δ(G) and∆(G), respectively, denotes the minimum and
maximum degree ofG. We shall usebxc for the largest in-
teger not larger thanx, and dxe the smallest integer not
smaller thanx. deg(v) denotes the degree of a vertexv in G.
If S is a vertex subset ofV , we useG[S] to denote the sub-
graph ofG induced byS.

The scattering number of a graph was introduced by Jung
[7] as an alternative measure of the vulnerability of graphs
to disruption caused by the removal of vertices.

In [3,4,5] Gunther and Hartnell introduced the idea of
modelling a spy network by a graph whose vertices repre-

sent the agents and whose edges represent lines of commu-
nication. Clearly, if a spy is discovered or arrested, the es-
pionage agency can no longer trust any of the spies with
whom he or she was in direct communication, and so the be-
trayed agents become effectively useless to the network as a
whole. Such a betrayal is clearly equivalent to the removal
of the closed neighborhood ofv in the modelling graph,
wherev is the vertex representing the particular agent who
has been subverted. It is clear that to be effective, a spy net-
work must be able to pass messages quickly and easily be-
tween its any two agents; it is equally clear, however, that
this very need for ease of communication presents great se-
curity risks since an agent who knows a lot can also betray
a lot. The conflicting demands open the door to a number of
interesting graph-theoretic problems.

Therefore, instead of considering the scattering num-
ber of a communication network, we discuss the (vertex)
neighbor-scattering number of graphs, a measure of the vul-
nerability of graphs to disruption caused by the removal of
vertices together with their adjacent vertices.

For a vertexu of G, the open neighborhoodof u is
N(u) = {v ∈ V (G)|(u, v) ∈ E(G)} and theclosed
neighborhoodof u is N [u] = {u} ∪ N(u). We define
analogously for anyS ⊆ V (G) the open neighborhood
N(S) = ∪u∈SN(u) and the closed neighborhoodN [S] =
∪u∈SN [u]. u is said to besubvertedwhen the closed neigh-
borhoodN [u] is deleted fromG. A vertex subversion strat-
egyof G, X , is a set of vertices whose closed neighbor-
hood is deleted fromG. The survival-subgraph,G/X , is
defined to be the subgraph left after the subversion strat-
egyX is applied toG, i.e.,G/X = G−N [X ]. X is called
acut-strategyof G if the survival-subgraphG/X is discon-
nected, or a clique, or∅.

Definition 1.1 ([9]) The (vertex) neighbor-scattering num-
ber of a graphG is defined asS(G) = max{ω(G/X) −
|X | : X is a cut-strategy ofG, ω(G/X) ≥ 1}, where and in
the followingω(H) denotes the number of connected com-
ponents in a graphH . Especially, defineS(Kp) = 1.

Definition 1.2 A cut-strategyX of G is called anS-set of



G if S(G) = ω(G/X) − |X |.
As a new graphic parameter, neighbor-scattering num-

ber can be used to measure the vulnerability of spy net-
works. From the definition of neighbor-scattering number
we know that, in general, the less the neighbor-scattering
number of a graph is, the more stable the graph is. In Sec-
tion 2, we study the complexity of computing the neighbor-
scattering number of graphs. In Section 3, we give some up-
per and lower bounds for neighbor-scattering number via
some other well-known graphic parameters. Finally, for-
mulas for the neighbor-scattering numbers of the join and
union of two disjoint graphs are given in Section 4.

2. NP-completeness result

In [10], Wu and Cozzens introduced an operation,E, to
construct a class ofm-neighbor-connected graphs from a
givenm-connected graph. The operationE is defined as fol-
lows.

E is an operation on a graphG, to create a collection of
graphs, sayGE .

A new graphGe ∈ GE is created as follows:

(1) Each vertexv of G is replaced by a cliqueCv of or-
der≥ deg(v).

(2) Cv1
andCv2

are joined by, at most, one edge and they
are joined by an edge if, and only if,v1 and v2 are adja-
cent inG.

(3) Each vertex inCv is incident with, at most, one edge not
entirely contained inCv.

Example 1.In Figure1, we give a graphG and a new graph
Ge after the operationE onG.

G

v1

v2

v3

v4

C1

C4
C2

C3

Ge

Figure 1. A graph G and a new graph Ge

The scattering number of a graphG, s(G), is defined as

follows:

Definition 2.1 ([7]) The (vertex) scattering numberof a
noncomplete graphG is defined as

s(G) = max{ω(G − X) − |X | : ω(G − X) > 1}.

Especially, the scattering number of a complete graphKp is
defined ass(Kp) = 2 − p.

Definition 2.2 ([7]) A vertex cut-setX is called ans-set of
G if it satisfiess(G) = ω(G − X) − |X |.

Theorem 2.1LetG be a connected noncomplete graph and
s(G) = m. Apply operationE to G to obtain the graphGe.
Then,s(G) = m if and only ifS(Ge) = m.

Proof. If s(G) = m, let X be ans-set of the graphG, i.e.,
m = s(G) = ω(G − X) − |X |. It is obvious that delet-
ing X from G is equivalent to deleting the neighborhoods
of the corresponding vertices inX , say they form a sub-
setX ′ of X , in Ge, andω(G − X) = ω(Ge/X ′) ≥ 2.
Hence, by the definition of neighbor-scattering number we
haveS(Ge) ≥ ω(Ge/X ′)−|X ′| = ω(G−X)−|X | = m.

We can proveS(Ge) ≯ m. Otherwise, ifS(Ge) > m,
let X ′ be anS-set ofGe, thenω(Ge/X ′) ≥ 2 and there
must exist a vertex cut-setX of G such that|X | = |X ′|
andω(G − X) = ω(Ge/X ′). So, s(G) = max{ω(G −
X) − |X | : ω(G − X) > 1} ≥ ω(G − X) − |X | =
ω(Ge/X ′) − |X ′| > m, a contradiction tos(G) = m.
Hence, whens(G) = m we haveS(Ge) = m.

If S(Ge) = m, we can proves(G) = m. Other-
wise, supposes(G) 6= m. Then, by the definition of scat-
tering number there exists a vertex cut-setX of G such
that ω(G − X) ≥ 2 and ω(G − X) − |X | > m. Un-
der this condition, letX = {v1, v2, · · · , vt} and letCvi

(1 ≤ i ≤ t) denote the corresponding clique of the
vertex vi in Ge. Then, in each clique ofCvi

we prop-
erly choose a vertexv′i to compose a new vertex set, say
X ′ = {v′1, v

′
2, · · · , v′t}. It is easy to see thatX ′ is a cut-

strategy ofGe, ω(Ge/X ′) = ω(G − X) ≥ 2, |X ′| = |X |,
andS(Ge) ≥ ω(Ge/X ′)− |X ′| = ω(G− X)− |X | > m,
a contradiction, and so the theorem holds.

A noncomplete connected graphG is said to bes-
scatteringif ω(G − X) ≤ |X | + s for all X ⊂ V (G)
such thatω(G − X) ≥ 2. Thus,s(G) is the maximums
for which G is s-scattering. Similarly, a noncomplete con-
nected graphG is said to be S-neighbor-scattering
if ω(G/X) ≤ |X | + S for all vertex cut-strategies
X ⊂ V (G) such thatω(G/X) ≥ 1. Thus,S(G) is the
maximumS for whichG is S-neighbor-scattering. It is ob-
vious that the problem of computing the neighbor-scattering
number of a graph is not harder than the following deci-
sion problem.

Problem 2.2: NOT-S-NEIGHBOR-SCATTERING



Instance: A noncomplete connected graphG, and an inte-
gerS.

Question: Does there exist a cut-strategyX ⊂ V (G) with
ω(G/X) ≥ 1 such thatω(G/X) > |X | + S ?

In this section we will show that the problem of com-
puting the neighbor-scattering number of a graph is NP-
complete by reducing the following known NP-complete
problem to the special case of neighbor-scattering num-
ber.

Problem 2.3: NOT-s-SCATTERING ([11])

Instance: A noncomplete connected graphG, and an inte-
gers.

Question: Does there exist a cut-setX ⊂ V (G) with
ω(G − X) ≥ 2 such thatω(G − X) > |X | + s ?

Lemma 2.4 ([11]) For any integer s, NOT-s-
SCATTERING is NP-complete.

To prove the NP-completeness, we use the opera-
tion E introduced above and obtain the following re-
sult.

Theorem 2.5 For any integerS, NOT-S-NEIGHBOR-
SCATTERING is NP-complete.

Proof. It is easy to see thatNOT-S-NEIGHBOR-
SCATTERING is in NP, since a nondeterministic al-
gorithm needs only to guess a cut-strategyX ⊂ V (G)
with ω(G/X) ≥ 1 and check in polynomial time if
ω(G/X)− |X | > S.

Let G be a nocomplete graph, and apply opera-
tion E to G to construct a graphGe. It is easy to see
that this construction can be accomplished in polyno-
mial time. To complete the proof, it is sufficient to show
that G is not-s-scattering if and only ifGe is not-S-
neighbor-scattering. Hence, the theorem holds by Theorem
2.1 and Lemma 2.4.

3. Lower and upper bounds for
neighbor-scattering number

In this section we present some related graphic pa-
rameters and give some lower and upper bounds for
neighbor-scattering number in terms of these well-known
graphic parameters.

Definition 3.1 ([6]) The (vertex) neighbor-connectivity
K(G) of a graphG is defined asK(G) = min{|X | : X is
a cut-strategy ofG}, where the minimum is taken over all
the cut-strategies ofG.

Theorem 3.1For any graphG, S(G) ≥ 1 − K(G).

Proof. Let X be a vertex cut-strategy of the graphG

with connectivityk(G) = |X |. By the definition of ver-
tex cut-strategy, the survival-subgraphG/X is discon-
nected, or a clique, or∅. We distinguish three cases.

Case 1. If G/X is ∅, this contradicts the definition of
neighbor-scattering number.

Case 2.If G/X is disconnected, thenω(G/X) ≥ 2, and
so S(G) ≥ ω(G/X) − |X | ≥ 2 − |X | = 2 − K(G) >
1 − K(G).

Case 3.If G/X is a clique, thenS(G) ≥ ω(G/X)−|X | ≥
1 − |X | = 1 − K(G).
By Cases1, 2 and3, the theorem is thus proved.

Remark 1. Theorem 3.1 is best possible. This can be
shown by graphsK−

n and Km ∪ Kn (m, n ≥ 2 and
V (Km) ∩ V (Kn) = {v}, i.e., Km andKn have a com-
mon vertexv), whereK−

n is the graph obtained fromKn

by deleting an edge (See Figure 2).
Lemma 3.2([6]) For any graphG, if K(G) = K, then for
any vertexv in G, deg(v) ≥ K.

Theorem 3.3For any connected graphG, if S(G) = S,
thenS ≥ 1 − δ(G).

Proof. First we know K(G) ≥ 1 − S(G) by Theo-
rem 3.1. Then, by Lemma 3.2 we haveδ(G) ≥ K(G), and
so δ(G) ≥ K(G) ≥ 1 − S(G). Thus the proof is com-
plete.

Definition 3.2 ([1]) The (vertex) integrityof a graphG is
defined as

I(G) = min{|X |+m(G−X) : X is vertex subset of G},

where and in the followingm(H) denotes the order of a
largest component of a graphH .

GraphK−
6

vKm Kn

GraphKm ∪ Kn

Figure 2. Graphs satisfying S(G) = 1 − K(G)

Definition 3.3 ([1]) A vertex subsetX of G is called anI-
set if I(G) = |X | + m(G − X).



Definition 3.4 ([10]) The (vertex) neighbor-integrityof a
graphG is defined asV NI(G) = min{|X | + m(G/X) :
X is a vertex subversion strategy ofG}.

Lemma 3.4([10]) For any graphG, K(G) ≤ V NI(G).

Lemma 3.5([10]) For any graphG, V NI(G) ≤ I(G)− r,
wherer is the maximum degree of the subgraph induced by
anI-set ofG.

The following results can be easily obtained from Theo-
rem 3.1 and Lemmas 3.4 and 3.5.

Theorem 3.6For any graphG, S(G) ≥ 1 − V NI(G).

Theorem 3.7For any graphG, S(G) ≥ r + 1 − I(G).
A subsetC of V (G) is called acoveringof G if every

edge ofG has at least one end inC. C is aminimum cover-
ing if G has no coveringC′ such that|C′| < |C|. Thecov-
ering numberof G, α0(G), is the number of vertices in a
minimum covering ofG.

A subsetI of V (G) is called anindependent setof G
if no two vertices ofI are adjacent inG. I is a maximum
independent setif G has no independent setI ′ such that
|I ′| > |I|. The independence numberof G, β0(G), is the
number of vertices in a maximum independent set ofG.

A subsetM of E(G) is called amatchingof G if no two
edges ofM are adjacent inG. M is amaximum matchingif
G has no matchingM ′ such that|M ′| > |M |. Thematch-
ing numberof G, β1(G), is the number of edges in a maxi-
mum matching ofG.

Lemma 3.8 ([2]) For any graphG, α0(G) + β0(G) =
|V (G)|.

Lemma 3.9([2]) For any graphG, β1(G) ≤ α0(G).

Lemma 3.10([2]) A setI ⊆ V is an independent set ofG
if and only ifV − I is a covering ofG.

Lemma 3.11([2]) If G is a bipartite graph, thenα0(G) =
β1(G).

Theorem 3.12For any connected graphG, S(G) ≥ 1 −
β1(G).

Proof. Let M = {[u1, v1], [u2, v2], · · · , [um, vm]} be a
maximum matching inG, wherem = β1(G). Let V ∗ =
V (G) − {v1, v2, · · · , vm, u1, u2, · · · , um}.
Assume that there are two distinct verticesx, y ∈ V ∗,
such thatx is adjacent toui andy is adjacent tovi. Then
there exists anM -augmenting path(x, ui, vi, y) in G, and
M ′ = (M − [ui, vi]) ∪ {[x, ui], [vi, y]} is a matching inG
such that|M ′| = |M | + 1, a contradiction to the maximal-
ity of M . So, at most one end of each edge inM is adja-
cent to some vertices ofV ∗.

If at most one end of each edge inM is adjacent to some
vertices ofV ∗, without loss of generality, we assume that
no vertex inV ∗ is adjacent to any vertex ofu1, u2, · · · , um.

SinceG has no isolated vertices, each vertex ofV ∗ is ad-
jacent to some vertices ofv1, v2, · · · , vm. Now, setS∗ =
{v1, v2, · · · , vm−1} ⊂ V (G). Then,G/S∗ is either a sin-
gle isolated vertex or a connected subgraph containing the
suspended edge[um, vm]. So, we distinguish two cases:

Case 1.If G/S∗ is a single isolated vertex, thenS(G) =
max{ω(G/X) − |X |} ≥ ω(G/S∗) − |S∗| = 2 − m >
1 − β1(G).

Case 2.If G/S∗ is a graph containing the suspended edge
[um, vm], we choose a vertexv ∈ G/S∗ andv 6= um, vm. It
is obvious thatv is adjacent tovm, thus the vertex setS′ =
S∗ ∪ {v} is a cut-strategy ofG and|S′| = |S∗| + 1 = m,
ω(G/S∗) ≥ 1. Thus,S(G) = max{ω(G/X) − |X |} ≥
ω(G/S′) − |S′| = 1 − m = 1 − β1(G).

Theorem 3.13For any connected graphG, S(G)
≥ 1 − α0(G).

Proof. From Lemma 3.9,β1(G) ≤ α0(G), and from Theo-
rem 3.12,S(G) ≥ 1 − β1(G). So,S(G) ≥ 1 − α0(G).

Theorem 3.14For any connected graphG, if S(G) =
1 − α0(G), thenα0(G) = β1(G).

Proof. From Lemma 3.9,β1(G) ≤ α0(G), and from Theo-
rem 3.12,S(G) ≥ 1 − β1(G). So,1 − α0(G) = S(G) ≥
1 − β1(G) ≥ 1 − α0(G). Thus the theorem holds.

From above theorem we know that a necessary con-
dition for a graphG to have S(G) = 1 − α0(G) is
α0(G) = β1(G). On the other hand, from Lemma 3.11 we
know α0(G) = β1(G) for any bipartite graphG. A nat-
ural question is that for a bipartite graphG, is it true that
S(G) = 1− α0(G) ? The following example tells us that it
is not always true.

Example 2. Bipartite graphsK3,4 and K1,2 are given in
Figure 3. It is easily seen thatS(K1,2) = 0 = 1−α0(K1,2),
butS(K3,4) = 2 > −2 = 1 − α0(K3,4).

graphK3,4 graphK1,2

Figure 3. Graphs of Example 2

Note that For any graphG without isolated vertices,
1 − α0(G), 1 − β1(G), 1 − K(G) and1 − δ(G) are lower



bounds forS(G), and we knowβ1(G) ≤ b |V (G)|
2 c. By

Lemma 3.9 and Theorems 3.12 and 3.13, the following
corollaries are immediate.

Corollary 3.15 For any connected graphG, S(G) ≥
max{1 − α0(G), 1 − β1(G), 1 − K(G), 1 − δ(G)} =
max{1 − K(G), 1 − β1(G)}.

Corollary 3.16 For any connected graphG, S(G) ≥ 1 −

b |V (G)|
2 c.

The following result gives an upper bound forS(G).
Theorem 3.17For any connected graphG, S(G)
≤ β0(G) − K(G).

Proof. Let X be anS-set ofG, thenS(G) = ω(G/X) −
|X |. It is obvious thatω(G/X) ≤ β0(G), and |X | ≥
K(G). Thus,S(G) = ω(G/X) − |X | ≤ β0(G) − K(G).

Remark 2. It is easy to see that the above upper bound can
be achieved whenG is a complete graphKn. In this sense
the upper bound is best possible.

Theorem 3.18For any connected graphG, if β0(G) = 1
thenS(G) = 1 − K(G).

Proof. By Theorems 3.1 and 3.17, we have

1 − K(G) ≤ S(G) ≤ β0(G) − K(G).

So, whenβ0(G) = 1 we haveS(G) = 1−K(G). This com-
pletes the proof.

Remark 3.Kn andKm∪Kn in Figure 2 tell us that the con-
verse of the above theorem is not always true.

In [8], K.Z. Ouyang et al proved that for any con-
nected graphG of order p, 2β0(G) − p ≤ s(G), i.e.,
β0(G) ≤ s(G)+p

2 , and in [12], S.G. Zhanget al proved that

s(G) ≤ p − 2δ(G), i.e., δ(G) ≤ p−s(G)
2 . So, by Theo-

rems 3.3 and 3.17 we have the following result.

Theorem 3.19For any connected graphG of orderp,

s(G) − p

2
+ 1 ≤ S(G) ≤

s(G) + p

2
− K(G).

Remark 4.Theorem 3.19 is best possible. WhenG = K1,2,

we haves(G)−p

2 + 1 = S(G) and it is easily checked that
the equality on the right-hand holds ifG = Kp.

4. Neighbor-scattering numbers of the join
and union of two disjoint graphs

In this section, we study the neighbor-scattering num-
bers of the join and union of two disjoint graphs, the defini-
tions of which are given as follows.

Let G1 andG2 be two disjoint graphs.

The join of G1 andG2 with disjoint vertex setsV (G1)
andV (G2) and edge setsE(G1) andE(G2) is the graph
G = G1 + G2 with vertex setV (G) = V (G1) ∪ V (G2)
and edge setE(G) = E(G1) ∪ E(G2) ∪ {(u, v) : u ∈
V (G1), v ∈ V (G2)}.

Theunionof G1 andG2 with disjoint vertex setsV (G1)
andV (G2) and edge setsE(G1) andE(G2) is the graph
G = G1∪G2 with vertex setV (G) = V (G1)∪V (G2) and
edge setE(G) = E(G1) ∪ E(G2).

The following theorem gives a formula for the neighbor-
scattering number of the join of two disjoint graphs.

Theorem 4.1 Let G1 and G2 be two disjoint connected
graphs, then

S(G1 + G2) =































−1,
if G1 is complete and S(G2) < 0
0,
if G1 is complete and S(G2) = 0
max{S(G1), S(G2)},
otherwise

Proof. It is obvious thatG1 + G2
∼= G2 + G1. We distin-

guish two cases:

Case 1.BothG1 andG2 are complete graphs.
Then,G1 + G2 must be a complete graph. By the defini-
tion of neighbor-scattering number of complete graphs, we
haveS(G1) = 1, S(G2) = 1 andS(G1 + G2) = 1 =
max{S(G1), S(G2)}, and so the result holds.

Case 2.Exactly one ofG1 andG2 is a complete graph.
Without loss of generality, we assume thatG1 is a complete
graph, i.e.,S(G1) = 1. Then the proof proceeds in the fol-
lowing two subcases:

Subcase 2.1S(G2) > 0.
Let X be anS-set ofG2. It is obvious thatX must be a cut-
strategy ofG1 +G2, andω(G2/X) = ω(G1 +G2/X). So,
S(G1+G2) ≥ ω(G1+G2/X)−|X | = ω(G2/X)−|X | =
S(G2). On the other hand, letX be anS-set ofG1+G2. By
the definition of a join graph we know eitherX ⊂ V (G1) or
X ⊂ V (G2). If X ⊂ V (G2), thenS(G2) ≥ ω(G2/X) −
|X | = ω(G1 + G2/X) − |X | = S(G1 + G2).
SinceS(G1) = 1, it is impossible thatX ⊂ V (G1). Other-
wise, we would haveS(G1 + G2) = ω(G1 + G2/X) −
|X | = −|X | ≤ −1, which contradicts the above result
S(G1 + G2) ≥ S(G2) > 0.
Thus,S(G1 + G2) = S(G2) = max{S(G1), S(G2)}

Subcase 2.2S(G2) < 0.
Let X be anS-set ofG2, thenS(G2) = ω(G2/X)−|X | =
ω(G1 + G2/X) − |X | ≤ S(G1 + G2). Let v ∈ V (G1),
it is easy to see thatv is a cut-strategy ofG1 + G2, then
S(G1 + G2) ≥ ω(G1 + G2/{v}) − |v| = −1. Thus,
S(G1+G2) ≥ max{−1, S(G2)}. On the other hand, letX



be anS-set ofG1+G2, thenX ⊂ V (G1) orX ⊂ V (G2). If
X ⊂ V (G2), thenS(G1 +G2) = ω(G1 +G2/X)−|X | =
ω(G2/X) − |X | ≤ S(G2).
If X ⊂ V (G1), thenS(G1+G2) = ω(G1+G2/X)−|X | =
−|X | ≤ −1. Thus,S(G1 + G2) ≤ max{−1, S(G2)}.
Hence,S(G1 + G2) = max{−1, S(G2)} = −1.

Subcase 2.3S(G2) = 0.
Similar to the proof of Case 2.2, we can easily getS(G1 +
G2) = max{−1, S(G2)} = 0.

Case 3.BothG1 andG2 are noncomplete graphs.
LetX1 be anS-set ofG1, thenS(G1) = ω(G1/X)−|X | =
ω(G1 + G2/X)− |X | ≤ S(G1 + G2), i.e.,S(G1 + G2) ≥
S(G1). Similarly, we can proveS(G1 + G2) ≥ S(G2).
Hence,S(G1 + G2) ≥ max{S(G1), S(G2)}. On the other
hand, letX be anS-set ofG1 + G2. Then, by the definition
of G1 + G2 we know eitherX ⊂ V (G1) or X ⊂ V (G2).
Without loss of generality, we assumeX ⊂ V (G1). Then,
S(G1+G2) = ω(G1+G2/X)−|X | = ω(G1/X)−|X | ≤
S(G1). We can use the same method to showS(G1+G2) ≤
S(G2). So, we haveS(G1 + G2) ≤ max{S(G1), S(G2)}.
Hence,S(G1 + G2) = max{S(G1), S(G2)}.
This completes the proof.

Finally, we give a formula for the neighbor-scattering
number of the union of two disjoint graphs.

Theorem 4.2 Let G1 and G2 be two disjoint connected
graphs, then

S(G1∪G2) =















∑2
i=1 S(Gi),

if S(Gi) are all positive
max{max{S(G1), S(G2)} + 1, 2},
otherwise

Proof. It is obvious thatG1 ∪ G2
∼= G2 ∪ G1. The proof is

similar to that of Theorem 4.1, and the detail is omitted.

5. Discussion and open question

We know that the neighbor-scattering number can be
used to measure the vulnerability of a spy network. It
seems reasonable that for a connected representing graph
of a spy network the more edges it has, the more jeop-
ardy the spy network is in. On the other hand, we know that
adding edges to a graph may make the network more ro-
bust by making it harder to disconnect into small compo-
nents. So, the espionage agency would reasonably want
to add lines of communication to their existing spy net-
work to maximize its robustness. Hence, we present
a criterion for a graph to model an optimal spy net-
work.

Criterion (∗): A connected graphG is said to sat-
isfy Criterion(∗) if for any supergraphH such that

V (H) = V (G) and E(H) ⊇ E(G), we have
S(H) ≥ S(G).

It is easy to see that not all graphs satisfy this crite-
rion. For example, pathP9 does not satisfy Criterion(∗),
since it is easy to see thatS(C9) = 0 < 1 = S(P9). This
leaves an open question.

Question: For which graph, does Criterion(∗) hold for
the model of an optimal spy network with a given or-
der ?
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