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Abstract

For a graph G, let h(G, x) denote its adjoint polynomial and β(G) denote the
minimum real root of h(G, x). Two graphs H and G are said to be adjointly
equivalent if h(H, x) = h(G, x). Let F1 = {G|β(G) > −4} and F2 = {G|β(G) ≥
−4}. In this paper, we give a necessary and sufficient condition for two graphs H
and G in Fi to be adjointly equivalent, where i = 1, 2. We also solve some problems
and conjectures proposed by Dong et al.( Discrete Math. 258(2002) 303–321).
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1 Introduction

In this paper, all graphs considered are finite and simple. Notation and terminology
not given here will conform to those in [1]. For a graph G, let V (G), E(G), p(G), q(G)
and G, respectively, be the set of vertices, the set of edges, the number of vertices, the
number of edges and the complement of G. Let G∪H denote the disjoint union of two
graphs G and H, and mH denote the disjoint union of m copies of a graph H.

Let Cj (resp., Pi) denote the cycle (resp., the path) with j (resp., i) vertices, and P
and C denote respectively, the sets of Pi and Cj for i ≥ 2 and j ≥ 3. First of all, we list
some classes of graphs (see Figures 1 and 2) that are of interest to us. For convenience,
suppose that T1 = {T1,1,n|n ≥ 1} and U = {Un|n ≥ 6}.
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For a graph G, we denote by P (G,λ) the chromatic polynomial of G. A partition
{A1, A2, · · · , Ar} of V (G), where r is a positive integer, is called an r-independent

partition of a graph G if every Ai is a nonempty independent set of G. We denote by
α(G, r) the number of r-independent partitions of G. Then the chromatic polynomial
of G is P (G,λ) =

∑
r≥1

α(G, r)(λ)r , where (λ)r = λ(λ − 1)(λ − 2) · · · (λ − r + 1) for all

r ≥ 1. See [7] for details on chromatic polynomials.
Two graphs G and H are said to be chromatically equivalent (or simply χ-equivalent),

denoted by G ∼ H, if P (G,λ) = P (H,λ). It is clear that ”∼” is an equivalence relation
on the family of all graphs. By [G] we denote the equivalence class determined by G
under ”∼”. A graph G is called chromatically unique (or simply χ-unique) if H ∼= G
whenever H ∼ G. For a set G of graphs, if [G] ⊂ G for every G ∈ G, then G is called
χ-closed.

Definition 1.1. ([2-6]) For a graph G with p vertices, the polynomial

h(G, x) =
p∑

i=1

α(G, i)xi

is called its adjoint polynomial. We define h1(G, x) = h(G, x)/xχ(G), where χ(G) is the
chromatic number of G.

Two graphs G and H are said to be adjointly equivalent, denoted by G ∼h H, if
h(G, x) = h(H,x). Clearly, ”∼h” is an equivalence relation on the family of all graphs.
Let [G]h = {H|H ∼h G}. A graph G is said to be adjiontly unique if H ∼= G whenever
H ∼h G. For a set G of graphs, if [G]h ⊂ G for every G ∈ G, then G is called adjointly

closed. More details on h(G, x) can be found in [2-6,8-10].
From Definition 1.1, we have

Theorem 1.1. ([4]) (i) G ∼ H if and only if G ∼h H;
(ii) [G] = {H|H ∈ [G]h};
(iii) G is χ–unique if and only if G is adjointly unique . 2

It is an interesting problem to determine [G] for a given graph G. From Theorem
1.1, it is not difficult to see that the goal of determining [G] for a given graph G can be
realized by determining [G]h. Ye and Li [8] gave all adjointly equivalent classes of Pn.
In [4], Dong et al. determined all adjointly equivalent classes of graphs r0K1 ∪ r1K3 ∪⋃
1≤i≤s

P2li for r0, r1 ≥ 0, li ≥ 1 and obtained a necessary and sufficient condition for two

graphs H and G in G1 to be adjointly equivalent, where

G1 =



aK3 ∪ bD4 ∪

⋃

1≤i≤s

Pui
∪

⋃

1≤j≤t

Cvj
|a, b ≥ 0, ui ≥ 3, ui 6≡ 4(mod5), vj ≥ 4



 .
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Let

G2 =



aK3 ∪ bD4 ∪

⋃

1≤i≤s

Pui
∪

⋃

1≤j≤t

Cvj
|a, b ≥ 0, ui ≥ 3, vj ≥ 4





and

G3 =



rK1 ∪

⋃

1≤j≤t

Cvj
|r, t ≥ 0, vj ≥ 4



 .

In fact, it is not easy to determined the equivalent class of each graph in Gi for
i = 1, 2, 3. So, Dong et al. proposed the following interesting problem: For a set G of
graphs, determine

minhG =
⋃

G∈G

[G]h,

where minhG is called the adjoint closure of G.
In [4], Dong et al. proposed the following problem and conjectures.

Problem 1.1. ([4]) Determine minh(G2) and minh(G3).

Conjecture 1.1. ([4]) The following set equalities hold:

minh(G2) =



rK1 ∪ aK3 ∪ bD4 ∪

⋃

1≤i≤m

T1,1,ri
∪

⋃

1≤i≤s

Pui

∪
⋃

1≤j≤t

Cvj
|r, a, b, s, t,m ≥ 0,m + r ≤ a, ui ≥ 3, vj ≥ 4



 .

Conjecture 1.2. ([4]) The following set equalities hold:

minh(G3) =



rK1 ∪ bD4 ∪

⋃

1≤i≤m

T1,1,ri
∪

⋃

1≤j≤t

Cvj
|r, b,m, t ≥ 0, ri ≥ 5, vj ≥ 4



 .

They showed that the inclusion ⊇ holds in each of the two conjectures. In Section 2 of
this paper, we give the solution to Problem 1.1 and show that both Conjecture 1.1 and
Conjecture 1.2 are false.

Let
F1 = {∪iHi|Hi ∈ {K1, T1,2,n, Dn+3|n = 1, 2, 3, 4} ∪ P ∪ C ∪ T1}

and

F2 = {∪iHi|Hi ∈ F1 ∪ {T1,2,5, T1,3,3, T2,2,2,K1,4, C4(P2), C3(P2, P2),K
−
4 , D8} ∪ U}.

In Section 3, we shall give a way for determining the adjoint equivalent class of each
graph in sets Fi, where i = 1, 2.

For a graph G, let β(G) denote the minimum real root of its adjoint polynomial.
The following results are very important in this paper.

Lemma 1.1. ([8-10]) (i) β(Ck) = β(P2k−1) for k ≥ 4 and β(C3) = β(P4);
(ii) β(Cn) < β(Pn) for n ≥ 3;
(iii) β(Cn) < β(Cn−1) for n ≥ 4 and β(Pn) < β(Pn−1) for n ≥ 3.
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Lemma 1.2. ([10]) Let G be a connected graph. Then

(1)β(G) = −4 if and only if

G ∈ {T1,2,5, T1,3,3, T2,2,2,K1,4, C4(P2), C3(P2, P2),K
−
4 , D8} ∪ U .

(2) β(G) > −4 if and only if

G ∈ P ∪ C ∪ T1 ∪ {T1,2,n, Dn+3,K1|n = 1, 2, 3, 4}.

By Lemma 1.2, we have F1 = {G|β(G) > −4} and F2 = {G|β(G) ≥ −4}. Clearly,
F1 and F2 are adjointly closed.

For convenience, we simply denote h(G, x) by h(G) and h1(G, x) by h1(G). For
g(x), f(x) ∈ Q[x], let (g(x), f(x)) denote the greatest common factor of g(x) and f(x).
By g(x)|f(x) (resp., g(x) 6 |f(x)) we mean that g(x) divides f(x) ( resp., g(x) does not
divide f(x)).

2 Solution for Some Problems and Conjectures

In this section, our aim is to solve Problem 1.1 and Conjectures 1.1 and 1.2. First we
introduce some basic results on the adjoint polynomials of graphs.

Definition 2.1. ([5]) Let G be a graph with p vertices and q edges. The character of
G is defined as

R(G) =





0, if q = 0,

α(G, p − 2) −

(
α(G, p − 1) − 1

2

)
+ 1, if q > 0.

Lemma 2.1. ([5]) Let G be a graph with k components G1, G2, . . . , Gk. Then

h(G) =
k∏

i=1

h(Gi) and R(G) =
k∑

i=1

R(Gi).

Lemma 2.2. ([5]) Let G and H be two graphs such that h(G, x) = h(H,x). Then
R(G) = R(H).

Lemma 2.3. ([6]) Let G be a connected graph with p vertices. Then
(i) R(G) ≤ 1, and the equality holds if and only if G ∼= Pp(p ≥ 2) or G ∼= C3;
(ii) R(G) = 0 if and only if G is one of the graphs K1, Cp, Dp and T (l1, l2, l3), where

p ≥ 4, li ≥ 1, i = 1, 2, 3.

Lemma 2.4. ([5]) (i) For n ≥ 2, h(Pn) =
∑

k≤n

(
k

n − k

)
xk;

(ii) For n ≥ 4, h(Cn) =
∑

k≤n

n
k

(
k

n − k

)
xk;

(iii) For n ≥ 4, h(Dn) =
∑

k≤n

(
n
k

(
k

n − k

)
+

(
k − 2

n − k − 3

))
xk.

Lemma 2.5. ([5]) If e = uv is an edge not in any triangle of a graph G, then
h(G) = h(G − e) + xh(G − {u, v}).

Lemma 2.6. ([8-10]) (i) For n ≥ 1 and m ≥ 4, (h1(Cm), h1(P2n)) = 1;
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(ii) For n1 ≥ 3 and n2 ≥ 4, h1(Pn1
)h1(Cn2

) = h1(Pn1+n2
) if and only if n2 = n1 +1.

From Lemmas 2.4 and 2.5 or [8-10], one can check that each pair of the graphs
in R1 defined below is adjointly equivalent. In what follows we call it an adjointly

equivalent transform if we use one of the graph in a pair of adjointly equivalent graphs
to substitute for the other.
R1 = {P2n+1 ∼h Pn ∪ Cn+1,K1 ∪ C3 ∼h P4, T1,1,m−2 ∼h K1 ∪ Cm, T1,2,s−3 ∼h K1 ∪
Ds,K1∪P5 ∼h P2∪T1,1,1, D6∪T1,1,1 ∼h K1∪C9, D7∪T1,1,1∪C5 ∼h K1∪C15, P3∪D5 ∼h

P2 ∪ C6|n ≥ 3,m ≥ 4, s ≥ 4}.

Theorem 2.1. (i) minhG2 = F1;

(ii) Let Ω =

{
r′K1 ∪

⋃
i∈{4,6,7}

aiDi ∪
⋃

1≤i≤m

T1,1,ri
∪

⋃
1≤j≤t

Cvj
∪

⋃
i∈{3,4}

biT1,2,i|r
′, ai, bi ≥ 0; ri ≥ 1; vj ≥ 4

}
. Then, minhG3 = Ω.

Proof. (i) Clearly, minhG2 ⊆ F1. From the set R1, one can see that P2n+1 ∼h

Pn ∪ Cn+1 for n ≥ 3, P4 ∼h K1 ∪ K3, K1 ∪ P5 ∼h P2 ∪ T1,1,1, P2 ∪ C6 ∼h P3 ∪ D5,
K1 ∪ C9 ∼h D6 ∪ T1,1,1, K1 ∪ C15 ∼h D7 ∪ T1,1,1 ∪ C5, K1 ∪ Cm ∼h T1,1,m−2 and
K1 ∪ Ds ∼h T1,2,s−3. Thus, we have F1 ⊆ minhG2, and hence (i) holds.

(ii) Clearly, minhG3 ⊆ F1. From the set R1, one can see that K1∪C9 ∼h D6∪T1,1,1,
K1 ∪C15 ∼h D7 ∪ T1,1,1 ∪C5, K1 ∪Cm ∼h T1,1,m−2 and K1 ∪Ds ∼h T1,2,s−3. Thus, we
have Ω ⊆ minhG3.

Let G ∈ G3 and H ∼h G. From Lemma 1.2, we have H ∈ F1. From Lemmas 2.1
and 2.3, we have R(G) = R(H) = 0, and so, none of the components of H is isomorphic
to Pn for n ≥ 2. Hence, we know that each component of H is one of the following
graphs:

K1, Di, T1,1,ri
, Cvj

, T1,2,w,

where i = 4, 5, 6, 7; ri ≥ 1; vj ≥ 4 and w = 2, 3, 4.
From Lemma 2.6, h1(P2) 6 |h(Cvj

) for all vj ≥ 4. So, (x + 1) 6 |h(G) = h(H). Since
(x + 1)|h(D5) = h(T1,2,2)/x, we know that H does not include D5 and T1,2,2 as its
components. Thus H ∈ Ω and minhG3 = Ω. 2

It is not difficult to see that Theorem 2.1 solves Problem 1.1 and gives negative
answers to Conjectures 1.1 and 1.2.

Let G4 = {rK1 ∪
⋃

1≤i≤s

Pui
|ui ≥ 2, r ≥ 1}. Similar to the process of the proof for

Theorem 2.1, we can easily obtain the following result.

Theorem 2.2. minh(G4) = F1.

3 Adjoint Equivalence Classes of Graphs

In this section, our aim is to determine the adjoint equivalence class for each graph G
in Fi, where i = 1, 2. A necessary and sufficient condition for two graphs G and H in
Fi to be adjointly equivalent is obtained.

Lemma 3.1. Let Gi,Hi ∈ {K1, T1,1,1, P3, Cn, P2i|n ≥ 4, i ≥ 1}, where 1 ≤ i ≤ m,
1 ≤ j ≤ t. If

⋃
1≤i≤m

Gi ∼h

⋃
1≤j≤t

Hj, then
⋃

1≤i≤m

Gi
∼=

⋃
1≤j≤t

Hj.
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Proof. By Lemma 2.1,
m∏

i=1

h(Gi) =
t∏

j=1

h(Hi). (1)

By induction on m we shall show that
⋃

1≤i≤m

Gi
∼=

⋃
1≤j≤t

Hj.

When m = 1, we have

h(G1) =
t∏

j=1

h(Hi).

Thus there exists a component, say H1, in
⋃

1≤j≤t

Hj such that β(G1) = β(H1). From

Lemmas 1.1 and 2.6, we know that G1
∼= H1. Moreover, m = t = 1 and the theorem

holds for m = 1.
Suppose that

⋃
1≤i≤m

Gi
∼=

⋃
1≤j≤t

Hj for m = k− 1 and k ≥ 2. When m = k, from (1)

it follows that

k∏

i=1

h(Gi) =
t∏

j=1

h(Hi). (2)

Now, we consider the minimum real roots of the two sides of (2). Denote by β(right)
and β(left), respectively, the minimum real root of the right-hand side and the left-
hand side of (2). Without loss of generality, we assume that β(left) = β(Gk). We
distinguish the following cases:

Case 1. Gk
∼= Cn for some n ≥ 4.

Clearly, H has a component, say Ht, such that β(Cn) = β(Ht). So, by Lemmas 1.1
and 2.6, Ht

∼= Cn. From (2) we get

k−1∏

i=1

h(Gi) =
t−1∏

j=1

h(Hi). (3)

By (3) and the induction hypothesis,
⋃

1≤i≤k−1
Gi

∼=
⋃

1≤j≤t−1
Hj, and so, G ∼= H.

Case 2. Gk ∈ {P4, P3, T1,1,1, P2,K1}.

Since β(P6) < β(T1,1,1) < β(P4) < β(P3) < β(P2) < β(K1) and β(C4) < β(T1,1,1),
one can see by Lemma 1.1 that Gi,Hj ∈ {K1, P2, P3, P4, T1,1,1} for all 1 ≤ i ≤ k and
1 ≤ j ≤ t. Clearly, this theorem holds.

Case 3. Gk
∼= P2α for some α.

Obviously, α ≥ 3. Then, it is not difficult to see that H has a component, say Ht,
such that β(P2α) = β(Ht). So, by Lemmas 1.1 and 2.6 , we have Ht

∼= P2α. Similar to
Case 1, we have H ∼= G. 2

Suppose that G and H are two graphs. We shall construct a pair of graphs G∗ and
H∗ respectively from G and H by the following steps:

O1: We construct a pair of graphs G′ and H ′ respectively from G and H by replacing
each component Y by adjointly equivalent transform in R until none of the components
is isomorphic to Y, where Y ∈ {P2n+1, D4, T1,1,m, T1,2,s|n ≥ 3,m ≥ 2, s ≥ 2} and
R ∈ {P2n+1 ∼h Pn ∪ Cn+1, D4 ∼h C4, T1,1,m ∼h K1 ∪ Cm+2, T1,2,s ∼h K1 ∪ Ds+3};
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O2: We denote by a1, a2, a3, a4 and a5, respectively, the number of the components
C3, P5, D5, D6 and D7 of G′. We denote by b1, b2, b3, b4 and b5, respectively, the number
of the components C3, P5, D5, D6 and D7 of H ′. Let x1 = max{a1 + a2, b1 + b2}, x2 =
max{a3, b3}, x3 = max{a4 + a5, b4 + b5} and x4 = max{a5, b5}. Then we take G′′ =
G′ ∪ x1K1 ∪ x2P3 ∪ x3T1,1,1 ∪ x4C5 and H ′′ = H ′ ∪ x1K1 ∪ x2P3 ∪ x3T1,1,1 ∪ x4C5.

O3: We construct a pair of graphs G∗ and H∗ respectively from G′′ and H ′′ by
replacing each component Y ′ by adjointly equivalent transform in R′ until none of
the components is isomorphic to Y ′, where Y ′ ∈ {K1 ∪ C3,K1 ∪ P5, D6 ∪ T1,1,1, D7 ∪
T1,1,1 ∪ C5, P3 ∪ D5} and R′ ∈ {K1 ∪ C3 ∼h P4,K1 ∪ P5 ∼h P2 ∪ T1,1,1, D6 ∪ T1,1,1 ∼h

K1 ∪ C9, D7 ∪ T1,1,1 ∪ C5 ∼h K1 ∪ C15, P3 ∪ D5 ∼h P2 ∪ C6}.

Here we point out that the above operations are valid only for pairs of graphs, but
not for a single graph. For convenience, the pair of graphs G∗ and H∗ are said to be
obtained from G and H by Operation OP1, denoted by < G,H >−→OP1 < G∗,H∗ >.

Theorem 3.1. Let G,H ∈ F1 and < G,H >−→OP1 < G∗,H∗ >. Then, G ∼h H if and
only if G∗ ∼= H∗.

Proof. Suppose that G,H ∈ F1 and G ∼h H. It is clear that G′ ∼h G ∼h H ∼h H ′

and G∗ ∼h G′′ ∼h H ′′ ∼h H∗. So, by steps O2 and O3, one can see that each component
of G∗ and H∗ is one of the following graphs:

K1, T1,1,1, P3, Cn, P2i, n ≥ 4, i ≥ 1.

By Lemma 3.1, G∗ ∼= H∗.
Conversely, suppose that G∗ ∼= H∗. Then, G′′ ∼h H ′′ and G′ ∼h H ′. Thus, G ∼h H.

2

From Lemmas 2.4 and 2.5, it is not hard to obtain the adjointly equivalent transform
in R2, where R2 = {K1∪Un ∼h Pn−4∪K1,4, 2K1∪T1,2,5 ∼h P2∪P4∪K1,4, 2K1∪T2,2,2 ∼h

2P2∪K1,4, 2K1∪T1,3,3 ∼h P2∪P3∪K1,4, 2K1∪C3(P2, P2) ∼h P2∪K1,4, 2K1∪C4(P2) ∼h

P2 ∪ K1,4, 3K1 ∪ K−
4 ∼h P2 ∪ K1,4, 3K1 ∪ D8 ∼h P2 ∪ P4 ∪ K1,4|n ≥ 6}.

Suppose G,H ∈ F2. Similar to OP1, Ĝ and Ĥ are said to be obtained from G and
H by Operation OP2, denoted by < G,H >−→OP2 < Ĝ, Ĥ >, if the pair of graphs Ĝ and
Ĥ can be obtained respectively from G and H by the following steps:

O4: Let y0, y1, y2, y3, y4, y5, y6, y7, y8 be respectively the number of the components
K1, Un, T1,2,5, T2,2,2, T1,3,3,C3(P2, P2), C4(P2),K

−
4 , D8 of G, and let y′0, y

′
1, y

′
2, y

′
3,y

′
4, y′5,

y′6, y′7, y′8 denote respectively the number of the components K1, Un,T1,2,5,T2,2,2, T1,3,3,
C3(P2, P2), C4(P2), K−

4 , D8 of H. Suppose that y = max{y1 + 2y2 + 2y3 + 2y4 + 2y5 +
2y6+3y7+3y8−y0, y

′
1+2y′2+2y′3+2y′4+2y′5+2y′6+3y′7+3y′8−y′0}. Take G0 = G∪yK1

and H0 = H ∪ yK1;
O5: We construct a pair of graphs G′′ and H ′′ respectively from G0 and H0 by

replacing each component Y ′′ by adjointly equivalent transform in R2 until none of the
components is isomorphic to Y ′′, where Y ′′ ∈ {K1 ∪Un, 2K1 ∪T1,2,5, 2K1 ∪T2,2,2, 2K1 ∪
T1,3,3, 2K1 ∪C3(P2, P2), 2K1 ∪C4(P2), 3K1 ∪K−

4 , 3K1 ∪D8|n ≥ 6}. In fact, G′′ and H ′′

contain none of the following components: Un, T1,2,5, T2,2,2, T1,3,3, C3(P2, P2), C4(P2),
K−

4 and D8.
O6: Let s1 and s2 be respectively the number of the components K1,4 of G′′ and

H ′′. Take s = min{s1, s2}. By deleting sK1,4 from G′′ and H ′′, we obtain graphs G′′′

and H ′′′. Note that if G ∼h H, then s1 = s2, G′′′ ∼h H ′′′ and G′′′,H ′′′ ∈ F1.
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O7: By using OP1, we obtain the pair of graphs Ĝ and Ĥ respectively from G′′′ and
H ′′′, i.e., < G′′′,H ′′′ >−→OP1 < Ĝ, Ĥ >.

Similar to the proof of Theorem 3.1, we can show the following result.

Theorem 3.2. Let G,H ∈ F2 and < G,H >−→OP2 < Ĝ, Ĥ >. Then, G ∼h H if and
only if Ĝ ∼= Ĥ. 2

By Theorems 3.1 and 3.2, we have

Theorem 3.3. (i) For any graph G ∈ F1, [G]h = {H ∈ F1|H
∗ ∼= G∗ and < G,H >−→OP1

< G∗,H∗ >};
(ii) For any graph G ∈ F2, [G]h = {H ∈ F2|Ĥ ∼= Ĝ and < G,H >−→OP2 < Ĝ, Ĥ >}.

Acknowledgements: The authors would like to thank the referees for their valuable
comments and suggestions, which are very helpful for improving the presentation of
the paper.
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