PROD. TYPE: COM PP: 1-12 (col.fig.: nil)

YJCTB2298 DTD VER: 5.0.1

ED: Prathiba PAGN: Vijay - SCAN: nil

ARTICLE IN PRESS

1

3

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series B

Journal of Combinatorial Theory, Series B III (IIII) III-III

www.elsevier.com/locate/jctb

Covering planar graphs with forests

József Balogh^a, Martin Kochol^{b,1}, András Pluhár^{c,2}, Xingxing Yu^{d, e,3}

^aDepartment of Mathematical Sciences, The Ohio State University, Columbus, OH 43210, USA
^bMÚ SAV, Štefánikova 49, 814 73 Bratislava 1, Slovakia
^cUniversity of Szeged, Department of Computer Science, Árpád tér 2, Szeged, H-6720, Hungary
^dSchool of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA
^eCenter for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China

Received 26 March 2003

11 Abstract

We study the problem of covering graphs with trees and a graph of bounded maximum degree. By a classical theorem of Nash-Williams, every planar graph can be covered by three trees. We show that every planar graph can be covered by two trees and a forest, and the maximum degree of the forest is

at most 8. Stronger results are obtained for some special classes of planar graphs.
© 2004 Published by Elsevier Inc.

17 MSC: 05C70

19

Keywords: Trees; Forests; Planar graphs; Outerplanar graphs; Hamiltonian cycles; Series parallel graphs; Graph minors

1. Introduction

For a graph G, we use V(G) and E(G) to denote the vertex set and edge set of G, respectively. For two subgraphs H and K of a graph, we use $H \cup K$ to denote the union

0095-8956/\$ - see front matter © 2004 Published by Elsevier Inc. doi:10.1016/j.jctb.2004.12.002

E-mail addresses: jobal@math.ohio-state.edu (J. Balogh), kochol@savba.sk (M. Kochol), pluhar@inf.u-szeged.hu (A. Pluhár), yu@math.gatech.edu (X. Yu).

¹ M. Kochol was partially supported by Grant 2/4004/04 and was active at Fakulta Prírodných Vied, Žilinská Univerzita v Žiline.

² A. Pluhar was partially supported by OTKA Grant T34475.

³ Xingxing Yu was partially supported by NSF Grant DMS-9970527 and NSA Grant MDA904-03-1-0052.

ARTICLE IN PRESS

2

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

- 1 of *H* and *K*. We say that a graph *G* can be *covered* by subgraphs G_1, \ldots, G_k of *G* if $\bigcup_{i=1}^k G_i = G$.
- A well-known theorem of Nash-Williams [5] (based on a result proved independently in [4,7]) states that the edges of a graph *G* can be covered by *t* trees if, and only if, for every
- 5 $A \subseteq V(G), e(A) \leq (|A| 1)t$, where e(A) denotes the number of edges of G with both ends in A. One way to extend this result is to cover graphs with trees (or forests) and a graph
- 7 with bounded degree. We say that a graph is (t, D)-coverable if it can be covered by at most t forests and a graph of maximum degree D.
- 9 It is easy to check that if a graph G is (t, D)-coverable, then, for any two disjoint subsets A, B of V(G), $f_t(A) + e(A, B) \leq D \cdot |A| + t(|A| + |B| 1)$, where e(A, B) denotes
- 11 the number of edges of G with one endpoint in A and the other in B, $f_t(A) = e(A)$ if $e(A) \leq t(|A|-1)$, and $f_t(A) = 2e(A) t(|A|-1)$ otherwise. Unfortunately, this condition
- 13 is not sufficient. For example, by deleting one edge from the Petersen graph, we obtain a graph that satisfies the above inequality with t = D = 1, but is not (1, 1)-coverable.
- 15 It is interesting to know what can be said about planar graphs. The aforementioned theorem of Nash-Williams implies that every planar graph is (3, 0)-coverable. As pointed
- 17 out by Lovász [3] there are infinitely many planar graphs which are not (2,3)-coverable: take a triangle, put a vertex inside and connect it to the vertices of the triangle, and repeat
- 19 this operation for each new triangle. After repeating this process for a while, we get a graph on *n* vertices with roughly 2n/3 vertices of degree 3. This graph does not satisfy the above
- 21 inequality about $f_t(A)$ (with t = 2, D = 3, B the set of vertices of degree 3, and A the set of vertices of degree at least 4), and so, it is not (2,3)-coverable. The double wheel on 2D + 4
- vertices (that is, a cycle of length 2D + 2 plus two vertices and all edges from these two vertices to the cycle) shows that planar graphs need not be (1, D)-coverable. However, we
- 25 believe the following is correct.

Conjecture 1. *Every simple planar graph is* (2, 4)*-coverable.*

- As evidence for this conjecture, we shall prove that every simple planar graph is (2, 8)coverable. This will be done in Section 3, with the help of a result from Section 2. In
- 29 Section 4, we shall show that every simple outerplanar graph is (1, 3)-coverable, and as a consequence, every 4-connected planar graph is (2, 6)-coverable. We shall also consider
- 31 graphs which are series-parallel or contain no $K_{3,2}$ -subdivision. We conclude this section with some notation.
- Throughout the remainder of this paper, we shall consider only simple graphs. Let G be a graph. An edge of G with endpoints x and y will be denoted by xy or yx. Paths and cycles
- in *G* will be denoted by sequences of vertices of *G*. For any $x \in V(G)$, let $N_G(x) := \{y \in V(G) : xy \in E(G)\}$, and let $d_G(x) := |N_G(x)|$, the degree of *x*. When *G* is known from
- 37 the context, we shall simply write N(x) and d(x). Let $\Delta(G) := \max\{d(x) : x \in V(G)\}$. For any $S \subseteq V(G)$, we use G - S to denote the graph with vertex set V(G) - S and edge
- 39 set $\{uv \in E(G) : \{u, v\} \subseteq V(G) S\}$. For any $S \subseteq E(G)$, we use G S to denote the graph with vertex set V(G) and edge set E(G) S. When $S = \{s\}$, we shall simply write
- 41 G s. Let *H* be a subgraph of *G* and let $S \subseteq V(G) \cup E(G)$ such that every edge of *G* in *S* has both endpoints in $V(H) \cup (S \cap V(G))$, then we use H + S to denote the graph with
- 43 vertex set $V(H) \cup (S \cap V(G))$ and edge set $E(H) \cup (S \cap E(G))$.

ARTICLE IN PRESS

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

Recall that a plane graph is a graph drawn in the plane with no pairs of edges crossing.
A *facial cycle* of a plane graph G is a cycle that bounds a face of G. A *planar triangulation* is a plane graph in which every face is bounded by a triangle.

2. High vertices

5 In this section, we shall prove the following result about planar graphs. This result will be used in the next section to prove that all planar graphs are (2, 8)-coverable. Let *G* be a 7 graph and $x \in V(G)$. Then *x* is said to be *high* if $d(x) \ge 11$, and *low* otherwise.

Theorem 2. Every planar graph contains a vertex of degree at most 5 which is adjacent to at most two high vertices.

Proof. Suppose the statement is not true. Then there is a planar triangulation G such that every vertex of degree at most 5 is adjacent to at least three high vertices. Therefore, all vertices of G have degree at least 3.

- 13 Let $v \in V(G)$ with d(v) = 4. We say that v is 4-independent if, for any $u \in N(v)$, $d(u) \neq 4$; otherwise, we say that v is 4-dependent. Let u_1, u_2 be two adjacent 4-dependent
- 15 vertices. Then $G \{u_1, u_2\}$ has a facial cycle $v_1v_2v_3v_4v_1$, and v_1, v_2, v_3, v_4 are all high vertices of *G*. Furthermore, the notation can be chosen so that v_1, v_3 are adjacent to both u_1
- 17 and u_2 , and v_2 (respectively, v_4) is adjacent with u_1 (respectively, u_2). In this case we say that v_1 , v_3 are u_1 -weak and v_2 is u_1 -strong, and v_1 , v_3 are u_2 -weak and v_4 is u_2 -strong.
- 19 Next, we define a weight function $\omega : V(G) \to \mathbb{R}$ by making changes to the degree function $d : V(G) \to \mathbb{R}$. For each high vertex *v* of *G*, we make changes to d(v) and d(u) for all $u \in N(v)$ with $d(u) \leq 5$, according to the following rules: 21
- (R1) If $u \in N(v)$ and d(u) = 3, then subtract 1 from d(v) and add 1 to d(u).
- 23 (R2) If $u \in N(v)$ and d(u) = 5, then subtract $\frac{1}{3}$ from d(v) and add $\frac{1}{3}$ to d(u).
 - (R3) If $u \in N(v)$ and u is 4-independent, then subtract $\frac{2}{3}$ from d(v) and add $\frac{2}{3}$ to d(u).
- 25 (R4) If $u \in N(v)$, u is 4-dependent, and v is u-strong, then subtract 1 from d(v) and add 1 to d(u).
- 27 (R5) If $u \in N(v)$, u is 4-dependent, and v is u-weak, then subtract $\frac{1}{2}$ from d(v) and add $\frac{1}{2}$ to d(u).
- 29 Let $\omega : V(G) \to \mathbb{R}$ denote the resulting function. For convenience, when we subtract a quantity α from d(v) and add a quantity α to d(u), we will simply say that v sends *charge*
- 31 α to *u* or *u* receives *charge* α from *v*. Clearly,

33
$$\sum_{x \in V(G)} d(x) = \sum_{x \in V(G)} \omega(x).$$

Since *G* has 3|V(G)| - 6 edges, $\sum_{x \in V(G)} d(x) < 6|V(G)|$. Hence there exists a vertex *x* of *G* such that $\omega(x) < 6$. We shall derive a contradiction by showing that $\omega(x) \ge 6$ for all $x \in V(G)$. Let $x \in V(G)$. We distinguish two cases.

ARTICLE IN PRESS

4

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

- 1 *Case* 1: *x* is low.
- If d(x) = 3 then, since all its neighbors are high, $\omega(x) = d(x) + 3 = 3 + 3 = 6$ by 3 (R1).

If d(x) = 5 then, since x has $k \ge 3$ high neighbors, $\omega(x) = d(x) + k/3 = 5 + k/3 \ge 6$ 5 by (R2).

Now assume d(x) = 4. If x is 4-independent then, since x has $k \ge 3$ high neighbors, 7 $\omega(x) = d(x) + 2k/3 = 4 + 2k/3 \ge 6$ by (R3). If x is 4-dependent then, since x has three high neighbors (two are x-weak and one is x-strong), $\omega(x) = 4 + \frac{1}{2} + \frac{1}{2} + 1 = 6$ by (R4)

9 and (R5).

If $6 \leq d(x) \leq 10$, then $\omega(x) = d(x) \geq 6$.

- 11 *Case 2: x* is high. Let d(x) = k. Then $k \ge 11$. Since G is a planar triangulation, G - x has a facial cycle
- 13 C_k such that $V(C_k) = N(x)$. We partition $V(C_k)$ into the following five sets. Let $A := \{u \in N(x) : d(u) = 3, \text{ or } u \text{ is 4-dependent and } x \text{ is } u \text{-strong} \}$. Let $B := \{u \in N(x) : u \text{ is } u \text{ or } u \text{ is 4-dependent and } x \text{ is } u \text{-strong} \}$.
- 15 4-dependent and x is u-weak}. Let $C := \{u \in N(x) : u \text{ is 4-independent}\}$. Let $D := \{u \in N(x) : d(u) = 5\}$. Finally, let $S := \{u \in N(x) : d(u) \ge 6\}$. Because every vertex of degree
- 17 at most 5 has at least 3 high neighbors, one can easily check that the following statements hold:
- 19 (1) if $u \in A$, then u has two neighbors in S, and u receives charge 1 from x (by (R1) and (R4)).
- 21 (2) if $u \in B$, then (by planarity) u has one neighbor in B and one neighbor in S, and u receives charge $\frac{1}{2}$ from x (by (R5)).
- 23 (3) if $u \in C$, then u has at least one neighbor in S and at most one neighbor in D, and u receives charge $\frac{2}{3}$ from x (by (R3)).
- 25 (4) if $u \in D$, then u can have neighbors in $C \cup D \cup S$, and u receives charge $\frac{1}{3}$ from x (by (R2)).
- 27 (5) if $u \in S$, then *u* receives no charge from *x*.

Therefore, if $S = \emptyset$, then $A = B = C = \emptyset$, and hence, $D = V(C_k)$ and, by (4), 29 $\omega(x) = k - (k/3) \ge \frac{22}{3} > 6.$

- So assume $S \neq \emptyset$. Let $S = \{s_1, \ldots, s_m\}$ such that s_1, \ldots, s_m occur on C_k in that clockwise order. If m = 1, let $S_1 = C_k$ and $s_2 = s_1$. If $m \ge 2$, the vertices in S divide C_k
- into k internally disjoint paths: for $1 \le i \le k$, let S_i denote the clockwise subpath of C_k from
- 33 s_i to s_{i+1} , where $s_{m+1} = s_1$. Let $S'_i := S_i \{s_i, s_{i+1}\}$. We claim that, for each $1 \le i \le m$, one of the following holds:
- 35 (a) $|V(S'_i)| \leq 1$.
 - (b) $|V(S'_i)| = 2$ and $V(S'_i) \subseteq B$.
- 37 (c) $|V(S'_i)| = 2$, $V(S'_i) \subseteq C \cup D$ and $V(S'_i) \cap D \neq \emptyset$.
 - (d) $|V(S'_i)| \ge 3$, $V(S'_i) \subseteq C \cup D$ and all internal vertices of S'_i are contained in D.

To prove this claim, assume that $|V(S'_i)| \ge 2$ (that is, not (a)) and let $S_i = x_0 x_1, \ldots, x_n x_{n+1}$, where $x_0 = s_i$ and $x_{n+1} = s_{i+1}$. Thus, $x_0, x_{n+1} \in S, n \ge 2$, and $x_1, \ldots, x_n \notin S$.

41 Recall that we allow $x_0 = x_{n+1}$, which occurs when m = 1. Then, for each $1 \le j \le n$, $x_j \notin A$; for otherwise, by (1), $\{x_{j-1}, x_{j+1}\} \subseteq S$, contradicting the fact that $x_1, \ldots, x_n \notin S$.

ARTICLE IN PRESS

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

- 1 Now assume that there is some $x_j \in B$. Since x_j has at least three high neighbors, one element of $\{x_{j-1}, x_{j+1}\}$ is high. By symmetry we may assume that x_{j-1} is high. Then
- 3 $x_{j-1} \in S$. Since $x_j \in B$, x is x_j -weak. So $x_{j+1} \in B$, x_{j+2} is high, and $x_{j+2} \in S$. Hence, $x_{j-1} = x_0$ and $x_{j+2} = x_{n+1}$, n = 2, and $\{x_1, x_2\} \subseteq B$. That is, $V(S'_i)$ consists of exactly two
- 5 vertices which are in *B*, and (b) holds. So we may assume that $\{x_1, \ldots, x_n\} \subseteq C \cup D$, that is, $V(S'_i) \subseteq C \cup D$. Then, since each x_i has at least three high neighbors, $x_2, \ldots, x_{n-1} \in D$
- 7 and, if n = 2 then $x_1 \in D$, or $x_n \in D$. So we have (c) and (d). Now, let us calculate $\omega(x)$ by finding out how much charge x sends to vertices of S'_i .
- 9 Suppose (a) holds for S'_i . If $|V(S'_i)| = 1$ then the charge that x sends to S'_i is at most $1 = \lfloor \frac{|V(S'_i)|+1}{2} \rfloor$. If $|V(S'_i)| = 0$ then the charge that x sends to S'_i is $0 = \lfloor \frac{|V(S'_i)|+1}{2} \rfloor$. If (b)
- 11 holds for \tilde{S}'_i , then by (2), the charge that x sends to vertices of S'_i is $\frac{1}{2} + \frac{1}{2} = 1 = \lfloor |V(S'_i)|/2 \rfloor$. Now assume (c) holds for S'_i . If $|V(S'_i)| = 2$ then by (c) at least one vertex of S'_i is in *D*, and
- by (3) and (4), the charge that x sends to vertices of S'_i is at most $\frac{2}{3} + \frac{1}{3} = 1 = \lfloor |V(S'_i)|/2 \rfloor$. If $|V(S'_i)| \ge 3$, then by (d), all internal vertices of S'_i are in D, and by (3) and (4), the charge that
- 15 *x* sends to S'_i is at most $(n-2)/3 + \frac{2}{3} + \frac{2}{3} = (n+2)/3 \le \lfloor (n+1)/2 \rfloor = \lfloor (|V(S'_i)| + 1)/2 \rfloor$ (because $n = |V(S'_i)| \ge 3$). By (5), *x* sends no charge to vertices in *S*. Hence, the total charge
- 17 that *x* sends to its neighbors is at most

$$\sum_{i=1}^{m} \left\lfloor \frac{|V(S'_i)|+1}{2} \right\rfloor \leqslant \left\lfloor \frac{(\sum_{i=1}^{m} |V(S'_i)|)+m}{2} \right\rfloor = \lfloor d(x)/2 \rfloor.$$

19 So
$$\omega(x) \ge d(x) - \lfloor d(x)/2 \rfloor$$
. Since $d(x) \ge 11, \omega(x) \ge 6$. \Box

Theorem 2 no longer holds if we define high vertices as those of degree 10 or more. 21 Consider a planar triangulation with vertices of degrees 6 and 5. Put into each triangle a vertex and join it to all vertices of the triangle. We get a planar triangulation with vertices

of degrees 3, 10, 12, and each vertex has at least 3 neighbors of degree at least 10.

3. Covering with forests

- 25 In this section we prove that every planar graph is (2,8)-coverable. In fact, we prove the following stronger result.
- **Theorem 3.** For each planar graph G, there exist forests T_1 , T_2 , and T_3 such that $G = T_1 \cup T_2 \cup T_3$ and $\Delta(T_3) \leq 8$.
- The proof is by way of contradiction. Suppose Theorem 3 is not true. Let G be a counter example with |V(G)| minimum. Without loss of generality, we may assume that G is a planar

triangulation. Hence the minimum degree of G is at least 3. We shall derive a contradiction to Theorem 2 by showing that every vertex of G with degree at most 5 has at least three

33 high neighbors.

Lemma 4. If $x \in V(G)$ and d(x) = 3, then all three neighbors of x are high.

ARTICLE IN PRESS

6

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

- **Proof.** Consider the graph G' := G x. By the choice of G, G' can be covered by three 1 forests T'_1, T'_2 , and T'_3 such that $\Delta(T'_3) \leq 8$. Without loss of generality, we may further assume
- that T'_1, T'_2, T'_3 are edge disjoint, and subject to this, $|E(T'_3)|$ is minimum. Therefore, for any 3 $u \in V(T'_3), d_{T'_i}(u) \ge 1$ for i = 1, 2. Hence, $d_{T'_3}(v) \le d_{G'}(v) - 2$ for every vertex v of G'.
- 5 Suppose some neighbor of x is not high, say y. Then $d_G(y) \leq 10$. So $d_{G'}(y) \leq 9$, and $d_{T'_2}(y) \leq d_{G'}(y) - 2 \leq 7$. Let v, w be the other two neighbors of x. Let $T_1 := T'_1 + \{x, xv\}$,
- $T_2 := T'_2 + \{x, xw\}$, and let $T'_3 := T_3 + \{x, xy\}$. It is easy to check that T_1, T_2, T_3 are forests 7 and cover G. Note that $d_{T_3}(y) = d_{T'_3}(y) + 1 \leq 8$ and, for any $u \in V(T_3) - \{y\}, d_{T_3}(u) =$
- $d_{T'_3}(u) \leq 8$. So $\Delta(T_3) \leq 8$. Hence, the existence of T_1, T_2, T_3 contradicts the choice of G. So 9 all neighbors of x are high. \Box
- **Lemma 5.** If $x \in V(G)$ and d(x) = 4, then at least three neighbors of x are high. 11

Proof. Let u, y, v and z denote the neighbors of x, occurring in that clockwise order around 13 x. Since G is planar, $uv \notin E(G)$ or $yz \notin E(G)$. Without loss of generality we may assume that $yz \notin E(G)$. Then G' := (G - x) + yz is a planar triangulation. By the choice

of G, G' can be covered by three forests T'_1, T'_2, T'_3 such that $\Delta(T'_3) \leq 8$. We may further 15 assume that T'_1 , T'_2 , T'_3 are edge disjoint, and subject to this, $|E(T'_3)|$ is minimum. Therefore,

17
$$d_{T'_2}(v) \leq d_{G'}(v) - 2$$
 for every vertex v of G'.

If $yz \in E(T'_3)$, we let $T_1 := T'_1 + \{x, ux\}, T_2 := T'_2 + \{x, vx\}$ and $T_3 := (T'_3 - yz) + T'_3 +$ $\{x, yx, xz\}$. It is easy to see that T_1, T_2, T_3 are forests and cover G. Note that $d_{T_3}(x) = 2$ 19 and, for any $w \in V(T_3) - \{x\}$, $d_{T_3}(w) = d_{T'_2}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence, the existence

21 of T_1 , T_2 , T_3 contradicts the choice of G. So $yz \notin E(T'_3)$. Then $yz \in E(T'_1) \cup E(T'_2)$. By symmetry, we may assume that $yz \in E(T'_3)$. 23 $E(T_{1}').$

We claim that u must be high. For, suppose u is low. Then $d_{G'}(u) = d_G(u) - 1 \leq 9$ and $d_{T'_3}(u) \leq d_{G'}(u) - 2 \leq 7$. Let $T_1 := (T'_1 - yz) + \{x, xy, xz\}, T_2 := T'_2 + \{x, xv\}$, and 25 $T_3 := T'_3 + \{x, xu\}$. Then T_1, T_2, T_3 are forests and cover G. Note that $d_{T_3}(x) = 1$ and

 $d_{T_3}(u) = d_{T'_3}(u) + 1 \leq 8$, and for any $w \in V(T_3) - \{u, x\}, d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So 27 $\Delta(T_3) \leq 8$. Hence the existence of T_1 , T_2 , T_3 contradicts the choice of G. 29

By a symmetric argument, we can show that *v* is also high.

Next we show that y is high or z is high. Suppose both y and z are low. Since T'_1 is a forest and $yz \in E(T'_1), T'_1 - yz$ does not contain both a y-v path and a z-v path. By symmetry, 31 we may assume that $T'_1 - yz$ contain no y-v path. Let $T_1 := (T'_1 - yz) + \{x, v, yx, xv\}$,

- 33 $T_2 := T'_2 + \{x, ux\}$ and $T_3 := T'_3 + \{x, xz\}$. Then T_1, T_2, T_3 are forests and cover G. Note that $d_{T_3}(x) = 1$ and, for any $w \in V(T_3) - \{x\}, d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T'_3) \leq 8$. Hence,
- the existence of T_1 , T_2 , T_3 contradicts the choice of G. 35 Therefore, at least three neighbors of *x* are high.
- 37 **Lemma 6.** Let $x \in V(G)$ with d(x) = 5, and let x_0, x_1, x_2, x_3 and x_4 denote the neighbors of x which occur around x in that clockwise order. For any $0 \le i \le 4$, if $x_i x_{i+2} \notin E(G)$ and 39 $x_i x_{i-2} \notin E(G)$, then both x_{i-1} and x_{i+1} are high. (Subscripts are taken modulo 5.)

Proof. Since G is a planar triangulation, $x_0x_1x_2x_3x_4x_0$ is a facial cycle of G - x. Suppose $0 \leq i \leq 4, x_i x_{i+2} \notin E(G)$, and $x_i x_{i-2} \notin E(G)$. Then by the choice of G, G' = (G - x) + C41

ARTICLE IN PRESS

7

- 1 { $x_i x_{i+2}, x_i x_{i-2}$ } can be covered by three forests T'_1, T'_2, T'_3 , with $\Delta(T'_3) \leq 8$. We may further assume that T'_1, T'_2, T'_3 are edge disjoint, and subject to this, $|E(T'_3)|$ is minimum. Therefore,
- 3 $d_{T'_3}(v) \leq d_{G'}(v) 2$ for every vertex v of G'.
 - *Case* 1: $\{x_i x_{i+2}, x_i x_{i-2}\} \subseteq E(T'_3)$.
- 5 Let $T_1 := T'_1 + \{x, xx_{i+1}\}, T_2 := T'_2 + \{x, xx_{i-1}\}$ and $T_3 := (T'_3 \{x_ix_{i+2}, x_ix_{i-2}\}) + \{x, xx_{i+2}, xx_{i-2}, xx_i\}$. Clearly, T_1, T_2, T_3 are forests and cover *G*. Note that $d_{T_3}(x) = 3$
- 7 and, for any $w \in V(T_3) \{x\}$, $d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence the existence of T_1, T_2, T_3 contradicts the choice of G.
- 9 Case 2: $\{x_i x_{i+2}, x_i x_{i-2}\} \subseteq E(T'_1)$ or $\{x_i x_{i+2}, x_i x_{i-2}\} \subseteq E(T'_2)$. By symmetry, we may assume that $\{x_i x_{i+2}, x_i x_{i-2}\} \subseteq E(T'_1)$. We show that both
- 11 x_{i+1} and x_{i-1} are high. For, assume by symmetry that x_{i-1} is low. Then $d_{G'}(x_{i-1}) = d_G(x_{i-1}) 1 \leq 9$ and $d_{T'_3}(x_{i-1}) \leq d_{G'}(x_{i-1}) 2 \leq 7$. Let $T_1 := (T'_1 \{x_i x_{i+2}, x_i x_{i-2}\}) + 1$
- 13 { $x, xx_{i+2}, xx_{i-2}, xx_i$ }, $T_2 := T'_2 + \{x, x_{i+1}x\}, T_3 := T'_3 + \{x, xx_{i-1}\}$. Then T_1, T_2, T_3 are forests and cover *G*. Note that $d_{T_3}(x) = 1, d_{T_3}(x_{i-1}) \le 8$ and, for any $w \in V(T_3) \{x, x_{i-1}\}$,
- 15 $d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence the existence of T_1, T_2, T_3 contradicts the choice of *G*.
- 17 *Case* 3: One element of $\{x_i x_{i+2}, x_i x_{i-2}\}$ is in $E(T'_3)$ and the other is in $E(T'_1) \cup E(T'_2)$. By symmetry, we may assume that $x_i x_{i+2} \in E(T'_1)$ and $x_i x_{i-2} \in E(T'_3)$. We consider

19 five subcases. Subcase 3.1: $T'_1 - x_i x_{i+2}$ contains an $x_i - x_{i+1}$ path. Then $T'_1 - x_i x_{i+2}$ contains no x_{i+1} -

- 21 x_{i+2} path. In this case, let $T_1 := (T'_1 x_i x_{i+2}) + \{x, xx_{i+2}, xx_{i+1}\}, T_2 := T'_2 + \{x, xx_{i-1}\}$ and $T_3 := (T'_3 - x_i x_{i-2}) + \{x, xx_i, xx_{i-2}\}$. Then T_1, T_2, T_3 are forests and cover G. Note
- that $d_{T_3}(x) = 2$ and, for any $w \in V(T_3) \{x\}$, $d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence the existence of T_1 , T_2 , T_3 contradicts the choice of G.
- 25 Subcase 3.2: $T'_1 x_i x_{i+2}$ contains an $x_i x_{i-1}$ path. Then $T'_1 x_i x_{i+2}$ contains no $x_{i-1} x_{i+2}$ path. In this case, let $T_1 := (T'_1 x_i x_{i+2}) + \{x, xx_{i+2}, xx_{i-1}\}, T_2 := T'_2 + \{x, xx_{i+1}\}$
- 27 and $T_3 := (T'_3 x_i x_{i-2}) + \{x, xx_i, xx_{i-2}\}$. Then T_1, T_2, T_3 are forests and cover *G*. Note that $d_{T_3}(x) = 2$ and, for any $w \in V(T_3) \{x\}, d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence
- 29 the existence of T_1 , T_2 , T_3 contradicts the choice of G.
- Subcase 3.3: $T'_1 x_i x_{i+2}$ contains neither an $x_i x_{i+1}$ path nor an $x_i x_{i-1}$ path, and 31 $x_i x_{i-1} \in E(T'_3)$. Let $T_1 := (T'_1 - x_i x_{i+2}) + \{x, x_{i-1}, x_i x_{i-1}, x_{i+2}\}, T_2 := T'_2 + \{x, x_{i+1}\},$ and $T_3 := (T'_3 - \{x_i x_{i-2}, x_i x_{i-1}\}) + \{x, x_{i}, x_{i-1}, x_{i-2}\}$. Then T_1, T_2, T_3 are forests and
- 33 cover *G*. Note that $d_{T_3}(x) = 3$, $d_{T_3}(x_i) = d_{T'_3}(x_i) 1$, and for any $w \in V(T'_3) \{x, x_i\}$, $d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence the existence of T_1, T_2, T_3 contradicts the choice
- $\begin{array}{c} u_{1_3}(\omega) = u_{1_3}(\omega) \leqslant 0.50 \ \Pi(1_3) \leqslant 0.1000 \ \text{memory of } G. \end{array}$

Subcase 3.4: $T'_1 - x_i x_{i+2}$ contains neither an $x_i - x_{i+1}$ path nor an $x_i - x_{i-1}$ path, and 37 $x_i x_{i+1} \in E(T'_3)$. Let $T_1 := (T'_1 - x_i x_{i+2}) + \{x, x_{i+1}, x_i x_{i+1}, x_{i+2}\}, T_2 := T'_2 + \{x, x_{i-1}\},$

- and $T_3 := (T'_3 \{x_i x_{i-2}, x_i x_{i+1}\}) + \{x, xx_i, xx_{i+1}, xx_{i-2}\}$. Then T_1, T_2, T_3 are forests and 39 cover *G*. Note that $d_{T_3}(x) = 3$, $d_{T_3}(x_i) = d_{T'_3}(x_i) - 1$, and for any $w \in V(T'_3) - \{x, x_i\}$, $d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence the existence of T_1, T_2, T_3 contradicts the choice
- 41 of *G*.

Subcase 3.5: $T'_1 - x_i x_{i+2}$ contains neither an $x_i - x_{i+1}$ path nor an $x_i - x_{i-1}$ path, and 43 $x_i x_{i-1}, x_i x_{i+1} \notin E(T'_3)$. Then $x_i x_{i-1}, x_i x_{i+1} \in E(T'_2)$. Let $T_1 := (T'_1 - x_i x_{i+2}) + \{x, x_{i+1}, x_i x_{i+1}, x_{i+2}\}, T_2 := (T'_2 - x_i x_{i+1}) + \{x, xx_{i-1}, xx_{i+1}\}, \text{and } T_3 := (T'_3 - x_i x_{i-2}) + \{x, x_{i+1}, x_$

45 { x, xx_i, xx_{i-2} }. Then T_1, T_2, T_3 are forests and cover G. Note that $d_{T_3}(x) = 2$ and, for any

ARTICLE IN PRESS

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

- 1 $w \in V(T'_3) \{x\}, d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence the existence of T_1, T_2, T_3 contradicts the choice of G.
- 3 *Case* 4: One element of $\{x_i x_{i+2}, x_i x_{i-2}\}$ is in $E(T'_1)$ and the other is in $E(T'_2)$.
- Without loss of generality, we may assume that $x_i x_{i+2} \in E(T'_1)$ and $x_i x_{i-2} \in E(T'_2)$. 5 Then, up to symmetry, it suffices to check the following six subcases.
- Subcase 4.1: $T'_1 x_i x_{i+2}$ contains neither an $x_i x_{i-1}$ path nor an $x_i x_{i+1}$ path, and 7 $T'_2 x_i x_{i-2}$ contains neither an $x_i x_{i-1}$ path nor an $x_i x_{i+1}$ path.
- Then $\{x_i x_{i+1}, x_i x_{i-1}\} \subseteq E(T'_3)$. Let $T_1 := (T'_1 x_i x_{i+2}) + \{x, x_{i+1}, x_i x_{i+1}, x_{i+2}\},$
- 9 $T_2 := (T'_2 x_i x_{i-2}) + \{x, x_{i-1}, x_i x_{i-1}, x x_{i-2}\}, \text{ and } T_3 := (T'_3 \{x_i x_{i+1}, x_i x_{i-1}\}) + \{x, xx_{i+1}, xx_i, xx_{i-1}\}.$ Then T_1, T_2, T_3 are forests and cover G. Note that $d_{T_3}(x) = 3$,
- 11 $d_{T_3}(x_i) = d_{T'_3}(x_i) 1$ and, for any $w \in V(T_3) \{x, x_i\}, d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence the existence of T_1, T_2, T_3 contradicts the choice of G.
- 13 Subcase 4.2: $T'_1 x_i x_{i+2}$ contains both an $x_i x_{i-1}$ path and an $x_i x_{i+1}$ path, or $T'_2 x_i x_{i-2}$ contains both an $x_i x_{i-1}$ path and an $x_i x_{i+1}$ path.
- 15 By symmetry, we may assume that $T'_1 x_i x_{i+2}$ contains an $x_i x_{i-1}$ path and an $x_i x_{i+1}$ path. Then $T'_1 x_i x_{i+2}$ contains no $x_{i+1} x_{i+2}$ path. Let $T_1 := (T'_1 x_i x_{i+2}) + (T'_1 x_i$
- 17 $\{x, xx_{i+1}, xx_{i+2}\}, T_2 := (T'_2 x_i x_{i-2}) + \{x, xx_i, xx_{i-2}\}, \text{ and } T_3 := T'_3 + \{x, xx_{i-1}\}.$ Then T_1, T_2, T_3 are forests and cover G. Note that $d_{T_3}(x) = 1$ and, for any $w \in$
- 19 $V(T_3) \{x, x_{i-1}\}, d_{T_3}(w) = d_{T'_3}(w) \leq 8$. If x_{i-1} is low, then $d_{T'_3}(x_{i-1}) \leq d_{G'}(x_{i-1}) 2 = d_G(x_{i-1}) 3 \leq 7$, and so, $d_{T_3}(x_{i-1}) \leq 8$ and $\Delta(T_3) \leq 8$. Hence the
- 21 existence of T_1, T_2, T_3 contradicts the choice of G. So x_{i-1} must be high.
- 23 Similarly, the forests $T_1 := (T'_1 x_i x_{i+2}) + \{x, xx_{i-1}, xx_{i+2}\}, T_2 := (T'_2 x_i x_{i-2}) + \{x, xx_i, xx_{i-2}\}, \text{ and } T_3 := T'_3 + \{x, xx_{i+1}\}$ allow us to conclude that x_{i+1} must be high.
- 25 Subcase 4.3: There is an x_i - x_{i+1} path in $T'_1 x_i x_{i+2}$, and there are no x_i - x_{i-1} paths in $T'_1 x_i x_{i+2}$ and $T'_2 x_i x_{i-2}$.
- 27 Then $x_i x_{i-1} \in E(T'_3)$ and $T'_1 x_i x_{i+2}$ contains no $x_{i+1} x_{i+2}$ path. Let $T_1 := (T'_1 x_i x_{i+2}) + \{x, xx_{i+1}, xx_{i+2}\}, T_2 := (T'_2 x_i x_{i-2}) + \{x, x_i x_{i-1}, xx_{i-2}\}$, and $T_3 := (T'_3 x_i x_{i-1}) + \{x, xx_{i-1}, xx_i\}$. Then T_1, T_2, T_3 are forests and cover G.
- 29 $x_i x_{i-1}$ + { x, x_{i-1}, x_i }. Then T_1, T_2, T_3 are forests and cover G. Note that $d_{T_3}(x) = 2$ and, for any $w \in V(T_3) - \{x\}, d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. 31 Hence the existence of T_1, T_2, T_3 contradicts the choice of G.
- Subcase 4.4: There is a $x_i \cdot x_{i-1}$ path in $T'_1 x_i x_{i+2}$, and there are no $x_i \cdot x_{i+1}$ paths in 33 $T'_1 - x_i x_{i+2}$ and $T'_2 - x_i x_{i-2}$.
- Then $x_i x_{i+1} \in \tilde{E}(T'_3)$ and $T'_1 x_i x_{i+2}$ contains no $x_{i-1} x_{i+2}$ path. Let $T_1 := (T'_1 35 \quad x_i x_{i+2}) + \{x, xx_{i-1}, xx_{i+2}\}, T_2 := (T'_2 x_i x_{i-2}) + \{x, x_i x_{i+1}, xx_{i-2}\}, \text{ and } T_3 := (T'_3 35)$
- x_1x_1+2 + $\{x, xx_{i+1}, xx_i\}$, T_2 := $(T_2 x_1x_1-2)$ + $\{x, x_1x_1+1, xx_1-2\}$, and T_3 := $(T_3 x_1x_1+1)$ + $\{x, xx_{i+1}, xx_i\}$. Then T_1, T_2, T_3 are forests and cover G. Note that $d_{T_3}(x) = 2$
- and, for any $w \in V(T_3) \{x\}$, $d_{T_3}(w) = d_{T'_3}(w) \leq 8$. So $\Delta(T_3) \leq 8$. Hence the existence of T_1, T_2, T_3 contradicts the choice of G.
- 39 Subcase 4.5: There is an $x_i \cdot x_{i+1}$ path in $T'_1 x_i x_{i+2}$, there is no $x_i \cdot x_{i-1}$ path in $T'_1 x_i x_{i+2}$, there is an $x_i \cdot x_{i-1}$ path in $T'_2 x_i x_{i-2}$, and there is no $x_i \cdot x_{i+1}$ path in $T'_2 x_i x_{i-2}$.
- 41 Then $T'_1 x_i x_{i+2}$ contains no $x_{i+1} x_{i+2}$ path, and $T'_2 x_i x_{i-2}$ contains no $x_{i-1} x_{i-2}$ path.
- 43 Let $T_1 := (T'_1 x_i x_{i+2}) + \{x, xx_{i+1}, xx_{i+2}\}, T_2 := (T'_2 x_i x_{i-2}) + \{x, xx_i, xx_{i-2}\}$, and $T_3 := T'_3 + \{x, xx_{i-1}\}$. Then T_1, T_2, T_3 are forests and cover *G*. Note that $d_{T_3}(x) = 1$ and, for
- 45 any $w \in V(T_3) \{x, x_{i-1}\}, d_{T_3}(w) = d_{T'_3}(w) \leq 8$. If x_{i-1} is low, then $d_{T'_3}(x_{i-1}) \leq d_{G'}(x_{i-1})$

⁸

ARTICLE IN PRESS

- 1 $-2 = d_G(x_{i-1}) 3 \le 7$, and so, $\Delta(T_3) \le 8$. Hence the existence of T_1, T_2, T_3 contradicts the choice of *G*. So x_{i-1} must be high.
- 3 Similarly, the forests $T_1 := (T'_1 x_i x_{i+2}) + \{x, xx_i, xx_{i+2}\}, T_2 := (T'_2 x_i x_{i-2}) + \{x, xx_{i-1}, xx_{i-2}\}, \text{ and } T_3 := T'_3 + \{x, xx_{i+1}\} \text{ allow us to conclude that } x_{i+1} \text{ must be high.}$
- 5 Subcase 4.6: There is an x_i - x_{i-1} path in T'_1 - $x_i x_{i+2}$, there is no x_i - x_{i+1} path in T'_1 - $x_i x_{i+2}$, there is an x_i - x_{i+1} path in T'_2 - $x_i x_{i-2}$, and there is no x_i - x_{i-1} path in T'_2 - $x_i x_{i-2}$.
- 7 Then $T'_1 x_i x_{i+2}$ contains no $x_{i-1} x_{i+2}$ path, and $T'_2 x_i x_{i-2}$ contains no $x_{i+1} x_{i-2}$ path.
- 9 Let $T_1 := (T'_1 x_i x_{i+2}) + \{x, xx_{i-1}, xx_{i+2}\}, T_2 := (T'_2 x_i x_{i-2}) + \{x, xx_i, xx_{i-2}\}$, and $T_3 := T'_3 + \{x, xx_{i+1}\}$. Then T_1, T_2, T_3 are forests and cover *G*. Note that $d_{T_3}(x) = 1$ and, for
- 11 any $w \in V(T_3) \{x, x_{i+1}\}, d_{T_3}(w) = d_{T'_3}(w) \le 8$. If x_{i+1} is low, then $d_{T'_3}(x_{i+1}) \le d_{G'}(x_{i+1})$ - 2 = $d_G(x_{i+1}) - 3 \le 7$, and so, $\Delta(T_3) \le 8$. Hence the existence of T_1, T_2, T_3 contradicts
- 13 the choice of G. So x_{i+1} must be high. Similarly, the forests $T_1 := (T'_1 - x_i x_{i+2}) + \{x, xx_i, xx_{i+2}\}, T_2 := (T'_2 - x_i x_{i-2}) +$
- 15 { x, xx_{i+1}, xx_{i-2} }, and $T_3 := T'_3 + \{x, xx_{i-1}\}$ allow us to conclude that x_{i-1} must be high. Therefore x_{i-1} and x_{i+1} are high. \Box
- 17 We can now complete the proof of Theorem 3 as follows.

Proof. By Theorem 2, there is a vertex x of G such that $d(x) \leq 5$ and x has at most two high neighbors. By Lemmas 4 and 5, we see that d(x) = 5. Let x_0, x_1, \ldots, x_4 denote

- the neighbors of x such that $x_0x_1 \dots x_4x_0$ is a facial cycle of G x. By planarity, there
- 21 exist $0 \le i \ne j \le 4$ such that $x_i x_{i-2}, x_i x_{i+2}, x_j x_{j-2}, x_j x_{j+2} \ne E(G)$. So by Lemma 6, $x_{i-1}, x_{i+1}, x_{j-1}, x_{j+1}$ are high vertices. Since $x_i \ne x_j$ and $x_0 x_1 x_2 x_3 x_4 x_0$ is a cycle,
- 23 $|\{x_{i-1}, x_{i+1}, x_{j-1}, x_{j+1}\}| \ge 3$. But this means that x has at least three high neighbors, a contradiction.
- It is not hard to see that we may further require T_1, T_2 be trees. \Box

4. Special planar graphs

- 27 In this section, we shall see that Theorem 3 can be improved for some special classes of planar graphs, thereby providing further evidence for Conjecture 1. Recall that a graph
- 29 is outerplanar if it can be embedded in the plane such that all vertices are incident with its infinite face.
- **Theorem 7.** Let G be a 2-connected outerplanar graph and let C be the cycle of an outerplanar embedding of G bounding the infinite face. Let $y \in V(C)$ and let $yx, yz \in E(C)$.
- 33 Then there is a forest T in G such that $d_{G-E(T)}(y) = 0$, $d_{G-E(T)}(x) \leq 1$, $d_{G-E(T)}(z) \leq 2$, $\Delta(G - E(T)) \leq 3$, and G - E(T) is a forest.
- **Proof.** We apply induction on |V(G)|. It is easy to see that the theorem holds when |V(G)| = 3. So assume that $|V(G)| \ge 4$. Without loss of generality, we may assume that x, y, z occur on *C* in the clockwise order listed.

ARTICLE IN PRESS

10

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

- 1 First, we consider the case when d(y) = 2. Let H := (G y) + xz and D := (C y) + xz. Then *H* can be embedded in the plane so that *H* is an outerplanar graph with *D*
- 3 bounding its infinite face. Let $xx' \in E(D)$ with $x' \neq z$ (because $|V(G)| \ge 4$). We apply induction to H, D, z, x, x' (as G, C, x, y, z, respectively). There is a forest S in H such that
- 5 $d_{H-E(S)}(x) = 0, d_{H-E(S)}(z) \le 1, d_{H-E(S)}(x') \le 2, \Delta(H E(S)) \le 3, \text{ and } H E(S) \text{ is a forest. Now let } T \text{ be the forest in } G \text{ obtained from } S \text{ by replacing the edge } xz \text{ of } S \text{ with the path}$
- 7 *xyz* in *G*. It is easy to see that $d_{G-E(T)}(y) = 0$. Because $d_{H-E(S)}(x) = 0$, $d_{G-E(T)}(x) \le 1$. Because $d_{H-E(S)}(z) \le 1$, $d_{G-E(T)}(z) \le 2$. The possible increase of 1 in the degrees comes
- 9 from the edge *xz*. Therefore, because $\Delta(H E(S)) \leq 3$, we have $\Delta(G E(T)) \leq 3$. Since G E(T) = (H E(S)) + xz and $d_{H E(S)}(x) = 0$, we see that G E(T) is also a forest.
- 11 So we may assume that $d(y) \ge 3$. We label the neighbors of y as y_1, \ldots, y_{k+1} in counterclockwise order on C. Then $k \ge 2$. Without loss of generality, assume that $y_1 = x$ and
- 13 $y_{k+1} = z$. For i = 1, ..., k, let C_i denote the cycle which is the union of $y_{i+1}y_{i}$ and the counterclockwise subpath of *C* from y_i to y_{i+1} , and let H_i denote the subgraph of *G* con-
- 15 tained in the closed disc bounded by C_i . Then H_i is an outerplanar graph and C_i bounds its infinite face. For each $1 \le i \le k$, we apply induction to H_i , C_i , y_i , y, y_{i+1} (as G, C, x, y, z,
- 17 respectively). Therefore, for each $1 \le i \le k$, H_i has a forest T_i such that $d_{H_i E(T_i)}(y) = 0$, $d_{H_i - E(T_i)}(y_i) \le 1$, $d_{H_i - E(T_i)}(y_{i+1}) \le 2$, $\Delta(H_i - E(T_i)) \le 3$, and $H_i - E(T_i)$ is a forest. Let
- 19 $T := \bigcup_{i=1}^{k} T_i$. Then *T* is a forest in *G*. It is easy to see that $d_{G-E(T)}(y) = 0, d_{G-E(T)}(x) \leq 1$, and $d_{G-E(T)}(z) \leq 2$. Note that for $i = 1, ..., k, d_{H_i-E(T_i)}(y_i) \leq 1$ and $d_{H_i-E(T_i)}(y_{i+1}) \leq 2$.
- 21 Hence, $d_{G-E(T)}(y_i) \leq 3$ for i = 2, ..., k-1. Thus, $\Delta(G E(T)) \leq 3$. It is also easy to see that $G E(T) = \bigcup_{i=1}^{k} (H_i E(T_i))$. Since $d_{G-E(T)}(y) = 0$, G E(T) is a forest. \Box
- The following example gives a family of outerplanar graphs which are not (1, 2)coverable. Take a long cycle $C = v_0v_1 \dots v_{2n+1}v_0$ and add the following edges: v_0v_{2i+1} for $i = 1, \dots, n-1$ and $v_{2i-1}v_{2i+1}$ for $i = 1, \dots, n$.
- Next, we show that all 4-connected planar graphs are (2, 6)-coverable. But first, we consider Hamiltonian planar graphs.

Corollary 8. If G is a Hamiltonian planar graph, then it is (2, 6)-coverable.

- **Proof.** Take a plane embedding of G and let C be a Hamiltonian cycle in G. Let G_1 (respectively, G_2) denote the subgraph of G inside (respectively, outside) the closed disc
- bounded by C. Then G_1 and G_2 are outer planar graphs (with C as the boundary cycle). Pick a vertex $y \in V(C)$, and apply Theorem 7 to G_i , i = 1, 2, we find a forest T_i in G_i such that
- 33 $d_{G_i E(T_i)}(y) = 0$ and $\Delta(G_i E(T_i)) \leq 3$. It is easy to verify that $\Delta(G E(T_1 \cup T_2)) \leq 6$.
- Tutte [6] proved that every 4-connected planar graph contains a Hamilton cycle. Thus, by Corollary 8, we have the following result.

37 **Corollary 9.** *If G is a* 4*-connected planar graph, then it is* (2, 6)*-coverable.*

It is well known that a graph is outerplanar if and only if it contains no K_4 -subdivision or $K_{3,2}$ -subdivision [1, Proposition 7.3.1]. In view of Theorem 7, it is natural to consider

ARTICLE IN PRESS

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

11

- 1 the class of graphs containing no K_4 -subdivisions and the class of graphs containing no $K_{3,2}$ -subdivisions.
- 3 The graphs containing no K_4 -subdivisions are also called *series-parallel* graphs. It is known that any simple series-parallel graph has a vertex of degree at most two (see [2]).
- 5 Therefore, by applying induction on the number of vertices, we can show that any simple series-parallel graph is (2, 0)-coverable.
- 7 On the other hand, the graph $K_{n,2}$ is series-parallel, but is not $(1, \lfloor \frac{n}{2} 2 \rfloor)$ -coverable. So it is natural to consider graphs containing no $K_{n,2}$ -subdivisions. An easier question
- 9 is to determine the smallest t and D so that every simple graph with no $K_{n,2}$ -minors is (t, D)-coverable, for $n \ge 2$. To this end, we consider the cases n = 2, 3. We note that when
- 11 n = 2, 3, a graph contains a $K_{n,2}$ -minor if, and only if, it contains a $K_{n,2}$ -subdivision.
- Note that if G is a simple graph containing no $K_{2,2}$ -minor, then every block of G is either 13 a triangle or induced by an edge. So it is easy to see that any simple graph containing no $K_{2,2}$ -minor is (1, 1)-coverable.
- 15 For graphs with no $K_{3,2}$ -minor, we have the following result.

Proposition 10. If G is a simple graph containing no $K_{3,2}$ -subdivision, then G is both (1, 3)-coverable and (2, 0)-coverable.

Proof. First we shall prove the existence of a (1, 3)-cover. To do this, we prove the followingstronger result.

(1) For any vertex v of G there is a forest T in G such that $d_{G-E(T)}(v) = 0$ and $\Delta(G - E(T)) \leq 3$.

We use induction on the number of K_4 -subdivisions contained in G. If G contains no 23 K_4 -subdivision, then it is outerplanar, and (1) follows from Theorem 7. So assume that G contains a K_4 -subdivision. In fact, every K_4 -subdivision in G must be isomorphic to K_4 ,

- 25 since any K_4 -subdivision not isomorphic to K_4 is also a $K_{3,2}$ -subdivision. Let $\{v_1, v_2, v_3, v_4\} \subseteq V(G)$ induce a K_4 in G. Since G has no $K_{3,2}$ -subdivision, G –
- 27 { $v_i v_j : 1 \le i \ne j \le 4$ } has exactly four components C_i with $v_i \in V(C_i)$, i = 1, 2, 3, 4. Without loss of generality, we may assume that $v \in V(C_1)$. By applying induction to
- 29 C_1 , we conclude that C_1 contains a forest T_1 such that $d_{C_1-E(T_1)}(v) = 0$ and $\Delta(C_1 E(T_1)) \leq 3$. Similarly, by applying induction to C_i , $i = 2, 3, 4, C_i$ contains a forest T_i such
- 31 that $d_{C_i E(T_i)}(v_i) = 0$ and $\Delta(C_i E(T_i)) \leq 3$. Let $T := (\bigcup_{i=1}^4 T_i) + \{v_1v_2, v_1v_3, v_1v_4\}$. It is easy to check that *T* is a forest, $d_{G-E(T)}(v) = 0$, and $\Delta(G - E(T)) \leq 3$.
- To prove that G is (2, 0)-coverable, it suffices to prove the following result (by using Nash-Williams' theorem).
- 35 (2) If G is a graph containing no $K_{3,2}$ -subdivision, then G contains at most 2|V(G)| 2 edges.
- It is easy to check that (2) holds when $|V(G)| \leq 4$. So assume that $|V(G)| \geq 5$. Then *G* is not a complete graph. Further, *G* is not 3-connected. For otherwise, there are three
- 39 internally disjoint paths in G between two non-adjacent vertices, and they would form a $K_{3,2}$ -subdivision in G.
- 41 So let $\{u, v\}$ be a 2-cut of G and let C be a component of $G \{u, v\}$. We choose $\{u, v\}$ and C so that |V(C)| is minimum (among all choices of 2-cuts of G). Assume for the moment
- 43 that |V(C)| = 1. Let $V(C) = \{x\}$. Then $d_G(x) = 2$. By applying induction to G x, we

ARTICLE IN PRESS

12

J. Balogh et al. / Journal of Combinatorial Theory, Series B III (IIII) III-III

- 1 see that $|E(G-x)| \leq 2|V(G-x)| 2$. Thus, $|E(G)| \leq 2|V(G)| 2$. Hence we may assume $|V(C)| \geq 2$. Let *S* denote the set of edges of *G* with one endpoint in $\{u, v\}$ and one endpoint
- 3 in V(C), and let $C^* := C + (\{u, v, uv\} \cup S)$. By the choice of $\{u, v\}$ and C, we can prove that C^* is 3-connected. Therefore, $C^* uv$ contains two internally disjoint paths P, Q
- 5 between *u* and *v*. On the other hand, G V(C) contains a path *R* from *u* to *v* and containing at least three vertices. Now $P \cup Q \cup R$ gives a $K_{3,2}$ -subdivision in *G*, a contradiction.

7 Acknowledgments

The authors thank László Lovász and Robin Thomas for helpful conversations.

9 References

- [1] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Mathematics and Applications, vol. 3, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
 - [2] J. Duffin, Topology of series-parallel networks, J. Math. Anal. Appl. 10 (1965) 303-318.
- 13 [3] L. Lovász, personal communication.
- [4] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961)445–450.
- [5] C.St.J.A. Nash-Williams, Decompositions of finite graphs into forests, J. London Math. Soc. 39 (1964) 12.
- 17 [6] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99–116.
- [7] W.T. Tutte, On the problem of decomposing a graph into *n* connected factors, J. London Math. Soc. 36 (1961)221–230.