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Abstract
11

We study the problem of covering graphs with trees and a graph of bounded maximum degree. By
a classical theorem of Nash-Williams, every planar graph can be covered by three trees. We show that13
every planar graph can be covered by two trees and a forest, and the maximum degree of the forest is
at most 8. Stronger results are obtained for some special classes of planar graphs.15
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1. Introduction

For a graph G, we use V (G) and E(G) to denote the vertex set and edge set of G,21
respectively. For two subgraphs H and K of a graph, we use H ∪ K to denote the union
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of H and K. We say that a graph G can be covered by subgraphs G1, . . . , Gk of G if1 ⋃k
i=1 Gi = G.
A well-known theorem of Nash-Williams [5] (based on a result proved independently in3

[4,7]) states that the edges of a graph G can be covered by t trees if, and only if, for every
A ⊆ V (G), e(A)�(|A| − 1)t , where e(A) denotes the number of edges of G with both5
ends in A. One way to extend this result is to cover graphs with trees (or forests) and a graph
with bounded degree. We say that a graph is (t, D)-coverable if it can be covered by at most7
t forests and a graph of maximum degree D.

It is easy to check that if a graph G is (t, D)-coverable, then, for any two disjoint subsets9
A, B of V (G), ft (A) + e(A, B)�D · |A| + t (|A| + |B| − 1), where e(A, B) denotes
the number of edges of G with one endpoint in A and the other in B, ft (A) = e(A) if11
e(A)� t (|A|−1), and ft (A) = 2e(A)− t (|A|−1) otherwise. Unfortunately, this condition
is not sufficient. For example, by deleting one edge from the Petersen graph, we obtain a13
graph that satisfies the above inequality with t = D = 1, but is not (1, 1)-coverable.

It is interesting to know what can be said about planar graphs. The aforementioned15
theorem of Nash-Williams implies that every planar graph is (3, 0)-coverable. As pointed
out by Lovász [3] there are infinitely many planar graphs which are not (2,3)-coverable:17
take a triangle, put a vertex inside and connect it to the vertices of the triangle, and repeat
this operation for each new triangle. After repeating this process for a while, we get a graph19
on n vertices with roughly 2n/3 vertices of degree 3. This graph does not satisfy the above
inequality about ft (A) (with t = 2, D = 3, B the set of vertices of degree 3, and A the set of21
vertices of degree at least 4), and so, it is not (2,3)-coverable. The double wheel on 2D + 4
vertices (that is, a cycle of length 2D + 2 plus two vertices and all edges from these two23
vertices to the cycle) shows that planar graphs need not be (1, D)-coverable. However, we
believe the following is correct.25

Conjecture 1. Every simple planar graph is (2, 4)-coverable.

As evidence for this conjecture, we shall prove that every simple planar graph is (2, 8)-27
coverable. This will be done in Section 3, with the help of a result from Section 2. In
Section 4, we shall show that every simple outerplanar graph is (1, 3)-coverable, and as a29
consequence, every 4-connected planar graph is (2, 6)-coverable. We shall also consider
graphs which are series-parallel or contain no K3,2-subdivision. We conclude this section31
with some notation.

Throughout the remainder of this paper, we shall consider only simple graphs. Let G be33
a graph. An edge of G with endpoints x and y will be denoted by xy or yx. Paths and cycles
in G will be denoted by sequences of vertices of G. For any x ∈ V (G), let NG(x) := {y ∈35
V (G) : xy ∈ E(G)}, and let dG(x) := |NG(x)|, the degree of x. When G is known from
the context, we shall simply write N(x) and d(x). Let �(G) := max{d(x) : x ∈ V (G)}.37
For any S ⊆ V (G), we use G − S to denote the graph with vertex set V (G) − S and edge
set {uv ∈ E(G) : {u, v} ⊆ V (G) − S}. For any S ⊆ E(G), we use G − S to denote the39
graph with vertex set V (G) and edge set E(G) − S. When S = {s}, we shall simply write
G − s. Let H be a subgraph of G and let S ⊆ V (G) ∪ E(G) such that every edge of G in41
S has both endpoints in V (H) ∪ (S ∩ V (G)), then we use H + S to denote the graph with
vertex set V (H) ∪ (S ∩ V (G)) and edge set E(H) ∪ (S ∩ E(G)).43
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Recall that a plane graph is a graph drawn in the plane with no pairs of edges crossing.1
A facial cycle of a plane graph G is a cycle that bounds a face of G. A planar triangulation
is a plane graph in which every face is bounded by a triangle.3

2. High vertices

In this section, we shall prove the following result about planar graphs. This result will5
be used in the next section to prove that all planar graphs are (2, 8)-coverable. Let G be a
graph and x ∈ V (G). Then x is said to be high if d(x)�11, and low otherwise.7

Theorem 2. Every planar graph contains a vertex of degree at most 5 which is adjacent to
at most two high vertices.9

Proof. Suppose the statement is not true. Then there is a planar triangulation G such that
every vertex of degree at most 5 is adjacent to at least three high vertices. Therefore, all11
vertices of G have degree at least 3.

Let v ∈ V (G) with d(v) = 4. We say that v is 4-independent if, for any u ∈ N(v),13
d(u) �= 4; otherwise, we say that v is 4-dependent. Let u1, u2 be two adjacent 4-dependent
vertices. Then G − {u1, u2} has a facial cycle v1v2v3v4v1, and v1, v2, v3, v4 are all high15
vertices of G. Furthermore, the notation can be chosen so that v1, v3 are adjacent to both u1
and u2, and v2 (respectively, v4) is adjacent with u1 (respectively, u2). In this case we say17
that v1, v3 are u1-weak and v2 is u1-strong, and v1, v3 are u2-weak and v4 is u2-strong.

Next, we define a weight function � : V (G) → R by making changes to the degree19
function d : V (G) → R. For each high vertex v of G, we make changes to d(v) and d(u)

for all u ∈ N(v) with d(u)�5, according to the following rules:
21

(R1) If u ∈ N(v) and d(u) = 3, then subtract 1 from d(v) and add 1 to d(u).
(R2) If u ∈ N(v) and d(u) = 5, then subtract 1

3 from d(v) and add 1
3 to d(u).23

(R3) If u ∈ N(v) and u is 4-independent, then subtract 2
3 from d(v) and add 2

3 to d(u).
(R4) If u ∈ N(v), u is 4-dependent, and v is u-strong, then subtract 1 from d(v) and add 125

to d(u).
(R5) If u ∈ N(v), u is 4-dependent, and v is u-weak, then subtract 1

2 from d(v) and add 1
227

to d(u).

Let � : V (G) → R denote the resulting function. For convenience, when we subtract a29
quantity � from d(v) and add a quantity � to d(u), we will simply say that v sends charge
� to u or u receives charge � from v.31

Clearly,
∑

x∈V (G)

d(x) =
∑

x∈V (G)

�(x).
33

Since G has 3|V (G)| − 6 edges,
∑

x∈V (G) d(x) < 6|V (G)|. Hence there exists a vertex x
of G such that �(x) < 6. We shall derive a contradiction by showing that �(x)�6 for all35
x ∈ V (G). Let x ∈ V (G). We distinguish two cases.
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Case 1: x is low.1
If d(x) = 3 then, since all its neighbors are high, �(x) = d(x) + 3 = 3 + 3 = 6 by

(R1).3
If d(x) = 5 then, since x has k�3 high neighbors, �(x) = d(x) + k/3 = 5 + k/3�6

by (R2).5
Now assume d(x) = 4. If x is 4-independent then, since x has k�3 high neighbors,

�(x) = d(x) + 2k/3 = 4 + 2k/3�6 by (R3). If x is 4-dependent then, since x has three7
high neighbors (two are x-weak and one is x-strong), �(x) = 4 + 1

2 + 1
2 + 1 = 6 by (R4)

and (R5).9
If 6�d(x)�10, then �(x) = d(x)�6.
Case 2: x is high.11
Let d(x) = k. Then k�11. Since G is a planar triangulation, G − x has a facial cycle

Ck such that V (Ck) = N(x). We partition V (Ck) into the following five sets. Let A :=13
{u ∈ N(x) : d(u) = 3, or u is 4-dependent and x is u-strong}. Let B := {u ∈ N(x) : u is
4-dependent and x is u-weak}. Let C := {u ∈ N(x) : u is 4-independent}. Let D := {u ∈15
N(x) : d(u) = 5}. Finally, let S := {u ∈ N(x) : d(u)�6}. Because every vertex of degree
at most 5 has at least 3 high neighbors, one can easily check that the following statements17
hold:

(1) if u ∈ A, then u has two neighbors in S, and u receives charge 1 from x (by (R1) and19
(R4)).

(2) if u ∈ B, then (by planarity) u has one neighbor in B and one neighbor in S, and u21
receives charge 1

2 from x (by (R5)).
(3) if u ∈ C, then u has at least one neighbor in S and at most one neighbor in D, and u23

receives charge 2
3 from x (by (R3)).

(4) if u ∈ D, then u can have neighbors in C ∪ D ∪ S, and u receives charge 1
3 from x (by25

(R2)).
(5) if u ∈ S, then u receives no charge from x.27

Therefore, if S = ∅, then A = B = C = ∅, and hence, D = V (Ck) and, by (4),
�(x) = k − (k/3)� 22

3 > 6.29
So assume S �= ∅. Let S = {s1, . . . , sm} such that s1, . . . , sm occur on Ck in that

clockwise order. If m = 1, let S1 = Ck and s2 = s1. If m�2, the vertices in S divide Ck31
into k internally disjoint paths: for 1� i�k, let Si denote the clockwise subpath of Ck from
si to si+1, where sm+1 = s1. Let S′

i := Si − {si, si+1}.33
We claim that, for each 1� i�m, one of the following holds:

(a) |V (S′
i )|�1.35

(b) |V (S′
i )| = 2 and V (S′

i ) ⊆ B.
(c) |V (S′

i )| = 2, V (S′
i ) ⊆ C ∪ D and V (S′

i ) ∩ D �= ∅.37
(d) |V (S′

i )|�3, V (S′
i ) ⊆ C ∪ D and all internal vertices of S′

i are contained in D.

To prove this claim, assume that |V (S′
i )|�2 (that is, not (a)) and let Si = x0x1, . . . ,39

xnxn+1, where x0 = si and xn+1 = si+1. Thus, x0, xn+1 ∈ S, n�2, and x1, . . . , xn /∈ S.
Recall that we allow x0 = xn+1, which occurs when m = 1. Then, for each 1�j �n,41
xj /∈ A; for otherwise, by (1), {xj−1, xj+1} ⊆ S, contradicting the fact that x1, . . . , xn /∈ S.
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Now assume that there is some xj ∈ B. Since xj has at least three high neighbors, one1
element of {xj−1, xj+1} is high. By symmetry we may assume that xj−1 is high. Then
xj−1 ∈ S. Since xj ∈ B, x is xj -weak. So xj+1 ∈ B, xj+2 is high, and xj+2 ∈ S. Hence,3
xj−1 = x0 and xj+2 = xn+1, n = 2, and {x1, x2} ⊆ B. That is, V (S′

i ) consists of exactly two
vertices which are in B, and (b) holds. So we may assume that {x1, . . . , xn} ⊆ C ∪ D, that5
is, V (S′

i ) ⊆ C ∪D. Then, since each xj has at least three high neighbors, x2, . . . , xn−1 ∈ D

and, if n = 2 then x1 ∈ D, or xn ∈ D. So we have (c) and (d).7
Now, let us calculate �(x) by finding out how much charge x sends to vertices of S′

i .
Suppose (a) holds for S′

i . If |V (S′
i )| = 1 then the charge that x sends to S′

i is at most9

1 = 	|V (S′
i )|+1
2 
. If |V (S′

i )| = 0 then the charge that x sends to S′
i is 0 = 	|V (S′

i )|+1
2 
. If (b)

holds for S′
i , then by (2), the charge that x sends to vertices of S′

i is 1
2 + 1

2 = 1 = 	|V (S′
i )|/2
.11

Now assume (c) holds for S′
i . If |V (S′

i )| = 2 then by (c) at least one vertex of S′
i is in D, and

by (3) and (4), the charge that x sends to vertices of S′
i is at most 2

3 + 1
3 = 1 = 	|V (S′

i )|/2
. If13
|V (S′

i )|�3, then by (d), all internal vertices of S′
i are in D, and by (3) and (4), the charge that

x sends to S′
i is at most (n− 2)/3 + 2

3 + 2
3 = (n+ 2)/3�	(n+ 1)/2
 = 	(|V (S′

i )| + 1)/2
15
(because n = |V (S′

i )|�3). By (5), x sends no charge to vertices in S. Hence, the total charge
that x sends to its neighbors is at most17

m∑
i=1

⌊ |V (S′
i )| + 1

2

⌋
�

⌊
(
∑m

i=1 |V (S′
i )|) + m

2

⌋
= 	d(x)/2
.

So �(x)�d(x) − 	d(x)/2
. Since d(x)�11, �(x)�6. �19

Theorem 2 no longer holds if we define high vertices as those of degree 10 or more.
Consider a planar triangulation with vertices of degrees 6 and 5. Put into each triangle a21
vertex and join it to all vertices of the triangle. We get a planar triangulation with vertices
of degrees 3, 10, 12, and each vertex has at least 3 neighbors of degree at least 10.23

3. Covering with forests

In this section we prove that every planar graph is (2,8)-coverable. In fact, we prove the25
following stronger result.

Theorem 3. For each planar graph G, there exist forests T1, T2, and T3 such that G =27
T1 ∪ T2 ∪ T3 and �(T3)�8.

The proof is by way of contradiction. Suppose Theorem 3 is not true. Let G be a counter29
example with |V (G)| minimum. Without loss of generality, we may assume that G is a planar
triangulation. Hence the minimum degree of G is at least 3. We shall derive a contradiction31
to Theorem 2 by showing that every vertex of G with degree at most 5 has at least three
high neighbors.33

Lemma 4. If x ∈ V (G) and d(x) = 3, then all three neighbors of x are high.
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Proof. Consider the graph G′ := G − x. By the choice of G, G′ can be covered by three1
forests T ′

1, T ′
2, and T ′

3 such that �(T ′
3)�8. Without loss of generality, we may further assume

that T ′
1, T

′
2, T

′
3 are edge disjoint, and subject to this, |E(T ′

3)| is minimum. Therefore, for any3
u ∈ V (T ′

3), dT ′
i
(u)�1 for i = 1, 2. Hence, dT ′

3
(v)�dG′(v) − 2 for every vertex v of G′.

Suppose some neighbor of x is not high, say y. Then dG(y)�10. So dG′(y)�9, and5
dT ′

3
(y)�dG′(y) − 2�7. Let v, w be the other two neighbors of x. Let T1 := T ′

1 + {x, xv},
T2 := T ′

2 +{x, xw}, and let T ′
3 := T3 +{x, xy}. It is easy to check that T1, T2, T3 are forests7

and cover G. Note that dT3(y) = dT ′
3
(y) + 1�8 and, for any u ∈ V (T3) − {y}, dT3(u) =

dT ′
3
(u)�8. So �(T3)�8. Hence, the existence of T1, T2, T3 contradicts the choice of G. So9

all neighbors of x are high. �

Lemma 5. If x ∈ V (G) and d(x) = 4, then at least three neighbors of x are high.11

Proof. Let u, y, v and z denote the neighbors of x, occurring in that clockwise order around
x. Since G is planar, uv /∈ E(G) or yz /∈ E(G). Without loss of generality we may assume13
that yz /∈ E(G). Then G′ := (G − x) + yz is a planar triangulation. By the choice
of G, G′ can be covered by three forests T ′

1, T
′
2, T

′
3 such that �(T ′

3)�8. We may further15
assume that T ′

1, T
′
2, T

′
3 are edge disjoint, and subject to this, |E(T ′

3)| is minimum. Therefore,
dT ′

3
(v)�dG′(v) − 2 for every vertex v of G′.17

If yz ∈ E(T ′
3), we let T1 := T ′

1 + {x, ux}, T2 := T ′
2 + {x, vx} and T3 := (T ′

3 − yz) +
{x, yx, xz}. It is easy to see that T1, T2, T3 are forests and cover G. Note that dT3(x) = 219
and, for any w ∈ V (T3) − {x}, dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence, the existence

of T1, T2, T3 contradicts the choice of G.21
So yz �∈ E(T ′

3). Then yz ∈ E(T ′
1) ∪ E(T ′

2). By symmetry, we may assume that yz ∈
E(T ′

1).23
We claim that u must be high. For, suppose u is low. Then dG′(u) = dG(u) − 1�9

and dT ′
3
(u)�dG′(u) − 2�7. Let T1 := (T ′

1 − yz) + {x, xy, xz}, T2 := T ′
2 + {x, xv}, and25

T3 := T ′
3 + {x, xu}. Then T1, T2, T3 are forests and cover G. Note that dT3(x) = 1 and

dT3(u) = dT ′
3
(u) + 1�8, and for any w ∈ V (T3) − {u, x}, dT3(w) = dT ′

3
(w)�8. So27

�(T3)�8. Hence the existence of T1, T2, T3 contradicts the choice of G.
By a symmetric argument, we can show that v is also high.29
Next we show that y is high or z is high. Suppose both y and z are low. Since T ′

1 is a forest
and yz ∈ E(T ′

1), T ′
1 − yz does not contain both a y–v path and a z–v path. By symmetry,31

we may assume that T ′
1 − yz contain no y–v path. Let T1 := (T ′

1 − yz) + {x, v, yx, xv},
T2 := T ′

2 + {x, ux} and T3 := T ′
3 + {x, xz}. Then T1, T2, T3 are forests and cover G. Note33

that dT3(x) = 1 and, for any w ∈ V (T3)−{x}, dT3(w) = dT ′
3
(w)�8. So �(T ′

3)�8. Hence,
the existence of T1, T2, T3 contradicts the choice of G.35

Therefore, at least three neighbors of x are high. �

Lemma 6. Let x ∈ V (G) with d(x) = 5, and let x0, x1, x2, x3 and x4 denote the neighbors37
of x which occur around x in that clockwise order. For any 0� i�4, if xixi+2 /∈ E(G) and
xixi−2 /∈ E(G), then both xi−1 and xi+1 are high. (Subscripts are taken modulo 5.)39

Proof. Since G is a planar triangulation, x0x1x2x3x4x0 is a facial cycle of G − x. Suppose
0� i�4, xixi+2 /∈ E(G), and xixi−2 /∈ E(G). Then by the choice of G, G′ = (G − x) +41
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{xixi+2, xixi−2} can be covered by three forests T ′
1, T

′
2, T

′
3, with �(T ′

3)�8. We may further1
assume that T ′

1, T
′
2, T

′
3 are edge disjoint, and subject to this, |E(T ′

3)| is minimum. Therefore,
dT ′

3
(v)�dG′(v) − 2 for every vertex v of G′.3

Case 1: {xixi+2, xixi−2} ⊆ E(T ′
3).

Let T1 := T ′
1 + {x, xxi+1}, T2 := T ′

2 + {x, xxi−1} and T3 := (T ′
3 − {xixi+2, xixi−2}) +5

{x, xxi+2, xxi−2, xxi}. Clearly, T1, T2, T3 are forests and cover G. Note that dT3(x) = 3
and, for any w ∈ V (T3) − {x}, dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence the existence of7

T1, T2, T3 contradicts the choice of G.
Case 2: {xixi+2, xixi−2} ⊆ E(T ′

1) or {xixi+2, xixi−2} ⊆ E(T ′
2).9

By symmetry, we may assume that {xixi+2, xixi−2} ⊆ E(T ′
1). We show that both

xi+1 and xi−1 are high. For, assume by symmetry that xi−1 is low. Then dG′(xi−1) =11
dG(xi−1) − 1�9 and dT ′

3
(xi−1)�dG′(xi−1) − 2�7. Let T1 := (T ′

1 − {xixi+2, xixi−2}) +
{x, xxi+2, xxi−2, xxi}, T2 := T ′

2 + {x, xi+1x}, T3 := T ′
3 + {x, xxi−1}. Then T1, T2, T3 are13

forests and cover G. Note that dT3(x) = 1, dT3(xi−1)�8 and, for any w ∈ V (T3)−{x, xi−1},
dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence the existence of T1, T2, T3 contradicts the choice15

of G.
Case 3: One element of {xixi+2, xixi−2} is in E(T ′

3) and the other is in E(T ′
1) ∪ E(T ′

2).17
By symmetry, we may assume that xixi+2 ∈ E(T ′

1) and xixi−2 ∈ E(T ′
3). We consider

five subcases.19
Subcase 3.1: T ′

1 − xixi+2 contains an xi-xi+1 path. Then T ′
1 − xixi+2 contains no xi+1-

xi+2 path. In this case, let T1 := (T ′
1 − xixi+2) + {x, xxi+2, xxi+1}, T2 := T ′

2 + {x, xxi−1}21
and T3 := (T ′

3 − xixi−2) + {x, xxi, xxi−2}. Then T1, T2, T3 are forests and cover G. Note
that dT3(x) = 2 and, for any w ∈ V (T3) − {x}, dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence23

the existence of T1, T2, T3 contradicts the choice of G.
Subcase 3.2: T ′

1 − xixi+2 contains an xi-xi−1 path. Then T ′
1 − xixi+2 contains no xi−1-25

xi+2 path. In this case, let T1 := (T ′
1 − xixi+2) + {x, xxi+2, xxi−1}, T2 := T ′

2 + {x, xxi+1}
and T3 := (T ′

3 − xixi−2) + {x, xxi, xxi−2}. Then T1, T2, T3 are forests and cover G. Note27
that dT3(x) = 2 and, for any w ∈ V (T3) − {x}, dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence

the existence of T1, T2, T3 contradicts the choice of G.29
Subcase 3.3: T ′

1 − xixi+2 contains neither an xi-xi+1 path nor an xi-xi−1 path, and
xixi−1 ∈ E(T ′

3). Let T1 := (T ′
1 −xixi+2)+{x, xi−1, xixi−1, xxi+2}, T2 := T ′

2 +{x, xxi+1},31
and T3 := (T ′

3 −{xixi−2, xixi−1})+{x, xxi, xxi−1, xxi−2}. Then T1, T2, T3 are forests and
cover G. Note that dT3(x) = 3, dT3(xi) = dT ′

3
(xi) − 1, and for any w ∈ V (T ′

3) − {x, xi},33
dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence the existence of T1, T2, T3 contradicts the choice

of G.35
Subcase 3.4: T ′

1 − xixi+2 contains neither an xi-xi+1 path nor an xi-xi−1 path, and
xixi+1 ∈ E(T ′

3). Let T1 := (T ′
1 −xixi+2)+{x, xi+1, xixi+1, xxi+2}, T2 := T ′

2 +{x, xxi−1},37
and T3 := (T ′

3 −{xixi−2, xixi+1})+{x, xxi, xxi+1, xxi−2}. Then T1, T2, T3 are forests and
cover G. Note that dT3(x) = 3, dT3(xi) = dT ′

3
(xi) − 1, and for any w ∈ V (T ′

3) − {x, xi},39
dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence the existence of T1, T2, T3 contradicts the choice

of G.41
Subcase 3.5: T ′

1 − xixi+2 contains neither an xi-xi+1 path nor an xi-xi−1 path, and
xixi−1, xixi+1 /∈ E(T ′

3). Then xixi−1, xixi+1 ∈ E(T ′
2). Let T1 := (T ′

1 − xixi+2) +43
{x, xi+1, xixi+1, xxi+2},T2 := (T ′

2−xixi+1)+{x, xxi−1, xxi+1}, andT3 := (T ′
3−xixi−2)+

{x, xxi, xxi−2}. Then T1, T2, T3 are forests and cover G. Note that dT3(x) = 2 and, for any45
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w ∈ V (T ′
3) − {x}, dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence the existence of T1, T2, T31

contradicts the choice of G.
Case 4: One element of {xixi+2, xixi−2} is in E(T ′

1) and the other is in E(T ′
2).3

Without loss of generality, we may assume that xixi+2 ∈ E(T ′
1) and xixi−2 ∈ E(T ′

2).
Then, up to symmetry, it suffices to check the following six subcases.5

Subcase 4.1: T ′
1 − xixi+2 contains neither an xi-xi−1 path nor an xi-xi+1 path, and

T ′
2 − xixi−2 contains neither an xi-xi−1 path nor an xi-xi+1 path.7
Then {xixi+1, xixi−1} ⊆ E(T ′

3). Let T1 := (T ′
1 − xixi+2) + {x, xi+1, xixi+1, xxi+2},

T2 := (T ′
2 − xixi−2) + {x, xi−1, xixi−1, xxi−2}, and T3 := (T ′

3 − {xixi+1, xixi−1}) +9
{x, xxi+1, xxi, xxi−1}. Then T1, T2, T3 are forests and cover G. Note that dT3(x) = 3,
dT3(xi) = dT ′

3
(xi) − 1 and, for any w ∈ V (T3) − {x, xi}, dT3(w) = dT ′

3
(w)�8. So11

�(T3)�8. Hence the existence of T1, T2, T3 contradicts the choice of G.
Subcase 4.2: T ′

1−xixi+2 contains both an xi-xi−1 path and an xi-xi+1 path, or T ′
2−xixi−213

contains both an xi-xi−1 path and an xi-xi+1 path.
By symmetry, we may assume that T ′

1 − xixi+2 contains an xi-xi−1 path and an15
xi-xi+1 path. Then T ′

1 − xixi+2 contains no xi+1-xi+2 path. Let T1 := (T ′
1 − xixi+2) +

{x, xxi+1, xxi+2}, T2 := (T ′
2 − xixi−2) + {x, xxi, xxi−2}, and T3 := T ′

3 + {x, xxi−1}.17
Then T1, T2, T3 are forests and cover G. Note that dT3(x) = 1 and, for any w ∈
V (T3) − {x, xi−1}, dT3(w) = dT ′

3
(w)�8. If xi−1 is low, then dT ′

3
(xi−1)�19

dG′(xi−1) − 2 = dG(xi−1) − 3�7, and so, dT3(xi−1)�8 and �(T3)�8. Hence the
existence of T1, T2, T3 contradicts the choice of G. So xi−1 must21
be high.

Similarly, the forests T1 := (T ′
1 − xixi+2) + {x, xxi−1, xxi+2}, T2 := (T ′

2 − xixi−2) +23
{x, xxi, xxi−2}, and T3 := T ′

3 + {x, xxi+1} allow us to conclude that xi+1 must be high.
Subcase 4.3: There is an xi-xi+1 path in T ′

1 − xixi+2, and there are no xi-xi−1 paths in25
T ′

1 − xixi+2 and T ′
2 − xixi−2.

Then xixi−1 ∈ E(T ′
3) and T ′

1 − xixi+2 contains no xi+1-xi+2 path. Let T1 := (T ′
1 −27

xixi+2) + {x, xxi+1, xxi+2}, T2 := (T ′
2 − xixi−2) + {x, xixi−1, xxi−2}, and T3 := (T ′

3 −
xixi−1) + {x, xxi−1, xxi}. Then T1, T2, T3 are forests and cover G.29
Note that dT3(x) = 2 and, for any w ∈ V (T3) − {x}, dT3(w) = dT ′

3
(w)�8. So �(T3)�8.

Hence the existence of T1, T2, T3 contradicts the choice of G.31
Subcase 4.4: There is a xi-xi−1 path in T ′

1 − xixi+2, and there are no xi-xi+1 paths in
T ′

1 − xixi+2 and T ′
2 − xixi−2.33

Then xixi+1 ∈ E(T ′
3) and T ′

1 − xixi+2 contains no xi−1-xi+2 path. Let T1 := (T ′
1 −

xixi+2) + {x, xxi−1, xxi+2}, T2 := (T ′
2 − xixi−2) + {x, xixi+1, xxi−2}, and T3 := (T ′

3 −35
xixi+1) + {x, xxi+1, xxi}. Then T1, T2, T3 are forests and cover G. Note that dT3(x) = 2
and, for any w ∈ V (T3) − {x}, dT3(w) = dT ′

3
(w)�8. So �(T3)�8. Hence the existence of37

T1, T2, T3 contradicts the choice of G.
Subcase 4.5: There is an xi-xi+1 path in T ′

1−xixi+2, there is no xi-xi−1 path in T ′
1−xixi+2,39

there is an xi-xi−1 path in T ′
2 − xixi−2, and there is no xi-xi+1 path in T ′

2 − xixi−2.
Then T ′

1 − xixi+2 contains no xi+1-xi+2 path, and T ′
2 − xixi−2 contains no xi−1-xi−241

path.
Let T1 := (T ′

1 −xixi+2)+{x, xxi+1, xxi+2}, T2 := (T ′
2 −xixi−2)+{x, xxi, xxi−2}, and43

T3 := T ′
3+{x, xxi−1}. Then T1, T2, T3 are forests and cover G. Note that dT3(x) = 1 and, for

any w ∈ V (T3)−{x, xi−1}, dT3(w) = dT ′
3
(w)�8. If xi−1 is low, then dT ′

3
(xi−1)�dG′(xi−1)45
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− 2 = dG(xi−1) − 3�7, and so, �(T3)�8. Hence the existence of T1, T2, T3 contradicts1
the choice of G. So xi−1 must be high.

Similarly, the forests T1 := (T ′
1 − xixi+2) + {x, xxi, xxi+2}, T2 := (T ′

2 − xixi−2) +3
{x, xxi−1, xxi−2}, and T3 := T ′

3 + {x, xxi+1} allow us to conclude that xi+1 must be high.
Subcase 4.6: There is an xi-xi−1 path in T ′

1−xixi+2, there is no xi-xi+1 path in T ′
1−xixi+2,5

there is an xi-xi+1 path in T ′
2 − xixi−2, and there is no xi-xi−1 path in T ′

2 − xixi−2.
Then T ′

1 − xixi+2 contains no xi−1-xi+2 path, and T ′
2 − xixi−2 contains no xi+1-xi−27

path.
Let T1 := (T ′

1 −xixi+2)+{x, xxi−1, xxi+2}, T2 := (T ′
2 −xixi−2)+{x, xxi, xxi−2}, and9

T3 := T ′
3+{x, xxi+1}. Then T1, T2, T3 are forests and cover G. Note that dT3(x) = 1 and, for

any w ∈ V (T3)−{x, xi+1}, dT3(w) = dT ′
3
(w)�8. If xi+1 is low, then dT ′

3
(xi+1)�dG′(xi+1)11

− 2 = dG(xi+1) − 3�7, and so, �(T3)�8. Hence the existence of T1, T2, T3 contradicts
the choice of G. So xi+1 must be high.13

Similarly, the forests T1 := (T ′
1 − xixi+2) + {x, xxi, xxi+2}, T2 := (T ′

2 − xixi−2) +
{x, xxi+1, xxi−2}, and T3 := T ′

3 + {x, xxi−1} allow us to conclude that xi−1 must be high.15
Therefore xi−1 and xi+1 are high. �

We can now complete the proof of Theorem 3 as follows.17

Proof. By Theorem 2, there is a vertex x of G such that d(x)�5 and x has at most two
high neighbors. By Lemmas 4 and 5, we see that d(x) = 5. Let x0, x1, . . . , x4 denote19
the neighbors of x such that x0x1 . . . x4x0 is a facial cycle of G − x. By planarity, there
exist 0� i �= j �4 such that xixi−2, xixi+2, xj xj−2, xj xj+2 /∈ E(G). So by Lemma 6,21
xi−1, xi+1, xj−1, xj+1 are high vertices. Since xi �= xj and x0x1x2x3x4x0 is a cycle,
|{xi−1, xi+1, xj−1, xj+1}|�3. But this means that x has at least three high neighbors, a23
contradiction.

It is not hard to see that we may further require T1, T2 be trees. �25

4. Special planar graphs

In this section, we shall see that Theorem 3 can be improved for some special classes27
of planar graphs, thereby providing further evidence for Conjecture 1. Recall that a graph
is outerplanar if it can be embedded in the plane such that all vertices are incident with its29
infinite face.

Theorem 7. Let G be a 2-connected outerplanar graph and let C be the cycle of an outer-31
planar embedding of G bounding the infinite face. Let y ∈ V (C) and let yx, yz ∈ E(C).
Then there is a forest T in G such that dG−E(T )(y) = 0, dG−E(T )(x)�1, dG−E(T )(z)�2,33
�(G − E(T ))�3, and G − E(T ) is a forest.

Proof. We apply induction on |V (G)|. It is easy to see that the theorem holds when35
|V (G)| = 3. So assume that |V (G)|�4. Without loss of generality, we may assume that
x, y, z occur on C in the clockwise order listed.37
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First, we consider the case when d(y) = 2. Let H := (G − y) + xz and D := (C −1
y) + xz. Then H can be embedded in the plane so that H is an outerplanar graph with D
bounding its infinite face. Let xx′ ∈ E(D) with x′ �= z (because |V (G)|�4). We apply3
induction to H, D, z, x, x′ (as G, C, x, y, z, respectively). There is a forest S in H such that
dH−E(S)(x) = 0, dH−E(S)(z)�1, dH−E(S)(x

′)�2, �(H − E(S))�3, and H − E(S) is a5
forest. Now let T be the forest in G obtained from S by replacing the edge xz of S with the path
xyz in G. It is easy to see that dG−E(T )(y) = 0. Because dH−E(S)(x) = 0, dG−E(T )(x)�1.7
Because dH−E(S)(z)�1, dG−E(T )(z)�2. The possible increase of 1 in the degrees comes
from the edge xz. Therefore, because �(H − E(S))�3, we have �(G − E(T ))�3. Since9
G−E(T ) = (H −E(S))+xz and dH−E(S)(x) = 0, we see that G−E(T ) is also a forest.

So we may assume that d(y)�3. We label the neighbors of y as y1, . . . , yk+1 in coun-11
terclockwise order on C. Then k�2. Without loss of generality, assume that y1 = x and
yk+1 = z. For i = 1, . . . , k, let Ci denote the cycle which is the union of yi+1yyi and the13
counterclockwise subpath of C from yi to yi+1, and let Hi denote the subgraph of G con-
tained in the closed disc bounded by Ci . Then Hi is an outerplanar graph and Ci bounds its15
infinite face. For each 1� i�k, we apply induction to Hi, Ci, yi, y, yi+1 (as G, C, x, y, z,
respectively). Therefore, for each 1� i�k, Hi has a forest Ti such that dHi−E(Ti)(y) = 0,17
dHi−E(Ti)(yi)�1, dHi−E(Ti)(yi+1)�2, �(Hi − E(Ti))�3, and Hi − E(Ti) is a forest. Let
T := ⋃k

i=1 Ti . Then T is a forest in G. It is easy to see that dG−E(T )(y) = 0, dG−E(T )(x)�1,19
and dG−E(T )(z)�2. Note that for i = 1, . . . , k, dHi−E(Ti)(yi)�1 and dHi−E(Ti)(yi+1)�2.
Hence, dG−E(T )(yi)�3 for i = 2, . . . , k − 1. Thus, �(G−E(T ))�3. It is also easy to see21
that G − E(T ) = ⋃k

i=1(Hi − E(Ti)). Since dG−E(T )(y) = 0, G − E(T ) is a forest. �

The following example gives a family of outerplanar graphs which are not (1, 2)-23
coverable. Take a long cycle C = v0v1 . . . v2n+1v0 and add the following edges: v0v2i+1
for i = 1, . . . , n − 1 and v2i−1v2i+1 for i = 1, . . . , n.25

Next, we show that all 4-connected planar graphs are (2, 6)-coverable. But first, we
consider Hamiltonian planar graphs.27

Corollary 8. If G is a Hamiltonian planar graph, then it is (2, 6)-coverable.

Proof. Take a plane embedding of G and let C be a Hamiltonian cycle in G. Let G129
(respectively, G2) denote the subgraph of G inside (respectively, outside) the closed disc
bounded by C. Then G1 and G2 are outer planar graphs (with C as the boundary cycle). Pick31
a vertex y ∈ V (C), and apply Theorem 7 to Gi , i = 1, 2, we find a forest Ti in Gi such that
dGi−E(Ti)(y) = 0 and �(Gi − E(Ti))�3. It is easy to verify that �(G − E(T1 ∪ T2))�6.33

�

Tutte [6] proved that every 4-connected planar graph contains a Hamilton cycle. Thus,35
by Corollary 8, we have the following result.

Corollary 9. If G is a 4-connected planar graph, then it is (2, 6)-coverable.37

It is well known that a graph is outerplanar if and only if it contains no K4-subdivision
or K3,2-subdivision [1, Proposition 7.3.1]. In view of Theorem 7, it is natural to consider39
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the class of graphs containing no K4-subdivisions and the class of graphs containing no1
K3,2-subdivisions.

The graphs containing no K4-subdivisions are also called series-parallel graphs. It is3
known that any simple series-parallel graph has a vertex of degree at most two (see [2]).
Therefore, by applying induction on the number of vertices, we can show that any simple5
series-parallel graph is (2, 0)-coverable.

On the other hand, the graph Kn,2 is series-parallel, but is not (1, 	n
2 − 2
)-coverable.7

So it is natural to consider graphs containing no Kn,2-subdivisions. An easier question
is to determine the smallest t and D so that every simple graph with no Kn,2-minors is9
(t, D)-coverable, for n�2. To this end, we consider the cases n = 2, 3. We note that when
n = 2, 3, a graph contains a Kn,2-minor if, and only if, it contains a Kn,2-subdivision.11

Note that if G is a simple graph containing no K2,2-minor, then every block of G is either
a triangle or induced by an edge. So it is easy to see that any simple graph containing no13
K2,2-minor is (1, 1)-coverable.

For graphs with no K3,2-minor, we have the following result.15

Proposition 10. If G is a simple graph containing no K3,2-subdivision, then G is both
(1, 3)-coverable and (2, 0)-coverable.17

Proof. First we shall prove the existence of a (1, 3)-cover. To do this, we prove the following
stronger result.19
(1) For any vertex v of G there is a forest T in G such that dG−E(T )(v) = 0 and �(G −

E(T ))�3.21
We use induction on the number of K4-subdivisions contained in G. If G contains no

K4-subdivision, then it is outerplanar, and (1) follows from Theorem 7. So assume that G23
contains a K4-subdivision. In fact, every K4-subdivision in G must be isomorphic to K4,
since any K4-subdivision not isomorphic to K4 is also a K3,2-subdivision.25

Let {v1, v2, v3, v4} ⊆ V (G) induce a K4 in G. Since G has no K3,2-subdivision, G −
{vivj : 1� i �= j �4} has exactly four components Ci with vi ∈ V (Ci), i = 1, 2, 3, 4.27
Without loss of generality, we may assume that v ∈ V (C1). By applying induction to
C1, we conclude that C1 contains a forest T1 such that dC1−E(T1)(v) = 0 and �(C1 −29
E(T1))�3. Similarly, by applying induction to Ci , i = 2, 3, 4, Ci contains a forest Ti such
that dCi−E(Ti)(vi) = 0 and �(Ci − E(Ti))�3. Let T := (

⋃4
i=1 Ti) + {v1v2, v1v3, v1v4}.31

It is easy to check that T is a forest, dG−E(T )(v) = 0, and �(G − E(T ))�3.
To prove that G is (2, 0)-coverable, it suffices to prove the following result (by using33

Nash-Williams’ theorem).
(2) If G is a graph containing no K3,2-subdivision, then G contains at most 2|V (G)| − 235

edges.
It is easy to check that (2) holds when |V (G)|�4. So assume that |V (G)|�5. Then37

G is not a complete graph. Further, G is not 3-connected. For otherwise, there are three
internally disjoint paths in G between two non-adjacent vertices, and they would form a39
K3,2-subdivision in G.

So let {u, v} be a 2-cut of G and let C be a component of G−{u, v}. We choose {u, v} and41
C so that |V (C)| is minimum (among all choices of 2-cuts of G). Assume for the moment
that |V (C)| = 1. Let V (C) = {x}. Then dG(x) = 2. By applying induction to G − x, we43
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see that |E(G−x)|�2|V (G−x)|−2. Thus, |E(G)|�2|V (G)|−2. Hence we may assume1
|V (C)|�2. Let S denote the set of edges of G with one endpoint in {u, v} and one endpoint
in V (C), and let C∗ := C + ({u, v, uv} ∪ S). By the choice of {u, v} and C, we can prove3
that C∗ is 3-connected. Therefore, C∗ − uv contains two internally disjoint paths P, Q

between u and v. On the other hand, G−V (C) contains a path R from u to v and containing5
at least three vertices. Now P ∪ Q ∪ R gives a K3,2-subdivision in G, a contradiction. �
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