Covering planar graphs with forests

1. Introduction

For a graph G, we use $V(G)$ and $E(G)$ to denote the vertex set and edge set of G, respectively. For two subgraphs H and K of a graph, we use $H \cup K$ to denote the union

[^0]of H and K. We say that a graph G can be covered by subgraphs G_{1}, \ldots, G_{k} of G if $\bigcup_{i=1}^{k} G_{i}=G$.
A well-known theorem of Nash-Williams [5] (based on a result proved independently in $[4,7])$ states that the edges of a graph G can be covered by t trees if, and only if, for every $A \subseteq V(G), e(A) \leqslant(|A|-1) t$, where $e(A)$ denotes the number of edges of G with both ends in A. One way to extend this result is to cover graphs with trees (or forests) and a graph with bounded degree. We say that a graph is (t, D)-coverable if it can be covered by at most t forests and a graph of maximum degree D.

It is easy to check that if a graph G is (t, D)-coverable, then, for any two disjoint subsets A, B of $V(G), f_{t}(A)+e(A, B) \leqslant D \cdot|A|+t(|A|+|B|-1)$, where $e(A, B)$ denotes the number of edges of G with one endpoint in A and the other in $B, f_{t}(A)=e(A)$ if $e(A) \leqslant t(|A|-1)$, and $f_{t}(A)=2 e(A)-t(|A|-1)$ otherwise. Unfortunately, this condition is not sufficient. For example, by deleting one edge from the Petersen graph, we obtain a graph that satisfies the above inequality with $t=D=1$, but is not $(1,1)$-coverable.

It is interesting to know what can be said about planar graphs. The aforementioned theorem of Nash-Williams implies that every planar graph is $(3,0)$-coverable. As pointed out by Lovász [3] there are infinitely many planar graphs which are not (2,3)-coverable: take a triangle, put a vertex inside and connect it to the vertices of the triangle, and repeat this operation for each new triangle. After repeating this process for a while, we get a graph on n vertices with roughly $2 n / 3$ vertices of degree 3 . This graph does not satisfy the above inequality about $f_{t}(A)$ (with $t=2, D=3, B$ the set of vertices of degree 3 , and A the set of vertices of degree at least 4), and so, it is not (2,3)-coverable. The double wheel on $2 D+4$ vertices (that is, a cycle of length $2 D+2$ plus two vertices and all edges from these two vertices to the cycle) shows that planar graphs need not be ($1, D$)-coverable. However, we believe the following is correct.

Conjecture 1. Every simple planar graph is $(2,4)$-coverable.
As evidence for this conjecture, we shall prove that every simple planar graph is $(2,8)$ coverable. This will be done in Section 3, with the help of a result from Section 2. In Section 4 , we shall show that every simple outerplanar graph is $(1,3)$-coverable, and as a consequence, every 4 -connected planar graph is $(2,6)$-coverable. We shall also consider graphs which are series-parallel or contain no $K_{3,2}$-subdivision. We conclude this section with some notation.

Throughout the remainder of this paper, we shall consider only simple graphs. Let G be a graph. An edge of G with endpoints x and y will be denoted by $x y$ or $y x$. Paths and cycles in G will be denoted by sequences of vertices of G. For any $x \in V(G)$, let $N_{G}(x):=\{y \in$ $V(G): x y \in E(G)\}$, and let $d_{G}(x):=\left|N_{G}(x)\right|$, the degree of x. When G is known from the context, we shall simply write $N(x)$ and $d(x)$. Let $\Delta(G):=\max \{d(x): x \in V(G)\}$. For any $S \subseteq V(G)$, we use $G-S$ to denote the graph with vertex set $V(G)-S$ and edge set $\{u v \in E(G):\{u, v\} \subseteq V(G)-S\}$. For any $S \subseteq E(G)$, we use $G-S$ to denote the graph with vertex set $V(G)$ and edge set $E(G)-S$. When $S=\{s\}$, we shall simply write $G-s$. Let H be a subgraph of G and let $S \subseteq V(G) \cup E(G)$ such that every edge of G in S has both endpoints in $V(H) \cup(S \cap V(G))$, then we use $H+S$ to denote the graph with vertex set $V(H) \cup(S \cap V(G))$ and edge set $E(H) \cup(S \cap E(G))$.

Recall that a plane graph is a graph drawn in the plane with no pairs of edges crossing. A facial cycle of a plane graph G is a cycle that bounds a face of G. A planar triangulation is a plane graph in which every face is bounded by a triangle.

2. High vertices

In this section, we shall prove the following result about planar graphs. This result will be used in the next section to prove that all planar graphs are $(2,8)$-coverable. Let G be a graph and $x \in V(G)$. Then x is said to be high if $d(x) \geqslant 11$, and low otherwise.

Theorem 2. Every planar graph contains a vertex of degree at most 5 which is adjacent to at most two high vertices.

Proof. Suppose the statement is not true. Then there is a planar triangulation G such that every vertex of degree at most 5 is adjacent to at least three high vertices. Therefore, all vertices of G have degree at least 3 .

Let $v \in V(G)$ with $d(v)=4$. We say that v is 4-independent if, for any $u \in N(v)$, $d(u) \neq 4$; otherwise, we say that v is 4 -dependent. Let u_{1}, u_{2} be two adjacent 4-dependent vertices. Then $G-\left\{u_{1}, u_{2}\right\}$ has a facial cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$, and $v_{1}, v_{2}, v_{3}, v_{4}$ are all high vertices of G. Furthermore, the notation can be chosen so that v_{1}, v_{3} are adjacent to both u_{1} and u_{2}, and v_{2} (respectively, v_{4}) is adjacent with u_{1} (respectively, u_{2}). In this case we say that v_{1}, v_{3} are u_{1}-weak and v_{2} is u_{1}-strong, and v_{1}, v_{3} are u_{2}-weak and v_{4} is u_{2}-strong.

Next, we define a weight function $\omega: V(G) \rightarrow \mathbb{R}$ by making changes to the degree function $d: V(G) \rightarrow \mathbb{R}$. For each high vertex v of G, we make changes to $d(v)$ and $d(u)$ for all $u \in N(v)$ with $d(u) \leqslant 5$, according to the following rules:
(R1) If $u \in N(v)$ and $d(u)=3$, then subtract 1 from $d(v)$ and add 1 to $d(u)$.
(R2) If $u \in N(v)$ and $d(u)=5$, then subtract $\frac{1}{3}$ from $d(v)$ and add $\frac{1}{3}$ to $d(u)$.
(R3) If $u \in N(v)$ and u is 4-independent, then subtract $\frac{2}{3}$ from $d(v)$ and add $\frac{2}{3}$ to $d(u)$.
(R4) If $u \in N(v), u$ is 4-dependent, and v is u-strong, then subtract 1 from $d(v)$ and add 1 to $d(u)$.
(R5) If $u \in N(v), u$ is 4-dependent, and v is u-weak, then subtract $\frac{1}{2}$ from $d(v)$ and add $\frac{1}{2}$ to $d(u)$.
Let $\omega: V(G) \rightarrow \mathbb{R}$ denote the resulting function. For convenience, when we subtract a quantity α from $d(v)$ and add a quantity α to $d(u)$, we will simply say that v sends charge α to u or u receives charge α from v.

Clearly,

$$
\sum_{x \in V(G)} d(x)=\sum_{x \in V(G)} \omega(x) .
$$

Since G has $3|V(G)|-6$ edges, $\sum_{x \in V(G)} d(x)<6|V(G)|$. Hence there exists a vertex x of G such that $\omega(x)<6$. We shall derive a contradiction by showing that $\omega(x) \geqslant 6$ for all $x \in V(G)$. Let $x \in V(G)$. We distinguish two cases.

Case 1: x is low.
If $d(x)=3$ then, since all its neighbors are high, $\omega(x)=d(x)+3=3+3=6$ by (R1).

If $d(x)=5$ then, since x has $k \geqslant 3$ high neighbors, $\omega(x)=d(x)+k / 3=5+k / 3 \geqslant 6$ by (R2).

Now assume $d(x)=4$. If x is 4-independent then, since x has $k \geqslant 3$ high neighbors, $\omega(x)=d(x)+2 k / 3=4+2 k / 3 \geqslant 6$ by (R3). If x is 4-dependent then, since x has three high neighbors (two are x-weak and one is x-strong), $\omega(x)=4+\frac{1}{2}+\frac{1}{2}+1=6$ by (R4) and (R5).

If $6 \leqslant d(x) \leqslant 10$, then $\omega(x)=d(x) \geqslant 6$.
Case 2: x is high.
Let $d(x)=k$. Then $k \geqslant 11$. Since G is a planar triangulation, $G-x$ has a facial cycle C_{k} such that $V\left(C_{k}\right)=N(x)$. We partition $V\left(C_{k}\right)$ into the following five sets. Let $A:=$ $\{u \in N(x): d(u)=3$, or u is 4-dependent and x is u-strong $\}$. Let $B:=\{u \in N(x): u$ is 4-dependent and x is u-weak $\}$. Let $C:=\{u \in N(x): u$ is 4-independent $\}$. Let $D:=\{u \in$ $N(x): d(u)=5\}$. Finally, let $S:=\{u \in N(x): d(u) \geqslant 6\}$. Because every vertex of degree at most 5 has at least 3 high neighbors, one can easily check that the following statements hold:
(1) if $u \in A$, then u has two neighbors in S, and u receives charge 1 from x (by (R1) and (R4)).
(2) if $u \in B$, then (by planarity) u has one neighbor in B and one neighbor in S, and u receives charge $\frac{1}{2}$ from x (by (R5)).
(3) if $u \in C$, then u has at least one neighbor in S and at most one neighbor in D, and u receives charge $\frac{2}{3}$ from x (by (R3)).
(4) if $u \in D$, then u can have neighbors in $C \cup D \cup S$, and u receives charge $\frac{1}{3}$ from x (by (R2)).
(5) if $u \in S$, then u receives no charge from x.

Therefore, if $S=\emptyset$, then $A=B=C=\emptyset$, and hence, $D=V\left(C_{k}\right)$ and, by (4), $\omega(x)=k-(k / 3) \geqslant \frac{22}{3}>6$.

So assume $S \neq \emptyset$. Let $S=\left\{s_{1}, \ldots, s_{m}\right\}$ such that s_{1}, \ldots, s_{m} occur on C_{k} in that clockwise order. If $m=1$, let $S_{1}=C_{k}$ and $s_{2}=s_{1}$. If $m \geqslant 2$, the vertices in S divide C_{k} into k internally disjoint paths: for $1 \leqslant i \leqslant k$, let S_{i} denote the clockwise subpath of C_{k} from s_{i} to s_{i+1}, where $s_{m+1}=s_{1}$. Let $S_{i}^{\prime}:=S_{i}-\left\{s_{i}, s_{i+1}\right\}$.

We claim that, for each $1 \leqslant i \leqslant m$, one of the following holds:
(a) $\left|V\left(S_{i}^{\prime}\right)\right| \leqslant 1$.
(b) $\left|V\left(S_{i}^{\prime}\right)\right|=2$ and $V\left(S_{i}^{\prime}\right) \subseteq B$.
(c) $\left|V\left(S_{i}^{\prime}\right)\right|=2, V\left(S_{i}^{\prime}\right) \subseteq C \cup D$ and $V\left(S_{i}^{\prime}\right) \cap D \neq \emptyset$.
(d) $\left|V\left(S_{i}^{\prime}\right)\right| \geqslant 3, V\left(S_{i}^{\prime}\right) \subseteq C \cup D$ and all internal vertices of S_{i}^{\prime} are contained in D.

To prove this claim, assume that $\left|V\left(S_{i}^{\prime}\right)\right| \geqslant 2$ (that is, not (a)) and let $S_{i}=x_{0} x_{1}, \ldots$, $x_{n} x_{n+1}$, where $x_{0}=s_{i}$ and $x_{n+1}=s_{i+1}$. Thus, $x_{0}, x_{n+1} \in S, n \geqslant 2$, and $x_{1}, \ldots, x_{n} \notin S$. Recall that we allow $x_{0}=x_{n+1}$, which occurs when $m=1$. Then, for each $1 \leqslant j \leqslant n$, $x_{j} \notin A$; for otherwise, by (1), $\left\{x_{j-1}, x_{j+1}\right\} \subseteq S$, contradicting the fact that $x_{1}, \ldots, x_{n} \notin S$.

Now assume that there is some $x_{j} \in B$. Since x_{j} has at least three high neighbors, one element of $\left\{x_{j-1}, x_{j+1}\right\}$ is high. By symmetry we may assume that x_{j-1} is high. Then $x_{j-1} \in S$. Since $x_{j} \in B, x$ is x_{j}-weak. So $x_{j+1} \in B, x_{j+2}$ is high, and $x_{j+2} \in S$. Hence, $x_{j-1}=x_{0}$ and $x_{j+2}=x_{n+1}, n=2$, and $\left\{x_{1}, x_{2}\right\} \subseteq B$. That is, $V\left(S_{i}^{\prime}\right)$ consists of exactly two vertices which are in B, and (b) holds. So we may assume that $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq C \cup D$, that is, $V\left(S_{i}^{\prime}\right) \subseteq C \cup D$. Then, since each x_{j} has at least three high neighbors, $x_{2}, \ldots, x_{n-1} \in D$ and, if $n=2$ then $x_{1} \in D$, or $x_{n} \in D$. So we have (c) and (d).

Now, let us calculate $\omega(x)$ by finding out how much charge x sends to vertices of S_{i}^{\prime}. Suppose (a) holds for S_{i}^{\prime}. If $\left|V\left(S_{i}^{\prime}\right)\right|=1$ then the charge that x sends to S_{i}^{\prime} is at most $1=\left\lfloor\frac{\left|V\left(S_{i}^{\prime}\right)\right|+1}{2}\right\rfloor$. If $\left|V\left(S_{i}^{\prime}\right)\right|=0$ then the charge that x sends to S_{i}^{\prime} is $0=\left\lfloor\frac{\left|V\left(S_{i}^{\prime}\right)\right|+1}{2}\right\rfloor$. If (b) holds for ${ }_{S}^{\prime}$, then by (2), the charge that x sends to vertices of S_{i}^{\prime} is $\frac{1}{2}+\frac{1}{2}=1=\left\lfloor\left|V\left(S_{i}^{\prime}\right)\right| / 2\right\rfloor$. Now assume (c) holds for S_{i}^{\prime}. If $\left|V\left(S_{i}^{\prime}\right)\right|=2$ then by (c) at least one vertex of S_{i}^{\prime} is in D, and by (3) and (4), the charge that x sends to vertices of S_{i}^{\prime} is at most $\frac{2}{3}+\frac{1}{3}=1=\left\lfloor\left|V\left(S_{i}^{\prime}\right)\right| / 2\right\rfloor$. If $\left|V\left(S_{i}^{\prime}\right)\right| \geqslant 3$, then by (d), all internal vertices of S_{i}^{\prime} are in D, and by (3) and (4), the charge that x sends to S_{i}^{\prime} is at most $(n-2) / 3+\frac{2}{3}+\frac{2}{3}=(n+2) / 3 \leqslant\lfloor(n+1) / 2\rfloor=\left\lfloor\left(\left|V\left(S_{i}^{\prime}\right)\right|+1\right) / 2\right\rfloor$ (because $n=\left|V\left(S_{i}^{\prime}\right)\right| \geqslant 3$). By (5), x sends no charge to vertices in S. Hence, the total charge that x sends to its neighbors is at most

$$
\sum_{i=1}^{m}\left\lfloor\frac{\left|V\left(S_{i}^{\prime}\right)\right|+1}{2}\right\rfloor \leqslant\left\lfloor\frac{\left(\sum_{i=1}^{m}\left|V\left(S_{i}^{\prime}\right)\right|\right)+m}{2}\right\rfloor=\lfloor d(x) / 2\rfloor
$$

So $\omega(x) \geqslant d(x)-\lfloor d(x) / 2\rfloor$. Since $d(x) \geqslant 11, \omega(x) \geqslant 6$.
Theorem 2 no longer holds if we define high vertices as those of degree 10 or more. Consider a planar triangulation with vertices of degrees 6 and 5. Put into each triangle a vertex and join it to all vertices of the triangle. We get a planar triangulation with vertices of degrees $3,10,12$, and each vertex has at least 3 neighbors of degree at least 10 .

3. Covering with forests

In this section we prove that every planar graph is $(2,8)$-coverable. In fact, we prove the following stronger result.

Theorem 3. For each planar graph G, there exist forests T_{1}, T_{2}, and T_{3} such that $G=$ $T_{1} \cup T_{2} \cup T_{3}$ and $\Delta\left(T_{3}\right) \leqslant 8$.

The proof is by way of contradiction. Suppose Theorem 3 is not true. Let G be a counter example with $|V(G)|$ minimum. Without loss of generality, we may assume that G is a planar triangulation. Hence the minimum degree of G is at least 3 . We shall derive a contradiction to Theorem 2 by showing that every vertex of G with degree at most 5 has at least three high neighbors.

Lemma 4. If $x \in V(G)$ and $d(x)=3$, then all three neighbors of x are high.

Proof. Consider the graph $G^{\prime}:=G-x$. By the choice of G, G^{\prime} can be covered by three forests $T_{1}^{\prime}, T_{2}^{\prime}$, and T_{3}^{\prime} such that $\Delta\left(T_{3}^{\prime}\right) \leqslant 8$. Without loss of generality, we may further assume that $T_{1}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}$ are edge disjoint, and subject to this, $\left|E\left(T_{3}^{\prime}\right)\right|$ is minimum. Therefore, for any $u \in V\left(T_{3}^{\prime}\right), d_{T_{i}^{\prime}}(u) \geqslant 1$ for $i=1,2$. Hence, $d_{T_{3}^{\prime}}(v) \leqslant d_{G^{\prime}}(v)-2$ for every vertex v of G^{\prime}.

Suppose some neighbor of x is not high, say y. Then $d_{G}(y) \leqslant 10$. So $d_{G^{\prime}}(y) \leqslant 9$, and $d_{T_{3}^{\prime}}(y) \leqslant d_{G^{\prime}}(y)-2 \leqslant 7$. Let v, w be the other two neighbors of x. Let $T_{1}:=T_{1}^{\prime}+\{x, x v\}$, $T_{2}:=T_{2}^{\prime}+\{x, x w\}$, and let $T_{3}^{\prime}:=T_{3}+\{x, x y\}$. It is easy to check that T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(y)=d_{T_{3}^{\prime}}(y)+1 \leqslant 8$ and, for any $u \in V\left(T_{3}\right)-\{y\}, d_{T_{3}}(u)=$ $d_{T_{3}^{\prime}}(u) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence, the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G. So all neighbors of x are high.

Lemma 5. If $x \in V(G)$ and $d(x)=4$, then at least three neighbors of x are high.
Proof. Let u, y, v and z denote the neighbors of x, occurring in that clockwise order around x. Since G is planar, $u v \notin E(G)$ or $y z \notin E(G)$. Without loss of generality we may assume that $y z \notin E(G)$. Then $G^{\prime}:=(G-x)+y z$ is a planar triangulation. By the choice of G, G^{\prime} can be covered by three forests $T_{1}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}$ such that $\Delta\left(T_{3}^{\prime}\right) \leqslant 8$. We may further assume that $T_{1}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}$ are edge disjoint, and subject to this, $\left|E\left(T_{3}^{\prime}\right)\right|$ is minimum. Therefore, $d_{T_{3}^{\prime}}(v) \leqslant d_{G^{\prime}}(v)-2$ for every vertex v of G^{\prime}.

If $y z \in E\left(T_{3}^{\prime}\right)$, we let $T_{1}:=T_{1}^{\prime}+\{x, u x\}, T_{2}:=T_{2}^{\prime}+\{x, v x\}$ and $T_{3}:=\left(T_{3}^{\prime}-y z\right)+$ $\{x, y x, x z\}$. It is easy to see that T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=2$ and, for any $w \in V\left(T_{3}\right)-\{x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence, the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

So $y z \notin E\left(T_{3}^{\prime}\right)$. Then $y z \in E\left(T_{1}^{\prime}\right) \cup E\left(T_{2}^{\prime}\right)$. By symmetry, we may assume that $y z \in$ $E\left(T_{1}^{\prime}\right)$.

We claim that u must be high. For, suppose u is low. Then $d_{G^{\prime}}(u)=d_{G}(u)-1 \leqslant 9$ and $d_{T_{3}^{\prime}}(u) \leqslant d_{G^{\prime}}(u)-2 \leqslant 7$. Let $T_{1}:=\left(T_{1}^{\prime}-y z\right)+\{x, x y, x z\}, T_{2}:=T_{2}^{\prime}+\{x, x v\}$, and $T_{3}:=T_{3}^{\prime}+\{x, x u\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=1$ and $d_{T_{3}}(u)=d_{T_{3}^{\prime}}(u)+1 \leqslant 8$, and for any $w \in V\left(T_{3}\right)-\{u, x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

By a symmetric argument, we can show that v is also high.
Next we show that y is high or z is high. Suppose both y and z are low. Since T_{1}^{\prime} is a forest and $y z \in E\left(T_{1}^{\prime}\right), T_{1}^{\prime}-y z$ does not contain both a $y-v$ path and a $z-v$ path. By symmetry, we may assume that $T_{1}^{\prime}-y z$ contain no $y-v$ path. Let $T_{1}:=\left(T_{1}^{\prime}-y z\right)+\{x, v, y x, x v\}$, $T_{2}:=T_{2}^{\prime}+\{x, u x\}$ and $T_{3}:=T_{3}^{\prime}+\{x, x z\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=1$ and, for any $w \in V\left(T_{3}\right)-\{x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}^{\prime}\right) \leqslant 8$. Hence, the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Therefore, at least three neighbors of x are high.
Lemma 6. Let $x \in V(G)$ with $d(x)=5$, and let $x_{0}, x_{1}, x_{2}, x_{3}$ and x_{4} denote the neighbors of x which occur around x in that clockwise order. For any $0 \leqslant i \leqslant 4$, if $x_{i} x_{i+2} \notin E(G)$ and $x_{i} x_{i-2} \notin E(G)$, then both x_{i-1} and x_{i+1} are high. (Subscripts are taken modulo 5.)

Proof. Since G is a planar triangulation, $x_{0} x_{1} x_{2} x_{3} x_{4} x_{0}$ is a facial cycle of $G-x$. Suppose
$\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\}$ can be covered by three forests $T_{1}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}$, with $\Delta\left(T_{3}^{\prime}\right) \leqslant 8$. We may further assume that $T_{1}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}$ are edge disjoint, and subject to this, $\left|E\left(T_{3}^{\prime}\right)\right|$ is minimum. Therefore,
 $d_{T_{3}^{\prime}}(v) \leqslant d_{G^{\prime}}(v)-2$ for every vertex v of G^{\prime}.

Case 1: $\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\} \subseteq E\left(T_{3}^{\prime}\right)$.
Let $T_{1}:=T_{1}^{\prime}+\left\{x, x x_{i+1}\right\}, T_{2}:=T_{2}^{\prime}+\left\{x, x x_{i-1}\right\}$ and $T_{3}:=\left(T_{3}^{\prime}-\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\}\right)+$ $\left\{x, x x_{i+2}, x x_{i-2}, x x_{i}\right\}$. Clearly, T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=3$ and, for any $w \in V\left(T_{3}\right)-\{x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Case 2: $\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\} \subseteq E\left(T_{1}^{\prime}\right)$ or $\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\} \subseteq E\left(T_{2}^{\prime}\right)$.
By symmetry, we may assume that $\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\} \subseteq E\left(T_{1}^{\prime}\right)$. We show that both x_{i+1} and x_{i-1} are high. For, assume by symmetry that x_{i-1} is low. Then $d_{G^{\prime}}\left(x_{i-1}\right)=$ $d_{G}\left(x_{i-1}\right)-1 \leqslant 9$ and $d_{T_{3}^{\prime}}\left(x_{i-1}\right) \leqslant d_{G^{\prime}}\left(x_{i-1}\right)-2 \leqslant 7$. Let $T_{1}:=\left(T_{1}^{\prime}-\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\}\right)+$ $\left\{x, x x_{i+2}, x x_{i-2}, x x_{i}\right\}, T_{2}:=T_{2}^{\prime}+\left\{x, x_{i+1} x\right\}, T_{3}:=T_{3}^{\prime}+\left\{x, x x_{i-1}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=1, d_{T_{3}}\left(x_{i-1}\right) \leqslant 8$ and, for any $w \in V\left(T_{3}\right)-\left\{x, x_{i-1}\right\}$, $d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Case 3: One element of $\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\}$ is in $E\left(T_{3}^{\prime}\right)$ and the other is in $E\left(T_{1}^{\prime}\right) \cup E\left(T_{2}^{\prime}\right)$.
By symmetry, we may assume that $x_{i} x_{i+2} \in E\left(T_{1}^{\prime}\right)$ and $x_{i} x_{i-2} \in E\left(T_{3}^{\prime}\right)$. We consider five subcases.

Subcase 3.1: $T_{1}^{\prime}-x_{i} x_{i+2}$ contains an $x_{i}-x_{i+1}$ path. Then $T_{1}^{\prime}-x_{i} x_{i+2}$ contains no $x_{i+1^{-}}$ x_{i+2} path. In this case, let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x x_{i+2}, x x_{i+1}\right\}, T_{2}:=T_{2}^{\prime}+\left\{x, x x_{i-1}\right\}$ and $T_{3}:=\left(T_{3}^{\prime}-x_{i} x_{i-2}\right)+\left\{x, x x_{i}, x x_{i-2}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=2$ and, for any $w \in V\left(T_{3}\right)-\{x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Subcase 3.2: $T_{1}^{\prime}-x_{i} x_{i+2}$ contains an $x_{i}-x_{i-1}$ path. Then $T_{1}^{\prime}-x_{i} x_{i+2}$ contains no $x_{i-1^{-}}$ x_{i+2} path. In this case, let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x x_{i+2}, x x_{i-1}\right\}, T_{2}:=T_{2}^{\prime}+\left\{x, x x_{i+1}\right\}$ and $T_{3}:=\left(T_{3}^{\prime}-x_{i} x_{i-2}\right)+\left\{x, x x_{i}, x x_{i-2}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=2$ and, for any $w \in V\left(T_{3}\right)-\{x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Subcase 3.3: $T_{1}^{\prime}-x_{i} x_{i+2}$ contains neither an $x_{i}-x_{i+1}$ path nor an $x_{i}-x_{i-1}$ path, and $x_{i} x_{i-1} \in E\left(T_{3}^{\prime}\right)$. Let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x_{i-1}, x_{i} x_{i-1}, x x_{i+2}\right\}, T_{2}:=T_{2}^{\prime}+\left\{x, x x_{i+1}\right\}$, and $T_{3}:=\left(T_{3}^{\prime}-\left\{x_{i} x_{i-2}, x_{i} x_{i-1}\right\}\right)+\left\{x, x x_{i}, x x_{i-1}, x x_{i-2}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=3, d_{T_{3}}\left(x_{i}\right)=d_{T_{3}^{\prime}}\left(x_{i}\right)-1$, and for any $w \in V\left(T_{3}^{\prime}\right)-\left\{x, x_{i}\right\}$, $d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Subcase 3.4: $T_{1}^{\prime}-x_{i} x_{i+2}$ contains neither an $x_{i}-x_{i+1}$ path nor an $x_{i}-x_{i-1}$ path, and $x_{i} x_{i+1} \in E\left(T_{3}^{\prime}\right)$. Let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x_{i+1}, x_{i} x_{i+1}, x x_{i+2}\right\}, T_{2}:=T_{2}^{\prime}+\left\{x, x x_{i-1}\right\}$, and $T_{3}:=\left(T_{3}^{\prime}-\left\{x_{i} x_{i-2}, x_{i} x_{i+1}\right\}\right)+\left\{x, x x_{i}, x x_{i+1}, x x_{i-2}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=3, d_{T_{3}}\left(x_{i}\right)=d_{T_{3}^{\prime}}\left(x_{i}\right)-1$, and for any $w \in V\left(T_{3}^{\prime}\right)-\left\{x, x_{i}\right\}$, $d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Subcase 3.5: $T_{1}^{\prime}-x_{i} x_{i+2}$ contains neither an $x_{i}-x_{i+1}$ path nor an $x_{i}-x_{i-1}$ path, and $x_{i} x_{i-1}, x_{i} x_{i+1} \notin E\left(T_{3}^{\prime}\right)$. Then $x_{i} x_{i-1}, x_{i} x_{i+1} \in E\left(T_{2}^{\prime}\right)$. Let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+$ $\left\{x, x_{i+1}, x_{i} x_{i+1}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i+1}\right)+\left\{x, x x_{i-1}, x x_{i+1}\right\}$, and $T_{3}:=\left(T_{3}^{\prime}-x_{i} x_{i-2}\right)+$ $\left\{x, x x_{i}, x x_{i-2}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=2$ and, for any
$1 \quad w \in V\left(T_{3}^{\prime}\right)-\{x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Case 4: One element of $\left\{x_{i} x_{i+2}, x_{i} x_{i-2}\right\}$ is in $E\left(T_{1}^{\prime}\right)$ and the other is in $E\left(T_{2}^{\prime}\right)$.
Without loss of generality, we may assume that $x_{i} x_{i+2} \in E\left(T_{1}^{\prime}\right)$ and $x_{i} x_{i-2} \in E\left(T_{2}^{\prime}\right)$. Then, up to symmetry, it suffices to check the following six subcases.

Subcase 4.1: $T_{1}^{\prime}-x_{i} x_{i+2}$ contains neither an $x_{i}-x_{i-1}$ path nor an $x_{i}-x_{i+1}$ path, and $T_{2}^{\prime}-x_{i} x_{i-2}$ contains neither an $x_{i}-x_{i-1}$ path nor an $x_{i}-x_{i+1}$ path.

Then $\left\{x_{i} x_{i+1}, x_{i} x_{i-1}\right\} \subseteq E\left(T_{3}^{\prime}\right)$. Let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x_{i+1}, x_{i} x_{i+1}, x x_{i+2}\right\}$, $T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+\left\{x, x_{i-1}, x_{i} x_{i-1}, x x_{i-2}\right\}$, and $T_{3}:=\left(T_{3}^{\prime}-\left\{x_{i} x_{i+1}, x_{i} x_{i-1}\right\}\right)+$ $\left\{x, x x_{i+1}, x x_{i}, x x_{i-1}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=3$, $d_{T_{3}}\left(x_{i}\right)=d_{T_{3}^{\prime}}\left(x_{i}\right)-1$ and, for any $w \in V\left(T_{3}\right)-\left\{x, x_{i}\right\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Subcase 4.2: $T_{1}^{\prime}-x_{i} x_{i+2}$ contains both an $x_{i}-x_{i-1}$ path and an $x_{i}-x_{i+1}$ path, or $T_{2}^{\prime}-x_{i} x_{i-2}$ contains both an $x_{i}-x_{i-1}$ path and an $x_{i}-x_{i+1}$ path.

By symmetry, we may assume that $T_{1}^{\prime}-x_{i} x_{i+2}$ contains an $x_{i}-x_{i-1}$ path and an $x_{i}-x_{i+1}$ path. Then $T_{1}^{\prime}-x_{i} x_{i+2}$ contains no $x_{i+1}-x_{i+2}$ path. Let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+$ $\left\{x, x x_{i+1}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+\left\{x, x x_{i}, x x_{i-2}\right\}$, and $T_{3}:=T_{3}^{\prime}+\left\{x, x x_{i-1}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=1$ and, for any $w \in$ $V\left(T_{3}\right)-\left\{x, x_{i-1}\right\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. If x_{i-1} is low, then $d_{T_{3}^{\prime}}\left(x_{i-1}\right) \leqslant$ $d_{G^{\prime}}\left(x_{i-1}\right)-2=d_{G}\left(x_{i-1}\right)-3 \leqslant 7$, and so, $d_{T_{3}}\left(x_{i-1}\right) \leqslant 8$ and $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G. So x_{i-1} must be high.

Similarly, the forests $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x x_{i-1}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+$ $\left\{x, x x_{i}, x x_{i-2}\right\}$, and $T_{3}:=T_{3}^{\prime}+\left\{x, x x_{i+1}\right\}$ allow us to conclude that x_{i+1} must be high.

Subcase 4.3: There is an $x_{i}-x_{i+1}$ path in $T_{1}^{\prime}-x_{i} x_{i+2}$, and there are no $x_{i}-x_{i-1}$ paths in $T_{1}^{\prime}-x_{i} x_{i+2}$ and $T_{2}^{\prime}-x_{i} x_{i-2}$.

Then $x_{i} x_{i-1} \in E\left(T_{3}^{\prime}\right)$ and $T_{1}^{\prime}-x_{i} x_{i+2}$ contains no $x_{i+1}-x_{i+2}$ path. Let $T_{1}:=\left(T_{1}^{\prime}-\right.$ $\left.x_{i} x_{i+2}\right)+\left\{x, x x_{i+1}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+\left\{x, x_{i} x_{i-1}, x x_{i-2}\right\}$, and $T_{3}:=\left(T_{3}^{\prime}-\right.$ $\left.x_{i} x_{i-1}\right)+\left\{x, x x_{i-1}, x x_{i}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=2$ and, for any $w \in V\left(T_{3}\right)-\{x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Subcase 4.4: There is a $x_{i}-x_{i-1}$ path in $T_{1}^{\prime}-x_{i} x_{i+2}$, and there are no $x_{i}-x_{i+1}$ paths in $T_{1}^{\prime}-x_{i} x_{i+2}$ and $T_{2}^{\prime}-x_{i} x_{i-2}$.

Then $x_{i} x_{i+1} \in E\left(T_{3}^{\prime}\right)$ and $T_{1}^{\prime}-x_{i} x_{i+2}$ contains no $x_{i-1}-x_{i+2}$ path. Let $T_{1}:=\left(T_{1}^{\prime}-\right.$ $\left.x_{i} x_{i+2}\right)+\left\{x, x x_{i-1}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+\left\{x, x_{i} x_{i+1}, x x_{i-2}\right\}$, and $T_{3}:=\left(T_{3}^{\prime}-\right.$ $\left.x_{i} x_{i+1}\right)+\left\{x, x x_{i+1}, x x_{i}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=2$ and, for any $w \in V\left(T_{3}\right)-\{x\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. So $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G.

Subcase 4.5: There is an $x_{i}-x_{i+1}$ path in $T_{1}^{\prime}-x_{i} x_{i+2}$, there is no $x_{i}-x_{i-1}$ path in $T_{1}^{\prime}-x_{i} x_{i+2}$, there is an $x_{i}-x_{i-1}$ path in $T_{2}^{\prime}-x_{i} x_{i-2}$, and there is no $x_{i}-x_{i+1}$ path in $T_{2}^{\prime}-x_{i} x_{i-2}$.

Then $T_{1}^{\prime}-x_{i} x_{i+2}$ contains no $x_{i+1}-x_{i+2}$ path, and $T_{2}^{\prime}-x_{i} x_{i-2}$ contains no $x_{i-1}-x_{i-2}$ path.

Let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x x_{i+1}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+\left\{x, x x_{i}, x x_{i-2}\right\}$, and $T_{3}:=T_{3}^{\prime}+\left\{x, x x_{i-1}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=1$ and, for any $w \in V\left(T_{3}\right)-\left\{x, x_{i-1}\right\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. If x_{i-1} is low, then $d_{T_{3}^{\prime}}\left(x_{i-1}\right) \leqslant d_{G^{\prime}}\left(x_{i-1}\right)$
$-2=d_{G}\left(x_{i-1}\right)-3 \leqslant 7$, and so, $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G. So x_{i-1} must be high.

Similarly, the forests $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x x_{i}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+$ $\left\{x, x x_{i-1}, x x_{i-2}\right\}$, and $T_{3}:=T_{3}^{\prime}+\left\{x, x x_{i+1}\right\}$ allow us to conclude that x_{i+1} must be high.
Subcase 4.6: There is an $x_{i}-x_{i-1}$ path in $T_{1}^{\prime}-x_{i} x_{i+2}$, there is no $x_{i}-x_{i+1}$ path in $T_{1}^{\prime}-x_{i} x_{i+2}$, there is an $x_{i}-x_{i+1}$ path in $T_{2}^{\prime}-x_{i} x_{i-2}$, and there is no $x_{i}-x_{i-1}$ path in $T_{2}^{\prime}-x_{i} x_{i-2}$.
Then $T_{1}^{\prime}-x_{i} x_{i+2}$ contains no $x_{i-1}-x_{i+2}$ path, and $T_{2}^{\prime}-x_{i} x_{i-2}$ contains no $x_{i+1}-x_{i-2}$ path.

Let $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x x_{i-1}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+\left\{x, x x_{i}, x x_{i-2}\right\}$, and $T_{3}:=T_{3}^{\prime}+\left\{x, x x_{i+1}\right\}$. Then T_{1}, T_{2}, T_{3} are forests and cover G. Note that $d_{T_{3}}(x)=1$ and, for any $w \in V\left(T_{3}\right)-\left\{x, x_{i+1}\right\}, d_{T_{3}}(w)=d_{T_{3}^{\prime}}(w) \leqslant 8$. If x_{i+1} is low, then $d_{T_{3}^{\prime}}\left(x_{i+1}\right) \leqslant d_{G^{\prime}}\left(x_{i+1}\right)$ $-2=d_{G}\left(x_{i+1}\right)-3 \leqslant 7$, and so, $\Delta\left(T_{3}\right) \leqslant 8$. Hence the existence of T_{1}, T_{2}, T_{3} contradicts the choice of G. So x_{i+1} must be high.

Similarly, the forests $T_{1}:=\left(T_{1}^{\prime}-x_{i} x_{i+2}\right)+\left\{x, x x_{i}, x x_{i+2}\right\}, T_{2}:=\left(T_{2}^{\prime}-x_{i} x_{i-2}\right)+$ $\left\{x, x x_{i+1}, x x_{i-2}\right\}$, and $T_{3}:=T_{3}^{\prime}+\left\{x, x x_{i-1}\right\}$ allow us to conclude that x_{i-1} must be high.

Therefore x_{i-1} and x_{i+1} are high.
We can now complete the proof of Theorem 3 as follows.
Proof. By Theorem 2, there is a vertex x of G such that $d(x) \leqslant 5$ and x has at most two high neighbors. By Lemmas 4 and 5, we see that $d(x)=5$. Let $x_{0}, x_{1}, \ldots, x_{4}$ denote the neighbors of x such that $x_{0} x_{1} \ldots x_{4} x_{0}$ is a facial cycle of $G-x$. By planarity, there exist $0 \leqslant i \neq j \leqslant 4$ such that $x_{i} x_{i-2}, x_{i} x_{i+2}, x_{j} x_{j-2}, x_{j} x_{j+2} \notin E(G)$. So by Lemma 6, $x_{i-1}, x_{i+1}, x_{j-1}, x_{j+1}$ are high vertices. Since $x_{i} \neq x_{j}$ and $x_{0} x_{1} x_{2} x_{3} x_{4} x_{0}$ is a cycle, $\left|\left\{x_{i-1}, x_{i+1}, x_{j-1}, x_{j+1}\right\}\right| \geqslant 3$. But this means that x has at least three high neighbors, a contradiction.

It is not hard to see that we may further require T_{1}, T_{2} be trees.

4. Special planar graphs

In this section, we shall see that Theorem 3 can be improved for some special classes of planar graphs, thereby providing further evidence for Conjecture 1. Recall that a graph is outerplanar if it can be embedded in the plane such that all vertices are incident with its infinite face.

Theorem 7. Let G be a 2-connected outerplanar graph and let C be the cycle of an outerplanar embedding of G bounding the infinite face. Let $y \in V(C)$ and let $y x, y z \in E(C)$. Then there is a forest T in G such that $d_{G-E(T)}(y)=0, d_{G-E(T)}(x) \leqslant 1, d_{G-E(T)}(z) \leqslant 2$, $\Delta(G-E(T)) \leqslant 3$, and $G-E(T)$ is a forest.

Proof. We apply induction on $|V(G)|$. It is easy to see that the theorem holds when $|V(G)|=3$. So assume that $|V(G)| \geqslant 4$. Without loss of generality, we may assume that x, y, z occur on C in the clockwise order listed.

First, we consider the case when $d(y)=2$. Let $H:=(G-y)+x z$ and $D:=(C-$ $y)+x z$. Then H can be embedded in the plane so that H is an outerplanar graph with D bounding its infinite face. Let $x x^{\prime} \in E(D)$ with $x^{\prime} \neq z$ (because $|V(G)| \geqslant 4$). We apply induction to H, D, z, x, x^{\prime} (as G, C, x, y, z, respectively). There is a forest S in H such that $d_{H-E(S)}(x)=0, d_{H-E(S)}(z) \leqslant 1, d_{H-E(S)}\left(x^{\prime}\right) \leqslant 2, \Delta(H-E(S)) \leqslant 3$, and $H-E(S)$ is a forest. Now let T be the forest in G obtained from S by replacing the edge $x z$ of S with the path $x y z$ in G. It is easy to see that $d_{G-E(T)}(y)=0$. Because $d_{H-E(S)}(x)=0, d_{G-E(T)}(x) \leqslant 1$. Because $d_{H-E(S)}(z) \leqslant 1, d_{G-E(T)}(z) \leqslant 2$. The possible increase of 1 in the degrees comes from the edge $x z$. Therefore, because $\Delta(H-E(S)) \leqslant 3$, we have $\Delta(G-E(T)) \leqslant 3$. Since $G-E(T)=(H-E(S))+x z$ and $d_{H-E(S)}(x)=0$, we see that $G-E(T)$ is also a forest.

So we may assume that $d(y) \geqslant 3$. We label the neighbors of y as y_{1}, \ldots, y_{k+1} in counterclockwise order on C. Then $k \geqslant 2$. Without loss of generality, assume that $y_{1}=x$ and $y_{k+1}=z$. For $i=1, \ldots, k$, let C_{i} denote the cycle which is the union of $y_{i+1} y y_{i}$ and the counterclockwise subpath of C from y_{i} to y_{i+1}, and let H_{i} denote the subgraph of G contained in the closed disc bounded by C_{i}. Then H_{i} is an outerplanar graph and C_{i} bounds its infinite face. For each $1 \leqslant i \leqslant k$, we apply induction to $H_{i}, C_{i}, y_{i}, y, y_{i+1}$ (as G, C, x, y, z, respectively). Therefore, for each $1 \leqslant i \leqslant k, H_{i}$ has a forest T_{i} such that $d_{H_{i}-E\left(T_{i}\right)}(y)=0$, $d_{H_{i}-E\left(T_{i}\right)}\left(y_{i}\right) \leqslant 1, d_{H_{i}-E\left(T_{i}\right)}\left(y_{i+1}\right) \leqslant 2, \Delta\left(H_{i}-E\left(T_{i}\right)\right) \leqslant 3$, and $H_{i}-E\left(T_{i}\right)$ is a forest. Let $T:=\bigcup_{i=1}^{k} T_{i}$. Then T is a forest in G. It is easy to see that $d_{G-E(T)}(y)=0, d_{G-E(T)}(x) \leqslant 1$, and $d_{G-E(T)}(z) \leqslant 2$. Note that for $i=1, \ldots, k, d_{H_{i}-E\left(T_{i}\right)}\left(y_{i}\right) \leqslant 1$ and $d_{H_{i}-E\left(T_{i}\right)}\left(y_{i+1}\right) \leqslant 2$. Hence, $d_{G-E(T)}\left(y_{i}\right) \leqslant 3$ for $i=2, \ldots, k-1$. Thus, $\Delta(G-E(T)) \leqslant 3$. It is also easy to see that $G-E(T)=\bigcup_{i=1}^{k}\left(H_{i}-E\left(T_{i}\right)\right)$. Since $d_{G-E(T)}(y)=0, G-E(T)$ is a forest.

The following example gives a family of outerplanar graphs which are not (1,2)coverable. Take a long cycle $C=v_{0} v_{1} \ldots v_{2 n+1} v_{0}$ and add the following edges: $v_{0} v_{2 i+1}$ for $i=1, \ldots, n-1$ and $v_{2 i-1} v_{2 i+1}$ for $i=1, \ldots, n$.

Next, we show that all 4 -connected planar graphs are $(2,6)$-coverable. But first, we consider Hamiltonian planar graphs.

Corollary 8. If G is a Hamiltonian planar graph, then it is $(2,6)$-coverable.
Proof. Take a plane embedding of G and let C be a Hamiltonian cycle in G. Let G_{1} (respectively, G_{2}) denote the subgraph of G inside (respectively, outside) the closed disc bounded by C. Then G_{1} and G_{2} are outer planar graphs (with C as the boundary cycle). Pick a vertex $y \in V(C)$, and apply Theorem 7 to $G_{i}, i=1$, 2 , we find a forest T_{i} in G_{i} such that $d_{G_{i}-E\left(T_{i}\right)}(y)=0$ and $\Delta\left(G_{i}-E\left(T_{i}\right)\right) \leqslant 3$. It is easy to verify that $\Delta\left(G-E\left(T_{1} \cup T_{2}\right)\right) \leqslant 6$.

Tutte [6] proved that every 4-connected planar graph contains a Hamilton cycle. Thus, by Corollary 8 , we have the following result.

Corollary 9. If G is a 4 -connected planar graph, then it is $(2,6)$-coverable.
It is well known that a graph is outerplanar if and only if it contains no K_{4}-subdivision or $K_{3,2}$-subdivision [1, Proposition 7.3.1]. In view of Theorem 7, it is natural to consider

1 the class of graphs containing no K_{4}-subdivisions and the class of graphs containing no $K_{3,2}$-subdivisions.

The graphs containing no K_{4}-subdivisions are also called series-parallel graphs. It is known that any simple series-parallel graph has a vertex of degree at most two (see [2]). Therefore, by applying induction on the number of vertices, we can show that any simple series-parallel graph is $(2,0)$-coverable.

On the other hand, the graph $K_{n, 2}$ is series-parallel, but is not $\left(1,\left\lfloor\frac{n}{2}-2\right\rfloor\right)$-coverable. So it is natural to consider graphs containing no $K_{n, 2}$-subdivisions. An easier question is to determine the smallest t and D so that every simple graph with no $K_{n, 2}$-minors is (t, D)-coverable, for $n \geqslant 2$. To this end, we consider the cases $n=2,3$. We note that when $n=2,3$, a graph contains a $K_{n, 2}$-minor if, and only if, it contains a $K_{n, 2}$-subdivision.

Note that if G is a simple graph containing no $K_{2,2}$-minor, then every block of G is either a triangle or induced by an edge. So it is easy to see that any simple graph containing no $K_{2,2}$-minor is (1,1)-coverable.

For graphs with no $K_{3,2}$-minor, we have the following result.
Proposition 10. If G is a simple graph containing no $K_{3,2}$-subdivision, then G is both $(1,3)$-coverable and (2, 0)-coverable.

Proof. First we shall prove the existence of a (1, 3)-cover. To do this, we prove the following stronger result.
(1) For any vertex v of G there is a forest T in G such that $d_{G-E(T)}(v)=0$ and $\Delta(G-$ $E(T)) \leqslant 3$.
We use induction on the number of K_{4}-subdivisions contained in G. If G contains no K_{4}-subdivision, then it is outerplanar, and (1) follows from Theorem 7. So assume that G contains a K_{4}-subdivision. In fact, every K_{4}-subdivision in G must be isomorphic to K_{4}, since any K_{4}-subdivision not isomorphic to K_{4} is also a $K_{3,2}$-subdivision.

Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq V(G)$ induce a K_{4} in G. Since G has no $K_{3,2}$-subdivision, G $\left\{v_{i} v_{j}: 1 \leqslant i \neq j \leqslant 4\right\}$ has exactly four components C_{i} with $v_{i} \in V\left(C_{i}\right), i=1,2,3,4$. Without loss of generality, we may assume that $v \in V\left(C_{1}\right)$. By applying induction to C_{1}, we conclude that C_{1} contains a forest T_{1} such that $d_{C_{1}-E\left(T_{1}\right)}(v)=0$ and $\Delta\left(C_{1}-\right.$ $\left.E\left(T_{1}\right)\right) \leqslant 3$. Similarly, by applying induction to $C_{i}, i=2,3,4, C_{i}$ contains a forest T_{i} such that $d_{C_{i}-E\left(T_{i}\right)}\left(v_{i}\right)=0$ and $\Delta\left(C_{i}-E\left(T_{i}\right)\right) \leqslant 3$. Let $T:=\left(\bigcup_{i=1}^{4} T_{i}\right)+\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}\right\}$. It is easy to check that T is a forest, $d_{G-E(T)}(v)=0$, and $\Delta(G-E(T)) \leqslant 3$.

To prove that G is $(2,0)$-coverable, it suffices to prove the following result (by using Nash-Williams' theorem).
(2) If G is a graph containing no $K_{3,2}$-subdivision, then G contains at most $2|V(G)|-2$ edges.
It is easy to check that (2) holds when $|V(G)| \leqslant 4$. So assume that $|V(G)| \geqslant 5$. Then G is not a complete graph. Further, G is not 3-connected. For otherwise, there are three internally disjoint paths in G between two non-adjacent vertices, and they would form a $K_{3,2}$-subdivision in G.

So let $\{u, v\}$ be a 2 -cut of G and let C be a component of $G-\{u, v\}$. We choose $\{u, v\}$ and C so that $|V(C)|$ is minimum (among all choices of 2-cuts of G). Assume for the moment that $|V(C)|=1$. Let $V(C)=\{x\}$. Then $d_{G}(x)=2$. By applying induction to $G-x$, we

1 see that $|E(G-x)| \leqslant 2|V(G-x)|-2$. Thus, $|E(G)| \leqslant 2|V(G)|-2$. Hence we may assume $|V(C)| \geqslant 2$. Let S denote the set of edges of G with one endpoint in $\{u, v\}$ and one endpoint in $V(C)$, and let $C^{*}:=C+(\{u, v, u v\} \cup S)$. By the choice of $\{u, v\}$ and C, we can prove that C^{*} is 3 -connected. Therefore, $C^{*}-u v$ contains two internally disjoint paths P, Q

7 Acknowledgments

The authors thank László Lovász and Robin Thomas for helpful conversations. between u and v. On the other hand, $G-V(C)$ contains a path R from u to v and containing at least three vertices. Now $P \cup Q \cup R$ gives a $K_{3,2}$-subdivision in G, a contradiction.

References

[1] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Mathematics and Applications, vol. 3, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
[2] J. Duffin, Topology of series-parallel networks, J. Math. Anal. Appl. 10 (1965) 303-318.
[3] L. Lovász, personal communication.
[4] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445-450.
[5] C.St.J.A. Nash-Williams, Decompositions of finite graphs into forests, J. London Math. Soc. 39 (1964) 12.
[6] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116.
[7] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221-230.

[^0]: E-mail addresses: jobal@math.ohio-state.edu (J. Balogh), kochol@savba.sk (M. Kochol), pluhar@inf.u-szeged.hu (A. Pluhár), yu @ math.gatech.edu (X. Yu).
 ${ }^{1}$ M. Kochol was partially supported by Grant 2/4004/04 and was active at Fakulta Prírodných Vied, Žilinská Univerzita v Žiline.
 ${ }^{2}$ A. Pluhar was partially supported by OTKA Grant T34475.
 ${ }^{3}$ Xingxing Yu was partially supported by NSF Grant DMS-9970527 and NSA Grant MDA904-03-1-0052.

