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FINITE FORM OF THE QUINTUPLE PRODUCT IDENTITY
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Abstract. The celebrated quintuple product identity follows surprisingly from an almost-trivial alge-
braic identity, which is the limiting case of the terminating q-Dixon formula.

The celebrated quintuple product identity discovered by Watson [3] (cf. [2, P 147] also) states that

+∞
∑

k=−∞

(1 − xqk)q3(k

2
)(qx3)k = [q, x, q/x; q]∞[qx2, q/x2; q2]∞ for |q| < 1 (1)

where the q-shifted factorial is defined by

(x; q)0 = 1 and (x; q)n = (1 − x)(1 − qx) · · · (1 − qn−1x) for n = 1, 2, · · ·

with the following abbreviated multiple parameter notation

[α, β, · · · , γ; q]∞ = (α; q)∞(β; q)∞ · · · (γ; q)∞.

This identity has several important applications in combinatorial analysis, number theory and special
functions. For the historical note, we refer the reader to the paper [1]. In this short note, we shall show
that identity (1) follows surprisingly from the following algebraic identity.

Theorem (Finite form of the quintuple product identity). For a natural number m and a variable x,

there holds an algebraic identity:

1 ≡

m
∑

k=0

(1 + xqk)
[

m
k

] (x; q)m+1

(qkx2; q)m+1

xkqk
2

. (2)

In fact, performing parameter replacements m → m+n, x → −q−mx and k → k+m and then simplifying
the result through factorial-fraction relation

(−q−mx; q)m+n+1

(qk−mx2; q)m+n+1

=
(−q−mx; q)m(−x; q)1+n

(qk−mx2; q)m−k(x2; q)1+n+k

= (−1)m−kq(
k

2
)−mkx2k−m ×

(−q/x; q)m(−x; q)1+n

(q/x2; q)m−k(x2; q)1+n+k

we may restate the algebraic identity displayed in the theorem as the finite bilateral series identity

1 ≡
n

∑

k=−m

(1 − xqk)
[

m + n
m + k

] (−x; q)1+n(−q/x; q)m

(x2; q)1+n+k(q/x2; q)m−k

x3kqk
2
+(k

2
). (3)

Letting m, n → ∞ in this equation and applying the relation

(q; q)∞
(x2; q)∞(q/x2; q)∞
(−x; q)∞(−q/x; q)∞

= [q, x, q/x; q]∞[qx2, q/x2; q2]∞

we derive immediately the quintuple product identity displayed in (1).

In terms of basic hypergeometric series, we remark that the finite sum identity (2) is just the limiting
case M → ∞ of the terminating q-Dixon formula (cf. [2, II-14]):

4φ3

[

x2, −qx, q−m, M
−x, q1+mx2, qx2/M

∣

∣

∣
q;

q1+mx

M

]

=
(qx2; q)m(qx/M ; q)m

(qx; q)m(qx2/M ; q)m

.
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