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Rupture degree of graphs
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We introduce a new graph parameter, the rupture degree. The rupture degree for a complete graph Kn
is defined as 1 − n, and the rupture degree for an incomplete connected graph G is defined by r(G) =
max{ω(G − X) − |X| − m(G − X) : X ⊂ V(G), ω(G − X) > 1}, where ω(G − X) is the number of
components of G − X and m(G − X) is the order of a largest component of G − X . It is shown that this
parameter can be used to measure the vulnerability of networks. Rupture degrees of several specific
classes of graphs are determined. Formulas for the rupture degree of join graphs and some bounds
of the rupture degree are given. We also obtain some Nordhaus–Gaddum type results for the rupture
degree.
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1. Introduction

In an analysis of the vulnerability of networks to disruption, three important quantities (there
may be others) are (1) the number of elements that are not functioning, (2) the number
of remaining connected subnetworks and (3) the size of a largest remaining group within
which mutual communication can still occur. Based on these quantities, a number of graph
parameters, such as connectivity, toughness [1], scattering number [2], integrity [3], tena-
city [4] and their edge-analogues, have been proposed for measuring the vulnerability of
networks.

Terminology and notation not defined in this paper can be found in [5]. We denote the
number of components of a graph by ω(G) and the order of the largest component of G by
m(G). The join of two graphs G and H is denoted by G + H. We use �x� for the largest integer
not larger than x and �x� for the smallest integer not smaller than x.
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Connectivity is a parameter based on quantity (1). The connectivity of an incomplete graph
G is defined as

κ(G) = min{|X| : X ⊂ V(G), ω(G − X) > 1}
and the connectivity of a complete graph Kn is defined as n − 1.

Both the toughness and the scattering number take account of quantities (1) and (2). The
toughness and scattering number of an incomplete connected graph G are defined as

t(G) = min

{ |X|
ω(G − X)

: X ⊂ V(G), ω(G − X) > 1

}

and

s(G) = max{ω(G − X) − |X| : X ⊂ V(G), ω(G − X) > 1}
respectively. The toughness and scattering number of Kn are defined as n − 1 and 2 − n,
respectively. The scattering number is called the additive dual of toughness. Although
these two parameters share some similarities in their definitions, they differ in showing the
vulnerability of networks.

The integrity of graphs is based on quantities (1) and (3). The integrity of a graph G is
defined as

I(G) = min{|X| + m(G − X) : X ⊂ V(G)}.
The tenacity of graphs takes account of all three quantities. The tenacity of an incomplete

connected graph G is defined as

T(G) = min

{ |X| + m(G − X)

ω(G − X)
: X ⊂ V(G), ω(G − X) > 1

}

and the tenacity of Kn is defined as n. Clearly, of all the above parameters, tenacity is the most
appropriate for measuring the vulnerability of networks.

It is natural to consider the additive dual of tenacity. We call this parameter the rupture degree
of graphs. Formally, the rupture degree of an incomplete connected graph G is defined by

r(G) = max{ω(G − X) − |X| − m(G − X) : X ⊂ V(G), ω(G − X) > 1}
and the rupture degree of Kn is defined as 1 − n.

Similarly to the relation between the toughness and scattering number, the rupture degree
and tenacity also differ in showing the vulnerability of networks. This can be shown as follows.
Consider the graphs

G1 = Ks + [mK2 ∪ (n − 2m − s)K1]
and

G2 = Ks(n+1)/(n−m+2) +
[

K2(n+1)(n−m+2) ∪ n2 − n(m + s) − s − 2

n − m + 2
K1

]

where 2 ≤ m ≤ (n − s − 1)/2, and m and (n + 1)/(n − m + 2) are integers. It is not difficult
to check that

T(G1) = T(G2) = s + 2

n − m − s

r(G1) = n − m − 2s − 2
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and

r(G2) = (n − m − 2s − 2)(n + 1)

n − m + 2
.

Clearly r(G1) �= r(G2). Hence the rupture degree is a better parameter for distinguishing the
vulnerability of these two graphs.

In this paper, we obtain some basic results on the rupture degree. Rupture degrees of some
specific classes of graphs are determined in section 2. Formulas for the rupture degree of join
graphs are given in section 3. In section 4, we obtain several bounds for the rupture degree. In
the final section, we give some Nordhaus–Gaddum type results for the rupture degree.

2. Rupture degree of several specific classes of graphs

We use Pn and Cn to denote the path and cycle with n vertices, respectively. A comet Ct,r is
defined as the graph obtained by identifying one end of the path Pt (t ≥ 2) with the centre of
the star K1,r . In this section we determine the rupture degree of Pn, Cn, Ct,r and the k-complete
partite graph Kn1,n2,...,nk .

THEOREM 1 The rupture degree of the comet Ct,r is

r(Ct,r) =
{

r − 1, if t is even

r − 2, if t is odd.

Proof First, we consider the case when t is even. Let X be an arbitrary vertex cut of Ct,r

and set |X| = x. If x ≤ t/2 − 1, then ω(Ct,r − X) ≤ r + x. Therefore we have m(Ct,r − X) ≥
�(t − x)/x�. Hence

ω(Ct,r − X) − |X| − m(Ct,r − X) ≤ (r + x) − x −
⌈

t − x

x

⌉

= r −
⌈

t − x

x

⌉

≤ r − 1.

If x ≥ t/2, then ω(Ct,r − X) ≤ r + (t − x). Therefore

ω(Ct,r − X) − |X| − m(Ct,r − X) ≤ r + (t − x) − x − 1 (1)

= r + t − 2x − 1 (2)

≤ r − 1. (3)

By the choice of X , we obtain r(Ct,r) ≤ r − 1.
It is easy to see that there is a vertex cut X∗ of Ct,r such that |X∗| = t/2, ω(Ct,r − X∗) =

t/2 + r and m(Ct,r − X∗) = 1. From the definition of rupture degree, we have r(Ct,r) ≥
ω(Ct,r − X∗) − |X∗| − m(Ct,r − X∗) = r − 1. This implies that r(Ct,r) = r − 1.

The case when t is odd can be proved similarly. �

COROLLARY 1 The rupture degree of the path Pn (n ≥ 3) is

r(Pn) =
{

−1 if n is even

0 if n is odd.
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COROLLARY 2 The rupture degree of the star K1,n−1 (n ≥ 3) is n − 3.

THEOREM 2 The rupture degree of the cycle Cn is

r(Cn) =
{

−1 if n is even

−2 if n is odd.

Proof First we consider the case when n is even. Let X be an arbitrary vertex cut of Cn and
set |X| = x. If x ≤ n/2, then ω(Cn − X) ≤ x. Therefore we have m(Cn − X) ≥ �(n − x)/x�.
Hence

ω(Cn − X) − |X| − m(Cn − X) ≤ −
⌈

n − x

x

⌉
≤ −1.

If x ≥ n/2, then ω(Cn − X) ≤ n − x. Hence

ω(Cn − X) − |X| − m(Cn − X) ≤ n − 2x − 1 ≤ −1.

From the choice of X and the definition of rupture degree, we obtain r(Cn) ≤ −1.
It is easy to see that there is a vertex cut X∗ of Cn such that |X∗| = n/2, ω(Cn − X∗) = n/2

and m(Cn − X∗) = 1. From the definition of rupture degree, we have r(Cn) ≥ ω(Cn − X∗) −
|X∗| − m(Cn − X∗) = −1. This implies that r(Cn) = −1.

The case when n is odd can be proved similarly. �

THEOREM 3 The rupture degree of the complete k-partite graph Kn1,n2,...,nk is 2 max{n1,
n2, . . . , nk} − ∑k

i=1 ni − 1.

Proof Suppose that the partite sets of Kn1,n2,...,nk are V1, V2, . . . , Vk and |Vi| = ni for
i = 1, 2, . . . , k. Without loss of generality, we assume that n1 = max{n1, n2, . . . , nk}. Then
X∗ = V(Kn1,n2,...,nk ) − V1 is a vertex cut of Kn1,n2,...,nk and

ω(Kn1,n2,...,nk − X∗) − |X∗| − m(Kn1,n2,...,nk − X∗) = 2n1 −
k∑

i=1

ni − 1

= 2 max{n1, n2, . . . , nk} −
k∑

i=1

ni − 1.

Therefore r(Kn1,n2,...,nk ) ≥ 2 max{n1, n2, . . . , nk} − ∑k
i=1 ni − 1.

For any vertex cut X of Kn1,n2,...,nk , there must be a partite set Vi such that X ⊇ V(Kn1,n2,...,nk ) −
Vi. Then

ω(Kn1,n2,...,nk − X) − |X| − m(Kn1,n2,...,nk − X) = (ni − |X ∩ Vi|) −

|X ∩ Vi| +

k∑
j=1, j �=i

nj


−1

= 2ni −
k∑

i=1

ni − 1 − 2|X ∩ Vi|

≤ 2ni −
k∑

i=1

ni − 1

≤ 2 max{n1, n2, . . . , nk} −
k∑

i=1

ni − 1.
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Thus

r(Kn1,n2,...,nk ) ≤ 2 max{n1, n2, . . . , nk} −
k∑

i=1

ni − 1.

This implies that

r(Kn1,n2,...,nk ) = 2 max{n1, n2, . . . , nk} −
k∑

i=1

ni − 1.

�

COROLLARY 3 The rupture degree of Km,n (m ≥ n > 1) is m − n − 1.

3. Rupture degree of join graphs

Let G be an incomplete connected graph and X a vertex cut of G. We call X an r-set of G if
r(G) = ω(G − X) − |X| − m(G − X).

THEOREM 4 Let G1 and G2 be two connected graphs of order n1 and n2, respectively. Then
r(G1 + G2) = max{r(G1) − n2, r(G2) − n1}.

Proof We distinguish three cases.

Case 1 Both G1 and G2 are complete graphs. From the definition of rupture degree, r(G1) =
1 − n1, r(G2) = 1 − n2 and r(G1 + G2) = 1 − (n1 + n2). The result follows.
Case 2 Both G1 and G2 are incomplete graphs. Let X1 be a r-set of G1. Then

r(G1) = ω(G1 − X1) − |X1| − m(G1 − X1)

= ω(G1 + G2 − X1 ∪ V(G2)) − |X1 ∪ V(G2)| + |V(G2)|
− m(G1 + G2 − X1 ∪ V(G2))

≤ r(G1 + G2) + n2.

This implies that r(G1 + G2) ≥ r(G1) − n2. Similarly, we can prove that r(G1 + G2) ≥
r(G2) − n1. Hence

r(G1 + G2) ≥ max{r(G1) − n2, r(G2) − n1}.
Now, let X be an r-set of G1 + G2. Then, by the definition of G1 + G2, we know that either
V(G1) ⊂ X or V(G2) ⊂ X . Without loss of generality, we assume that V(G1) ⊂ X. Then

r(G1 + G2) = ω(G1 + G2 − X) − |X| − m(G1 + G2 − X)

= ω(G1 + G2 − X ∩ V(G2) − V(G1)) − |X ∩ V(G2)| − |V(G1)|
− m(G1 + G2 − X ∩ V(G2) − V(G1))

= ω(G2 − X ∩ V(G2)) − |X ∩ V(G2)| − |V(G1)| − m(G2 − X ∩ V(G2))

≤ r(G2) − n1

≤ max{r(G1) − n2, r(G2) − n1}.
Hence r(G1 + G2) = max{r(G1) − n2, r(G2) − n1}.
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Case 3 Exactly one of G1 and G2 is a complete graph. Without loss of generality, we assume
that G1 is a complete graph. Similar to the proof in case 2, we can obtain r(G1 + G2) ≥
r(G2) − n1. Furthermore, if X is a vertex cut of G1 + G2, then

m(G1 + G2 − X) ≤ (n1 + n2) − |X| − ω(G1 + G2 − X) + 1.

Then

r(G1 + G2) ≥ ω(G1 + G2 − X) − |X| − m(G1 + G2 − X)

≥ 2ω(G1 + G2 − X) − (n1 + n2) − 1

≥ 4 − (n1 + n2) − 1

= 3 − (n1 + n2)

> r(G1) − n2.

Therefore we have

r(G1 + G2) ≥ max{r(G1) − n2, r(G2) − n1}.
Similarly to the proof in case 2, we can obtain

r(G1 + G2) ≤ max{r(G1) − n2, r(G2) − n1}.
This completes the proof. �

COROLLARY 4 Let G1, G2, . . . , Gk be k connected graphs with |V(Gi)| = ni for i =
1, 2, . . . , k. Then

r(G1 + G2 + · · · + Gk) = k
max
i=1


r(Gi) −

k∑
j=1, j �=i

nj


 .

4. Bounds for rupture degree

We need the following lemma.

LEMMA 1 [6] Let G be an incomplete connected graph of order n. Then κ(G) ≥
max{1, 2δ(G) − n + 2}.

THEOREM 5 Let G be an incomplete connected graph of order n. Then

2α(G) − n − 1 ≤ r(G) ≤ [α(G)]2 − κ(G)[α(G) − 1] − n

α(G)
.

Proof Let V1 be a largest independent set of G. Then |V1| = α(G), V(G)\V1 is a vertex cut
of G and m(G − V(G)\V1) = 1. Hence

r(G) = max{ω(G − X) − |X| − m(G − X) : X ⊂ V(G), ω(G − X) > 1}
≥ ω(G − (V(G)\V1)) − |V(G)\V1| − m(G − V(G)\V1)

= 2α(G) − n − 1.



Networks: vulnerability to disruption 7

For any vertex cut X of G, we have |X| ≥ κ(G) and ω(G − X) ≤ α(G). Then

m(G − X) ≥ n − |X|
ω(G − X)

≥ n − |X|
α(G)

.

This implies that

ω(G − X) − |X| − m(G − X) ≤ α(G) − |X| − n − |X|
α(G)

≤ [α(G)]2 − κ(G)[α(G) − 1] − n

α(G)
.

Hence

r(G) = max{ω(G − X) − |X| − m(G − X) : X ⊂ V(G), ω(G − X) > 1}

≤ [α(G)]2 − κ(G)[α(G) − 1] − n

α(G)
.

�

Remark 1 The result in theorem 5 is the best possible. This can be shown by the graphs K−
n

and the star graph K1,n−1, where K−
n is the graph obtained from Kn by deleting one edge.

COROLLARY 5 Let G be an incomplete connected graph of order n. Then 3 − n ≤ r(G) ≤
n − 3.

Proof Since G is an incomplete connected graph, we have 1 ≤ κ(G) ≤ n − 2 and 2 ≤
α(G) ≤ n − 1. It follows from theorem 5 that r(G) ≥ 2α(G) − n − 1 ≥ 3 − n. By theorem 5
we have

r(G) ≤ [α(G)]2 − κ(G)[α(G) − 1] − n

α(G)
≤ [α(G)]2 − α(G) − n + 1

α(G)
.

Set f (x) = (x2 − x − n + 1)/x. It is obvious that f (x) is an increasing function when x ∈
[2, n − 1]. Hence

r(G) ≤ (n − 1)2 − (n − 1) − n + 1

n − 1
≤ n − 3.

�

THEOREM 6 There is no graph G of order n such that r(G) = n − 4. For any r with 3 − n ≤
r ≤ n − 5 or r = n − 3, there exist graphs of order n and rupture degree r.

Proof Suppose that there is an incomplete connected graph G of order n such that r(G) =
n − 4. Let X be an r-set of G. Then

r(G) = n − 4 = ω(G − X) − |X| − m(G − X).

Since |X| ≥ 1 and m(G − X) ≥ 1, we have

ω(G − X) = (n − 4) + |X| + m(G − X) ≥ n − 2.

If ω(G − X) = n − 1, then r(G) = n − 3, which is a contradiction. Therefore ω(G − X) =
n − 2 and |X| + m(G − X) = 2. This implies that |X| = 1 and m(G − X) = 1, which is
impossible.
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Now let us show that for any r with 3 − n ≤ r ≤ n − 5 or r = n − 3, there exist graphs of
order n and rupture degree r. Set m = n + r. If m is odd, the graph

G1 = m + 1

2
K1 + Kn−(m+1)/2

is of order n and rupture degree r. If m is even, then the graph

G2 =
(

m − 4

2
K1 ∪ 2K2

)
+ Kn−(m+4)/2

is of order n and rupture degree r. �

THEOREM 7 Let G be an incomplete connected graph of order n. Then r(G) ≤ n − 2δ(G) − 1.

Proof For simplicity, we denote δ(G) and κ(G) by δ and κ , respectively. Let X be a vertex
cut of G. Then ω(G − X) ≤ n − |X| and m(G − X) ≥ 1. This implies that

ω(G − X) − |X| − m(G − X) ≤ n − 2|X| − 1.

If |X| ≥ δ, then

ω(G − X) − |X| − m(G − X) ≤ n − 2δ − 1.

Therefore we can assume that |X| ≤ δ − 1.
Denote the components of G − X by G1, G2, . . . , Gp and set ni = |V(Gi)| with 1 ≤ i ≤ p.

Then every component Gi, 1 ≤ i ≤ p, contains at least two vertices. Otherwise, suppose that
the only vertex in the component is u, then d(u) ≤ |X| < δ, which is a contradiction. Since
δ ≤ ni + |X| − 1 for 1 ≤ i ≤ p, we obtain

pδ ≤
p∑

i=1

(ni + |X| − 1) = n − |X| + p(|X| − 1)

which means that p ≤ (n − |X|)/(δ − |X| + 1). Hence

ω(G − X) − |X| − m(G − X) ≤ n − |X|
δ − |X| + 1

− |X| − 1.

Now define

f (x) = n − x

δ − x + 1
− x − 1.

It is easy to see that

f (x + 1) − f (x) = −x2 + (2δ + 1)x − (δ + 1)2 + n

(δ − x)(δ − x + 1)
≥ 0

if and only if

x2 − (2δ + 1)x + (δ + 1)2 − n ≤ 0

when x ≤ δ − 1. Since the roots of the equation

x2 − (2δ + 1)x + (δ + 1)2 − n = 0

are

x1 = δ + 1 − √
4n − 4δ − 3

2
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and

x2 = δ + 1 + √
4n − 4δ − 3

2

we have

x2 − (2δ + 1)x + (δ + 1)2 − n ≤ 0

if and only if x1 ≤ x ≤ x2, i.e. f (x) is a decreasing function when x ≤ �x1� or x ≥ �x2�, and is
an increasing function when �x1� ≤ x ≤ �x2�. Note that x1 < δ and x2 > δ. By lemma 1 we
have

max
κ≤x≤δ−1

� f (x)� ≤ max{� f (max{1, 2δ − n + 2})�, � f (δ − 1)�}
= max{� f (1)�, � f (δ − 1)�}.

By the choice of X we have

r(G) = max{ω(G − X) − |X| − m(G − X) : X ⊂ V(G), ω(G − X) > 1}
≤ max{max|X|≥δ

(n − 2|X| − 1), max
κ≤x≤δ−1

� f (x)�}

≤ max{n − 2δ − 1, � f (1)�, � f (δ − 1)�}
= n − 2δ − 1

which completes the proof. �

5. Nordhaus–Gaddum type results for rupture degree

LEMMA 2 [7] Let G be a graph of order n. Then α(G) + α(G) ≤ n + 1.

LEMMA 3 [8] Let G be a graph of order n. Then

n + 1 ≤ I(G) + I(G) ≤ 2n + 4 − min{ p + q : r( p, q) > n}

where r( p, q) is the Ramsey number.

THEOREM 8 Let G be a connected graph of order n such that its complement G is also
connected. Then

min{ p + q : r( p, q) > n} − 2n ≤ r(G) + r(G) ≤ 0

where r( p, q) is the Ramsey number.

Proof Let X be a subset of V(G) and X ′ a subset of V(G) such that I(G) = |X| + m(G − X)

and I(G) = |X ′| + m(G − X ′). Since both G and G are connected, we can assume that X and
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X ′ are vertex cuts of G and G, respectively. Then, by the definition of rupture degree and
lemma 3, we have

r(G) + r(G) ≥ ω(G − X) − |X| − m(G − X) + ω(G − X ′) − |X ′| − m(G − X ′)

= ω(G − X) + ω(G − X ′) − [I(G) + I(G)]
≥ 4 − [2n + 4 − min{ p + q : r( p, q) > n}]
= min{ p + q : r( p, q) > n} − 2n.

Now, let X be an r-set of G and X ′ be an r-set of G. Then ω(G − X) ≤ α(G) and ω(G) ≤ α(G).
Thus

r(G) + r(G) = ω(G − X) + ω(G − X ′) − [|X| + m(G − X) + |X ′| + m(G − X ′)]
≤ α(G) + α(G) − [I(G) + I(G)].

It follows from lemmas 2 and 3 that r(G) + r(G) ≤ 0. �

Remark 2 The upper bound of r(G) + r(G) in theorem 8 is sharp. This can be shown by the
graph G with

V(G) = {u1, u2, . . . , u�n/2�+1, v1, v2, . . . , v�n/2�−1}
and

E(G) =
{

uiuj : i, j = 1, 2, . . . ,
⌈n

2

⌉
+ 1, i �= j

}
∪

{
uivi : i = 1, 2, . . . ,

⌊n

2

⌋
− 1

}
.

THEOREM 9 Let G be a connected graph of order n such that its complement G is also
connected. Then

(3 − n)(n − 5) ≤ r(G)r(G) ≤
(

n − min{ p + q : r( p, q) > n}
2

)2

where r( p, q) is the Ramsey number.

Proof The result (3 − n)(n − 5) ≤ r(G)r(G) follows immediately from corollary 5. From
theorem 8

min{ p + q : r( p, q) > n} − 2n ≤ r(G) + r(G) ≤ 0.

Thus it is not difficult to see that

r(G)r(G) ≤
(

n − min{ p + q : r( p, q) > n}
2

)2

.

�

Remark 3 The lower bound of r(G)r(G) in theorem 9 is sharp. This can be shown in the
graph obtained from K1,n−2 by subdividing one edge.
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