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Abstract. In 1975, Lovász conjectured that for any positive integer k, there exists a minimum
positive integer f (k) such that, for any two vertices x, y in any f (k)-connected graph G, there is
a path P from x to y in G such that G−V (P) is k-connected. A result of Tutte implies f (1) = 3.
Recently, f (2) = 5 was shown by Chen et al. and, independently, by Kriesell. In this paper, we
show that f (2) = 4 except for double wheels.
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1. Introduction

Throughout this paper, we consider simple graphs. A plane graph is a graph drawn in
the plane with no pair of edges crossing. A graph is planar if it is isomorphic to a plane
graph.

For a graph G, we use V (G) and E(G) to denote its vertex set and edge set, re-
spectively. We use the shorthand notation xy (or yx) for an edge in E(G) whose ends
are x and y, and we say that x and y are neighbors. For two subgraphs G and H of a
graph, we use G∪H and G∩H to denote their union and intersection, respectively. For
convenience, we use A := B to rename B as A or to define A as B.

Let G be a graph. Given S ⊆ V (G), we use G[S] to denote the subgraph of G
induced by S, and let G−S := G[V (G)−S]. We say that G is k-connected if |V (G)| ≥
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k + 1 and, for any S ⊆ V (G) with |S| < k, G− S is connected. If G is connected and
x ∈V (G)∪E(G) for which G−{x} is not connected, then x is called a cut vertex when
x ∈V (G) and cut edge otherwise. For any S ⊆ E(G), we let G−S denote the graph with
vertex set V (G) and edge set E(G)−S. If S = {s}⊆V (G)∪E(G), we let G−s := G−S.

Again, let G be a graph. A subgraph H of G is an induced subgraph if G[V (H)] = H,
and it is non-separating if G−V (H) is connected. A block of G is a subgraph of G
which is induced by a cut edge or is a maximal 2-connected subgraph. If a block is
2-connected, then we also say it is non-trivial.

Let P be a path between vertices u and v in a graph G; then P is called a u-v path,
and u and v are called the ends of P. Given vertices x, y on P, we let P[x, y] denote the
path in P with ends x and y, and we define P(x, y) = P[x, y]−{x, y}. Two paths in a
graph are said to be internally disjoint if no internal vertex of one path occurs in the
other.

In 1975, Lovász [7] made the following.

Conjecture. 1.1. For any positive integer k, there exists a minimum positive integer
f (k) such that, for any two vertices x, y in any f (k)-connected graph G, there is an x-y
path P in G such that G−V(P) is k-connected.

It is not difficult to see f (1)≤ 3 using a theorem of Tutte [13] on non-separating cy-
cles in 3-connected graphs. Also, K2,3 shows that f (1) ≥ 3. Hence f (1) = 3. Recently,
f (2) = 5 was shown by Chen, Gould and Yu [1], and independently by Kriesell [6]. As
far as we know, Conjecture 1.1 is open for k ≥ 3.

An example for f (2) = 5 is the double wheel, which is the graph obtained from
the union of a cycle C with two vertices u, v by adding all possible edges from {u, v}
to V (C). The set {u, v} is called the center of the double wheel and C is called the
ring of the double wheel. Figure 1 shows an example of a double wheel. Note that a
double wheel may have a representation with different centers and rings (for example,
the square of the cycle of length six).

PSfrag replacements
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Figure 1: A double wheel with ring {u, v}.

Our main result says that f (2) = 4 except for double wheels.

Theorem 1.2. Let G be a 4-connected graph and let u, v ∈ V (G) be distinct vertices.
Then exactly one of the following holds:

(a) There is a u-v path P in G such that G−V(P) is 2-connected.
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(b) G is a double wheel with center {u, v}.

In [3], Curran and Yu proved that if G is 5-connected then G has an induced u-v
path P such that G−V (P) is 2-connected. If we require “induced” in Theorem 1.2,
then the situation is different, as demonstrated by the “squares” of even cycles. For a
graph H, the square of H is the graph obtained from H by adding all edges between
vertices within distance two in H. See Figure 2 for an example. It would be interesting
to obtain an “induced” version of Theorem 1.2.

PSfrag replacements
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Figure 2: A cycle and its square.

The rest of the paper is organized into two sections. In Section 2, we will use con-
tractible edges and contractible triangles to show the existence of certain non-separating
paths. In the final section, we will use the result in Section 2 to complete the proof
of 1.2.

2. Induced Paths

In this section we prove the existence of certain non-separating cycles in 4-connected
graphs. Our approach is to find contractible subgraphs and apply induction. A con-
nected subgraph H of a 4-connected G is contractible if the graph obtained from G by
contracting H remains 4-connected. A contractible edge is a an edge whose induced
graph is contractible. A 4-connected graph needs not to contain a contractible edge, for
example, the square of a cycle of length at least 5.

Fontet [4] and Martinov [8] characterized those 4-connected graphs containing no
contractible edges, which includes the line graphs of cyclically 4-edge-connected cu-
bic graphs. To avoid the difficulty of dealing with such line graphs, we will use the
following result proved by Kawarabayashi [5, Theorem 9].

Lemma 2.1. Let G be a 4-connected graph with |V (G)| ≥ 7 and assume that G is not
the square of a cycle. Then G has a contractible edge or a contractible triangle.

The following observation will be convenient.

Proposition 2.2. Let G be a 4-connected graph with |V (G)| = 6. Then G contains the
square of a cycle as a spanning subgraph.

Proof. This is obvious if G is a complete graph. So assume G is not complete, and
let x, y be two non-adjacent vertices of G. Since G is 4-connected, G contains four
internally disjoint x-y paths. Since |V (G)|= 6, these four paths all have length 2. So let
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xuiy, 1 ≤ i ≤ 4, denote these four paths. Again, since G is 4-connected, each ui has at
least two neighbors in {u1, u2, u3, u4}. So by a simple case checking, we can see that
G[{u1, u2, u3, u4}] contains a cycle of length 4. Hence, G contains the square of a cycle
as a spanning subgraph.

A result of Tutte [13] implies that for any 3-connected graph G and any distinct
u, v ∈ V (G), G contains a non-separating induced u-v path. Next we use 2.1 to prove a
similar result for 4-connected graphs.

Theorem 2.3. Let G be a 4-connected graph and let u, v ∈ V (G) be distinct. Then
exactly one of the following holds:

(a) G is a double wheel with center {u, v}.
(b) There is a non-separating induced u-v path P in G such that G−V (P) has a non-

trivial block.

Proof. We will prove 2.3 by applying induction on |V (G)|. If uv ∈ E(G), then since G
is 4-connected, G−{u, v} is 2-connected, and so, P := G[{u, v}] gives the desired path
for (b). So we may assume that

(1) uv /∈ E(G).

Suppose G is a double wheel. If {u, v} is the center of the double wheel, then (a)
holds. So assume that for any representation of G as a double wheel, {u, v} is not the
center. Therefore, it follows from (1) that both u and v lie on the ring of the double
wheel. Moreover, |V (G)| ≥ 7; for otherwise, G can be represented as a double wheel
with center {u, v}. Let P denote a shortest path on the ring between u and v. Then we
see that G−V(P) is 2-connected. Hence, P gives the desired path for (b), and so, we
may assume that

(2) G is not a double wheel.

Now suppose G is the square of a cycle C. Then by (2), |V (G)| 6= 6. Since G is
4-connected and by (1), |V (G)| ≥ 6. Hence |V (G)| ≥ 7. So let P be a shortest path
on C between u and v. Then clearly, G−V(P) is connected, and G−V(P) contains a
triangle. So P gives the desired path for (b). Hence, we may assume

(3) G is not the square of a cycle.

Suppose |V (G)| = 6. Then, since G is 4-connected and by (1), every vertex in
V (G)−{u, v} is adjacent to both u and v. By (3), G−{u, v} must contain a triangle.
Hence there is a u-v path P in G such that G−V (P) is a triangle. Thus, P gives the
desired path for (b). So we may assume

(4) |V (G)| ≥ 7.

By (3) and (4), we may apply 2.1 to G and find a contractible edge or a contractible
triangle in G. If G has a contractible edge then let R denote the set of vertices incident
with that edge; and otherwise, let R be the vertex set of a contractible triangle in G. Let
G ′ denote the graph resulted from G by contracting G[R], let r denote the vertex of G ′

obtained from the contraction of G[R], and for any a ∈ V (G), let a′ = r if a ∈ R and
a′ = a if a /∈ R. By (1), we have
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(5) {u, v} 6⊆ R.

Next, we distinguish two cases.

Case 1. G ′ cannot be represented as a double wheel with center {u ′, v ′}.
Then by induction, G ′ has a non-separating induced u ′-v ′ path P ′ such that G ′−

V (P ′) has a non-trivial block.
If r /∈ V (P ′), then it is easy to see that P := P ′ gives the desired path for (b). So

assume r ∈V (P ′).
First, suppose |R| = 3. Let R = {x, y, z}, and let P denote a shortest induced u-v

path in G[(V (P ′)−{r})∪R]. Then P contains at least one of {x, y, z} and misses at
least one of {x, y, z}. If P misses two of {x, y, z}, say y and z, then one of {y, z} has a
neighbor in V (G ′)−V(P ′) (since G is 4-connected and P ′ is induced in G ′), and so, P
gives the desired path for (b). So assume that P misses exactly one of {x, y, z}, say z.
Then it is easy to see that z has a neighbor in V (G ′)−V (P ′) (since G is 4-connected
and P was chosen to be shortest). Hence, P is the desired path for (b).

Now suppose |R| = 2. Let R = {x, y} and let P be a shortest induced u-v path in
G[(V (P ′)−{r})∪R]. If P contains both x and y, then P := P ′ gives the desired path
for (b). If P misses one of {x, y}, say y, then, since G is 4-connected and P ′ is induced
in G ′, y has a neighbor in V (G ′)−V(P ′). Hence P is the desired path for (b).

Case 2. G ′ is a double wheel with center {u ′, v ′}.
Let C′ denote the ring of G ′. If r /∈ {u ′, v ′}, then r ∈V (C′). Since G is not a double

wheel with center {u, v}, G−{u, v} contains a triangle T . So let P denote a shortest
u-v path in G−V (T ) (P has length 2). We see that G−V (P) is connected and has a
non-trivial block.

Now assume that r ∈ {u ′, v ′}. By symmetry, assume that r = u ′.
Suppose |R| = 3, and let R = {x, y, z} with x = u. Since G is 4-connected, there

are distinct vertices u ′, y ′, z ′ on C′ such that uu ′, yy ′, zz ′ ∈ E(G). Let P := uu ′v. Then
G−V (P) is connected, and the y ′-z ′ path of C′ − u ′ forms a cycle with y ′yzz ′. So
G−V(P) has a non-trivial block, and P gives the desired path for (b).

Now assume |R|= 2 and let R = {x, y} with x = u. Since G is 4-connected, there are
distinct vertices u ′, y ′, y ′′ on C′ such that uu ′, yy ′, yy ′′ ∈ E(G). Let P := uu ′v. Then
G−V (P) is connected, and the y ′-y ′′ path of C′ − u ′ forms a cycle with y ′yy ′′. So
G−V(P) has a non-trivial block, and P gives the desired path for (b).

3. Non-Separating Paths

We begin with a result of Cheriyan and Maheshwari [2] which finds a second non-
separating induced cycle in a 3-connected graph.

Lemma 3.1. Let G be a 3-connected graph, let uv ∈ E(G), and let D be a non-
separating induced cycle in G through uv. Then G has a non-separating induced cycle
C through e such that V (C)∩V (D) = {u, v}.

For notational convenience, we introduce the following definition. Let G be a graph
with distinct vertices a, b, c, and d. We say that the ordered quintuple (G, a, b, c, d) is
planar if G can be drawn in a closed disc in the plane with no pair of edges crossing such
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that a, b, c, d occur on the boundary of the disc in cyclic order. The following is proved
in [3], which is an easy consequence of a result of Seymour [9] and Thomassen [10]

Lemma 3.2. Let a, b, c, d be distinct vertices of a graph G. Suppose that for any
T ⊆ V (G) with |T | ≤ 3, every component of G− T contains at least one element of
{a, b, c, d}. Then exactly one of the following is true:

(a) There are vertex disjoint paths joining a to b and c to d, respectively.
(b) (G, a, c, b, d) is planar.

The following result from [3] is an easy consequence of a theorem of Thomassen
[12].

Lemma 3.3. Let (G, a, c, b, d) be planar and let G−{c, d} contain an a-b path. As-
sume that, for any T ⊆ V (G) with |T | ≤ 3, every component of G − T contains an
element of {a, c, b, d}. Then G−{c, d} contains a Hamiltonian a-b path.

We also need the following lemma to prove our main result of this section.

Lemma 3.4. Let G be a graph and {a, a′, b, b′} ⊆V (G). Suppose

(a) for any T ⊆V (G) with |T | ≤ 2, every component of G−T contains an element of
{a, a′, b, a′}, and

(b) G contains disjoint paths from a, b to a′, b′, respectively.

Then there exists a non-separating induced a-a′ path P in G such that V (P)∩{b, b′}= /0.

Proof. Suppose 3.4 is not true. Let P denote the set of all induced a-a′ paths P in G for
which G−V(P) is not connected and {b, b′} is contained in a component of G−V(P).
By (b), P 6= /0. For each P ∈ P , let UP denote the component of G−V (P) containing
{b, b′}, and let WP denote a component of G−V (P) such that WP 6= UP and |V (WP)| is
minimum.

We choose P ∈ P so that |V (WP)| is minimum. Let x, y ∈V (P) be the neighbors of
WP such that P[x, y] is maximal. By (a) and since P is induced in G, P(x, y) contains
a neighbor of some component of G −V (P). Let R denote an induced x-y path in
G[V (WP)∪{x, y}], and let Q := (P−V(P(x, y)))∪R. Then Q is an induced a-a′ path
in G, and BP is contained in a component of G−V(Q). Hence Q ∈ P . It is easy to see
that WQ is properly contained in WP, contradicting the choice of P.

Before we prove our next result, we introduce the concept of a bridge. Let G be a
graph, and S ⊆V (G). An S-bridge of G is a subgraph of G which is either induced by
an edge of G with both ends in S or is induced by the edges in a component of G− S
and all edges from that component to S.

Theorem 3.5. Let G be a 4-connected graph and let a, b∈V (G) be distinct. Suppose G
contains a non-separating induced a-b path P such that G−V (P) contains a non-trivial
block. Then G has an a-b path Q such that G−V(Q) is 2-connected.

Proof. Let P denote the set of those non-separating induced a-b paths P in G for which
G−V(P) contains a non-trivial block. By hypothesis, P 6= /0. For any P ∈ P , let BP
denote a non-trivial block of G−V (P) with maximum number of vertices. Choose
P ∈ P so that
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(1) |V (BP)| is maximum.

For convenience, let H := G−V(P). If H is 2-connected, then Q := P is the desired
path. So assume that H is not 2-connected. Let X := {v1, v2, . . . , vn} be the set of
cut vertices of H which are contained in BP. Let B1

i , B2
i , . . . , Bni

i denote the vi-bridges
of H which do not contain BP. Then ni ≥ 1, because vi is a cut vertex of H. Let
B := {B j

i : 1 ≤ i ≤ n, 1 ≤ j ≤ ni}. See Figure 3 for an illustration.
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Figure 3: Example of a graph G, a path P and the vi-bridges of G−V(P).

Because G is 4-connected, B j
i − vi has at least three neighbors on P. Let a j

i , b j
i be

the neighbors of B j
i − vi on P such that P[a j

i , b j
i ] is maximal and a, a j

i , b j
i , b occur on P

in order. Next, we prove the following claim.

(2) For each B j
i ∈ B , there is some u j

i ∈ V (BP)−{vi} such that all paths in G from
P(a j

i , b j
i ) to BP internally disjoint from Bp ∪P∪B j

i end at u j
i .

Since G is 4-connected and P is induced in G, there must be a path from P(a j
i , b j

i ) to
BP − vi internally disjoint from BP ∪P∪B j

i . Suppose (2) does not hold. Then there are
paths P1, P2 from r1, r2 ∈V (P(a j

i , b j
i )) to s1, s2 ∈V (BP), respectively, such that s1 6= s2

and P1 and P2 are internally disjoint from Bp∪P∪B j
i . We will show that there is a path

R ∈ P contradicting the choice of P.
Let v1

i , . . . , vk
i be those neighbors of B j

i − vi on P, occurring in order on P with
v1

i = a j
i and vk

i = b j
i . Let A j

i denote the graph obtained from G[V (B j
i ∪P[a j

i , b j
i ])−{vi}]

by (for all 1 ≤ s ≤ k−1) deleting P(vs
i ,v

s+1
i ) and adding edges v1

i vk
i and vs

i v
s+1
i . Let D j

i
denote the cycle v1

i · · ·v
k
i v1

i in A j
i . Clearly, D j

i is a non-separating induced cycle in A j
i .
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We claim that A j
i is 3-connected. For otherwise, let T ⊆ V (A j

i ) with |T | ≤ 2 such
that A j

i − T is not connected. Note that T 6⊆ V (D j
i ) because B j

i − vi is connected and
every vertex of D j

i − T has a neighbor in V (B j
i − vi). Hence, D j

i −T is contained in
a single component of A j

i − T . Therefore, there is a component D of A j
i − T such

that D ⊆ B j
i − vi. Then D is also a component of G− (T ∪{vi}). But |T ∪{vi}| ≤ 3,

contradicting the assumption that G is 4-connected.
By applying 3.1 to A j

i , D j
i , v1

i vk
i , we find a non-separating induced cycle C in A j

i
such that v1

i vk
i ∈ E(C) and V (C)∩V (D j

i ) = {v1
i , vk

i }. Now let R j
i := C − v1

i vk
i . Then

R j
i −{v1

i , vk
i } ⊆ B j

i − vi. Let R := (P−V (P(a j
i , b j

i )))∪R j
i . It is easy to see that R is

an induced path in G and BP ∪P(a j
i , b j

i )∪P1 ∪ P2 ⊆ G−V (R). Since A j
i −V (C) is

connected and V (C)∩V (D j
i ) = {v1

i , vk
i }, we see that G−V(R) is connected. So R ∈ P .

Since BP ∪P(a j
i , b j

i )∪P1 ∪P2 ⊆ G−V (R), we see that BP ⊆ BR and BP 6= BR. This
contradicts (1), completing the proof of (2).

Next we show that all B j
i ’s are associated with 4-cuts of G. For ease of presentation,

we define a new graph G whose vertices are B j
i ’s, and B j

i is adjacent to B l
k in G if

E(P[a j
i , b j

i ])∩E(P[a l
k, b l

k]) 6= /0. Let G j
i denote the component of G containing B j

i . Let
c j

i , d j
i be the vertices on P such that c j

i and d j
i are neighbors in G of members of G j

i and,
subject to this, P[c j

i , d j
i ] is maximal. See Figure 4 for an illustration of these definitions,

using the graph in Figure 3. Observe that

(3) all P[c j
i , d j

i ] are edge disjoint.
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Figure 4: Components of the graph G .

Let G j
i denote the union of P[c j

i , d j
i ], those B j

i ’s with a neighbor in P(c j
i , d j

i ), and
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those edges of G from BP to P(c j
i , d j

i ). We claim that

(4) {u j
i , vi, c j

i , d j
i } is a 4-cut of G, and G j

i is a {u j
i , vi, c j

i , d j
i }-bridge of G.

It suffices to show that, for each B l
k ∈ V (G j

i ) with B l
k 6= B j

i , we have {vk, u l
k} =

{vi, u j
i }. Since G j

i is connected, we only need to show {vk, u l
k} = {vi, u j

i } for those B l
k

which are adjacent to B j
i in G j

i . Since B l
k −vk and B j

i −vi each has at least three neigh-
bors on P, we see that P(a j

i , b j
i ) contains a neighbor of B l

k − vk or P(a l
k, b l

k) contains a
neighbor of B j

i − vi. By symmetry, we may assume that P(a j
i , b j

i ) contains a neighbor
of B l

k −vk. Then by (2), u j
i = vk and vk 6= vi. If P(a l

k, b l
k) contains a neighbor of B j

i −vi,
then it follows from (2) that u l

k = vi, and hence {vk, u l
k}= {vi, u j

i }. So we may assume
that P(a l

k, b l
k) contains no neighbor of B j

i − vi. Then P(a l
k, b l

k) ⊆ P(a j
i , b j

i ). Hence by
(2), u l

k = u j
i and u l

k 6= vk. This contradicts the earlier conclusion that u j
i = vk.

Hence, {u j
i , vi, c j

i , d j
i } is a 4-cut of G. It is easy to see that G j

i is a {u j
i , vi, c j

i , d j
i }-

bridge of G.
We further claim that

(5) (G j
i , c j

i , u j
i , d j

i , vi) is planar.

Now suppose that (G j
i , c j

i , u j
i , d j

i , vi) is not planar. Then by 3.2, G j
i contains disjoint

paths from c j
i to d j

i and from u j
i to vi. So by 3.4, we can find a non-separating induced

c j
i -d j

i path R j
i in G j

i −{u j
i , vi}. Now let R := (P−V (P(c j

i , d j
i )))∪R j

i . Then R is a non-
separating induced a-b path in G. Hence R ∈ P . But BR contains BP and a u j

i -vi path in
G j

i −V(R j
i ), contradicting (1).

By (5), we may apply 3.3 to (G j
i , c j

i , u j
i , d j

i , vi) and find a Hamiltonian c j
i -d j

i path
Q j

i in G j
i −{u j

i , vi}. Let Q := (P−
⋃

V (P(c j
i , d j

i ))∪ (
⋃

Q j
i ). Then Q is an a-b path, and

G−V(Q) = BP is 2-connected.

It is now easy to see that our main result 1.2 follows from 2.3 and 3.5.
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