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Abstract

A bridgeless graph G is called 3-flow-critical if it does not admit a nowhere-zero

3-flow, but G/e has one for any e ∈ E(G). Tutte’s 3-flow conjecture can be equivalently

stated as that every 3-flow-critical graph contains a vertex of degree three. In this paper,

we study the structure and extreme size of 3-flow-critical graphs. We apply structural

properties to obtain lower and upper bounds on the size of 3-flow-critical graphs, that

is, for any 3-flow-critical graph G on n vertices,

8n− 2

5
≤ |E(G)| ≤ 4n− 10,

where each equality holds if and only if G is K4. We conjecture that every 3-flow-critical

graph on n ≥ 7 vertices has at most 3n − 8 edges, which would be tight if true. For

planar graphs, the best possible upper bound for the size of 3-flow-critical graphs on n

vertices is 5n−8
2 , known from a result of Kostochka and Yancey (2014) on vertex coloring

4-critical graphs by duality.

Keywords: nowhere-zero flows; 3-flow conjecture; critical graph; group connectivity

1 Introduction

Graphs in this paper are finite and may contain parallel edges but no loops. We follow [1, 14]

for undefined notation and terminology. A vertex of degree k in a graph G is called a k-

vertex. Denote by Vk(G) (V≤k(G) and V≥k(G), respectively) the set of all vertices of degree

k (at most k and at least k, respectively) in G. Let nk(G) = |Vk(G)|, n≤k(G) = |V≤k(G)|,
∗Corresponding author.
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and n≥k(G) = |V≥k(G)|. If the graph G is understood from context, we may use nk, n≤k,

and n≥k for short, respectively.

Let D = D(G) be an orientation of a graph G. For a vertex pair (u, v), denote u →
v if there is an arc leaving u and entering v. For each v ∈ V (G), we use E+

D(v) and

E−D(v) to denote the set of all arcs directed out of v and directed into v, respectively.

An ordered pair (D, f) is called an integer flow of G if D is an orientation and f is a

mapping from E(G) to the integers such that every vertex v ∈ V (G) is balanced, that is∑
e∈E+

D(v) f(e)−
∑

e∈E−D(v) f(e) = 0. An integer flow (D, f) is called a nowhere-zero k-flow

if 1 ≤ |f(e)| ≤ k − 1, ∀e ∈ E(G).

As observed by Tutte [12], flow and coloring are dual concepts: a plane graph G admits

a nowhere-zero k-flow if and only if the dual graph G∗ is k-colorable. A graph G is called

vertex coloring 4-critical if G is not 3-colorable but deleting any edge in G results in a 3-

colorable graph. Motivated by this, we define a bridgeless graph G to be 3-flow-critical if G

admits no nowhere-zero 3-flow but G/e has a nowhere-zero 3-flow for each edge e ∈ E(G).

Note that K2 contains a bridge and thus is not considered as a 3-flow-critical graph.

The study of vertex coloring 4-critical graphs can be traced back to Dirac, Gallai and

Ore in 1950s and 1960s (see [6]). It follows from Turán’s Theorem that every 4-critical

graph on n ≥ 5 vertices has at most 1
3n

2 edges, since any such graphs contain no K4 as a

subgraph. In [11], Toft constructed 4-critical graphs with more than 1
16n

2 edges, while the

optimal value remains unknown as of today. For the lower bound, resolving conjectures of

Gallai and Ore on the density of 4-critical graphs, Kostochka and Yancey [6, 7] proved a

tight bound that every 4-critical graph on n vertices has at least 5n−2
3 edges. By duality,

their theorem shows the following result on 3-flow-critical planar graphs.

Theorem 1.1 (Kostochka and Yancey [6, 7] ) For any 3-flow-critical planar graph G on n

vertices,

|E(G)| ≤ 5

2
n− 4.

Moreover, the equality holds if and only if G is the dual of a planar 4-Ore graph.

A natural question is to ask what is the corresponding lower and upper bounds for

nonplanar graphs. It is easy to see that the upper bound 5
2n − 4 for planar graphs does

not hold for general graphs. One may verify that (see Proposition 2.6) the graph K+
3,n−3

(where n ≥ 6) in Figure 1 is 3-flow-critical with 3n − 8 edges, where K+
3,n−3 denotes the

graph obtained from complete bipartite graph K3,n−3 by adding a new edge between two

vertices of degree n− 3.

In this paper, we provide linear lower and upper bounds on the size of any 3-flow-critical

graph on n vertices.
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Figure 1: The graph K+
3,n−3.

Theorem 1.2 Let G be a 3-flow-critical graph on n vertices. Then

8n− 2

5
≤ |E(G)| ≤ 4n− 10,

and each equality holds if and only if G ∼= K4. Moreover, we have 8n+2
5 ≤ |E(G)| ≤ 4n− 11

if G 6∼= K4.

We suspect that the bounds in Theorem 1.2 are not optimal in general. The dual of a

construction of Yao and Zhou [13] on 4-critical planar graphs shows that there exist 3-flow-

critical planar graphs on n vertices with 7n−1
4 edges (see Theorem 4.1 below). However,

determining the best possible lower bound on the size of 3-flow-critical planar graphs, or

equivalently the highest density of 4-critical planar graphs, is a long-standing open problem

(see [13]). It seems much more difficult for the best lower bound on the size of general

nonplanar 3-flow-critical graphs, and we are even unclear about the candidate value. On

the other hand, there are many rich families of 3-flow-critical graphs that we can construct

by developing a 2-sum operation in Section 4. Specifically, from some known results, we

are able to construct 3-flow-critical graphs on n vertices with size roughly rn for 7
4 < r < 3.

Any 3-flow-critical graphs that we can construct seem to be sparser than the graph K+
3,n−3.

Thus we suggest the following conjecture concerning the tight upper bound.

Conjecture 1.3 For any 3-flow-critical graph G on n ≥ 7 vertices,

|E(G)| ≤ 3n− 8.

Perhaps K+
3,n−3 is the only extreme graph to attain this bound when n is large. At least,

it is true if n3(G) ≥ n− 3, as shown in Proposition 2.7 in Section 2.

Tutte’s 3-flow conjecture (see Unsolved Problems #97 in [1]) asserts that every 4-edge-

connected graph admits a nowhere-zero 3-flow. The density argument, even if Conjecture

1.3 was proved, cannot derive the 3-flow conjecture. We propose a stronger conjecture

below, which, if true, implies the 3-flow conjecture.
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Conjecture 1.4 For any 3-flow-critical graph G on n vertices,

|E(G)| < 5

2
n+ n3.

Note that K+
3,n−3 satisfies Conjecture 1.4 since it has many 3-vertices. There is another

family of 3-flow-critical graphs on 2k + 2 vertices, constructed from 2-sum of K4’s (this 2-

sum operation is defined in Definition 4.2 below), which contains four 3-vertices and 2k− 2

5-vertices, approaching the bound in Conjecture 1.4. To support Conjecture 1.4, we provide

the following result.

Theorem 1.5 For any 3-flow-critical graph G on n vertices,

|E(G)| < 5

2
n+ 9n≤8.

The rest of the paper is organized as follows. In Section 2, we introduce a few basic

notation and terminology, and then investigate structures of 3-flow-critical graphs to prove

the lower bound in Theorem 1.2. In Section 3, we complete the proof of the upper bound

in Theorem 1.2 as well as the proof of Theorem 1.5. Finally, we develop some operations

to construct 3-flow-critical graphs with density between 7
4 and 3 in Section 4.

2 Properties of 3-flow-critical graphs

For vertex subsets U,W ⊆ V (G), let [U,W ]G = {uw ∈ E(G)|u ∈ U,w ∈ W}. When

U = {u} or W = {w}, we use [u,W ]G or [U,w]G for [U,W ]G, respectively. The subgraph of

G induced by U is denoted by G[U ]. For any subset S ⊆ V (G), we denote Sc = V (G) \ S
and set dG(S) = |[S, Sc]G|. An edge cut [S, Sc]G is called essential if there are at least two

nontrivial components in G − [S, Sc]G. A graph is called essentially k-edge-connected if it

contains no essential edge cut with less than k edges. When there is no scope for ambiguity,

the subscript G may be omitted. Contracting an edge of a graph means to identify its two

endpoints and then delete the resulting loops. For an edge e ∈ E(G) and a subgraph H

of G, we write G/e to denote the graph obtained from G by contracting e, and denote by

G/H the graph obtained from G by successively contracting the edges of E(H).

Let d+D(v) = |E+
D(v)| and d−D(v) = |E−D(v)| denote the out-degree and the in-degree of v

under the orientation D, respectively. Let Zn be the set of integers modulo n. A function

β: V (G) → Z3 is a Z3-boundary if
∑

v∈V (G) β(v) ≡ 0 (mod 3). For a given Z3-boundary

β, a β-orientation is an orientation D of G such that d+D(v) − d−D(v) ≡ β(v) (mod 3) for

each v ∈ V (G). Especially, a modulo 3-orientation of G is a β-orientation with β(v) ≡ 0

(mod 3) for each v ∈ V (G). We call a graph G Z3-connected if for any Z3-boundary β of G,
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there exists a β-orientation of G. A graph is called Z3-irreducible if it does not contain any

nontrivial Z3-connected subgraphs. It is well-known that a graph admits a nowhere-zero

3-flow if and only if it admits a modulo 3-orientation (see [14]). Therefore, in the rest of

this paper we will study nowhere-zero 3-flows in terms of modulo 3-orientations.

A useful method to prove Z3-connectedness is the following lemma.

Lemma 2.1 (Lai [8]) Let G be a graph, and let H ⊆ G be a subgraph of G.

(i) If H is Z3-connected and G/H has a modulo 3-orientation, then G has a modulo

3-orientation.

(ii) If both H and G/H are Z3-connected, then G is also Z3-connected.

(iii) The graph 2K2 is Z3-connected, where 2K2 consists of two vertices and two parallel

edges.

A wheel graph Wk is constructed by adding a new center vertex connecting to each

vertex of a k-cycle, where k ≥ 3. A wheel Wk is odd if k is odd, and even otherwise.

Lemma 2.2 (DeVos, Xu, Yu [2]) A wheel Wk is Z3-connected if and only if k is even.

Furthermore, each odd wheel does not admit a nowhere-zero 3-flow.

As an example, it is an easy exercise to verify that each odd wheel is 3-flow-critical by

Lemmas 2.1 and 2.2. The following observation about modulo 3-orientations will be useful

in later proofs.

Observation 2.3 Let G be a graph with a modulo 3-orientation D. Assume V3(G) 6= ∅,
and let P = x1x2 . . . xt be a path of G[V3]. Then each of the following holds.

(i) The number t is odd if and only if d+D(x1) = d+D(xt) ∈ {0, 3}.
(ii) The number t is even if and only if d+D(x1) = d−D(xt) ∈ {0, 3}.

Our first result of this section is the following fundamental structural properties of 3-

flow-critical graphs.

Theorem 2.4 Let G be a 3-flow-critical graph. Then each of the following holds.

(i) For any e ∈ E(G), G− e admits a nowhere-zero 3-flow.

(ii) G is 3-edge-connected and essentially 4-edge-connected.

(iii) G is Z3-irreducible.

(iv) G[V3] contains no cycle, unless G is an odd wheel.

Proof. (i) Let e = uv ∈ E(G), and let D be a modulo 3-orientation of G/e. Let D∗ be the

restriction of D on G− e. By arbitrarily orienting each edge in E(G− e) \E(G/e) (if any),

we obtain an orientation D′ of G−e. If D′ is not a modulo 3-orientation of G−e, then either

d+D′(u)− d−D′(u) ≡ d−D′(v)− d+D′(v) ≡ 1 (mod 3) or d+D′(u)− d−D′(u) ≡ d−D′(v)− d+D′(v) ≡ −1
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(mod 3). So D′ can be extended to a modulo 3-orientation of G by letting v → u or u→ v,

a contradiction. Hence D′ is a modulo 3-orientation of G− e.
(ii) By (i), we have δ(G) ≥ 3. Suppose to the contrary that G contains an edge cut

[S, Sc]G such that 2 ≤ d(S) ≤ 3, |E(G[S])| ≥ 1 and |E(G[Sc])| ≥ 1. Assume e1 ∈ E(G[S])

and e2 ∈ E(G[Sc]). By definition, G/e1 admits a modulo 3-orientation D′. Then the

restriction of D′ to G/G[S], say D1, is a modulo 3-orientation. Similarly, G/G[Sc] has a

modulo 3-orientation D2. Then either D1 and D2 agree along [S, Sc]G directly, or they agree

after reversing all edge directions in D2. Thus, their union provides a modulo 3-orientation

of G, a contradiction. Hence G is 3-edge-connected and essentially 4-edge-connected.

(iii) Suppose that H is a nontrivial Z3-connected subgraph of G. Let u1v1 ∈ E(H). By

(i), G − u1v1 admits a modulo 3-orientation D1. Thus the restriction D′ of D1 to G/H is

also a modulo 3-orientation. By Lemma 2.1, G has a modulo 3-orientation, a contradiction.

So G is Z3-irreducible.

(iv) Suppose, by contradiction, that G is not an odd wheel and G[V3] contains a cycle.

Assume C = v1v2 . . . vtv1 is a cycle with the minimum length in G[V3]. Note that C is an

induced subgraph of G. Let ui be the neighbor of vi which is not on C and let ei = uivi.

First, suppose t is even. By (i), G−e1 admits a modulo 3-orientation D′. It implies that

d+D′(vi) = 3 or d−D′(vi) = 3 for each i ∈ {2, 3, . . . , t}. Since t is even, by Observation 2.3(i),

we have d+D′(v2) = d+D′(vt) = 3 or d−D′(v2) = d−D′(vt) = 3, which implies that d−D′(v1) = 2 or

d+D′(v1) = 2. So v1 is not balanced in D′. This leads to a contradiction.

Next, suppose t is odd. If there exists an edge e that is not incident to any vertex on

C, then by (i), G − e admits a modulo 3-orientation D′. It implies that d+D′(vi) = 3 or

d−D′(vi) = 3 for each i ∈ {1, 2, . . . , t}. Since t is odd, by Observation 2.3(ii), we have either

d+D′(v2) = d−D′(vt) = 3 or d−D′(v2) = d+D′(vt) = 3, which implies that v1 is not balanced

in D′, a contradiction. Hence we suppose E(G) = E(C) ∪ {e1, e2, . . . , et}. Since G is not

an odd wheel, there exists an index j ∈ {1, 2, . . . , t − 1} such that uj 6= uj+1. By (i),

G − ej admits a modulo 3-orientation Dj and G − ej+1 admits a modulo 3-orientation

Dj+1, respectively. Without loss of generality, assume vj−1 → vj in Dj . Then we have

vj → vj+1 and uj+1 → vj+1 in Dj . Similarly, WLOG, assume vj−1 → vj in Dj+1. Then

we get vj+1 → vj and uj → vj in Dj+1. Besides, we have d+Dj
(vj−1) = d+Dj+1

(vj−1) =

3 and so, by Observation 2.3(i)(ii), d+Dj
(v) = d+Dj+1

(v) and d−Dj
(v) = d−Dj+1

(v) for each

v ∈ V (C) \ {vj , vj+1}. This implies that the direction of e in Dj+1 is the same as that

in Dj for each e ∈ E(G) \ {ej , ej+1, vjvj+1}. Thus we have d+Dj
(uj) = d+Dj+1

(uj) − 1 and

d−Dj
(uj) = d−Dj+1

(uj), which implies that uj is not balanced in Dj+1 since it is balanced in

Dj , a contradiction again.

Kochol [4, 5] obtained two equivalent statements of Tutte’s 3-flow conjecture as follows:

(i) every 5-edge-connected graph admits a nowhere-zero 3-flow, (ii) every bridgeless graph
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with at most three edge cuts of size three admits a nowhere-zero 3-flow. By Theorem 2.4,

the results of Kochol [4, 5] can be restated as certain properties of 3-flow-critical graphs.

Theorem 2.5 (Kochol [4, 5]) Tutte’s 3-flow conjecture is equivalent to each of the following

statements.

(a) Every 3-flow-critical graph contains a vertex of degree 3.

(b) Every 3-flow-critical graph contains a vertex of degree at most 4.

(c) |V3(G)| ≥ 4 for every 3-flow-critical graph G.

It is proved in [3] that every Z3-irreducible graph has a vertex of degree at most 5, and so,

combining Theorem 2.4(iii), it implies that every 3-flow-critical graph contains a vertex of

degree at most 5.

Theorem 2.5 may suggest that some better structure properties of 3-flow-critical graphs

could bring new ideas in solving Tutte’s 3-flow conjecture. In particular, Theorem 2.5(b)

shows that Conjecture 1.4 implies Tutte’s 3-flow conjecture.

Next, we show in detail that K+
3,n−3 is a 3-flow-critical graph and that Conjecture 1.3

holds for any 3-flow-critical graph G on n vertices with n3 ≥ n− 3 ≥ 6.

Proposition 2.6 For any n ≥ 6, the graph K+
3,n−3 is a 3-flow-critical graph with 3n − 8

edges.

Proof. It is easy to check that K+
3,n−3 has 3n − 8 edges. So it remains to show that

K+
3,n−3 is 3-flow-critical. We use the notation in Figure 1 to label the vertices of K+

3,n−3,

and let X = {x1, x2, x3} and Y = {y1, y2, . . . , yn−3}. To the contrary, suppose K+
3,n−3

admits a modulo 3-orientation D. Since all vertices in Y are 3-vertices, we have d+D(yi) = 3

or d−D(yi) = 3 for each yi ∈ Y . It is easy to check that d+D(x1) − d−D(x1) 6≡ 0 (mod 3) if

d+D(x3) − d−D(x3) ≡ 0 (mod 3), since x1 has an extra neighbor x2. Hence K+
3,n−3 does not

admit a modulo 3-orientation. For any e ∈ E(K+
3,n−3), in order to show that G′ = K+

3,n−3/e

has a modulo 3-orientation, it is sufficient to prove that G′′ = K+
3,n−3 − e has a modulo

3-orientation.

We firstly give a special orientation of the complete bipartite graph K3,t−3 with t ≥ 5.

Let X = {x1, x2, x3} and Y = {y1, y2, . . . , yt−3} be the two parts of K3,t−3. Assign to each

edge incident to x1 a direction such that d+(x1) − d−(x1) ≡ k (mod 3). Assign directions

to the remain edges such that d+(v)− d−(v) ≡ 0 (mod 3) for each v ∈ Y . Then we obtain

an orientation D(k) of K3,t−3 such that d+D(k)(u) − d−D(k)(u) ≡ k (mod 3) for each u ∈ X,

and d+D(k)(v)− d−D(k)(v) ≡ 0 (mod 3) for each v ∈ Y .

Now, by symmetry, it suffices to consider three cases e = x1x2, e = x1y1, and e = x3y1.

If e = x1x2, then G′′ ∼= K3,n−3. So G′′ has a modulo 3-orientation D(k) with k = 0. If

e = x1y1, then G1 = G′′ − y1 − {x1x2} is isomorphic to K3,n−4. So G1 has an orientation

D(k) with k = 1. With the restriction of D(1) on G′′, we obtain a modulo 3-orientation of
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G′′ by assigning x2 → x1, x2 → y1 and y1 → x3. If e = x3y1, then G1 = G′′ − y1 − {x1x2}
is isomorphic to K3,n−4. So G1 has an orientation D(k) with k = 0. With the restriction

of D(0) on G′′, we obtain a modulo 3-orientation of G′′ by assigning x1 → x2, x2 → y1 and

y1 → x1.

Thus, for all cases above, we can obtain a modulo 3-orientation of G′′. Hence we conclude

that K+
3,n−3 is 3-flow-critical.

Proposition 2.7 Let G be a 3-flow-critical graph on n ≥ 9 vertices. If n3 ≥ n− 3, then

|E(G)| ≤ 3n− 8.

Moreover, the equality holds if and only if G ∼= K+
3,n−3.

Proof. By Lemma 2.1 and Theorem 2.4(iii), G contains no parallel edges. Let t denote the

number of components of G[V3]. We consider three cases in the following. Firstly, suppose

n3 ≥ n − 1. By Theorem 2.4(iv), the graph G is an odd wheel and |E(G)| ≤ 2n − 2,

which is less than 3n − 8 when n ≥ 9. Then suppose n3 = n − 2. By Theorem 2.4(iv),

we know G[V3] is a forest, and hence |E(G)| = |E(G[V3])| + |[V3, V≥4]| + |E(G[V≥4])| ≤
(n− 2− t) + (3(n− 2)− 2(n− 2− t)) + 1 = 2n+ t− 3. Since G has no parallel edges and

G[V3] has no isolated vertex, we obtain t ≤ bn−22 c, which implies |E(G)| < 3n− 8 by n ≥ 9.

Finally, suppose n3 = n−3. Let i = |E(G[V≥4])| and V≥4 = {u1, u2, u3}. Then t ≤ n−3

and 0 ≤ i ≤ 3. So we have |E(G)| ≤ (n−3− t)+(3(n−3)−2(n−3− t))+ i = 2n+ t+ i−6.

If t + i ≤ n − 3, then |E(G)| ≤ 3n − 9. Now we consider the case t + i ≥ n − 2, whereas

i ≥ 1. If i = 1, then t = n − 3 and G = K+
3,n−3. If 2 ≤ i ≤ 3, then t ≥ n − 5 and we

assume {u1u2, u2u3} ⊆ E(G[V≥4]) by symmetry. Let k be the number of isolated vertices

of G[V3]. We have k + 2(t − k) ≤ n3 = n − 3 and then n ≤ 7 + k since t ≥ n − 5. Hence

we obtain k ≥ 2 since n ≥ 9. Now assume that v1 and v2 are two isolated vertices of G[V3].

We use H to denote the graph induced by {v1, v2, u1, u2, u3}. Let H ′ = H if u1u3 /∈ E(G)

and H ′ = H − u1u3 if u1u3 ∈ E(G). So H ′ is a wheel W4 and is Z3-connected by Lemma

2.2, which contradicts Theorem 2.4(iii). Hence K+
3,n−3 is the only extreme graph to attain

the bound.

Note that the condition |V (G)| ≥ 9 in Proposition 2.7 is necessary, as there is another

3-flow-criticial graph H on 8 vertices with |E(H)| = 3|V (H)| − 8 = 16, which is shown in

Figure 2 below.

Next we apply Theorem 2.4 and a counting argument to obtain the lower bound in

Theorem 1.2. Since for an odd wheel Wn−1 we have |E(Wn−1)| = 2n − 2 ≥ 8n+2
5 if n ≥ 6,

it suffices to prove the following proposition.
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Figure 2: A 3-flow-critical graph H on 8 vertices with 16 edges.

Proposition 2.8 For any 3-flow-critical graph G on n vertices other than an odd wheel,

|E(G)| ≥ 8n+ 2

5
.

Proof. We double-count the number of edges in [V3, V
c
3 ].

On one hand, by Theorem 2.4(iv), G[V3] is acyclic, hence |E(G[V3])| ≤ n3 − 1. Thus,

d(V3) = 3n3 − 2|E(G[V3])| ≥ 3n3 − 2(n3 − 1) = n3 + 2, (1)

with equality only if G[V3] is a tree.

On the other hand, counting the edges with respect to their endpoints in V c
3 , we have

that

d(V3) =
∑
k≥4

knk − 2|E(G[V≥4])| ≤
∑
k≥4

knk =
∑
k≥3

knk − 3n3 = 2|E(G)| − 3n3, (2)

with equality only if V≥4 is an independent set.

From (1) and (2) we conclude that

|E(G)| ≥ 2n3 + 1, (3)

with equality only if G[V3] is a tree and V≥4 is an independent set. Moreover, we have∑
k≥4

knk ≥ 4
∑
k≥4

nk, (4)

with equality only if n≥5 = 0.

Thus, we have

5|E(G)| = 4|E(G)|+ |E(G)| ≥ 2
∑
k≥3

knk + 2n3 + 1 = 8n3 + 2
∑
k≥4

knk + 1 ≥ 8n+ 1, (5)
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with equality only if G[V3] is a tree and V≥4 = V4 is an independent set.

To obtain the bound 8n+2
5 in the theorem, we shall show that |E(G)| 6= 8n+1

5 below.

Suppose to the contrary that |E(G)| = 8n+1
5 . From (5) we have that G[V3] is a tree and

V≥4 = V4 is an independent set. Let x1 be a leaf vertex of the tree G[V3], and let y be a

neighbor of x1 with degree 4. Suppose the neighbors of y are x1, x2, x3, x4, where xi ∈ V3
for each i ∈ {1, 2, 3, 4}. Since G[V3] is a tree, there is a unique path, say Pij , connecting the

vertices xi and xj in G[V3]. Then by symmetry, we consider two cases as follows.

Case 1. x2 ∈ V (P13) but x4 /∈ V (P13).

Let G′ = G− yx4. Since G is 3-flow-critical, by Theorem 2.4(i), we have that G′ admits

a modulo 3-orientation D′. This implies that d+D′(y) = 3 or d−D′(y) = 3. Thus |V (P13)|
is odd by Observation 2.3(i). Let G′′ = G − yx2. By Theorem 2.4(i), G′′ has a modulo

3-orientation D′′, and then we have d+D′′(y) = 3 or d−D′′(y) = 3. However, the edges yx1 and

yx3 must have opposite directions in D′′ since |V (P13)| is odd and dG′′(x2) = 2, i.e., y → x1

if x3 → y and y → x3 if x1 → y. This is a contradiction.

Case 2. xi /∈ V (P1j) for any {i, j} ⊆ {2, 3, 4}.
By Observation 2.3(i), similar as Case 1, we know that |V (P1j)| is an odd number for

each j ∈ {2, 3, 4}. Since x1 is a leaf of the tree G[V3], there is a neighbor z of x1 such

that z 6= y and z ∈ V4. Let G′ = G − zx1. Since G is 3-flow-critical, G′ admits a modulo

3-orientation D′. Since |V (P1j)| is odd for each j ∈ {2, 3, 4}, we have that the edges yx2,

yx3 and yx4 are all leaving or all entering y in D′. It implies that d+D′(y) ≥ 3 or d−D′(y) ≥ 3.

Then we obtain d+D′(y)− d−D′(y) 6≡ 0 (mod 3) since dG′(y) = 4, a contradiction again.

3 Upper Bounds and Z3-irreducible Graphs

In this section, we develop a method to prove an upper bound on the number of edges of

3-flow-critical graphs, which is tight for K4. We start with a definition on the weight of a

partition of the vertex-set of a graph.

Definition 3.1 Let P = {X1, X2, . . . , Xt} be a partition of V (G). Define

ρG(P) =
t∑

i=1

dG(Xi)− 8t+ 20

and

ρ(G) = min{ρG(P) : P is a partition of V (G)}.

For a graph G with few vertices, it is easy to determine ρ(G). For example, ρ(K2) =

6, ρ(2K1) = 4, ρ(K3) = 2, ρ(P3) = 0, and ρ(K4) = 0, where 2K1 is an empty graph on 2
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vertices. Note that for these graphs, ρ(G) is attained only by the trivial partition, which is

a partition with exact one vertex in each part.

For a partition P = {X1, X2, . . . , Xt} of V (G), let G/P be the graph obtained by

identifying all vertices in each Xi to form a new vertex xi. We say a graph G is Z3-

reduced to a graph H if H is obtained from G by contracting all its Z3-connected subgraphs

consecutively. In other words, there exists a partition P = {X1, X2, . . . , Xt} of V (G) such

that G/P = H and G[Xi] is Z3-connected for each i ≤ t (possibly G[Xi] = K1).

Proposition 3.2 Let P = {X1, X2, . . . , Xt} be a partition of V (G) with |X1| ≥ 2. Let

H = G[X1] and let Q be a partition of X1. Then we have

ρH(Q) = ρG(Q∪ (P \ {X1}))− ρG(P) + 12.

Proof. Denote Q = {Y1, Y2, . . . , Ys} in H = G[X1]. Then we have

ρG(Q∪ (P \ {X1})) =
s∑

j=1

dG(Yj) +
t∑

i=2

dG(Xi)− 8(s+ t− 1) + 20

= [
s∑

j=1

dG(Yj)− dG(X1)− 8s+ 20] + [
t∑

i=1

dG(Xi)− 8(t− 1)]

= ρH(Q) + ρG(P)− 12.

Hence ρH(Q) = ρG(Q∪ (P \ {X1}))− ρG(P) + 12.

Indeed, Proposition 3.2 has a very important consequence to be used below.

Corollary 3.3 Let P = {X1, X2, . . . , Xt} be a partition of V (G) with |X1| ≥ 2 such that

ρ(G) = ρG(P). Denote H = G[X1]. Then, ρ(H) ≥ 12.

Proof. Let Q be a partition of H = G[X1]. Then, by Proposition 3.2 we have

ρ(G) ≤ ρG(Q∪ (P \ {X1})) = ρH(Q) + ρG(P)− 12 = ρH(Q) + ρ(G)− 12,

and so ρH(Q) ≥ 12. This is true for each partition Q of H, and thus ρ(H) ≥ 12.

The main result of this section is the following theorem.

Theorem 3.4 Let G = {K2,K3, P3,K4}. Let G be a connected graph with ρ(G) ≥ 0. Then

either

(i) G is Z3-connected, or

(ii) G can be Z3-reduced to a graph in G.
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Proof. Assume, by way of contradiction, the result is false and study a minimal counterex-

ample G with respected to |V (G)|+ |E(G)|. That is, G is not Z3-connected and G cannot

be Z3-reduced to a graph in G. We first present some preliminary reductions on G.

Claim 1 G is Z3-irreducible and |V (G)| ≥ 7. In particular, G contains no parallel edges.

Proof. Suppose to the contrary that there exists a subgraph H of G such that H is Z3-

connected, where |V (H)| > 1. Clearly, G/H is connected and ρ(G/H) ≥ ρ(G) ≥ 0. Since G

is a minimal counterexample, we consider two cases as follows. If G/H is Z3-connected, then

by Lemma 2.1, G is Z3-connected, a contradiction. If G/H can be Z3-reduced to a graph in

G, then by definition G is Z3-reduced to a graph in G. Each case leads to a contradiction.

Hence G is Z3-irreducible and contains no nontrivial Z3-connected subgraph. Since 2K2 is

Z3-connected, G contains no parallel edges.

Clearly, we have |V (G)| ≥ 3. It is routine to verify that |V (G)| ≥ 7 by some case

analysis, but we shall apply a basic fact in [9] to accomplish this work. By Lemma 2.10 in [9],

when n = 3, 4, 5, 6, any Z3-irreducible graph on n vertices contain at most 3, 6, 8, 11 edges,

respectively. As ρ(G) ≥ 0, G contains at least 2, 6, 10, 14 edges when |V (G)| = 3, 4, 5, 6,

respectively. Thus either G ∈ {K3, P3,K4} or G is not Z3-irreducible, a contradiction. This

shows |V (G)| ≥ 7.

Claim 2 Let H be a proper subgraph of G with |V (H)| > 1. Assume that ρH(Q) ≥ 7 for

any nontrivial partition Q of H. Let Q0 denote the trivial partition of H. Then each of the

following holds.

(i) The trivial partition Q0 of H satisfies ρH(Q0) ≤ 6.

(ii) If ρH(Q0) ≥ 1, then H ∈ {2K1,K2,K3}.

Proof. Since G is a minimal counterexample to Theorem 3.4, the theorem is applied for

its proper subgraph H. Assume that |V (H)| ≥ 3 and the trivial partition Q0 of H satisfies

ρH(Q0) ≥ 0. If H is not connected, then there exists a nontrivial partition Q′ such that

ρH(Q′) = 0 − 8 · 2 + 20 = 4, a contradiction. Hence H is connected. Then Theorem 3.4

implies that either H is Z3-connected, or H can be Z3-reduced to a graph in G. As G

is Z3-irreducible, H and any nontrivial subgraph of H are not Z3-connected. Hence, the

Z3-reduction of H is itself. So Theorem 3.4 implies that H ∈ G. Note that H ∈ {K2, 2K1}
if |V (H)| = 2.

(i) Suppose to the contrary that ρH(Q0) ≥ 7 for the trivial partition Q0 of H. Then we

have ρ(H) ≥ 7. It implies H /∈ G ∪ {2K1}, a contradiction.

(ii) We have that ρH(Q0) ≥ 1 implies H /∈ {P3,K4}, and so H ∈ {2K1,K2,K3}.

For a partition P of V (G), we set

r(P) = |{X ∈ P : |X| ≥ 2}|,
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and let

r0(P) = 1 if max{|X| : X ∈ P} ≥ 4, and r0(P) = 0 otherwise.

Claim 3 Let P be a nontrivial partition of V (G). Then we have

(i) ρG(P) ≥ 6, and

(ii) ρG(P) ≥ 12 if r(P) + r0(P) ≥ 2.

Proof. Let P = {X1, X2, . . . , Xt}. If t = 1, then it is easy to verify ρG(P) = 12. So we

assume t ≥ 2 and |X1| > 1. Let H = G[X1].

(i) Suppose to the contrary that ρG(P) ≤ 5. Then for any partition Q of H, we have

ρH(Q) = ρG(Q ∪ (P \ {X1}))− ρG(P) + 12 ≥ 7 by Proposition 3.2, and since ρ(G) ≥ 0 by

assumption, contradicting to Claim 2(i).

(ii) We first show that ρG(P) ≥ 12 if P is a partition with |X1| > 1 and |X2| > 1.

Suppose to the contrary that ρG(P) ≤ 11. Since |X2| > 1, for every partition Q of H, the

partition Q ∪ (P \ {X1}) is a nontrivial partition of G. So ρG(Q ∪ (P \ {X1})) ≥ 6 by (i).

Then we have

ρH(Q) = ρG(Q∪ (P \ {X1}))− ρG(P) + 12 ≥ 6− 11 + 12 = 7

for any partition Q of H by Proposition 3.2, contradicting to Claim 2(i).

Now, as r(P) + r0(P) ≥ 2, it suffices to prove that ρG(P) ≥ 12 when |X1| ≥ 4 and

|Xi| = 1 for each i ∈ {2, 3, . . . , t}. Suppose to the contrary that ρG(P) ≤ 11. By Proposition

3.2 and by (i), we have ρH(Q) ≥ 0−11 + 12 = 1 for any partition Q of H, and additionally,

ρH(Q) ≥ 6− 11 + 12 = 7 for any nontrivial partition Q of H. Thus H ∈ {2K1,K2,K3} by

Claim 2(ii), a contradiction.

Claim 4 For any nonempty vertex subset S ( V (G),

(i) we have d(S) ≥ 4. That is, G is 4-edge-connected.

(ii) If neither S nor Sc is trivial, then d(S) ≥ 7. That is, G is essentially 7-edge-connected.

Proof. It is obvious that P = {S, Sc} is a partition of V (G).

(i) Since |V (G)| ≥ 7, r(P) ≥ 1 and r0(P) = 1. By Claim 3(ii), we have that 12 ≤
ρG(P) = 2d(S)− 16 + 20, which yields d(S) ≥ 4. This implies that G is 4-edge-connected.

(ii) It is sufficient to prove that if neither S nor Sc is trivial, then ρG(P) ≥ 18. It is clear

that if ρG(P) ≥ 18, then we have d(S) ≥ 7 by ρG(P) = 2d(S)− 16 + 20. Now let us prove

ρG(P) ≥ 18. By contradiction, suppose ρG(P) ≤ 17. Since |V (G)| ≥ 7, by symmetry, we

assume |Sc| ≥ 4. Let H = G[S]. For any partition Q of H, we denote P ′ = Q ∪ (P \ {S}).
Then we have r(P ′) ≥ 1 and r0(P ′) = 1. Thus, by Claim 3(ii), ρG(P ′) ≥ 12. By Proposition
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3.2, we have ρH(Q) = ρG(P ′)− ρG(P) + 12 ≥ 12− 17 + 12 = 7 for any partition Q of H, a

contradiction to Claim 2(i). This proves (ii).

Next we introduce a few more tools in order to complete the proof of Theorem 3.4. We

will make use of a splitting operation as described in the following lemma, which preserves

Z3-connectivity of the graph.

Lemma 3.5 (Lemma 4.1 of [3]) Let G be a graph and let z be a vertex of G with degree at

least 4 and zv1, zv2 ∈ EG(z). If G′ = G− z+ v1v2 is Z3-connected, then G is Z3-connected.

Another key result is the following theorem due to Lovász, Thomassen, Wu and Zhang [10].

Theorem 3.6 (Lovász et al. [10]) Every 6-edge-connected graph is Z3-connected.

Now we are ready to finish the proof. By Claim 4(ii), each nontrivial edge cut of G has

size at least 7. But G is not 6-edge-connected by Theorem 3.6. Hence the minimal degree

of G is at most 5. Let z be a vertex in G of minimum degree. Then by Claim 4(i) we have

4 ≤ dG(z) ≤ 5.

Our main strategy below is to show that by Claim 4 it is always possible to select zv1, zv2 ∈
EG(z) such that the modified graph G′ = G−z+v1v2 still satisfies the condition of Theorem

3.4. Then the minimality ofG and Theorem 3.4 would imply thatG′ is Z3-connected. Hence,

G is Z3-connected by Lemma 3.5, a contradiction to Claim 1.

Claim 5 Let zv1, zv2 ∈ EG(z) and let G′ = G− z + v1v2. Then G′ is 4-edge-connected.

Proof. Let S be a nonempty proper subset of V (G′). We shall prove that dG′(S) ≥ 4. By

Claim 1, G has no parallel edges and so |NG(z)| = dG(z). As |NG(z)| ≤ 5, we may adjust

notation, by interchanging S with Sc if necessary, so that |S ∩NG(z)| ≤ 2. Then, dG′(S) ≥
dG(S)− |S ∩NG(z)|. If dG(S) ≥ 7, then dG′(S) ≥ 5. We may thus assume that dG(S) < 7.

By Claim 4(ii), one of S and Sc is trivial. As |Sc ∩ NG(z)| = |NG(z)| − |S ∩ NG(z)| ≥ 2,

we deduce that |S| = 1. Let v be the vertex of S, i.e. S = {v}. If v /∈ NG(z), then

dG′(v) = dG(v) ≥ 4. Hence assume v ∈ NG(z). Now let us prove that dG(v) ≥ 5. This fact is

clear when δ(G) = 5. We may thus assume that δ(G) = 4 and so dG(z) = 4. Let Y = {v, z}.
By Claim 4(ii), it follows that 7 ≤ dG(Y ) = dG(z)+dG(v)−2 = 2+dG(v), and so dG(v) ≥ 5.

In both cases above, we deduce that dG(v) ≥ 5, which implies dG′(v) ≥ dG(v)− 1 ≥ 4.

We conclude that dG′(S) ≥ 4. This conclusion holds for every nonempty proper subset

S of V (G′), and hence G′ is 4-edge-connected.

Claim 6 We have ρ(G′) ≥ 0.
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Proof. Let Q be a partition of V (G′), we shall prove that ρG′(Q) ≥ 0. To this end, we let

P = Q∪ {{z}}, and let

s =

{
0 if there exists a part Y of Q such that {v1, v2} ⊆ Y ;

2 otherwise.

Clearly,
∑

X∈Q dG′(X) ≥
∑

X∈P dG(X) − 2dG(z) + s. For convenience, we use |Q| to

denote the number of parts of Q. Then we have |P| = |Q|+ 1. Thus,

ρG′(Q) =
∑
X∈Q

dG′(X)− 8|Q|+ 20

≥
∑
X∈P

dG(X)− 2dG(z) + s− 8|P|+ 8 + 20

= ρG(P)− 2dG(z) + 8 + s.

If s = 2, then ρG′(Q) ≥ ρG(P) ≥ ρ(G) ≥ 0 since 4 ≤ dG(z) ≤ 5. We may thus assume

that s = 0. In this case, Q contains a set Y such that {v1, v2} ⊆ Y . Clearly, Y ∈ P, hence

P is nontrivial. By Claim 3(i), we have ρG(P) ≥ 6. Thus, ρG′(Q) ≥ ρG(P)− 2 > 0.

In both cases above, we have ρG′(Q) ≥ 0. This conclusion holds for each partition Q of

V (G′), and hence ρ(G′) ≥ 0.

Now the minimality of G implies that Theorem 3.4 is appliable to G′. Thus either G′ is

Z3-connected, or there is a partition Q of G′ such that G′/Q ∈ G. But the latter case cannot

happen since G′ is 4-edge-connected. Hence G′ is Z3-connected, and so G is Z3-connected

by Lemma 3.5, a contradiction.

Corollary 3.7 (i) Every graph G satisfying ρ(G) ≥ 8 is Z3-connected.

(ii)([3]) Every graph with four edge-disjoint spanning trees is Z3-connected.

Proof. (i) The statement holds vacuously for |V (G)| = 1, 2, and so we assume |V (G)| ≥ 3.

If G is not connected, then we have ρ(G) ≤ 4 by Definition 3.1, a contradiction to ρ(G) ≥ 8.

Thus, G is connected. By Theorem 3.4, either G is Z3-connected, or there is a partition P
of G such that G/P ∈ G. Since any partition of G/P can be obtained from a partition of

G by collapsing vertex sets in P to become vertices, we have ρ(G/P) ≥ ρ(G) ≥ 8. Thus,

G/P /∈ G and so G is Z3-connected.

(ii) If a graph G contains 4 edge-disjoint spanning trees, then ρ(G) ≥ 12, and so G

is Z3-connected by (i). This reproves the main result in [3]. Actually, Theorem 3.4 is an

improvement of the result in [3].

To complete the proof of the upper bound in Theorem 1.2, we need the following corol-

lary.
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Corollary 3.8 Let G be a Z3-irreducible graph. Then for every nontrivial partition P of

V (G), ρG(P) > ρ(G). Consequently, ρ(G) = 2|E(G)| − 8|V (G)|+ 20.

Proof. Let Z ∈ P with |Z| ≥ 2 and let H = G[Z]. If ρ(H) ≥ 12, then H is Z3-connected

by Corollary 3.7(i). This contradicts the fact that G is Z3-irreducible. Thus ρ(H) ≤ 11.

Hence by Corollary 3.3, we have ρG(P) > ρ(G).

Proof of the upper bound in Theorem 1.2 using Theorem 3.4: Let G be a

3-flow-critical graph on n vertices. By Theorem 2.4(iii) and Corollary 3.8, we have that

G is Z3-irreducible and ρ(G) = 2|E(G)| − 8n + 20. If ρ(G) < 0, then |E(G)| < 4n − 10

holds. We may thus assume that ρ(G) ≥ 0. Since G and any nontrivial subgraph of G

are not Z3-connected, we obtain G ∈ G by Theorem 3.4. Since K2, K3 and P3 are not

3-flow-critical, we have G = K4, and so |E(K4)| = 4|V (K4)| − 10 in this case.

Proof of Theorem 1.5: By way of contradiction, we suppose |E(G)| ≥ 5n
2 + 9n≤8(G).

If n≤8(G) ≥ n
6 , then |E(G)| ≥ 5n

2 + 9n
6 = 4n, which contradicts to Theorem 1.2. So we

assume n≤8(G) < n
6 . Since δ(G) ≥ 3, we have 2|E(G)| =

∑
v∈V (G) d(v) ≥ 3n≤8(G) + 9(n−

n≤8(G)) = 9n− 6n≤8(G) > 8n, still a contradiction to Theorem 1.2. This proves Theorem

1.5.

4 Construction of 3-flow-critical graphs

Yao and Zhou [13] proved that for each positive integer k, there exists a 4-critical planar

graph with 6k+7 vertices and 14k+12 edges. By duality, their theorem shows the following

result on 3-flow-critical planar graphs.

Theorem 4.1 (Yao and Zhou [13]) For each positive integer k, there exists a 3-flow-critical

planar graph with 8k + 7 vertices and 14k + 12 edges.

Definition 4.2 Let G1 and G2 be two graphs. Let G1⊕G2 be a graph which is obtained as

the 2-sum of G1 and G2, that is, a graph obtained from the disjoint union of G1 − e1 and

G2 − e2 by identifying u1 and u2 to form a vertex u, identifying v1 and v2 to form a vertex

v, and adding a new edge uv, where e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2).

Lemma 4.3 If G1 and G2 are both 3-flow-critical graphs, then G1 ⊕G2 is 3-flow-critical.

Proof. Assume e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2), and assume that G1 ⊕ G2

is constructed as shown in Definition 4.2. First, we show that G1 ⊕ G2 has no modulo 3-

orientation. To the contrary, we suppose G1⊕G2 has a modulo 3-orientation D with v → u.
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Let Di be the restriction of D on Gi for each i ∈ {1, 2}. Denote d+Di
(ui) − d−Di

(ui) ≡ ai

(mod 3) and d+Di
(vi)− d−Di

(vi) ≡ bi (mod 3). Then we have a1 + a2 + 1 ≡ 0 (mod 3) since

u is balanced in D, and ai + bi ≡ 0 (mod 3) since every vertex, except perhaps ui and

vi, is balanced in Di. If a1 = 0, then b1 = 0 and D1 is a modulo 3-orientation of G1, a

contradiction. If a1 = 1, then b1 = 2. We can obtain a modulo 3-orientation of G1 by

reversing the direction of the arc v1u1 in D1, a contradiction. If a1 = 2, then a2 = 0 and

b2 = 0, and so D2 is a modulo 3-orientation of G2, a contradiction again.

Then it suffices to show that G1 ⊕G2 − e has a modulo 3-orientation for each edge e in

G1 ⊕ G2. Recall that Gi − e′ has a modulo 3-orientation for each e′ ∈ E(Gi) by Theorem

2.4(i). If e = uv, then the union of the modulo 3-orientations of Gi − uivi is a modulo

3-orientation of G1 ⊕ G2 − e. If e ∈ E(G1) and e 6= u1v1, then the union of the modulo

3-orientations of G1−e and G2−u2v2 is a modulo 3-orientation of G1⊕G2−e. If e ∈ E(G2)

and e 6= u2v2, then we can also find a modulo 3-orientation of G1 ⊕G2 − e by a symmetric

argument. This proves that G1 ⊕G2 is a 3-flow-critical graph.

Finally we apply Theorem 4.1 and Lemma 4.3 to construct 3-flow-critical graphs with

density from 7
4 up to 3.

Theorem 4.4 For any positive integer N and any rational number r with 7
4 < r < 3, there

exists a 3-flow-critical graph G on n ≥ N vertices with

rn− 5

8
≤ |E(G)| ≤ rn+

5

8
.

Proof. Assume r = q
p , where p, q are two positive integers. Note that Lemma 4.3 provides

a way to construct 3-flow-critical graphs from smaller graphs. Now let s ≥ 6(3p−q)
8q−14p +N and

let G1 be a 3-flow-critical planar graph with 8s+ 7 vertices and 14s+ 12 edges as described

in Theorem 4.1. Let

a =
1

3p− q
((8q − 14p)s+ 5q − 3p− 5p

8
)

and

b =
1

3p− q
((8q − 14p)s+ 5q − 3p+

5p

8
).

Since 7
4 < q

p < 3, we have 3p − q > 0, 8q − 14p > 0 and 5q − 3p − 5p
8 > 0. So s > N

and a > 6. Since b − a = 5p
4(3p−q) = 5

4(3− q
p
)
> 1, there exists a positive integer t satisfying

a ≤ t ≤ b. Let G2 = K+
3,t−3 and let G = G1 ⊕ G2. Then G is 3-flow-critical by Lemma

4.3. By the construction of G, the graph G has 8s + 7 + t − 2 = 8s + t + 5 vertices and

14s + 12 + 3t − 8 − 1 = 14s + 3t + 3 edges. So |V (G)| > N . It is routine to compute

that rn− 5
8 ≤ |E(G)| ≤ rn+ 5

8 . In fact, with a straightforward calculation, it follows from
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a ≤ t ≤ b that

rn+
5

8
− |E(G)| = q

p
(8s+ t+ 5) +

5

8
− (14s+ 3t+ 3) =

3p− q
p

(b− t) ≥ 0

and

|E(G)| − (rn− 5

8
) = (14s+ 3t+ 3)− q

p
(8s+ t+ 5) +

5

8
=

3p− q
p

(t− a) ≥ 0.

This completes the proof.
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