Graph Classes with Locally Irregular Chromatic Index at most 4

Hui Lei ${ }^{1}$, Xiaopan Lian ${ }^{2 *}$, Yongtang Shi ${ }^{2}$, Ran Zhao ${ }^{2}$
${ }^{1}$ School of Statistics and Data Science, LPMC and KLMDASR
Nankai University, Tianjin 300071, China
${ }^{2}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email: hlei@nankai.edu.cn; xiaopanlian@mail.nankai.edu.cn
shi@nankai.edu.cn; ranzhao@mail.nankai.edu.cn

September 30, 2022

Abstract

A graph G is said to be locally irregular if each pair of adjacent vertices have different degrees in G. A collection of edge disjoint subgraphs $\left(G_{1}, \ldots, G_{k}\right)$ of G is called a k locally irregular decomposition of G if $\left(E\left(G_{1}\right), \ldots, E\left(G_{k}\right)\right)$ is an edge partition of G and each G_{i} is locally irregular for $i \in\{1, \ldots, k\}$. The locally irregular chromatic index of G, denoted by $\chi_{i r r}^{\prime}(G)$, is the smallest integer k such that G can be decomposed into k locally irregular subgraphs. A graph G is said to be decomposable if $\chi_{i r r}^{\prime}(G)$ is finite, otherwise, G is exceptional. The Local Irregularity Conjecture states that all connected graphs admit a 3-locally irregular decomposition except for odd paths, odd cycles, and a certain subclass of cacti. Recently, Sedlar and Škrekovski showed that there exists a graph G which is a cactus such that $\chi_{i r r}^{\prime}(G)=4$. In this paper, we mainly prove that if G is a decomposable cactus, then $\chi_{i r r}^{\prime}(G) \leq 4$; if G is a decomposable cactus without nontrivial cut edges, then $\chi_{i r r}^{\prime}(G) \leq 3$. In addition, we show that in a decomposable subcubic graph G if each vertex of degree 3 lies on a triangle, then $\chi_{i r r}^{\prime}(G) \leq 3$. By establishing algorithms, we obtain $\chi_{i r r}^{\prime}\left(K_{n}-C_{\ell}\right) \leq 3$ for $3 \leq \ell \leq n-1$.

Keywords: Locally irregular edge coloring; Decomposable; Cacti; Subcubic graphs

1 Introduction

All graphs considered in this paper are simple and finite. Consider a graph $G=(V(G), E(G))$. We say G is locally irregular if each two of its adjacent vertices differ in degree, i.e., for each

[^0]edge $u v \in E(G)$ we have $d(u) \neq d(v)$. A k-locally irregular decomposition of G is a collection of subgraphs $\left(G_{1}, \ldots, G_{k}\right)$ of G such that $\left(E\left(G_{1}\right), \ldots, E\left(G_{k}\right)\right)$ forms a partition of $E(G)$ and each G_{i} is locally irregular for $i \in\{1, \ldots, k\}$. We define the least number k such that G admits a k-locally irregular decomposition as locally irregular chromatic index of G and denote it by $\chi_{i r r}^{\prime}(G)$. Note that there are graphs that admit no locally irregular decomposition, e.g., paths of odd length. Therefore, we call a graph G decomposable if $\chi_{i r r}^{\prime}(G)$ is finite, otherwise we call G exceptional.

The concept of locally irregular chromatic index of graphs was introduced and studied by Baudon, Bensmail, Przybyło and Woźniakin [2] mainly because of its link to the 1-2-3 Conjecture [8]. The main open problem about locally irregular decomposition is whether each decomposable graph admits a 3-locally irregular decomposition:

Conjecture 1.1 (Local Irregularity Conjecture [2]) Every decomposable graph G admits a 3-locally irregular decomposition.

Though the history of Conjecture 1.1 is not long, there are numerous results about it. For general decomposable graphs, it holds that $\chi_{i r r}^{\prime}(G) \leq 328$ [5]. Later, a better bound was given in [10], which states that $\chi_{i r r}^{\prime}(G) \leq 220$. For decomposable subcubic graphs, it holds that $\chi_{i r r}^{\prime}(G) \leq 4[10]$. For decomposable planar graphs, it holds that $\chi_{i r r}^{\prime}(G) \leq 15$ [4]. In addition, Conjecture 1.1 has been confirmed for several special classes of graphs, e.g., graphs with minimum degree at least 10^{10} [11], k-regular graphs for $k \geq 10^{7}$ [2], decomposable trees [2], decomposable split graphs [9], decomposable bipartite cacti [4]. For more results on this topic, we refer the readers to $[6,7]$.

Recall that a cactus is a graph in which no two cycles intersect in more than one vertex. In [4], the authors proved $\chi_{i r r}^{\prime}(G) \leq 15$ for decomposable planar graphs, by showing that a decomposable planar graph G admits a decomposition $G_{1}, G_{2}, G_{3}, G_{4}$ and T, where G_{i} is a decomposable bipartite cactus for $i \in\{1,2,3,4\}$ and T is a decomposable tree. Moreover, the study of decomposable cacti is of independent interest. There are many results about subclasses of decomposable cactus, e.g., bipartite cactus, cactus with cycles being vertex disjoint, unicyclic graphs. Sedlar and Škrekovski in [12] found a counterexample of Conjecture 1.1, i.e., there exists a decomposable cactus G with $\chi_{i r r}^{\prime}(G)=4$, as shown in Figure 1. Therefore, they made a modification to Conjecture 1.1.

Conjecture 1.2 ([12]) Every decomposable graph G admits a 4-locally irregular decomposition.

In [12], the authors also showed that if G is a decomposable cactus with vertex disjoint cycles, then $\chi_{i r r}^{\prime}(G) \leq 3$. Combining the result about decomposable bipartite cacti, the cacti attract our attention. In this paper, we prove that $\chi_{i r r}^{\prime}(G) \leq 4$ if G is a decomposable

Figure 1: A cactus with locally irregular chromatic index 4.
cactus, and $\chi_{i r r}^{\prime}(G) \leq 3$ if G is a decomposable cactus without nontrivial cut edges. An edge e of a connected graph G is said to be a nontrivial cut edge if $G[E(G) \backslash\{e\}]$ contains two components such that each contains at least one edge. In addition, we show that in a decomposable subcubic graph G if each vertex of degree 3 lies on a triangle, then $\chi_{i r r}^{\prime}(G) \leq 3$. By establishing algorithms, we obtain $\chi_{i r r}^{\prime}\left(K_{n}-C_{\ell}\right) \leq 3$ for $3 \leq \ell \leq n-1$.

2 Preliminary

In this section, we first present the exceptional graphs given in [2]. Denote by K_{n}, P_{n} and C_{n} the complete graph, the path and the cycle on n vertices, respectively. A path or a cycle is odd if it has an odd number of edges, otherwise, it is even. The family \mathfrak{T} can be defined inductively as follows.

- $K_{3} \in \mathfrak{T}$.
- Every other graph of this family may be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one of its ends, then choosing a graph $G \in \mathfrak{T}$ containing a triangle with at least one vertex, say v, of degree 2 in G, and finally identifying v with a vertex of degree 1 of F.

Let \mathcal{P} be the family of all the odd paths and \mathcal{C} be the family of all the odd cycles. In [2], the authors proved the following theorem.

Theorem 2.1 ([2]) A connected graph is exceptional if and only if it belongs to $\mathcal{P} \cup \mathcal{C} \cup \mathfrak{T}$.
Note that graphs in \mathfrak{T} have the following properties.
Proposition 2.2 Let $G \in \mathfrak{T}$. We have
(a) G is a subcubic graph with each vertex of degree 3 lying on a triangle.
(b) for $v \in V(G)$, if $d_{G}(v)=3$ and there is a pending path P_{v} rooted at v, then P_{v} is of even length.
(c) for $e \in E(G)$, if e does not lie on a triangle, then e is a cut edge of G.

In the following, we list some results that are useful.

Theorem 2.3 ([2]) If T is a decomposable tree, then $\chi_{i r r}^{\prime}(T) \leq 3$.
Theorem 2.4 ([4]) If G is a decomposable bipartite cactus, then $\chi_{i r r}^{\prime}(G) \leq 3$.

Theorem 2.5 ([12]) If G is a decomposable unicyclic graph, then $\chi_{i r r}^{\prime}(G) \leq 3$.
Now we introduce some more notions. Given a graph G with $X \subseteq E(G)$ or $X \subseteq V(G)$, we use $G[X]$ to denote the subgraph of G induced by the edges in X or the vertices in X, respectively. For a vertex $u \in V(G)$ which either lies on a single cycle or does not lie on any cycle, consider the component T_{u} that contains u of the graph obtained from G by deleting the two edges incident to u in the cycle if u lies on a single cycle or some cut edge incident to u if u does not lie on any cycle. If T_{u} is a tree, then we refer to it as the pending tree of u. For $u, v \in V(G)$, the distance between u and v in G, denoted by $\operatorname{dist}(u, v)$, is the length of a shortest (u, v)-path. The distance between two subgraphs A and B of G, denoted by $\operatorname{dist}(A, B)$, is defined as the minimum distance between two vertices u and v where $u \in V(A)$ and $v \in V(B)$. Denote the set of edges incident to v in G by $E_{G}(v)$ and $E_{G}(\{u, \ldots, v\})=E_{G}(u) \cup \cdots \cup E_{G}(v)$. We call a graph spider if it is obtained from a star by subdividing each edge at most once. Note that every spider is locally irregular unless it is a path P_{i} with $i \in\{2,4,5\}$.

3 Cacti

In this section we mainly focus on cactus graphs. We prove that $\chi_{i r r}^{\prime}(G) \leq 4$ if G is a decomposable cactus, and $\chi_{i r r}^{\prime}(G) \leq 3$ if G is a decomposable cactus without nontrivial cut edges. Let G be a cactus with at least two cycles. We call a cycle C in G outmost if there is a vertex $u \in V(C)$ such that the other vertices of C cannot reach any other cycle in G without passing u. Call u the special vertex of C.

Lemma 3.1 Let H be a decomposable cactus with $\chi_{i r r}^{\prime}(H)=k$ where $k \in\{3,4\}$. If $u \in$ $V(H)$ lies on at most one cycle and T_{u} is a star centered at u, then there exist k locally irregular subgraphs $H_{1}^{\prime}, \ldots, H_{k}^{\prime}$ decomposing H such that $E_{H}(u) \subseteq E\left(H_{1}^{\prime} \cup H_{2}^{\prime}\right)$.

Proof If u lies on a cycle, then let $N_{H\left[E(H) \backslash E\left(T_{u}\right)\right]}(u)=\{v, w\}$, otherwise, let $N_{H\left[E(H) \backslash E\left(T_{u}\right)\right]}$ $(u)=\{v\}$. Denote by r the size of $E\left(T_{u}\right)$, we have $d_{H}(u)=r+1$ or $d_{H}(u)=r+2$ as shown in Figure 2. Let H_{1}, \ldots, H_{k} be a k-locally irregular decomposition of H. Let $Q=E\left(T_{u}\right) \cap E\left(\bigcup_{i=3}^{k} H_{i}\right)$. Since $d_{H\left[E(H) \backslash E\left(T_{u}\right)\right]}(u) \leq 2$, without loss of generality, we may
assume that $E_{H\left[E(H) \backslash E\left(T_{u}\right)\right]}(u) \subseteq E\left(H_{1} \cup H_{2}\right)$. If $r=0$, then $E_{H}(u)=E_{H\left[E(H) \backslash E\left(T_{u}\right)\right]}(u) \subseteq$ $E\left(H_{1} \cup H_{2}\right)$. If $r=1$, then let $\{e\}=E\left(T_{u}\right)$. Since P_{2} is exceptional, there is at least one edge e_{u} of $E_{H\left[E(H) \backslash E\left(T_{u}\right)\right]}(u)$ such that e and e_{u} belong to the same locally irregular subgraph. By our assumption, H_{1}, \ldots, H_{k} are k locally irregular subgraphs that we want for $r \in\{0,1\}$ or $Q=\emptyset$. Thus let $H_{i}^{\prime}=H_{i}$ for $i \in\{1, \ldots, k\}$ when $r \in\{0,1\}$ or $Q=\emptyset$. We consider $r \geq 2$ and $Q \neq \emptyset$ in the following.

(a)

(b)

Figure 2: The partial structure of H at the vertex u.
Since P_{2} is exceptional, $|Q| \geq 2$. We first consider the case $d_{H}(u)=r+2$. Suppose $u v$ and $u w$ are in the same subgraph. Without loss of generality, we assume $\{u v, u w\} \subseteq E\left(H_{1}\right)$. Then $H_{1}^{\prime}=H_{1}, H_{2}^{\prime}=H\left[E\left(H_{2}\right) \cup Q\right]$ and $H_{i}^{\prime}=H\left[E\left(H_{i}\right) \backslash Q\right]$ for $3 \leq i \leq k$ make up a desired decomposition of H. Suppose $u v$ and $u w$ are in different subgraphs. Without loss of generality, we assume $u v \in E\left(H_{1}\right)$ and $u w \in E\left(H_{2}\right)$. Let $H_{1}^{\prime}=H\left[E\left(H_{1}\right) \cup Q\right], H_{2}^{\prime}=H_{2}$, $H_{i}^{\prime}=H\left[E\left(H_{i}\right) \backslash Q\right]$ for $3 \leq i \leq k$ if $d_{H_{1}}(v)-d_{H_{1}}(u) \neq|Q| ; H_{1}^{\prime}=H_{1}, H_{2}^{\prime}=H\left[E\left(H_{2}\right) \cup Q\right]$, $H_{i}^{\prime}=H\left[E\left(H_{i}\right) \backslash Q\right]$ for $3 \leq i \leq k$ if $d_{H_{2}}(w)-d_{H_{2}}(u) \neq|Q| ; H_{1}^{\prime}=H\left[E\left(H_{1}\right) \cup Q_{1}\right]$, $H_{2}^{\prime}=H\left[E\left(H_{2}\right) \cup Q_{2}\right], H_{i}^{\prime}=H\left[E\left(H_{i}\right) \backslash Q\right]$ for $3 \leq i \leq k$ otherwise, where $Q_{1} \cup Q_{2}=Q$ and $Q_{i} \neq \emptyset$ for $i \in\{1,2\}$. The graphs $H_{1}^{\prime}, \ldots, H_{k}^{\prime}$ thus make up a desired decomposition of H. For the case $d_{H}(u)=r+1$, suppose $u v \in E\left(H_{1}\right)$. The graphs $H_{1}^{\prime}=H_{1}, H_{2}^{\prime}=H\left[E\left(H_{2}\right) \cup Q\right]$ and $H_{i}^{\prime}=H\left[E\left(H_{i}\right) \backslash Q\right]$ for $3 \leq i \leq k$ thus make up a desired decomposition of H.

Let $P=u_{1} u_{2} \ldots u_{n}$ be a path, and we call $u_{\left\lceil\frac{n}{2}\right\rceil}$ the center vertex of P. The following lemma holds.

Lemma 3.2 Let G be a decomposable cactus and $u \in V(G)$ with a tree T rooted at u. Then $\chi_{i r r}^{\prime}(G) \leq 4$ if one of the following conditions holds.
(i) There is a vertex $u^{\prime} \in V(T) \backslash\{u\}$ such that $d_{G}\left(u^{\prime}\right) \geq 3$.
(ii) T is a path pending at u of length at least three.
(iii) u lies on at most one cycle and $T_{u}=T$ with $\left|E\left(T_{u}\right)\right| \geq 2$, where T_{u} is the pending tree of u.

Proof First we show that if one of conditions (i), (ii), or (iii) holds, then there is a vertex $x \in V(T)$ such that either $T_{x} \cong P_{4}$ or P_{5} with x being its center vertex or T_{x} is a locally irregular spider. Also, $x \neq u$ for conditions (i) and (ii). If case (ii) happens, that is, if T is
a path of length at least three, then let x be the vertex different from u which is at distance two from the vertex of degree one in T. Now suppose that case (i) happens, that is, there is a vertex $u^{\prime} \in V(T) \backslash\{u\}$ such that $d_{G}\left(u^{\prime}\right) \geq 3$. Let $u_{1} \in V(T)$ such that $d_{T}\left(u_{1}, u\right)$ is as large as possible. Let $P=u_{1} u_{2} \ldots u$ be a shortest $\left(u_{1}, u\right)$-path. By our assumption, $u_{2} \neq u$. If $d_{G}\left(u_{2}\right) \geq 3$, then $T_{u_{2}}$ is a locally irregular spider and so let $x=u_{2}$. Therefore, we may assume $d_{G}(z) \leq 2$ for each $z \in N_{G}\left(u_{3}\right) \backslash\left\{u_{4}\right\}$. Thus $u_{3} \neq u$ since there is $u^{\prime} \in V(T) \backslash\{u\}$ and $d_{G}\left(u^{\prime}\right) \geq 3$. If $d_{G}\left(u_{3}\right) \neq 3$, then $T_{u_{3}}$ is a locally irregular spider and so let $x=u_{3}$. If $d_{G}\left(u_{3}\right)=3$, then $T_{u_{3}} \cong P_{4}$ or P_{5} with u_{3} being its center vertex and so let $x=u_{3}$. At last, suppose that (iii) happens, which means that u lies on at most one cycle and $T_{u}=T$ with $\left|E\left(T_{u}\right)\right| \geq 2$. From the above analysis, we only need to consider that T_{u} is consisted of paths of length at most two pending at u. In this case, $T_{u} \cong P_{4}$ or P_{5} with u being its center vertex or T_{u} is a locally irregular spider and so let $x=u$.

Now it suffices to show that $\chi_{i r r}^{\prime}(G) \leq 4$, which we prove by induction on the number of edges of G. By Theorems 2.3 and 2.5, we may assume that there are at least two cycles in G. Suppose $T_{x} \cong P_{4}$ with x being its center vertex. Let $T_{x}=a x b b_{1}, X=\left\{x b, b b_{1}\right\}$ and $G^{\prime}=G[E(G) \backslash X]$. We first assume that G^{\prime} is decomposable. By Lemma 3.1 and the induction hypothesis, G^{\prime} can be decomposed into at most four locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}, G_{4}^{\prime}$. Note that $d_{G^{\prime}}(x)=2$ for $x \neq u$ and $d_{G^{\prime}}(x) \leq 3$ for $x=u$. Therefore, without loss of generality, we may assume $E_{G^{\prime}}(x) \subseteq E\left(G_{1}^{\prime} \cup G_{2}^{\prime}\right)$ since $d_{G^{\prime}}(a)=1$. The graphs $G_{1}^{\prime}, G_{2}^{\prime}, G\left[E\left(G_{3}^{\prime}\right) \cup X\right]$ and G_{4}^{\prime} thus make up a decomposition of G into four locally irregular subgraphs. Now consider that G^{\prime} is exceptional. We have $d_{G^{\prime}}(x) \geq 2$ because G is decomposable. Since G^{\prime} is exceptional, Proposition 2.2(b) implies $d_{G^{\prime}}(x)=2$. Let $N_{G^{\prime}}(x)=$ $\{a, v\}$ and $w \in N_{G^{\prime}}(v) \backslash\{x\}$. Let $Y=X \cup\{x a, x v, v w\}$. Then $G[Y]$ is locally irregular. Note that wvxa is a path of odd length. By Proposition 2.2(a,b), $G^{\prime \prime}=G[E(G) \backslash Y]$ is decomposable. By the induction hypothesis, $G^{\prime \prime}$ can be decomposed into at most four locally irregular subgraphs $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, G_{3}^{\prime \prime}, G_{4}^{\prime \prime}$. We have $\left|E_{G^{\prime \prime}}(\{v, w\})\right| \leq 3$ since either $d_{G^{\prime \prime}}(v)=1$ or $v \notin V\left(G^{\prime \prime}\right)$. Without loss of generality, we may assume $E_{G^{\prime \prime}}(\{v, w\}) \subseteq E\left(G_{1}^{\prime \prime} \cup G_{2}^{\prime \prime}\right)$. The graphs $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, G\left[E\left(G_{3}^{\prime \prime}\right) \cup Y\right]$ and $G_{4}^{\prime \prime}$ thus make up a decomposition of G into four locally irregular subgraphs. Therefore, $\chi_{i r r}^{\prime}(G) \leq 4$.

Now suppose either T_{x} is a locally irregular spider or $T_{x}=x_{2} x_{1} x x_{3} x_{4}\left(T_{x} \cong P_{5}\right)$ with x being its center vertex. Obviously, T_{x} can be decomposed into two locally irregular subgraphs T_{1} and T_{2} (T_{2} can be an empty graph). Let $G^{\prime}=G\left[E(G) \backslash E\left(T_{x}\right)\right]$. Suppose that G^{\prime} is decomposable, by the induction hypothesis, we may assume G^{\prime} can be decomposed into at most four locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ and G_{4}^{\prime}. If $x=u$, then without loss of generality, we may assume that $E_{G^{\prime}}(x) \subseteq E\left(G_{1}^{\prime} \cup G_{2}^{\prime}\right)$. The grahps $G_{1}^{\prime}, G_{2}^{\prime}, G\left[E\left(G_{3}^{\prime}\right) \cup\right.$ $\left.E\left(T_{1}\right)\right]$ and $G\left[E\left(G_{4}^{\prime}\right) \cup E\left(T_{2}\right)\right]$ thus make up a decomposition of G into four locally irregular subgraphs. If $x \neq u$, then without loss of generality, we may assume that $E_{G^{\prime}}(x) \subseteq E\left(G_{1}^{\prime}\right)$.

The graphs $G_{1}^{\prime}, G\left[E\left(G_{2}^{\prime}\right) \cup E\left(T_{1}\right)\right], G\left[E\left(G_{3}^{\prime}\right) \cup E\left(T_{2}\right)\right]$ and G_{4}^{\prime} thus make up a decomposition of G into four locally irregular subgraphs. Now consider that $G^{\prime}=G\left[E(G) \backslash E\left(T_{x}\right)\right]$ is exceptional. Let $v \in N_{G^{\prime}}(x)$. Then $G^{\prime \prime}=G\left[E(G) \backslash\left(E\left(T_{x}\right) \cup\{x v\}\right)\right]$ is decomposable. By the induction hypothesis, $G^{\prime \prime}$ can be decomposed into at most four locally irregular subgraphs $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, G_{3}^{\prime \prime}, G_{4}^{\prime \prime}$. Since G^{\prime} is exceptional, $\left|E_{G^{\prime \prime}}(\{x, v\})\right| \leq 3$. Without loss of generality, we may assume that $E_{G^{\prime \prime}}(\{x, v\}) \subseteq E\left(G_{1}^{\prime \prime} \cup G_{2}^{\prime \prime}\right)$. The graphs $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, G\left[E\left(G_{3}^{\prime \prime}\right) \cup E\left(T_{x}\right) \cup\{x v\}\right]$ and $G_{4}^{\prime \prime}$ thus make up a decomposition of G into four locally irregular subgraphs since $G\left[E\left(T_{x}\right) \cup\{x v\}\right]$ is locally irregular.

Theorem 3.3 For every decomposable cactus G, we have $\chi_{\text {irr }}^{\prime}(G) \leq 4$.
Proof Obviously, it suffices to consider that G is connected. We proceed by induction on the number of edges in G. If G is a decomposable tree or unicyclic graph, then $\chi_{i r r}^{\prime}(G) \leq 3$ by Theorems 2.3 and 2.5. Therefore, suppose that there are at least two cycles in G. By Lemma 3.2, in the following we may assume that if there is $y \in V(G)$ lying on at most one cycle such that T_{y} is a tree, then $\left|E\left(T_{y}\right) \leq 1\right|$ and if y lies on more than one cycle, then the tree pending at y is consisted of paths of length at most 2 . We first prove the following claim.

Claim 1. If there is an outmost cycle C in G with $|V(C)| \geq 4$, then $\chi_{i r r}^{\prime}(G) \leq 4$.
Proof. Let C be an outmost cycle in G with $|V(C)| \geq 4$ and u be the special vertex of C. Since $|V(C)| \geq 4$, we can find a vertex $x \notin N(u)$ in C and denote by y, z the two neighbors of x in C. Note that T_{x}, T_{y} and T_{z} are trees because C is an outmost cycle. Let $X=\{x y, x z\} \cup E\left(T_{x}\right)$ and $G^{\prime}=G[E(G) \backslash X]$. We obtain that $G[X]$ is locally irregular because $\left|E\left(T_{x}\right) \leq 1\right|$ and G^{\prime} is decomposable by Proposition 2.2(a). By the induction hypothesis, we may assume G^{\prime} can be decomposed into four locally irregular subgraphs G_{1}^{\prime}, $G_{2}^{\prime}, G_{3}^{\prime}$ and G_{4}^{\prime} with $E_{G^{\prime}}(\{y, z\}) \subseteq E\left(G_{1}^{\prime} \cup G_{2}^{\prime}\right)$. Consequently, $G_{1}^{\prime}, G_{2}^{\prime}, G\left[E\left(G_{3}^{\prime}\right) \cup X\right]$ and G_{4}^{\prime} are four locally subgraphs decomposing G.

Thus, by Claim 1 we may assume that each outmost cycle of G is of length 3. Let C^{\prime} and $C^{\prime \prime}$ be two outmost cycles of G such that $d_{G}\left(C^{\prime}, C^{\prime \prime}\right)$ is as large as possible. Denote by u the special vertex of C^{\prime}. We use R to denote the set of vertices that cannot reach $C^{\prime \prime}$ without passing u. Let $G_{u}=G[R \cup\{u\}]$. We have $d_{G\left[E(G) \backslash E\left(G_{u}\right)\right]}(u) \leq 2$. We proceed by analyzing the structure of G_{u}. If there is a cycle $C^{\prime \prime \prime}$ in G_{u} such that $u \notin V\left(C^{\prime \prime \prime}\right)$, then $d_{G}\left(C^{\prime \prime \prime}, C^{\prime \prime}\right)>d_{G}\left(C^{\prime}, C^{\prime \prime}\right)$, a contradiction. So the cycles in G_{u} are outmost cycles of G which intersect at u. Further, they are of length 3. Denote by r the number of such cycles contained in G_{u}, clearly, $r \geq 1$ as $C^{\prime} \subseteq G_{u}$. By Lemma 3.2, the rest of the structure rooted at u in G_{u} are paths pending at u and we may assume they are P_{2} and P_{3}. Denote the number of P_{2} and P_{3} pending at u by s and t, respectively. Let uxyu be the triangle in G_{u} with the largest size of $E\left(T_{x}\right)$. By Lemma $3.2,\left|E\left(T_{x}\right)\right| \leq 1$. We carry on by distinguishing whether $E\left(T_{x}\right)=\emptyset$.

Case 1. $E\left(T_{x}\right) \neq \emptyset$.
Let $T_{x}=x x_{1}$ and $X=\left\{x x_{1}, x y\right\}$. By Proposition 2.2(a), $G[X]$ is locally irregular and $G^{\prime}=G[E(G) \backslash X]$ is a decomposable cactus. Therefore, by the induction hypothesis, G^{\prime} can be decomposed into at most four locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}, G_{4}^{\prime}$. We may assume $\{u x, u y\} \cup E\left(T_{y}\right) \subseteq E\left(G_{1}^{\prime} \cup G_{2}^{\prime} \cup G_{3}^{\prime}\right)$ since $\left|E\left(T_{y}\right)\right| \leq\left|E\left(T_{x}\right)\right| \leq 1$. As a consequence, $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$, and $G\left[E\left(G_{4}^{\prime}\right) \cup X\right]$ are four locally irregular subgraphs decomposing G.

Case 2. $E\left(T_{x}\right)=\emptyset$, i.e., $T_{x}=K_{1}$.
Note that now $d_{G}\left(u^{\prime}\right)=2$ for each $u^{\prime} \in V\left(G_{u}\right) \backslash\{u\}$ lying on a triangle. Let $I \subseteq E\left(G_{u}\right)$ be the edge set obtained by choosing one edge that is incident to u in each triangle, and in particular, let $u x \in I$. So $|I|=r$. Let $S_{u}=G\left[E\left(G_{u}\right) \backslash I\right]$ and $H_{u}=G\left[I \cup\left(E(G) \backslash E\left(G_{u}\right)\right)\right]$. We shall emphasize that S_{u} is consisted of $s P_{2}$'s and $(r+t) P_{3}$'s pending at u with $r \geq 1$. Thus, S_{u} is locally irregular if S_{u} is not in the form of P_{4} or P_{5}.

First consider the case that H_{u} is exceptional. We have $d_{H_{u}}(u)=2, s+t \geq 1$ and there is exactly one triangle, i.e., $u x y u$, in G_{u} as G is decomposable. If G_{u} is as shown in Figure 3(b), i.e., $s=0$ and $t=1$, then let $H_{u}^{\prime}=G\left[E\left(H_{u}\right) \cup\left\{u u_{1}, u_{1} u_{2}\right\}\right]$. Otherwise, let $H_{u}^{\prime}=G\left[E\left(H_{u}\right) \cup\{x y\}\right]$. By Lemma 2.2, H_{u}^{\prime} is decomposable. And let $S_{u}^{\prime}=G\left[E(G) \backslash E\left(H_{u}^{\prime}\right)\right]$. Obviously, S_{u}^{\prime} is locally irregular. By the induction hypothesis, H_{u}^{\prime} can be decomposed into at most four locally irregular subgraphs $H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}$. Let $v \in N_{H_{u}^{\prime}}(u)$. We may assume $\left\{u x, u u_{1}, u v\right\} \subseteq E\left(H_{1}^{\prime} \cup H_{2}^{\prime} \cup H_{3}^{\prime}\right)$ for $s=0$ and $t=1$ and $\{u v, u x, x y\} \subseteq E\left(H_{1}^{\prime} \cup H_{2}^{\prime} \cup H_{3}^{\prime}\right)$ for other cases. Then $H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}$ and $G\left[E\left(H_{4}^{\prime}\right) \cup E\left(S_{u}^{\prime}\right)\right]$ are four locally irregular subgraphs decomposing G.

Now we assume that H_{u} is decomposable. Note that $r+1 \leq d_{H_{u}}(u) \leq r+2$. Let $N_{G\left[E\left(H_{u}\right) \backslash I\right]}(u)=\{v, w\}$ if $d_{H_{u}}(u)=r+2$ and $N_{G\left[E\left(H_{u}\right) \backslash I\right]}(u)=\{v\}$ if $d_{H_{u}}(u)=r+1$. If G_{u} is as shown in Figure 3(a), then let $S_{u}^{\prime}=G\left[E\left(S_{u}\right) \backslash\left\{u u_{1}\right\}\right]$ and $H_{u}^{\prime}=G\left[E\left(H_{u}\right) \cup\left\{u u_{1}\right\}\right]$. If G_{u} is as shown in Figure 3(b,c) or other cases, i.e., $S_{u}=u_{2} u_{1} u y x$ or S_{u} is a locally irregular spider, then let $S_{u}^{\prime}=S_{u}$ and $H_{u}^{\prime}=H_{u}$. In each case, we have $S_{u}^{\prime}=u_{2} u_{1} u y x$ or S_{u}^{\prime} is a locally irregular spider. Thus $\chi_{i r r}^{\prime}\left(S_{u}^{\prime}\right) \leq 2$. By Lemma 3.1 and the induction hypothesis, H_{u}^{\prime} can be decomposed into at most four locally irregular subgraphs $H_{1}, H_{2}, H_{3}, H_{4}$ such that $E_{H_{u}^{\prime}}(u) \subseteq E\left(H_{1} \cup H_{2}\right)$. Hence, $H_{1}, H_{2}, G\left[E\left(H_{3}\right) \cup\left\{u_{2} u_{1}, u_{1} u\right\}\right]$ and $G\left[E\left(H_{4}\right) \cup\{u y, y x\}\right]$ are four locally irregular subgraphs decomposing G if $S_{u}=u_{2} u_{1} u y x$ and H_{1}, H_{2}, H_{3} and $G\left[E\left(H_{4} \cup S_{u}\right)\right]$ are four locally irregular subgraphs decomposing G if S_{u} is a locally irregular spider.

This completes the proof of Theorem 3.3.
If the decomposable cactus has no nontrivial cut edge, then the following holds.
Theorem 3.4 For every decomposable cactus G without nontrivial cut edges, we have $\chi_{i r r}^{\prime}(G) \leq 3$.

Figure 3: Three possibilities for G_{u}.

Proof Let G be a cactus without nontrivial cut edges. We prove the theorem by induction on the number of edges of G. By Theorems 2.3 and 2.5 , we may assume that G has at least two cycles. Note that for any $x \in V(G)$ lying on at most one cycle, if T_{x} is a tree, then T_{x} is a star.

Suppose that there is $x \in V(G)$ such that T_{x} is a tree and $\left|E\left(T_{x}\right)\right| \geq 2$. Then T_{x} is locally irregular. Let $G^{\prime}=G\left[E(G) \backslash E\left(T_{x}\right)\right]$. Since G^{\prime} has no nontrivial cut edges, G^{\prime} is decomposable. By the induction hypothesis, G^{\prime} can be decomposed into at most three locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ with $E_{G^{\prime}}(x) \subseteq E\left(G_{1}^{\prime} \cup G_{2}^{\prime}\right)$. Thus, $G_{1}^{\prime}, G_{2}^{\prime}$ and $G\left[E\left(G_{3}^{\prime} \cup T_{x}\right)\right]$ are three locally irregular subgraphs decomposing G. So we may assume that if there is $x \in V(G)$ lying on at most one cycle such that T_{x} is a tree, then $\left|E\left(T_{x}\right)\right| \leq 1$ in the following. By the same proof as the Claim 1 in Theorem 3.3, we may assume that each outmost cycle of G has length 3. Further, we may assume that each vertex of an outmost cycle except for the special vertex has degree 2 in G. Otherwise, suppose there is an outmost cycle $u x y u$ such that T_{x} is a nonempty tree, where u is its special vertex. Let $T_{x}=x_{1} x$ and $X=\left\{x_{1} x, x y\right\}$. The graph $G^{\prime}=G[E(G) \backslash X]$ is decomposable as u has a neighbor of degree 1. Therefore, by the induction hypothesis, we may assume G^{\prime} can be decomposed into at most three locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ with $\{u x\} \cup E_{G^{\prime}}(y) \subseteq E\left(G_{1}^{\prime} \cup G_{2}^{\prime}\right)$. Since $\left|E\left(T_{y}\right)\right| \leq 1, E_{G^{\prime}}(y)$ belongs to the same subgraph and so the assumption is possible. As a consequence, $G_{1}^{\prime}, G_{2}^{\prime}$ and $G\left[E\left(G_{3}^{\prime}\right) \cup X\right]$ are three locally irregular subgraphs decomposing G.

For an outmost cycle C with special vertex u, we call C maximal if there is at most one cycle, say C^{u}, containing u that may not be outmost in G. For u being the special vertex of some maximal outmost cycle, let $C=u x y u$ be an outmost cycle of G with special vertex u, and we define G_{u} as the graph consisted of all the paths rooted at u and all the outmost cycles containing u except C^{u}. By the definition of maximal outmost cycle, $d_{G\left[E(G) \backslash E\left(G_{u}\right)\right]}(u)=2$. Let $I \subseteq E\left(G_{u}\right)$ be the edge set obtained by choosing one edge that is incident to u in each triangle, and in particular, let $u x \in I$. Let $H_{u}=G\left[I \cup\left(E(G) \backslash E\left(G_{u}\right)\right)\right]$ and $S_{u}=G\left[E(G) \backslash E\left(H_{u}\right)\right]$.

Suppose S_{u} is a locally irregular spider or $S_{u}=u_{1} u y x$, i.e., G_{u} is as shown in Figure 3(a). Let $X=E\left(S_{u}\right)$ or $X=\{u x, x y\}$ respectively. And let $G^{\prime}=G[E(G) \backslash X]$. The graph
G^{\prime} is decomposable as u lies on a cycle and has a neighbor of degree 1 . Let v and w be two neighbors of u contained in $G\left[E(G) \backslash E\left(G_{u}\right)\right]$. By the induction hypothesis, G^{\prime} can be decomposed into three locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}$ and G_{3}^{\prime} such that for the former case $I \cup\{u v, u w\} \subseteq E\left(G_{1}^{\prime} \cup G_{2}^{\prime}\right)$ and for the latter case $\left\{u_{1} u, u y, u v, u w\right\} \subseteq$ $E\left(G_{1}^{\prime} \cup G_{2}^{\prime}\right)$ by Lemma 3.1. Consequently, $G_{1}^{\prime}, G_{2}^{\prime}$ and $G\left[E\left(G_{3}^{\prime}\right) \cup X\right]$ make up a locally irregular decomposition of G. Therefore, if u is the special vertex of some maximal outmost cycle, then it suffices to consider that G_{u} is as shown in Figure 3(c). We establish the following claim.

Claim 2. There exist u and v in $V(G)$ such that $u v \in E(G)$ and the partial structure of G at u and v is as shown in Figure 4.
Proof. Let C^{\prime} and $C^{\prime \prime}$ be two outmost cycles of G such that $d_{G}\left(C^{\prime}, C^{\prime \prime}\right)$ is as large as possible. Clearly, C^{\prime} and $C^{\prime \prime}$ are maximal. Denote by u^{*} the special vertex of C^{\prime}. Let a^{\prime}, a, u^{*}, b and b^{\prime} be the consecutive vertices lying on the cycle of $G\left[E(G) \backslash E\left(G_{u^{*}}\right)\right]$, we only require that a, u^{*}, b are three different vertices. Further, let G_{a}^{*} be the component containing a after removing $u^{*} a$ and $a a^{\prime}$ and G_{b}^{*} be the component containing b after removing $u^{*} b$ and $b b^{\prime}$. If all the cycles in G_{a}^{*} (resp. G_{b}^{*}) that contain a (resp. b) are outmost, then by the above analysis, G_{a}^{*} (resp. G_{b}^{*}) are as shown in Figure 3(c). Therefore, u^{*} and a (resp. b) are what we want. Hence, we may assume there is a cycle C_{a} containing a in G_{a}^{*} and a cycle C_{b} containing b in G_{b}^{*} that are not outmost. Denote by a_{1} and a_{2} the two neighbors of a in C_{a}, b_{1} and b_{2} the two neighbors of b in C_{b}. For each vertex x in $V\left(C_{a} \cup C_{b}\right) \backslash\{a, b\}$, denote by G_{x}^{*} the component that contains x of the graph obtained from G by deleting the two edges incident to x in $E\left(C_{a} \cup C_{b}\right)$. The graph G_{y}^{*} is a tree for each $y \in V\left(C_{a}\right) \backslash\left\{a_{1}, a, a_{2}\right\}$ and all cycles containing a_{i} in $G_{a_{i}}^{*}$ are outmost cycles for $i \in\{1,2\}$ or G_{z}^{*} is a tree for each $z \in V\left(C_{b}\right) \backslash\left\{b_{1}, b, b_{2}\right\}$ and all cycles containing b_{i} in $G_{b_{i}}^{*}$ are outmost cycles for $i \in\{1,2\}$. Otherwise, by the symmetry, suppose there is a cycle containing a_{1} in $G_{a_{1}}^{*}$ which is not outmost, i.e., there is a cycle $C_{a_{1}}$ in $G_{a_{1}}^{*}$ that does not contain a_{1} and either G_{z}^{*} contains a cycle C_{z} for some $z \in V\left(C_{b}\right) \backslash\left\{b_{1}, b, b_{2}\right\}$ or there is a cycle containing b_{1} in $G_{b_{1}}^{*}$ which is not outmost, i.e., there is a cycle $C_{b_{1}}$ in $G_{b_{1}}^{*}$ that does not contain b_{1}. Therefore, there is a cycle $C^{\prime \prime \prime} \in\left\{C_{a_{1}}, C_{b_{1}}, C_{z}\right\}$ such that $d_{G}\left(C^{\prime \prime \prime}, C^{\prime \prime}\right)>d_{G}\left(C^{\prime}, C^{\prime \prime}\right)$, a contradiction. Without loss of generality, we assume that for any $y \in V\left(C_{a}\right) \backslash\left\{a_{1}, a, a_{2}\right\}, G_{y}$ is a tree which actually is a path of length at most 1 and for $i \in\{1,2\}$ all cycles containing a_{i} in $G_{a_{i}}^{*}$ are outmost cycles. Note that these outmost cycles containing a_{i} in $G_{a_{i}}^{*}$ are maximal. Thus $G_{a_{1}}$ is as shown in Figure 3(c). Hence, a_{1} and its neighbor a_{1}^{\prime} which is different from a in C_{a} are what we want.

Now we consider the cases as shown in Figure 4. Let $X=E\left(G_{u}\right) \cup\{u v\}$ in Figure 4(a) and $X=E\left(G_{v} \cup G_{u}\right)$ in Figure $4(\mathrm{~b}, \mathrm{c})$. Moreover, let $G^{\prime}=G[E(G) \backslash X]$ with $v^{\prime} \in N_{G^{\prime}}(v) \backslash\{u\}$.

Figure 4: Three possibilities for G_{v}

Suppose $G^{\prime}=G[E(G) \backslash X]$ is exceptional. If $G_{v}=K_{1}$, then G^{\prime} is an odd path and so the even-length (w, v)-path in G^{\prime} can be decomposed into two locally irregular subgraphs G_{1}^{\prime} and G_{2}^{\prime}. Therefore, $G\left[E\left(G_{1}^{\prime}\right) \cup\left\{u y, u u_{1}\right\}\right], G_{2}^{\prime}$ and $G_{3}^{\prime}=G\left[\left\{u w, u v, u x, x y, u u_{2}, u_{2} u_{1}\right\}\right]$ are three locally irregular subgraphs decomposing G. If G_{v} is as shown in Figure 4(b,c), then G^{\prime} is an odd cycle since G^{\prime} has no nontrivial cut edge. And so $G\left[E\left(G^{\prime}\right) \backslash\{u v\}\right]$ is an even path which has a 2-locally irregular decomposition G_{1}^{\prime} and G_{2}^{\prime} with $u w \in E\left(G_{1}^{\prime}\right)$ and $v v^{\prime} \in E\left(G_{i}^{\prime}\right)$ for some $i \in\{1,2\}$. The following G_{1}, G_{2} and G_{3} provide a 3-locally irregular decomposition of G. For $G_{v}=v v_{1}$, let $G_{1}=G\left[E\left(G_{1}^{\prime}\right) \cup\left\{u u_{1}, u x\right\}\right], G_{2}=G_{2}^{\prime}$ and $G_{3}=$ $G\left[\left\{u u_{2}, u_{2} u_{1}, u y, y x, u v, v v_{1}\right\}\right]$. For the case as shown in Figure 4(c), let $G_{1}=G\left[E\left(G_{1}^{\prime}\right) \cup\right.$ $\left.\left\{u u_{1}, u x, v v_{1}, v v_{3}\right\}\right], G_{2}=G\left[E\left(G_{2}^{\prime}\right) \cup\left\{v_{2} v, v_{2} v_{1}, v v_{4}, v_{4} v_{3}\right\}\right], G_{3}=G\left[\left\{u u_{2}, u_{2} u_{1}, u y, y x, u v\right\}\right]$ when $i=2$ and let $G_{1}=G\left[E\left(G_{1}^{\prime}\right) \cup\left\{u u_{1}, u x, v v_{1}, v_{1} v_{2}, v v_{3}, v_{3} v_{4}\right\}\right], G_{2}=G\left[E\left(G_{2}^{\prime}\right) \cup\right.$ $\left.\left\{u u_{2}, u_{2} u_{1}, u y, y x, u v\right\}\right], G_{3}=G\left[\left\{v_{2} v, v v_{4}\right\}\right]$ when $i=1$.

Finally suppose that G^{\prime} can be decomposed into three locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}$ and G_{3}^{\prime}. If $G_{v}=K_{1}$, without loss of generality, we may assume that $u w \in E\left(G_{1}^{\prime}\right)$ and $v v^{\prime} \in$ $E\left(G_{1}^{\prime}\right) \cup E\left(G_{2}^{\prime}\right)$, then $G_{1}^{\prime}, G\left[E\left(G_{2}^{\prime}\right) \cup\left\{u y, u u_{1}\right\}\right]$ and $G\left[E\left(G_{3}^{\prime}\right) \cup\left(X \backslash\left\{u y, u u_{1}\right\}\right)\right]$ are three locally irregular subgraphs decomposing G. If $G_{v}=v v_{1}$ with $v v^{\prime}, v u \in E\left(G_{1}^{\prime}\right)$ and $w u \in E\left(G_{2}^{\prime}\right)$, then following G_{1}, G_{2} and G_{3} make up a 3-locally irregular decomposition of G : when $d_{G_{2}^{\prime}}(w) \neq 3$, let $G_{1}=G\left[\left(E\left(G_{1}^{\prime}\right) \cup\left\{v v_{1}\right\}\right) \backslash\{v u\}\right], G_{2}=G\left[E\left(G_{2}^{\prime}\right) \cup\left\{u x, x y, u u_{1}, u_{1} u_{2}\right\}\right]$ and $G_{3}=G\left[E\left(G_{3}^{\prime}\right) \cup\left\{v u, u y, u u_{2}\right\}\right]$; when $d_{G_{2}^{\prime}}(w)=3$, let $G_{1}=G\left[\left(E\left(G_{1}^{\prime}\right) \cup\left\{v v_{1}, u y, y x\right\}\right) \backslash\{v u\}\right]$, $G_{2}=G\left[E\left(G_{2}^{\prime}\right) \cup\left\{u u_{2}\right\}\right]$ and $G_{3}=G\left[E\left(G_{3}^{\prime}\right) \cup\left\{v u, u x, u u_{1}, u_{1} u_{2}\right\}\right]$. If $G_{v}=v v_{1}$ with $u w, u v \in$ $E\left(G_{1}^{\prime}\right)$ and $v v^{\prime} \in E\left(G_{2}^{\prime}\right)$, then the following G_{1}, G_{2} and G_{3} make up a 3-locally irregular decomposition of G : when $d_{G_{1}^{\prime}}(w) \neq 3$, let $G_{1}=G\left[\left(E\left(G_{1}^{\prime}\right) \cup\left\{u y, y x, u u_{2}, u_{2} u_{1}\right\}\right) \backslash\{v u\}\right], G_{2}=$ $G\left[E\left(G_{2}^{\prime}\right) \cup\left\{u x, u u_{1}\right\}\right]$ and $G_{3}=G\left[E\left(G_{3}^{\prime}\right) \cup\left\{v v_{1}, u v\right\}\right]$; when $d_{G_{1}^{\prime}}(w)=3$, let $G_{1}=G\left[E\left(G_{1}^{\prime}\right) \cup\right.$ $\left.\left\{u y, y x, u u_{2}, u_{2} u_{1}, v v_{1}\right\}\right], G_{2}=G_{2}^{\prime}$ and $G_{3}=G\left[E\left(G_{3}^{\prime}\right) \cup\left\{u x, u u_{1}\right\}\right]$. If G_{v} is as shown in Figure $4(\mathrm{c})$, without loss of generality, we assume $u v, v v^{\prime} \in E\left(G_{1}^{\prime}\right)$ and $u w \in E\left(G_{2}^{\prime}\right)$, then the following G_{1}, G_{2} and G_{3} make up a 3-locally irregular decomposition of G : when $d_{G_{2}^{\prime}}(w) \neq$ 3, let $G_{1}=G\left[\left(E\left(G_{1}^{\prime}\right) \backslash\{u v\}\right) \cup\left\{u y, u u_{1}, v v_{4}\right\}\right], G_{2}=G\left[E\left(G_{2}^{\prime}\right) \cup\left\{u x, x y, u u_{2}, u_{2} u_{1}, v v_{1}, v_{1} v_{2}\right\}\right]$ and $G_{3}=G\left[E\left(G_{3}^{\prime}\right) \cup\left\{v u, v v_{2}, v v_{3}, v_{3} v_{4}\right\}\right]$; when $d_{G_{2}^{\prime}}(w)=3$, let $G_{1}=G\left[\left(E\left(G_{1}^{\prime}\right) \backslash\{u v\}\right) \cup\right.$ $\left.\left\{u y, u u_{1}, v v_{4}\right\}\right], G_{2}=G\left[E\left(G_{2}^{\prime}\right) \cup\left\{u x, x y, u u_{2}, u_{2} u_{1}, u v, v v_{1}, v v_{3}, v_{3} v_{4}\right\}\right]$ and $G_{3}=G\left[E\left(G_{3}^{\prime}\right) \cup\right.$
$\left.\left\{v v_{2}, v_{2} v_{1}\right\}\right]$.

4 Subcubic Graphs

In the next result, one needs to observe that if G is a subcubic graph such that each vertex of degree 3 is a cut vertex and lies on a triangle, then clearly G is a cactus which has structure close to the graph in \mathfrak{T}. In the following we are interested in the locally irregular chromatic index of decomposable subcubic graphs where each vertex of degree 3 lies on a triangle.

Theorem 4.1 Let G be a connected decomposable subcubic graph. If each vertex of degree 3 in G lies on a triangle, then $\chi_{i r r}^{\prime}(G) \leq 3$.

Proof We prove the theorem by induction on the number of edges in G. If $\Delta(G) \leq 2$, then G is a decomposable path or cycle, clearly, $\chi_{i r r}^{\prime}(G) \leq 3$. Therefore, we may assume that $\Delta(G)=3$. By Theorems 2.3 and 2.5 , we may assume there are at least two cycles in G. We proceed our proof by distinguishing whether there is a vertex of degree 3 that is not a cut vertex of G.

First suppose that all the vertices of degree 3 in G are cut vertices. It implies that each edge not lying on a triangle is a cut edge of G. Therefore, we may assume that $G \in \mathfrak{S}$, where $\mathfrak{S}=\{G \mid G$ is decomposable and G is obtained from a graph in \mathfrak{T} by subdividing some edges $\}$. We establish the following claim.

Claim 3. If $G \in \mathfrak{S}$, then $\chi_{\text {irr }}^{\prime}(G) \leq 3$.
Proof. Let $T=u v w u$ be an outmost cycle of G with special vertex u and $N_{G}(u)=$ $\{v, w, x\}$, and so T_{v} and T_{w} are trees. If $|E(T(v))| \geq 2$, then by completely following the proof of Lemma 3.2 and omitting G_{4}^{\prime} and $G_{4}^{\prime \prime}$, one can show that $\chi_{i r r}^{\prime}(G) \leq 3$. Therefore, we may assume T_{v} and T_{w} are paths of length at most 1 with $\left|V\left(T_{v}\right)\right| \geq\left|V\left(T_{w}\right)\right|$. Let $X=E\left(T_{v}\right) \cup\{v w, v u\}, Y=X \cup\{w u\}$ if $d_{G}(w)=2$ and $Y=X \cup\left\{w w_{1}\right\}$ if $d_{G}(w)=3$ with $T_{w}=w w_{1}$. Then either $G^{\prime}=G[E(G) \backslash X]$ or $G^{\prime \prime}=G[E(G) \backslash Y]$ is decomposable. Assume that G^{\prime} can be decomposed into three locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ with $E\left(T_{w}\right) \cup\{w u, u x\} \subseteq E\left(G_{1}^{\prime}\right) \cup E\left(G_{2}^{\prime}\right)$. Consequently $G_{1}^{\prime}, G_{2}^{\prime}$ and $G\left[E\left(G_{3}^{\prime}\right) \cup X\right]$ are three locally irregular subgraphs decomposing G. Now assume that $G^{\prime \prime}$ can be decomposed into three locally irregular subgraphs $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, G_{3}^{\prime \prime}$ with $u x \in E\left(G_{1}^{\prime \prime}\right)$ for $d_{G}(w)=2$ and $\{w u, u x\} \subseteq$ $E\left(G_{1}^{\prime \prime}\right)$ for $d_{G}(w)=3$. The graphs $G_{1}^{\prime \prime}, G\left[E\left(G_{2}^{\prime \prime}\right) \cup\left\{v_{1} v, v u\right\}\right]$ and $G\left[E\left(G_{3}^{\prime \prime}\right) \cup\{v w, w u\}\right]$ are three locally irregular subgraphs decomposing G for $d_{G}(w)=2$ and $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}$ and $G\left[E\left(G_{3}^{\prime \prime}\right) \cup\right.$ Y] are three locally irregular subgraphs decomposing G for $d_{G}(w)=3$.

Now suppose that there exists a vertex u of degree 3 in G which is not a cut vertex of G. Denote the vertices of the triangle that u lies on by $\{u, v, w\}$. Hence, $N_{G}(v) \backslash\{u, w\} \neq \emptyset$
or $N_{G}(w) \backslash\{u, v\} \neq \emptyset$. Let $x \in N_{G}(u) \backslash\{v, w\}, x_{1} \in N_{G}(x) \backslash\{u\}, X=\{u v, u w\}$ and $Y=\{x u, u v, u w\}$. The graphs $G^{\prime}=G[E(G) \backslash X]$ and $G^{\prime \prime}=G[E(G) \backslash Y]$ are connected because u is not a cut vertex. Notice that each vertex of degree 3 in G^{\prime} or $G^{\prime \prime}$ still lies on a triangle and $d_{G}(x) \geq 2$. We finish our proof by analyzing the degree of x in G.

Suppose $d_{G}(x)=3$. Let $G^{\prime}=G[E(G) \backslash X]$. Since $d_{G^{\prime}}(u)=1, G^{\prime}$ is decomposable by Proposition 2.2(b). By the induction hypothesis, without loss of generality, let $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ be three locally irregular subgraphs decomposing G^{\prime} with $E_{G^{\prime}}(\{v, w\}) \cap E\left(G_{3}^{\prime}\right)=\emptyset$ and $u x \in E\left(G_{3}^{\prime}\right)$. If $d_{G_{3}^{\prime}}(x) \leq 2$ or $E_{G^{\prime}}(\{v, w\}) \cap E\left(G_{1}^{\prime}\right)=\emptyset$, then $G_{1}^{\prime}, G_{2}^{\prime}, G\left[E\left(G_{3}^{\prime}\right) \cup X\right]$ or $G\left[E\left(G_{1}^{\prime}\right) \cup X\right], G_{2}^{\prime}$ and G_{3}^{\prime} are three locally irregular subgraphs decomposing G. Consider that $d_{G_{3}^{\prime}}(x)=3$ and $E_{G^{\prime}}(\{v, w\}) \cap E\left(G_{i}^{\prime}\right) \neq \emptyset$ for $i \in\{1,2\}$. There exist $y \in N_{G}(v) \backslash\{u, w\}$ and $z \in N_{G}(w) \backslash\{u, v\}$. Without loss of generality, we assume $v y, v w \in E\left(G_{1}^{\prime}\right)$ and $w z \in$ $E\left(G_{2}^{\prime}\right)$. If $d_{G_{2}^{\prime}}(z) \leq 2$, then $G\left[\left(E\left(G_{1}^{\prime}\right) \backslash\{v w\}\right) \cup\{u v\}\right], G\left[E\left(G_{2}^{\prime}\right) \cup\{u w, v w\}\right]$ and G_{3}^{\prime} are locally irregular subgraphs decomposing G. If $d_{G_{2}^{\prime}}(z)=3$, then $G_{1}^{\prime}, G\left[E\left(G_{2}^{\prime}\right) \cup\{u w\}\right]$ and $G\left[E\left(G_{3}^{\prime}\right) \cup\{u v\}\right]$ are three locally irregular subgraphs decomposing G.

Finally, consider the case $d_{G}(x)=2$. Suppose $G^{\prime}=G[E(G) \backslash X]$ is decomposable. Then G^{\prime} can be decomposed into three locally irregular subgraphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ by the induction hypothesis. If $E_{G^{\prime}}(\{u, v, w\}) \cap E\left(G_{i}^{\prime}\right)=\emptyset$ for some $i \in\{1,2,3\}$, without loss of generality, we assume $i=3$, then $G_{1}^{\prime}, G_{2}^{\prime}$ and $G\left[E\left(G_{3}^{\prime}\right) \cup X\right]$ are three locally irregular subgraphs decomposing G. So we may assume $E_{G^{\prime}}(\{u, v, w\}) \cap E\left(G_{i}^{\prime}\right) \neq \emptyset$ for $1 \leq i \leq 3$. Thus there exist $y \in N_{G}(v) \backslash\{u, w\}$ and $z \in N_{G}(w) \backslash\{u, v\}$. Without loss of generality, let $\{v y, v w\} \subseteq E\left(G_{1}^{\prime}\right), w z \in E\left(G_{2}^{\prime}\right)$ and $u x \in E\left(G_{3}^{\prime}\right)$. Hence, $G_{1}^{\prime}, G_{2}^{\prime}$ and $G\left[E\left(G_{3}^{\prime}\right) \cup X\right]$ are three locally irregular subgraphs decomposing G. Suppose that $G^{\prime}=G[E(G) \backslash X]$ is exceptional. Then $G^{\prime \prime}=G[E(G) \backslash Y]$ is decomposable. By the induction hypothesis, $G^{\prime \prime}$ can be decomposed into three locally irregular subgraphs $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, G_{3}^{\prime \prime}$. If $E_{G^{\prime \prime}}(\{v, w, x\}) \cap$ $E\left(G_{i}^{\prime \prime}\right)=\emptyset$ for some $i \in\{1,2,3\}$, without loss of generality, we assume $i=3$, then $G_{1}^{\prime \prime}$, $G_{2}^{\prime \prime}$ and $G\left[E\left(G_{3}^{\prime \prime}\right) \cup Y\right]$ are three locally irregular subgraphs decomposing G. So we may assume $E_{G^{\prime}}(\{u, v, w\}) \cap E\left(G_{i}^{\prime}\right) \neq \emptyset$ for $1 \leq i \leq 3$. Thus there exist $y \in N_{G}(v) \backslash\{u, w\}$ and $z \in N_{G}(w) \backslash\{u, v\}$. Without loss of generality, let $\{v y, v w\} \subseteq E\left(G_{1}^{\prime \prime}\right), w z \in E\left(G_{2}^{\prime \prime}\right)$ and $x x_{1} \in E\left(G_{3}^{\prime \prime}\right)$. If $d_{G_{2}^{\prime \prime}}(z) \leq 2$, then $G\left[\left(E\left(G_{1}^{\prime \prime}\right) \backslash\{v w\}\right) \cup\{u v\}\right], G\left[E\left(G_{2}^{\prime \prime}\right) \cup\{u w, v w, u x\}\right]$ and $G_{3}^{\prime \prime}$ are three locally irregular subgraphs decomposing G. If $d_{G_{2}^{\prime \prime}}(z)=3$, then $G_{1}^{\prime \prime}$, $G\left[E\left(G_{2}^{\prime \prime}\right) \cup Y\right]$ and $G_{3}^{\prime \prime}$ are three locally irregular subgraphs decomposing G.

$5 \quad K_{n}-C_{\ell}$ with $3 \leq \ell \leq n-1$

From another point of view, a locally irregular decomposition can be seen as an edge coloring such that each color class induces a locally irregular subgraph. Let K_{n} be the complete graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and a cycle $C_{\ell} \subseteq K_{n}$ with vertices $v_{1}, v_{2}, \ldots, v_{\ell}$, where $3 \leq \ell \leq n-1$. Denote by $K_{n}-C_{\ell}$ the graph obtained from K_{n} by deleting all the edges

```
Algorithm 1: Locally Irregular 2-edge Coloring of \(K_{n}-C_{\ell}\).
    Input: A graph \(G\) obtained from a complete graph \(K_{n}\) by deleting all the edges in a
        cycle \(C_{\ell}, 3 \leq \ell \leq n-1\) and \(\ell\) is odd.
    Output: A locally irregular 2-edge coloring of \(G\).
    Order the vertices by the degree in ascending order:
    \(d\left(v_{1}\right)=d\left(v_{2}\right)=\ldots=d\left(v_{\ell}\right)<d\left(v_{\ell+1}\right)=\ldots=d\left(v_{n}\right)\).
    while \(1 \leq i \leq \ell-1\) do
        if \(i\) is odd then
        color \(v_{i} v_{j}(i<j \leq \ell)\) with yellow. if \(i\) is even then
            color \(v_{i} v_{j}(i<j \leq \ell)\) with red.
            end
    end
    Color \(v_{\ell+1} v_{1}\) with yellow, \(v_{\ell+1} v_{j}(1<j \leq \ell)\) with red if \(\ell \geq 5\) and yellow if \(\ell=3\).
    while \(\ell+2 \leq i \leq n\) do
    end
    if \(i\) is odd then
        color \(v_{i} v_{j}(j<i)\) with red.
    end
    if \(i\) is even then
        color \(v_{i} v_{j}(j<i)\) with yellow.
    end
    end
```

in C_{ℓ}. By using the term of edge coloring, we prove that $\chi_{i r r}^{\prime}\left(K_{n}-C_{\ell}\right) \leq 3$ when ℓ is even and $\chi_{i r r}^{\prime}\left(K_{n}-C_{\ell}\right) \leq 2$ when ℓ is odd by establishing algorithms.

We first prove the following lemma.
Lemma 5.1 Let $G=K_{t}-C_{t-1}$. Then $\chi_{i r r}^{\prime}(G) \leq 3$ when $t-1$ is even and $\chi_{i r r}^{\prime}(G) \leq 2$ when $t-1$ is odd.

Proof Denote by Y, R and B the subsets of $E(G)$ colored yellow, red and blue by Algorithm 1 or Algorithm 2, respectively. Let $X \in\{Y, R, B\}$, we say $G[X]$ has a conflict edge $v_{i} v_{j}$ if $v_{i} v_{j} \in X$ and $d_{G[X]}\left(v_{i}\right)=d_{G[X]}\left(v_{j}\right)$. For convenience, we write $d_{G[X]}(v)=0$ when $v \notin V(G[X])$.

It is easy to check that the edge colorings given by Algorithms 1 and 2 have no conflict edge for $t \in\{4,5\}$. Now suppose $t \geq 6$.

When $t-1$ is odd, by Algorithm 1, we have

$$
d_{G[Y]}\left(v_{i}\right)=\left\{\begin{array}{ll}
\frac{i-2}{2} & i \neq t, \text { even; } \\
t-3-\frac{i-1}{2} & i \neq t, \text { odd; } \\
1 & i=t .
\end{array} \quad d_{G[R]}\left(v_{i}\right)= \begin{cases}t-3-\frac{i-2}{2} & i \neq t, \text { even; } \\
\frac{i-1}{2} & i \neq t, \text { odd } \\
t-2 & i=t\end{cases}\right.
$$

When $t-1$ is even, by Algorithm 2, we have

$$
\begin{aligned}
& d_{G[Y]}\left(v_{i}\right)=\left\{\begin{array}{ll}
t-3 & i=1 ; \\
0 & i=2 ; \\
1 & i=3 ; \\
t-4-\frac{i-2}{2} & 4 \leq i<t, \text { even; } \\
\frac{i-3}{2} & 4 \leq i<t, \text { odd; } \\
1 & i=t .
\end{array} \quad d_{G[R]}\left(v_{i}\right)= \begin{cases}0 & i=1 ; \\
t-3 & i=2 ; \\
1 & i=3 ; \\
2 & i=4 ; \\
\frac{i-2}{2} & 6 \leq i<t, \text { even; } \\
t-3-\frac{i-1}{2} & 4 \leq i<t, \text { odd; } \\
t-2 & i=t .\end{cases} \right. \\
& \\
& d_{G[B]}\left(v_{i}\right)= \begin{cases}0 & i=1,2,4, t ; \\
t-5 & i=3 ; \\
1 & 5 \leq i \leq t-1 .\end{cases}
\end{aligned}
$$

Suppose $G[X]$ has a conflict edge $v_{i} v_{j}$. We have $d_{G[X]}\left(v_{i}\right) \notin\{t-2, t-3\}$ and $d_{G[X]}\left(v_{j}\right) \notin$ $\{t-2, t-3\}$ since $G[X]$ contains at most one vertex of degree $t-2$ and at most one vertex of degree $t-3$. And $t \notin\{i, j\}$ because $N_{G[Y]}\left(v_{t}\right)=\left\{v_{1}\right\}$ and $d_{G[Y]}\left(v_{1}\right) \neq 1, d_{G[R]}\left(v_{t}\right)=t-2$, $d_{G[B]}\left(v_{t}\right)=0$.

```
Algorithm 2: Locally Irregular 3-edge Coloring of \(K_{n}-C_{\ell}\).
    Input: A graph \(G\) obtained from a complete graph \(K_{n}\) by deleting all the edges in a
        cycle \(C_{\ell}, 4 \leq \ell \leq n-1\) and \(\ell\) is even.
    Output: A locally irregular 3 -edge colouring of \(G\).
    Order the vertices by the degree in ascending order:
    \(d\left(v_{1}\right)=d\left(v_{2}\right)=\ldots=d\left(v_{\ell}\right)<d\left(v_{\ell+1}\right)=\ldots=d\left(v_{n}\right)\).
    Color \(v_{1} v_{j}(1<j \leq \ell)\) with yellow.
    Color \(v_{2} v_{j}(2<j \leq \ell)\) with red.
    Color \(v_{3} v_{j}(3<j \leq \ell)\) with blue.
    while \(4 \leq i \leq \ell-1\) do
        if \(i\) is odd then
            color \(v_{i} v_{j}(i<j \leq \ell)\) with red.
        end
        if \(i\) is even then
            color \(v_{i} v_{j}(i<j \leq \ell)\) with yellow.
        end
    end
    Color \(v_{\ell+1} v_{1}\) with yellow, color \(v_{\ell+1} v_{2}\) with red, color \(v_{\ell+1} v_{j}(2<j \leq \ell)\) with red if
    \(\ell \geq 6\) and blue if \(\ell=4\).
    while \(\ell+2 \leq i \leq n\) do
        if \(i\) is odd then
            color \(v_{i} v_{j}(j<i)\) with yellow.
        end
        if \(i\) is even then
            color \(v_{i} v_{j}(j<i)\) with red.
        end
    end
```

Suppose $t-1$ is odd. If $\frac{i-2}{2}=t-3-\frac{j-1}{2}$ or $t-3-\frac{i-2}{2}=\frac{j-1}{2}$, then $\{i, j\}=\{t-2, t-1\}$. However v_{t-1} and v_{t-2} are not adjacent in $G[X]$, a contradiction. Thus $G[Y]$ and $G[R]$ are two locally irregular subgraphs decomposing G and so $\chi_{i r r}^{\prime}(G) \leq 2$.

Suppose $t-1$ is even. We have $3 \notin\{i, j\}$ because $N_{G[Y]}\left(v_{3}\right)=\left\{v_{1}\right\}$ and $d_{G[Y]}\left(v_{1}\right) \neq 1$, $N_{G[R]}\left(v_{3}\right)=\left\{v_{t}\right\}, G[B]$ contains at most one vertex of degree $t-5$. Further if $X \in\{B, R\}$, then $4 \notin\{i, j\}$ because $d_{G[B]}\left(v_{4}\right)=0, N_{G[R]}\left(v_{4}\right)=\left\{v_{2}, v_{t}\right\}$ and $d_{G[R]}\left(v_{2}\right)=t-3 \neq 2$. If $\frac{j-3}{2}=t-4-\frac{i-2}{2}$ or $\frac{i-2}{2}=t-3-\frac{j-1}{2}$, then $\{i, j\}=\{t-2, t-1\}$. However v_{t-1} and v_{t-2} are not adjacent in $G[X]$, a contradiction. Thus $G[Y], G[R]$ and $G[B]$ are three locally irregular subgraphs decomposing G and so $\chi_{i r r}^{\prime}(G) \leq 3$.

Theorem 5.2 Let $G=K_{n}-C_{\ell}$ with $3 \leq \ell \leq n-1$. Then $\chi_{i r r}^{\prime}(G) \leq 3$ when ℓ is even and $\chi_{i r r}^{\prime}(G) \leq 2$ when ℓ is odd.

Proof First consider that $\ell \geq 3$ and ℓ is odd. The 2-edge coloring of the induced subgraph $G_{1}=G\left[\left\{v_{1}, v_{2}, \ldots, v_{\ell+1}\right\}\right]$ given by Algorithm 1 has no conflict edge by Lemma 5.1. The 2-edge coloring of the induced subgraph $G_{2}=G\left[V\left(G_{1}\right) \cup\left\{v_{\ell+2}\right\}\right]$ given by Algorithm 1 has no conflict edge because $d_{G_{2}[R]}\left(v_{\ell+2}\right)=\ell+1>d_{G_{2}[R]}\left(v_{i}\right)=d_{G_{1}[R]}\left(v_{i}\right)+1$ for $1 \leq i \leq \ell+1$ and $d_{G_{2}[Y]}\left(v_{\ell+2}\right)=0, d_{G_{2}[Y]}\left(v_{i}\right)=d_{G_{1}[Y]}\left(v_{i}\right)$ for $1 \leq i \leq \ell+1$. By the similar analysis, the 2-edge colorings of $G_{3}=G\left[V\left(G_{2}\right) \cup\left\{v_{\ell+3}\right\}\right], \ldots, G=G_{n-\ell}=G\left[V\left(G_{n-1}\right) \cup\left\{v_{n}\right\}\right]$ given by Algorithm 1 have no conflict edge, see Figure 5(a) for example. When $\ell \geq 3$ and ℓ is even, we can prove the 3 -edge coloring of G given by Algorithm 2 has no conflict edge by the same idea as above, see Figure 5(b) for example. Therefore, Algorithms 1 and 2 are correct and $\chi_{i r r}^{\prime}(G) \leq 3$ when ℓ is even, $\chi_{i r r}^{\prime}(G) \leq 2$ when ℓ is odd.

Figure 5: Examples of outputs for Algorithms 1 and 2

6 Conclusion

In this paper, we present new results on the locally irregular chromatic index of cactus graphs and subcubic graphs and provide two algorithms to handle the graph obtained from
K_{n} by deleting all the edges in cycle $C_{\ell}(3 \leq \ell \leq n-1)$. Our results imply that Conjecture 1.2 is true for decomposable cactus graphs and $K_{n}-C_{\ell}(3 \leq \ell \leq n-1)$. Recently, the topic of locally irregular decomposition has been extended in two directions, one is to allow a decomposition including regular components as well [7], and the other is to consider this problem in the context of oriented graphs [6]. In our further research on this topic, we are committed to obtaining some interesting results in both directions.
Acknowledgements. The authors would like to thank the anonymous referees, who made numerous constructive suggestions that led to improvements on the presentation of this paper. Lei was partially supported by the National Natural Science Foundation of China (No. 12001296) and the Natural Science Foundation of Tianjin (No. 21JCQNJC00060). Lian, Shi and Zhao were partially supported by the National Natural Science Foundation of China (Nos. 11922112 and 12161141006), the Natural Science Foundation of Tianjin (Nos. 20JCJQJC00090 and 20JCZDJC00840), Natural Science Basic Research Program of Shaanxi (Program No. 2021JM-422) and the Fundamental Research Funds for the Central Universities, Nankai University.

References

[1] Baudon, O., Bensmail, J., Hocquard, H., Senhaji, M., Sopena, É.: On locally irregular decompositions of subcubic graphs. Opuscula Math. 38, 795-817 (2018)
[2] Baudon, O., Bensmail, J., Przybyło, J., Woźniak, M.: On decomposing regular graphs into locally irregular subgraphs. European J. Combin. 49, 90-104 (2015)
[3] Baudon, O., Bensmail, J., Sopena, É.: On the complexity of determining the irregular chromatic index of a graph. J. Discrete Algorithms 30, 113-127 (2015)
[4] Bensmail, J., Dross, F., Nisse, N.: Decomposing degenerate graphs into locally irregular subgraphs. Graphs Comb. 36, 1869-1889 (2020)
[5] Bensmail, J., Merker, M., Thomassen, C.: Decomposing graphs into a constant number of locally irregular subgraphs. European J. Combin. 60, 124-134 (2017)
[6] Bensmail, J., Renault, G.: Decomposing oriented graphs into six locally irregular oriented graphs. Graphs Combin. 32, 1707-1721 (2016)
[7] Bensmail, J., Stevens, B.: Edge-partitioning graphs into regular and locally irregular components. Discrete Math. Theor. Comput. Sci. 17, 43-58 (2016)
[8] Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colours. J. Combin. Theory. Ser. B 91, 151-157 (2004)
[9] Lintzmayer, C.N., Mota, G.O., Sambinelli, M.: Decomposing split graphs into locally irregular graphs. Discret Appl. Math. 292, 33-44 (2021)
[10] Lužar, B., Przybyło, J., Sotsák, R.: New bounds for locally irregular chromatic index of bipartite and subcubic graphs. J. Comb. Optim. 36, 1425-1438 (2018)
[11] Przybyło, J.: On decomposing graphs of large minimum degree into locally irregular subgraphs. Electron. J. Combin. 23, 2-31 (2016)
[12] Sedlar, J., Škrekovski, R.: Remarks on the local irregularity conjecture. Mathematics 9, 3209-3218 (2021)

[^0]: *Corresponding author

