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Abstract

A graph G is said to be locally irregular if each pair of adjacent vertices have different

degrees in G. A collection of edge disjoint subgraphs (G1, . . . , Gk) of G is called a k-

locally irregular decomposition of G if (E(G1), . . . , E(Gk)) is an edge partition of G and

each Gi is locally irregular for i ∈ {1, . . . , k}. The locally irregular chromatic index

of G, denoted by χ′irr(G), is the smallest integer k such that G can be decomposed

into k locally irregular subgraphs. A graph G is said to be decomposable if χ′irr(G) is

finite, otherwise, G is exceptional. The Local Irregularity Conjecture states that

all connected graphs admit a 3-locally irregular decomposition except for odd paths,

odd cycles, and a certain subclass of cacti. Recently, Sedlar and Škrekovski showed that

there exists a graph G which is a cactus such that χ′irr(G) = 4. In this paper, we mainly

prove that if G is a decomposable cactus, then χ′irr(G) ≤ 4; if G is a decomposable

cactus without nontrivial cut edges, then χ′irr(G) ≤ 3. In addition, we show that

in a decomposable subcubic graph G if each vertex of degree 3 lies on a triangle, then

χ′irr(G) ≤ 3. By establishing algorithms, we obtain χ′irr(Kn−C`) ≤ 3 for 3 ≤ ` ≤ n−1.

Keywords: Locally irregular edge coloring; Decomposable; Cacti; Subcubic graphs

1 Introduction

All graphs considered in this paper are simple and finite. Consider a graphG = (V (G), E(G)).

We say G is locally irregular if each two of its adjacent vertices differ in degree, i.e., for each
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edge uv ∈ E(G) we have d(u) 6= d(v). A k-locally irregular decomposition of G is a col-

lection of subgraphs (G1, . . . , Gk) of G such that (E(G1), . . . , E(Gk)) forms a partition of

E(G) and each Gi is locally irregular for i ∈ {1, . . . , k}. We define the least number k such

that G admits a k-locally irregular decomposition as locally irregular chromatic index of G

and denote it by χ′irr(G). Note that there are graphs that admit no locally irregular decom-

position, e.g., paths of odd length. Therefore, we call a graph G decomposable if χ′irr(G) is

finite, otherwise we call G exceptional.

The concept of locally irregular chromatic index of graphs was introduced and studied

by Baudon, Bensmail, Przyby lo and Woźniakin [2] mainly because of its link to the 1-2-3

Conjecture [8]. The main open problem about locally irregular decomposition is whether

each decomposable graph admits a 3-locally irregular decomposition:

Conjecture 1.1 (Local Irregularity Conjecture [2]) Every decomposable graph G ad-

mits a 3-locally irregular decomposition.

Though the history of Conjecture 1.1 is not long, there are numerous results about it.

For general decomposable graphs, it holds that χ′irr(G) ≤ 328 [5]. Later, a better bound was

given in [10], which states that χ′irr(G) ≤ 220. For decomposable subcubic graphs, it holds

that χ′irr(G) ≤ 4 [10]. For decomposable planar graphs, it holds that χ′irr(G) ≤ 15 [4]. In

addition, Conjecture 1.1 has been confirmed for several special classes of graphs, e.g., graphs

with minimum degree at least 1010 [11], k-regular graphs for k ≥ 107 [2], decomposable trees

[2], decomposable split graphs [9], decomposable bipartite cacti [4]. For more results on this

topic, we refer the readers to [6, 7].

Recall that a cactus is a graph in which no two cycles intersect in more than one

vertex. In [4], the authors proved χ′irr(G) ≤ 15 for decomposable planar graphs, by showing

that a decomposable planar graph G admits a decomposition G1, G2, G3, G4 and T , where

Gi is a decomposable bipartite cactus for i ∈ {1, 2, 3, 4} and T is a decomposable tree.

Moreover, the study of decomposable cacti is of independent interest. There are many

results about subclasses of decomposable cactus, e.g., bipartite cactus, cactus with cycles

being vertex disjoint, unicyclic graphs. Sedlar and Škrekovski in [12] found a counterexample

of Conjecture 1.1, i.e., there exists a decomposable cactus G with χ′irr(G) = 4, as shown in

Figure 1. Therefore, they made a modification to Conjecture 1.1.

Conjecture 1.2 ([12]) Every decomposable graph G admits a 4-locally irregular decompo-

sition.

In [12], the authors also showed that if G is a decomposable cactus with vertex disjoint

cycles, then χ′irr(G) ≤ 3. Combining the result about decomposable bipartite cacti, the

cacti attract our attention. In this paper, we prove that χ′irr(G) ≤ 4 if G is a decomposable
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Figure 1: A cactus with locally irregular chromatic index 4.

cactus, and χ′irr(G) ≤ 3 if G is a decomposable cactus without nontrivial cut edges. An

edge e of a connected graph G is said to be a nontrivial cut edge if G[E(G) \ {e}] contains

two components such that each contains at least one edge. In addition, we show that

in a decomposable subcubic graph G if each vertex of degree 3 lies on a triangle, then

χ′irr(G) ≤ 3. By establishing algorithms, we obtain χ′irr(Kn − C`) ≤ 3 for 3 ≤ ` ≤ n− 1.

2 Preliminary

In this section, we first present the exceptional graphs given in [2]. Denote by Kn, Pn and

Cn the complete graph, the path and the cycle on n vertices, respectively. A path or a cycle

is odd if it has an odd number of edges, otherwise, it is even. The family T can be defined

inductively as follows.

• K3 ∈ T.

• Every other graph of this family may be constructed by taking an auxiliary graph F

which might either be a path of even length or a path of odd length with a triangle

glued to one of its ends, then choosing a graph G ∈ T containing a triangle with at

least one vertex, say v, of degree 2 in G, and finally identifying v with a vertex of

degree 1 of F .

Let P be the family of all the odd paths and C be the family of all the odd cycles. In

[2], the authors proved the following theorem.

Theorem 2.1 ([2]) A connected graph is exceptional if and only if it belongs to P ∪ C ∪T.

Note that graphs in T have the following properties.

Proposition 2.2 Let G ∈ T. We have

(a) G is a subcubic graph with each vertex of degree 3 lying on a triangle.

(b) for v ∈ V (G), if dG(v) = 3 and there is a pending path Pv rooted at v, then Pv is of

even length.
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(c) for e ∈ E(G), if e does not lie on a triangle, then e is a cut edge of G.

In the following, we list some results that are useful.

Theorem 2.3 ([2]) If T is a decomposable tree, then χ′irr(T ) ≤ 3.

Theorem 2.4 ([4]) If G is a decomposable bipartite cactus, then χ′irr(G) ≤ 3.

Theorem 2.5 ([12]) If G is a decomposable unicyclic graph, then χ′irr(G) ≤ 3.

Now we introduce some more notions. Given a graph G with X ⊆ E(G) or X ⊆ V (G),

we use G[X] to denote the subgraph of G induced by the edges in X or the vertices in

X, respectively. For a vertex u ∈ V (G) which either lies on a single cycle or does not lie

on any cycle, consider the component Tu that contains u of the graph obtained from G by

deleting the two edges incident to u in the cycle if u lies on a single cycle or some cut edge

incident to u if u does not lie on any cycle. If Tu is a tree, then we refer to it as the pending

tree of u. For u, v ∈ V (G), the distance between u and v in G, denoted by dist(u, v), is

the length of a shortest (u, v)-path. The distance between two subgraphs A and B of G,

denoted by dist(A,B), is defined as the minimum distance between two vertices u and v

where u ∈ V (A) and v ∈ V (B). Denote the set of edges incident to v in G by EG(v) and

EG({u, . . . , v}) = EG(u) ∪ · · · ∪ EG(v). We call a graph spider if it is obtained from a star

by subdividing each edge at most once. Note that every spider is locally irregular unless it

is a path Pi with i ∈ {2, 4, 5}.

3 Cacti

In this section we mainly focus on cactus graphs. We prove that χ′irr(G) ≤ 4 if G is a

decomposable cactus, and χ′irr(G) ≤ 3 if G is a decomposable cactus without nontrivial cut

edges. Let G be a cactus with at least two cycles. We call a cycle C in G outmost if there

is a vertex u ∈ V (C) such that the other vertices of C cannot reach any other cycle in G

without passing u. Call u the special vertex of C.

Lemma 3.1 Let H be a decomposable cactus with χ′irr(H) = k where k ∈ {3, 4}. If u ∈
V (H) lies on at most one cycle and Tu is a star centered at u, then there exist k locally

irregular subgraphs H ′1, . . . ,H
′
k decomposing H such that EH(u) ⊆ E(H ′1 ∪H ′2).

Proof If u lies on a cycle, then let NH[E(H)\E(Tu)](u) = {v, w}, otherwise, let NH[E(H)\E(Tu)]

(u) = {v}. Denote by r the size of E(Tu), we have dH(u) = r + 1 or dH(u) = r + 2

as shown in Figure 2. Let H1, . . . ,Hk be a k-locally irregular decomposition of H. Let

Q = E(Tu) ∩ E(
⋃k

i=3Hi). Since dH[E(H)\E(Tu)](u) ≤ 2, without loss of generality, we may
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assume that EH[E(H)\E(Tu)](u) ⊆ E(H1 ∪H2). If r = 0, then EH(u) = EH[E(H)\E(Tu)](u) ⊆
E(H1 ∪ H2). If r = 1, then let {e} = E(Tu). Since P2 is exceptional, there is at least

one edge eu of EH[E(H)\E(Tu)](u) such that e and eu belong to the same locally irregular

subgraph. By our assumption, H1, . . . ,Hk are k locally irregular subgraphs that we want

for r ∈ {0, 1} or Q = ∅. Thus let H ′i = Hi for i ∈ {1, . . . , k} when r ∈ {0, 1} or Q = ∅. We

consider r ≥ 2 and Q 6= ∅ in the following.

Figure 2: The partial structure of H at the vertex u.

Since P2 is exceptional, |Q| ≥ 2. We first consider the case dH(u) = r + 2. Suppose uv

and uw are in the same subgraph. Without loss of generality, we assume {uv, uw} ⊆ E(H1).

Then H ′1 = H1, H
′
2 = H[E(H2) ∪ Q] and H ′i = H[E(Hi) \ Q] for 3 ≤ i ≤ k make up a

desired decomposition of H. Suppose uv and uw are in different subgraphs. Without loss

of generality, we assume uv ∈ E(H1) and uw ∈ E(H2). Let H ′1 = H[E(H1)∪Q], H ′2 = H2,

H ′i = H[E(Hi) \Q] for 3 ≤ i ≤ k if dH1(v)− dH1(u) 6= |Q|; H ′1 = H1, H
′
2 = H[E(H2) ∪Q],

H ′i = H[E(Hi) \ Q] for 3 ≤ i ≤ k if dH2(w) − dH2(u) 6= |Q|; H ′1 = H[E(H1) ∪ Q1],

H ′2 = H[E(H2) ∪Q2], H
′
i = H[E(Hi) \Q] for 3 ≤ i ≤ k otherwise, where Q1 ∪Q2 = Q and

Qi 6= ∅ for i ∈ {1, 2}. The graphs H ′1, . . . ,H
′
k thus make up a desired decomposition of H.

For the case dH(u) = r+1, suppose uv ∈ E(H1). The graphs H ′1 = H1, H
′
2 = H[E(H2)∪Q]

and H ′i = H[E(Hi) \Q] for 3 ≤ i ≤ k thus make up a desired decomposition of H. �

Let P = u1u2 . . . un be a path, and we call udn
2
e the center vertex of P . The following

lemma holds.

Lemma 3.2 Let G be a decomposable cactus and u ∈ V (G) with a tree T rooted at u. Then

χ′irr(G) ≤ 4 if one of the following conditions holds.

(i) There is a vertex u′ ∈ V (T ) \ {u} such that dG(u′) ≥ 3.

(ii) T is a path pending at u of length at least three.

(iii) u lies on at most one cycle and Tu = T with |E(Tu)| ≥ 2, where Tu is the pending tree

of u.

Proof First we show that if one of conditions (i), (ii), or (iii) holds, then there is a vertex

x ∈ V (T ) such that either Tx ∼= P4 or P5 with x being its center vertex or Tx is a locally

irregular spider. Also, x 6= u for conditions (i) and (ii). If case (ii) happens, that is, if T is
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a path of length at least three, then let x be the vertex different from u which is at distance

two from the vertex of degree one in T . Now suppose that case (i) happens, that is, there

is a vertex u′ ∈ V (T ) \ {u} such that dG(u′) ≥ 3. Let u1 ∈ V (T ) such that dT (u1, u) is as

large as possible. Let P = u1u2 . . . u be a shortest (u1, u)-path. By our assumption, u2 6= u.

If dG(u2) ≥ 3, then Tu2 is a locally irregular spider and so let x = u2. Therefore, we may

assume dG(z) ≤ 2 for each z ∈ NG(u3) \ {u4}. Thus u3 6= u since there is u′ ∈ V (T ) \ {u}
and dG(u′) ≥ 3. If dG(u3) 6= 3, then Tu3 is a locally irregular spider and so let x = u3. If

dG(u3) = 3, then Tu3
∼= P4 or P5 with u3 being its center vertex and so let x = u3. At

last, suppose that (iii) happens, which means that u lies on at most one cycle and Tu = T

with |E(Tu)| ≥ 2. From the above analysis, we only need to consider that Tu is consisted

of paths of length at most two pending at u. In this case, Tu ∼= P4 or P5 with u being its

center vertex or Tu is a locally irregular spider and so let x = u.

Now it suffices to show that χ′irr(G) ≤ 4, which we prove by induction on the number

of edges of G. By Theorems 2.3 and 2.5, we may assume that there are at least two cycles

in G. Suppose Tx ∼= P4 with x being its center vertex. Let Tx = axbb1, X = {xb, bb1}
and G′ = G[E(G) \X]. We first assume that G′ is decomposable. By Lemma 3.1 and the

induction hypothesis, G′ can be decomposed into at most four locally irregular subgraphs

G′1, G
′
2, G

′
3, G

′
4. Note that dG′(x) = 2 for x 6= u and dG′(x) ≤ 3 for x = u. Therefore,

without loss of generality, we may assume EG′(x) ⊆ E(G′1 ∪ G′2) since dG′(a) = 1. The

graphs G′1, G
′
2, G[E(G′3) ∪X] and G′4 thus make up a decomposition of G into four locally

irregular subgraphs. Now consider that G′ is exceptional. We have dG′(x) ≥ 2 because G is

decomposable. Since G′ is exceptional, Proposition 2.2(b) implies dG′(x) = 2. Let NG′(x) =

{a, v} and w ∈ NG′(v) \ {x}. Let Y = X ∪ {xa, xv, vw}. Then G[Y ] is locally irregular.

Note that wvxa is a path of odd length. By Proposition 2.2(a,b), G′′ = G[E(G) \ Y ] is

decomposable. By the induction hypothesis, G′′ can be decomposed into at most four locally

irregular subgraphs G′′1, G′′2, G′′3, G′′4. We have |EG′′({v, w})| ≤ 3 since either dG′′(v) = 1 or

v /∈ V (G′′). Without loss of generality, we may assume EG′′({v, w}) ⊆ E(G′′1 ∪ G′′2). The

graphs G′′1, G′′2, G[E(G′′3) ∪ Y ] and G′′4 thus make up a decomposition of G into four locally

irregular subgraphs. Therefore, χ′irr(G) ≤ 4.

Now suppose either Tx is a locally irregular spider or Tx = x2x1xx3x4 (Tx ∼= P5) with

x being its center vertex. Obviously, Tx can be decomposed into two locally irregular

subgraphs T1 and T2 (T2 can be an empty graph). Let G′ = G[E(G)\E(Tx)]. Suppose that

G′ is decomposable, by the induction hypothesis, we may assume G′ can be decomposed

into at most four locally irregular subgraphs G′1, G
′
2, G

′
3 and G′4. If x = u, then without loss

of generality, we may assume that EG′(x) ⊆ E(G′1 ∪ G′2). The grahps G′1, G
′
2, G[E(G′3) ∪

E(T1)] and G[E(G′4)∪E(T2)] thus make up a decomposition of G into four locally irregular

subgraphs. If x 6= u, then without loss of generality, we may assume that EG′(x) ⊆ E(G′1).
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The graphs G′1, G[E(G′2)∪E(T1)], G[E(G′3)∪E(T2)] and G′4 thus make up a decomposition

of G into four locally irregular subgraphs. Now consider that G′ = G[E(G) \ E(Tx)] is

exceptional. Let v ∈ NG′(x). Then G′′ = G[E(G)\(E(Tx)∪{xv})] is decomposable. By the

induction hypothesis, G′′ can be decomposed into at most four locally irregular subgraphs

G′′1, G′′2, G′′3, G′′4. Since G′ is exceptional, |EG′′({x, v})| ≤ 3. Without loss of generality, we

may assume that EG′′({x, v}) ⊆ E(G′′1 ∪G′′2). The graphs G′′1, G′′2, G[E(G′′3)∪E(Tx)∪{xv}]
and G′′4 thus make up a decomposition of G into four locally irregular subgraphs since

G[E(Tx) ∪ {xv}] is locally irregular.

Theorem 3.3 For every decomposable cactus G, we have χ′irr(G) ≤ 4.

Proof Obviously, it suffices to consider that G is connected. We proceed by induction on

the number of edges in G. If G is a decomposable tree or unicyclic graph, then χ′irr(G) ≤ 3

by Theorems 2.3 and 2.5. Therefore, suppose that there are at least two cycles in G. By

Lemma 3.2, in the following we may assume that if there is y ∈ V (G) lying on at most one

cycle such that Ty is a tree, then |E(Ty) ≤ 1| and if y lies on more than one cycle, then

the tree pending at y is consisted of paths of length at most 2. We first prove the following

claim.

Claim 1. If there is an outmost cycle C in G with |V (C)| ≥ 4, then χ′irr(G) ≤ 4.

Proof. Let C be an outmost cycle in G with |V (C)| ≥ 4 and u be the special vertex of

C. Since |V (C)| ≥ 4, we can find a vertex x /∈ N(u) in C and denote by y, z the two

neighbors of x in C. Note that Tx, Ty and Tz are trees because C is an outmost cycle. Let

X = {xy, xz} ∪ E(Tx) and G′ = G[E(G) \ X]. We obtain that G[X] is locally irregular

because |E(Tx) ≤ 1| and G′ is decomposable by Proposition 2.2(a). By the induction

hypothesis, we may assume G′ can be decomposed into four locally irregular subgraphs G′1,

G′2, G
′
3 and G′4 with EG′({y, z}) ⊆ E(G′1 ∪G′2). Consequently, G′1, G

′
2, G[E(G′3) ∪X] and

G′4 are four locally subgraphs decomposing G.�

Thus, by Claim 1 we may assume that each outmost cycle of G is of length 3. Let C ′

and C ′′ be two outmost cycles of G such that dG(C ′, C ′′) is as large as possible. Denote

by u the special vertex of C ′. We use R to denote the set of vertices that cannot reach C ′′

without passing u. Let Gu = G[R ∪ {u}]. We have dG[E(G)\E(Gu)](u) ≤ 2. We proceed by

analyzing the structure of Gu. If there is a cycle C ′′′ in Gu such that u /∈ V (C ′′′), then

dG(C ′′′, C ′′) > dG(C ′, C ′′), a contradiction. So the cycles in Gu are outmost cycles of G

which intersect at u. Further, they are of length 3. Denote by r the number of such cycles

contained in Gu, clearly, r ≥ 1 as C ′ ⊆ Gu. By Lemma 3.2, the rest of the structure rooted

at u in Gu are paths pending at u and we may assume they are P2 and P3. Denote the

number of P2 and P3 pending at u by s and t, respectively. Let uxyu be the triangle in Gu

with the largest size of E(Tx). By Lemma 3.2, |E(Tx)| ≤ 1. We carry on by distinguishing

whether E(Tx) = ∅.
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Case 1. E(Tx) 6= ∅.
Let Tx = xx1 and X = {xx1, xy}. By Proposition 2.2(a), G[X] is locally irregular and

G′ = G[E(G) \ X] is a decomposable cactus. Therefore, by the induction hypothesis, G′

can be decomposed into at most four locally irregular subgraphs G′1, G
′
2, G

′
3, G

′
4. We may

assume {ux, uy}∪E(Ty) ⊆ E(G′1∪G′2∪G′3) since |E(Ty)| ≤ |E(Tx)| ≤ 1. As a consequence,

G′1, G
′
2, G

′
3, and G[E(G′4) ∪X] are four locally irregular subgraphs decomposing G.

Case 2. E(Tx) = ∅, i.e., Tx = K1.

Note that now dG(u′) = 2 for each u′ ∈ V (Gu) \ {u} lying on a triangle. Let I ⊆ E(Gu)

be the edge set obtained by choosing one edge that is incident to u in each triangle, and in

particular, let ux ∈ I. So |I| = r. Let Su = G[E(Gu) \ I] and Hu = G[I ∪ (E(G) \E(Gu))].

We shall emphasize that Su is consisted of s P2’s and (r + t) P3’s pending at u with r ≥ 1.

Thus, Su is locally irregular if Su is not in the form of P4 or P5.

First consider the case that Hu is exceptional. We have dHu(u) = 2, s + t ≥ 1 and

there is exactly one triangle, i.e., uxyu, in Gu as G is decomposable. If Gu is as shown in

Figure 3(b), i.e., s = 0 and t = 1, then let H ′u = G[E(Hu) ∪ {uu1, u1u2}]. Otherwise, let

H ′u = G[E(Hu)∪{xy}]. By Lemma 2.2, H ′u is decomposable. And let S′u = G[E(G)\E(H ′u)].

Obviously, S′u is locally irregular. By the induction hypothesis, H ′u can be decomposed into

at most four locally irregular subgraphs H ′1, H
′
2, H

′
3, H

′
4. Let v ∈ NH′u(u). We may assume

{ux, uu1, uv} ⊆ E(H ′1 ∪H ′2 ∪H ′3) for s = 0 and t = 1 and {uv, ux, xy} ⊆ E(H ′1 ∪H ′2 ∪H ′3)
for other cases. Then H ′1, H

′
2, H

′
3 and G[E(H ′4)∪E(S′u)] are four locally irregular subgraphs

decomposing G.

Now we assume that Hu is decomposable. Note that r + 1 ≤ dHu(u) ≤ r + 2. Let

NG[E(Hu)\I](u) = {v, w} if dHu(u) = r+2 and NG[E(Hu)\I](u) = {v} if dHu(u) = r+1. If Gu

is as shown in Figure 3(a), then let S′u = G[E(Su) \ {uu1}] and H ′u = G[E(Hu)∪ {uu1}]. If

Gu is as shown in Figure 3(b,c) or other cases, i.e., Su = u2u1uyx or Su is a locally irregular

spider, then let S′u = Su and H ′u = Hu. In each case, we have S′u = u2u1uyx or S′u is a

locally irregular spider. Thus χ′irr(S
′
u) ≤ 2. By Lemma 3.1 and the induction hypothesis,

H ′u can be decomposed into at most four locally irregular subgraphs H1, H2, H3, H4 such

that EH′u(u) ⊆ E(H1∪H2). Hence, H1, H2, G[E(H3)∪{u2u1, u1u}] and G[E(H4)∪{uy, yx}]
are four locally irregular subgraphs decomposing G if Su = u2u1uyx and H1, H2, H3 and

G[E(H4∪Su)] are four locally irregular subgraphs decomposing G if Su is a locally irregular

spider.

This completes the proof of Theorem 3.3. �

If the decomposable cactus has no nontrivial cut edge, then the following holds.

Theorem 3.4 For every decomposable cactus G without nontrivial cut edges, we have

χ′irr(G) ≤ 3.
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Figure 3: Three possibilities for Gu.

Proof Let G be a cactus without nontrivial cut edges. We prove the theorem by induction

on the number of edges of G. By Theorems 2.3 and 2.5, we may assume that G has at least

two cycles. Note that for any x ∈ V (G) lying on at most one cycle, if Tx is a tree, then Tx

is a star.

Suppose that there is x ∈ V (G) such that Tx is a tree and |E(Tx)| ≥ 2. Then Tx

is locally irregular. Let G′ = G[E(G) \ E(Tx)]. Since G′ has no nontrivial cut edges,

G′ is decomposable. By the induction hypothesis, G′ can be decomposed into at most

three locally irregular subgraphs G′1, G
′
2, G

′
3 with EG′(x) ⊆ E(G′1 ∪G′2). Thus, G′1, G

′
2 and

G[E(G′3∪Tx)] are three locally irregular subgraphs decomposing G. So we may assume that

if there is x ∈ V (G) lying on at most one cycle such that Tx is a tree, then |E(Tx)| ≤ 1 in

the following. By the same proof as the Claim 1 in Theorem 3.3, we may assume that each

outmost cycle of G has length 3. Further, we may assume that each vertex of an outmost

cycle except for the special vertex has degree 2 in G. Otherwise, suppose there is an outmost

cycle uxyu such that Tx is a nonempty tree, where u is its special vertex. Let Tx = x1x and

X = {x1x, xy}. The graph G′ = G[E(G)\X] is decomposable as u has a neighbor of degree

1. Therefore, by the induction hypothesis, we may assume G′ can be decomposed into at

most three locally irregular subgraphs G′1, G
′
2, G

′
3 with {ux} ∪EG′(y) ⊆ E(G′1 ∪G′2). Since

|E(Ty)| ≤ 1, EG′(y) belongs to the same subgraph and so the assumption is possible. As a

consequence, G′1, G
′
2 and G[E(G′3) ∪X] are three locally irregular subgraphs decomposing

G.

For an outmost cycle C with special vertex u, we call C maximal if there is at most

one cycle, say Cu, containing u that may not be outmost in G. For u being the special

vertex of some maximal outmost cycle, let C = uxyu be an outmost cycle of G with special

vertex u, and we define Gu as the graph consisted of all the paths rooted at u and all

the outmost cycles containing u except Cu. By the definition of maximal outmost cycle,

dG[E(G)\E(Gu)](u) = 2. Let I ⊆ E(Gu) be the edge set obtained by choosing one edge that is

incident to u in each triangle, and in particular, let ux ∈ I. Let Hu = G[I∪(E(G)\E(Gu))]

and Su = G[E(G) \ E(Hu)].

Suppose Su is a locally irregular spider or Su = u1uyx, i.e., Gu is as shown in Figure 3(a).

Let X = E(Su) or X = {ux, xy} respectively. And let G′ = G[E(G) \ X]. The graph
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G′ is decomposable as u lies on a cycle and has a neighbor of degree 1. Let v and w

be two neighbors of u contained in G[E(G) \ E(Gu)]. By the induction hypothesis, G′

can be decomposed into three locally irregular subgraphs G′1, G
′
2 and G′3 such that for

the former case I ∪ {uv, uw} ⊆ E(G′1 ∪ G′2) and for the latter case {u1u, uy, uv, uw} ⊆
E(G′1 ∪ G′2) by Lemma 3.1. Consequently, G′1, G

′
2 and G[E(G′3) ∪ X] make up a locally

irregular decomposition of G. Therefore, if u is the special vertex of some maximal outmost

cycle, then it suffices to consider that Gu is as shown in Figure 3(c). We establish the

following claim.

Claim 2. There exist u and v in V (G) such that uv ∈ E(G) and the partial structure

of G at u and v is as shown in Figure 4.

Proof. Let C ′ and C ′′ be two outmost cycles of G such that dG(C ′, C ′′) is as large as

possible. Clearly, C ′ and C ′′ are maximal. Denote by u∗ the special vertex of C ′. Let

a′, a, u∗, b and b′ be the consecutive vertices lying on the cycle of G[E(G)\E(Gu∗)], we only

require that a, u∗, b are three different vertices. Further, let G∗a be the component containing

a after removing u∗a and aa′ and G∗b be the component containing b after removing u∗b

and bb′. If all the cycles in G∗a (resp. G∗b) that contain a (resp. b) are outmost, then by the

above analysis, G∗a (resp. G∗b) are as shown in Figure 3(c). Therefore, u∗ and a (resp. b) are

what we want. Hence, we may assume there is a cycle Ca containing a in G∗a and a cycle

Cb containing b in G∗b that are not outmost. Denote by a1 and a2 the two neighbors of a in

Ca, b1 and b2 the two neighbors of b in Cb. For each vertex x in V (Ca ∪Cb) \ {a, b}, denote

by G∗x the component that contains x of the graph obtained from G by deleting the two

edges incident to x in E(Ca ∪ Cb). The graph G∗y is a tree for each y ∈ V (Ca) \ {a1, a, a2}
and all cycles containing ai in G∗ai are outmost cycles for i ∈ {1, 2} or G∗z is a tree for each

z ∈ V (Cb) \ {b1, b, b2} and all cycles containing bi in G∗bi are outmost cycles for i ∈ {1, 2}.
Otherwise, by the symmetry, suppose there is a cycle containing a1 in G∗a1 which is not

outmost, i.e., there is a cycle Ca1 in G∗a1 that does not contain a1 and either G∗z contains

a cycle Cz for some z ∈ V (Cb) \ {b1, b, b2} or there is a cycle containing b1 in G∗b1 which is

not outmost, i.e., there is a cycle Cb1 in G∗b1 that does not contain b1. Therefore, there is

a cycle C ′′′ ∈ {Ca1 , Cb1 , Cz} such that dG(C ′′′, C ′′) > dG(C ′, C ′′), a contradiction. Without

loss of generality, we assume that for any y ∈ V (Ca)\{a1, a, a2}, Gy is a tree which actually

is a path of length at most 1 and for i ∈ {1, 2} all cycles containing ai in G∗ai are outmost

cycles. Note that these outmost cycles containing ai in G∗ai are maximal. Thus Ga1 is as

shown in Figure 3(c). Hence, a1 and its neighbor a′1 which is different from a in Ca are

what we want.�

Now we consider the cases as shown in Figure 4. Let X = E(Gu) ∪ {uv} in Figure 4(a)

andX = E(Gv∪Gu) in Figure 4(b,c). Moreover, letG′ = G[E(G)\X] with v′ ∈ NG′(v)\{u}.
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Figure 4: Three possibilities for Gv

Suppose G′ = G[E(G) \X] is exceptional. If Gv = K1, then G′ is an odd path and so

the even-length (w, v)-path in G′ can be decomposed into two locally irregular subgraphs

G′1 and G′2. Therefore, G[E(G′1) ∪ {uy, uu1}], G′2 and G′3 = G[{uw, uv, ux, xy, uu2, u2u1}]
are three locally irregular subgraphs decomposing G. If Gv is as shown in Figure 4(b,c),

then G′ is an odd cycle since G′ has no nontrivial cut edge. And so G[E(G′) \ {uv}] is an

even path which has a 2-locally irregular decomposition G′1 and G′2 with uw ∈ E(G′1) and

vv′ ∈ E(G′i) for some i ∈ {1, 2}. The following G1, G2 and G3 provide a 3-locally irregular

decomposition of G. For Gv = vv1, let G1 = G[E(G′1) ∪ {uu1, ux}], G2 = G′2 and G3 =

G[{uu2, u2u1, uy, yx, uv, vv1}]. For the case as shown in Figure 4(c), let G1 = G[E(G′1) ∪
{uu1, ux, vv1, vv3}], G2 = G[E(G′2)∪ {v2v, v2v1, vv4, v4v3}], G3 = G[{uu2, u2u1, uy, yx, uv}]
when i = 2 and let G1 = G[E(G′1) ∪ {uu1, ux, vv1, v1v2, vv3, v3v4}], G2 = G[E(G′2) ∪
{uu2, u2u1, uy, yx, uv}], G3 = G[{v2v, vv4}] when i = 1.

Finally suppose that G′ can be decomposed into three locally irregular subgraphs G′1, G
′
2

and G′3. If Gv = K1, without loss of generality, we may assume that uw ∈ E(G′1) and vv′ ∈
E(G′1)∪E(G′2), then G′1, G[E(G′2)∪{uy, uu1}] and G[E(G′3)∪(X\{uy, uu1})] are three local-

ly irregular subgraphs decomposing G. If Gv = vv1 with vv′, vu ∈ E(G′1) and wu ∈ E(G′2),

then following G1, G2 and G3 make up a 3-locally irregular decomposition of G: when

dG′2(w) 6= 3, let G1 = G[(E(G′1) ∪ {vv1}) \ {vu}], G2 = G[E(G′2) ∪ {ux, xy, uu1, u1u2}] and

G3 = G[E(G′3)∪{vu, uy, uu2}]; when dG′2(w) = 3, let G1 = G[(E(G′1)∪{vv1, uy, yx})\{vu}],
G2 = G[E(G′2)∪{uu2}] and G3 = G[E(G′3)∪{vu, ux, uu1, u1u2}]. If Gv = vv1 with uw, uv ∈
E(G′1) and vv′ ∈ E(G′2), then the following G1, G2 and G3 make up a 3-locally irregular de-

composition of G: when dG′1(w) 6= 3, let G1 = G[(E(G′1)∪{uy, yx, uu2, u2u1})\{vu}], G2 =

G[E(G′2)∪{ux, uu1}] and G3 = G[E(G′3)∪{vv1, uv}]; when dG′1(w) = 3, let G1 = G[E(G′1)∪
{uy, yx, uu2, u2u1, vv1}], G2 = G′2 and G3 = G[E(G′3)∪{ux, uu1}]. If Gv is as shown in Fig-

ure 4(c), without loss of generality, we assume uv, vv′ ∈ E(G′1) and uw ∈ E(G′2), then the

following G1, G2 and G3 make up a 3-locally irregular decomposition of G: when dG′2(w) 6=
3, let G1 = G[(E(G′1)\{uv})∪{uy, uu1, vv4}], G2 = G[E(G′2)∪{ux, xy, uu2, u2u1, vv1, v1v2}]
and G3 = G[E(G′3) ∪ {vu, vv2, vv3, v3v4}]; when dG′2(w) = 3, let G1 = G[(E(G′1) \ {uv}) ∪
{uy, uu1, vv4}], G2 = G[E(G′2)∪{ux, xy, uu2, u2u1, uv, vv1, vv3, v3v4}] and G3 = G[E(G′3)∪
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{vv2, v2v1}]. �

4 Subcubic Graphs

In the next result, one needs to observe that if G is a subcubic graph such that each vertex

of degree 3 is a cut vertex and lies on a triangle, then clearly G is a cactus which has

structure close to the graph in T. In the following we are interested in the locally irregular

chromatic index of decomposable subcubic graphs where each vertex of degree 3 lies on a

triangle.

Theorem 4.1 Let G be a connected decomposable subcubic graph. If each vertex of degree

3 in G lies on a triangle, then χ′irr(G) ≤ 3.

Proof We prove the theorem by induction on the number of edges in G. If ∆(G) ≤ 2, then

G is a decomposable path or cycle, clearly, χ′irr(G) ≤ 3. Therefore, we may assume that

∆(G) = 3. By Theorems 2.3 and 2.5, we may assume there are at least two cycles in G.

We proceed our proof by distinguishing whether there is a vertex of degree 3 that is not a

cut vertex of G.

First suppose that all the vertices of degree 3 in G are cut vertices. It implies that each

edge not lying on a triangle is a cut edge of G. Therefore, we may assume that G ∈ S,

where S = {G|G is decomposable and G is obtained from a graph in T by subdividing some

edges}. We establish the following claim.

Claim 3. If G ∈ S, then χ′irr(G) ≤ 3.

Proof. Let T = uvwu be an outmost cycle of G with special vertex u and NG(u) =

{v, w, x}, and so Tv and Tw are trees. If |E(T (v))| ≥ 2, then by completely following the

proof of Lemma 3.2 and omitting G′4 and G′′4, one can show that χ′irr(G) ≤ 3. Therefore,

we may assume Tv and Tw are paths of length at most 1 with |V (Tv)| ≥ |V (Tw)|. Let

X = E(Tv) ∪ {vw, vu}, Y = X ∪ {wu} if dG(w) = 2 and Y = X ∪ {ww1} if dG(w) = 3

with Tw = ww1. Then either G′ = G[E(G) \ X] or G′′ = G[E(G) \ Y ] is decomposable.

Assume that G′ can be decomposed into three locally irregular subgraphs G′1, G
′
2, G

′
3 with

E(Tw) ∪ {wu, ux} ⊆ E(G′1) ∪ E(G′2). Consequently G′1, G
′
2 and G[E(G′3) ∪ X] are three

locally irregular subgraphs decomposing G. Now assume that G′′ can be decomposed into

three locally irregular subgraphs G′′1, G
′′
2, G

′′
3 with ux ∈ E(G′′1) for dG(w) = 2 and {wu, ux} ⊆

E(G′′1) for dG(w) = 3. The graphs G′′1, G[E(G′′2) ∪ {v1v, vu}] and G[E(G′′3) ∪ {vw,wu}] are

three locally irregular subgraphs decomposing G for dG(w) = 2 and G′′1, G′′2 and G[E(G′′3)∪
Y ] are three locally irregular subgraphs decomposing G for dG(w) = 3.�

Now suppose that there exists a vertex u of degree 3 in G which is not a cut vertex of

G. Denote the vertices of the triangle that u lies on by {u, v, w}. Hence, NG(v)\{u,w} 6= ∅
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or NG(w) \ {u, v} 6= ∅. Let x ∈ NG(u) \ {v, w}, x1 ∈ NG(x) \ {u}, X = {uv, uw} and

Y = {xu, uv, uw}. The graphs G′ = G[E(G) \ X] and G′′ = G[E(G) \ Y ] are connected

because u is not a cut vertex. Notice that each vertex of degree 3 in G′ or G′′ still lies on a

triangle and dG(x) ≥ 2. We finish our proof by analyzing the degree of x in G.

Suppose dG(x) = 3. Let G′ = G[E(G) \ X]. Since dG′(u) = 1, G′ is decomposable by

Proposition 2.2(b). By the induction hypothesis, without loss of generality, let G′1, G
′
2, G

′
3

be three locally irregular subgraphs decomposing G′ with EG′({v, w}) ∩ E(G′3) = ∅ and

ux ∈ E(G′3). If dG′3(x) ≤ 2 or EG′({v, w}) ∩ E(G′1) = ∅, then G′1, G
′
2, G[E(G′3) ∪ X] or

G[E(G′1) ∪X], G′2 and G′3 are three locally irregular subgraphs decomposing G. Consider

that dG′3(x) = 3 and EG′({v, w})∩E(G′i) 6= ∅ for i ∈ {1, 2}. There exist y ∈ NG(v) \ {u,w}
and z ∈ NG(w) \ {u, v}. Without loss of generality, we assume vy, vw ∈ E(G′1) and wz ∈
E(G′2). If dG′2(z) ≤ 2, then G[(E(G′1) \ {vw}) ∪ {uv}], G[E(G′2) ∪ {uw, vw}] and G′3 are

locally irregular subgraphs decomposing G. If dG′2(z) = 3, then G′1, G[E(G′2) ∪ {uw}] and

G[E(G′3) ∪ {uv}] are three locally irregular subgraphs decomposing G.

Finally, consider the case dG(x) = 2. Suppose G′ = G[E(G)\X] is decomposable. Then

G′ can be decomposed into three locally irregular subgraphs G′1, G
′
2, G

′
3 by the induction

hypothesis. If EG′({u, v, w}) ∩ E(G′i) = ∅ for some i ∈ {1, 2, 3}, without loss of generality,

we assume i = 3, then G′1, G
′
2 and G[E(G′3) ∪ X] are three locally irregular subgraphs

decomposing G. So we may assume EG′({u, v, w}) ∩ E(G′i) 6= ∅ for 1 ≤ i ≤ 3. Thus

there exist y ∈ NG(v) \ {u,w} and z ∈ NG(w) \ {u, v}. Without loss of generality, let

{vy, vw} ⊆ E(G′1), wz ∈ E(G′2) and ux ∈ E(G′3). Hence, G′1, G
′
2 and G[E(G′3) ∪ X]

are three locally irregular subgraphs decomposing G. Suppose that G′ = G[E(G) \ X] is

exceptional. Then G′′ = G[E(G) \ Y ] is decomposable. By the induction hypothesis, G′′

can be decomposed into three locally irregular subgraphs G′′1, G′′2, G′′3. If EG′′({v, w, x}) ∩
E(G′′i ) = ∅ for some i ∈ {1, 2, 3}, without loss of generality, we assume i = 3, then G′′1,

G′′2 and G[E(G′′3) ∪ Y ] are three locally irregular subgraphs decomposing G. So we may

assume EG′({u, v, w}) ∩ E(G′i) 6= ∅ for 1 ≤ i ≤ 3. Thus there exist y ∈ NG(v) \ {u,w}
and z ∈ NG(w) \ {u, v}. Without loss of generality, let {vy, vw} ⊆ E(G′′1), wz ∈ E(G′′2)

and xx1 ∈ E(G′′3). If dG′′2 (z) ≤ 2, then G[(E(G′′1) \ {vw}) ∪ {uv}], G[E(G′′2) ∪ {uw, vw, ux}]
and G′′3 are three locally irregular subgraphs decomposing G. If dG′′2 (z) = 3, then G′′1,

G[E(G′′2) ∪ Y ] and G′′3 are three locally irregular subgraphs decomposing G. �

5 Kn − C` with 3 ≤ ` ≤ n− 1

From another point of view, a locally irregular decomposition can be seen as an edge coloring

such that each color class induces a locally irregular subgraph. Let Kn be the complete

graph with vertices v1, v2, . . . , vn and a cycle C` ⊆ Kn with vertices v1, v2, . . . , v`, where

3 ≤ ` ≤ n − 1. Denote by Kn − C` the graph obtained from Kn by deleting all the edges
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Algorithm 1: Locally Irregular 2-edge Coloring of Kn − C`.

Input: A graph G obtained from a complete graph Kn by deleting all the edges in a
cycle C`, 3 ≤ ` ≤ n− 1 and ` is odd.

Output: A locally irregular 2-edge coloring of G.

1 Order the vertices by the degree in ascending order:
d(v1) = d(v2) = . . . = d(v`) < d(v`+1) = . . . = d(vn).

2 while 1 ≤ i ≤ `− 1 do
3 if i is odd then
4 color vivj(i<j ≤ `) with yellow. if i is even then
5 color vivj(i<j ≤ `) with red.
6 end

7 end
8 Color v`+1v1 with yellow, v`+1vj(1<j ≤ `) with red if ` ≥ 5 and yellow if ` = 3.
9 while `+ 2 ≤ i ≤ n do

10 end
11 if i is odd then
12 color vivj(j<i) with red.
13 end
14 if i is even then
15 color vivj(j<i) with yellow.
16 end

17 end
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in C`. By using the term of edge coloring, we prove that χ′irr(Kn −C`) ≤ 3 when ` is even

and χ′irr(Kn − C`) ≤ 2 when ` is odd by establishing algorithms.

We first prove the following lemma.

Lemma 5.1 Let G = Kt − Ct−1. Then χ′irr(G) ≤ 3 when t − 1 is even and χ′irr(G) ≤ 2

when t− 1 is odd.

Proof Denote by Y , R and B the subsets of E(G) colored yellow, red and blue by Algorithm 1

or Algorithm 2, respectively. Let X ∈ {Y,R,B}, we say G[X] has a conflict edge vivj

if vivj ∈ X and dG[X](vi) = dG[X](vj). For convenience, we write dG[X](v) = 0 when

v /∈ V (G[X]).

It is easy to check that the edge colorings given by Algorithms 1 and 2 have no conflict

edge for t ∈ {4, 5}. Now suppose t ≥ 6.

When t− 1 is odd, by Algorithm 1, we have

dG[Y ](vi) =


i−2
2 i 6= t, even;

t− 3− i−1
2 i 6= t, odd;

1 i = t.

dG[R](vi) =


t− 3− i−2

2 i 6= t, even;

i−1
2 i 6= t, odd;

t− 2 i = t.

When t− 1 is even, by Algorithm 2, we have

dG[Y ](vi) =



t− 3 i = 1;

0 i = 2;

1 i = 3;

t− 4− i−2
2 4 ≤ i<t, even;

i−3
2 4 ≤ i<t, odd;

1 i = t.

dG[R](vi) =



0 i = 1;

t− 3 i = 2;

1 i = 3;

2 i = 4;

i−2
2 6 ≤ i<t, even;

t− 3− i−1
2 4 ≤ i<t, odd;

t− 2 i = t.

dG[B](vi) =


0 i = 1, 2, 4, t;

t− 5 i = 3;

1 5 ≤ i ≤ t− 1.

Suppose G[X] has a conflict edge vivj . We have dG[X](vi) /∈ {t−2, t−3} and dG[X](vj) /∈
{t− 2, t− 3} since G[X] contains at most one vertex of degree t− 2 and at most one vertex

of degree t−3. And t /∈ {i, j} because NG[Y ](vt) = {v1} and dG[Y ](v1) 6= 1, dG[R](vt) = t−2,

dG[B](vt) = 0.
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Algorithm 2: Locally Irregular 3-edge Coloring of Kn − C`.

Input: A graph G obtained from a complete graph Kn by deleting all the edges in a
cycle C`, 4 ≤ ` ≤ n− 1 and ` is even.

Output: A locally irregular 3-edge colouring of G.

1 Order the vertices by the degree in ascending order:
d(v1) = d(v2) = . . . = d(v`) < d(v`+1) = . . . = d(vn).

2 Color v1vj(1<j ≤ `) with yellow.
3 Color v2vj(2<j ≤ `) with red.
4 Color v3vj(3<j ≤ `) with blue.
5 while 4 ≤ i ≤ `− 1 do
6 if i is odd then
7 color vivj(i<j ≤ `) with red.
8 end
9 if i is even then

10 color vivj(i<j ≤ `) with yellow.
11 end

12 end
13 Color v`+1v1 with yellow, color v`+1v2 with red, color v`+1vj(2<j ≤ `) with red if

` ≥ 6 and blue if ` = 4.
14 while `+ 2 ≤ i ≤ n do
15 if i is odd then
16 color vivj(j<i) with yellow.
17 end
18 if i is even then
19 color vivj(j<i) with red.
20 end

21 end

16



Suppose t−1 is odd. If i−2
2 = t−3− j−1

2 or t−3− i−2
2 = j−1

2 , then {i, j} = {t−2, t−1}.
However vt−1 and vt−2 are not adjacent in G[X], a contradiction. Thus G[Y ] and G[R] are

two locally irregular subgraphs decomposing G and so χ′irr(G) ≤ 2.

Suppose t− 1 is even. We have 3 /∈ {i, j} because NG[Y ](v3) = {v1} and dG[Y ](v1) 6= 1,

NG[R](v3) = {vt}, G[B] contains at most one vertex of degree t− 5. Further if X ∈ {B,R},
then 4 /∈ {i, j} because dG[B](v4) = 0, NG[R](v4) = {v2, vt} and dG[R](v2) = t − 3 6= 2. If
j−3
2 = t − 4 − i−2

2 or i−2
2 = t − 3 − j−1

2 , then {i, j} = {t − 2, t − 1}. However vt−1 and

vt−2 are not adjacent in G[X], a contradiction. Thus G[Y ], G[R] and G[B] are three locally

irregular subgraphs decomposing G and so χ′irr(G) ≤ 3. �

Theorem 5.2 Let G = Kn−C` with 3 ≤ ` ≤ n− 1. Then χ′irr(G) ≤ 3 when ` is even and

χ′irr(G) ≤ 2 when ` is odd.

Proof First consider that ` ≥ 3 and ` is odd. The 2-edge coloring of the induced subgraph

G1 = G[{v1, v2, . . . , v`+1}] given by Algorithm 1 has no conflict edge by Lemma 5.1. The

2-edge coloring of the induced subgraph G2 = G[V (G1)∪ {v`+2}] given by Algorithm 1 has

no conflict edge because dG2[R](v`+2) = `+ 1 > dG2[R](vi) = dG1[R](vi) + 1 for 1 ≤ i ≤ `+ 1

and dG2[Y ](v`+2) = 0, dG2[Y ](vi) = dG1[Y ](vi) for 1 ≤ i ≤ `+ 1. By the similar analysis, the

2-edge colorings of G3 = G[V (G2) ∪ {v`+3}], . . . , G = Gn−` = G[V (Gn−1) ∪ {vn}] given by

Algorithm 1 have no conflict edge, see Figure 5(a) for example. When ` ≥ 3 and ` is even,

we can prove the 3-edge coloring of G given by Algorithm 2 has no conflict edge by the

same idea as above, see Figure 5(b) for example. Therefore, Algorithms 1 and 2 are correct

and χ′irr(G) ≤ 3 when ` is even, χ′irr(G) ≤ 2 when ` is odd. �

Figure 5: Examples of outputs for Algorithms 1 and 2

6 Conclusion

In this paper, we present new results on the locally irregular chromatic index of cactus

graphs and subcubic graphs and provide two algorithms to handle the graph obtained from
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Kn by deleting all the edges in cycle C`(3 ≤ ` ≤ n− 1). Our results imply that Conjecture

1.2 is true for decomposable cactus graphs and Kn−C`(3 ≤ ` ≤ n− 1). Recently, the topic

of locally irregular decomposition has been extended in two directions, one is to allow a

decomposition including regular components as well [7], and the other is to consider this

problem in the context of oriented graphs [6]. In our further research on this topic, we are

committed to obtaining some interesting results in both directions.
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