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Abstract

Let G be a graph with vertex set V (G) = {v1, . . . , vn} and EP (G) be an
n × n matrix whose (i, j)-entry is the maximum number of internally edge-
disjoint paths between vi and vj , if i 6= j, and zero otherwise. Also, define
EP (G) = EP (G) + D, where D is a diagonal matrix whose i-th diagonal
element is the number of edge-disjoint cycles containing vi. In this paper, we
investigate all graphs G, whose EP (G) is a multiple of J − I. Among other
results, we determine the spectrum and the energy of EP (G) for an arbitrary
bicyclic graph G.
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1 Introduction

All graphs considered in this paper are simple and connected. Let A be an n × n
matrix. Then χA(λ) = det(λI − A) is called the characteristic polynomial of A
and the roots of χA(λ) are called the eigenvalues of A. In particular, if A is the
adjacency matrix of graph G, the eigenvalues of A are the eigenvalues of G. The
algebraic multiplicity m of an eigenvalue λ is denoted by [λ]m. Let λ1, . . . , λn be
all eigenvalues of G. The energy of the graph G was first defined by Gutman

as E(G) =
n∑

i=1

|λi|, for instance see [5, 6, 7]. Let G be a graph with vertex set

V (G) = {v1, . . . , vn}. In [12] the so-called path matrix P (G) of graph G is defined
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as an n× n matrix whose (i, j)-entry is the maximum number of internally vertex-
disjoint paths between the vertices vi and vj, for i 6= j and is zero otherwise. The
eigenvalues of P (G) are called the path eigenvalues of G, forming its path spectrum
SpecP (G). The path energy, PE(G) is defined as the sum of the absolute values of
the eigenvalues of P (G). The basic properties of the path matrix and its eigenvalues
were established in references [2, 11, 12]. A unicyclic graph and a bicyclic graph is
a connected graph of order n that contains n and n + 1 edges, respectively. Notice
that there are three types of bicyclic graphs without pendent vertices as depicted
in Figure 2, where c is the number of vertices between the cycles Ca and Cb not
containing V (Ca) ∪ V (Cb). The spectral properties of unicyclic graphs are given in

Figure 1: Bicyclic graphs without pendant vertex.

[12]. Also, the path energy of bicyclic graphs are investigated in [1, 2].
In this paper, for a given graph G, we define an edge version of path matrix

of G to be a square matrix EP (G) = (pij)n×n, where pij is the maximum number
of edge disjoint-paths between the vertices vi and vj for i 6= j and zero if i = j.
This matrix is called the edge-path matrix of G. We call the eigenvalues of EP (G)
as the edge-path eigenvalues of G, forming its edge-path spectrum SpecEP (G). Let
µ1, . . . , µn be all eigenvalues of edge-path matrix EP (G). Then the edge-path energy

of G is defined as EEP (G) =
n∑

i=1

|µi|.

The paper is organized as follows. In the rest of this section, further definitions
are given and known results needed are stated. In Section 2, we provide some
preparatory results. In the subsequent section, some properties of the edge-path
matrix with respect to the edge-connectivity are established. In Section 4, the
generalized edge-path matrix of a graph is defined and the generalized edge-path
energy of bicyclic graphs are investigated.
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The cycle and the complete graph of order n are denoted by Cn and Kn, respec-
tively. In this paper Jr×s is an r × s matrix whose all entries are 1. An ear of a
graph G is a maximal path whose internal vertices have degree two in G. An ear
decomposition of a graph G is a decomposition of the edges of G into a sequence of
ears (paths and cycles) P0, P1, . . . , Pi, . . . , Pk such that P0 is a cycle and Pi(i > 0)
is an ear of P0 ∪ P1 ∪ · · · ∪ Pi. A block of G is a maximal connected subgraph of G
with no cut-vertex. It is a well-known fact that blocks of a non-trivial tree are the
copies of K2 and, in general, the blocks of a connected graph construct a treelike
graph. A block B of graph G is a leaf block, if it contains exactly one cut-vertex.
An edge-cut(disconnecting set of edges) of G is a subset of E(G) of the form [S, S̄],
where S is a nonempty proper subset of V (G) and S̄ = V \ S. A vertex-cut of G
is a subset V

′
of V such that G \ V ′

is disconnected. By G \ e, we mean a graph
obtained from G by removing the edge e.

An automorphism of graph G of order n is a permutation α ∈ Sn, in which
uv ∈ E(G) if and only if α(u)α(v) ∈ E(G), where the image of α at vertex u
is denoted by α(u). A graph is vertex-transitive if its automorphism group acts
transitively on its vertex set, namely for two distinct vertices u, v ∈ V (G), there is
an automorphism α ∈ Aut(G), where α(u) = v.

Consider a symmetric matrix A with rows and columns indexed by a set V .
Assume V is partitioned into m classes V1, . . . , Vm. Thus, with a suitable ordering
of V we may write

A =

A1,1 · · · A1,m
... · · · ...

Am,1 · · · Am,m

 ,

where each diagonal block Ai,j is symmetric. Such a matrix partition is called
equitable, whenever each block Ai,j has constant row and column sums. Let bi,j
denotes the row sum of Ai,j. Then the m×m matrix B = (bij) is called the quotient
matrix of A with respect to the given partition. It is well-known that the spectrum
of B is a subset of the spectrum of A, see for example [8]. Let B = (bij)m×n and
C = (cij)m×n be two matrices in Mn(R). We use the notation B ≤ C, if for each
i, j, bij ≤ cij.

2 Edge-path Spectrum of some Families of Graph-

s

There are many classes of graphs such as trees and unicycle graphs whose path
matrix and edge-path matrix are the same, but in general, they are different. For
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example, consider the graph G as depicted in Figure 1. The path and the edge-path
matrices of G are

P (G) =


0 2 2 2 2 1
2 0 2 1 1 1
2 2 0 1 1 1
2 1 1 0 2 1
2 1 1 2 0 1
1 1 1 1 1 0


and

EP (G) =


0 2 2 2 2 1
2 0 2 2 2 1
2 2 0 2 2 1
2 2 2 0 2 1
2 2 2 2 0 1
1 1 1 1 1 0

 .

Figure 2: A graph with different path and edge-path matrices.

Theorem 1 [13, p.167]( Menger-1927) If x, y are vertices of a graph G and xy /∈
E(G), then the minimum size of an x, y-cut equals the maximum number of pairwise
internally vertex-disjoint x, y-paths.

Theorem 2 [13, p.168](edge version of Menger’s Theorem) If x and y are distinct
vertices of a graph G, then the minimum size of an x, y-disconnecting set of edges
equals to the maximum number of pairwise edge-disjoint x, y-paths.

Example 3 The cocktail party graph of order 2n is a graph formed from the com-
plete graph K2n by removing a perfect matching. Consider two vertices u and v in G.
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Two cases can be considered. If u and v are non-adjacent, then the degree of both u
and v is 2n−2 and thus by Theorem 2, the maximum number of edge-disjoint paths
between them is 2n − 2. On the other hand, for each vertex x ∈ V (G), (x 6= u, v),
the (u, x, v) is a path of length two between u and v. Hence, there are exactly 2n−2
distinct paths between u and v of length 2. Therefore EP (G) = (2n − 2)(J − I).
This yields that

SpecEP (G) = {[(2n− 2)(2n− 1)]1, [−(2n− 2)]2n−1},

and, EEP (G) = 4(n− 1)(2n− 1).

Now, we would like to determine the edge-path spectrum of graph Kn \ e, where
e is an arbitrary edge. We state the following result which was proved in [1].

Lemma 4 Consider the matrix

A =


p11(J − I) p12J · · · p1kJ
p21J p22(J − I) · · · p2kJ
...

...
. . .

...
pk1J pk2J · · · pkk(J − I)

 ,

where the (i, j) block of A is an ni × nj matrix. Then

det(xI − A) = (x+ p11)
n1−1 · · · (x+ pkk)nk−1det(xI −B),

where

B =


p11(n1 − 1) p12n2 · · · p1knk

p21n1 p22(n2 − 1) · · · p2knk
...

...
. . .

...
pk1n1 pk2n2 · · · pkk(nk − 1)

 .

Theorem 5 SpecEP (Kn \ e) = {[2−n]1, [1−n]n−3, [
1

2
(n2− 3n+ 1±

√
α)]1}, where

α = n4 − 2n3 − 13n2 + 46n− 39.

Proof. Let e = v1v2. Then the number of edge-disjoint paths between the vertex
v1(v2) and the other vertices is n−2 while the number of edge-disjoint paths between
any two other vertices vr and vs ({r, s} ∩ {1, 2} = ∅) is n− 1. This yields that

EP (Kn \ e) =

(
(n− 2)(J − I)2×2 (n− 2)J2×n−2

(n− 2)Jn−2×2 (n− 1)(J − I)n−2×n−2

)
.
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By Lemma 4, we obtain the following:

det(xI − EP (Kn \ e)) = (x+ n− 2)(x+ n− 1)n−3det(xI −B),

where

B =

(
n− 2 (n− 2)× (n− 2)

(n− 2)× 2 (n− 1)× (n− 3)

)
.

Hence

SpecEP (Kn \ e) = {[2− n]1, [1− n]n−3, [
1

2
(n2 − 3n+ 1±

√
α)]1},

where α = n4 − 2n3 − 13n2 + 46n− 39.

3 Main Results

Connectivity plays a major role in the existence of paths and cycles in graphs. By
studying the path matrices, we observe that for many classes of graphs such as
trees, cycles and complete graphs, the path matrix P (G) is equal to a multiple of
J − I. Therefore characterizing such matrices would be important. In continuing
of this paper, we characterize these kinds of matrices for k = 1 or k = 2 in terms of
connectivity. We proceed as follows. The edge-connectivity κ′(G) of a graph G is the
smallest number of edges that by removing them the resulted graph is disconnected.
A k-edge connected graph G is minimally k-edge connected if for every e ∈ E(G), the
graph G \ e is not k-edge connected. We make use the following theorem appeared
in [13].

Theorem 6 [13, p.162] A graph is 2-connected if and only if it has an ear decom-
position, and every cycle in a 2-connected graph is the initial cycle in some such
decomposition.

Theorem 7 Let G be a graph. Then P (G) = 2(J − I) if and only if G is a cycle.

Proof. Let P (G) = 2(J−I). Thus by Theorem 1, G is 2-connected and thus it has
an ear-decomposition. Hence G has an ear decomposition with cycle P0 and ears
P1, . . . , Pi. Without loss of generality, let u, v ∈ V (P0) ∩ V (P1). Then there are at
least three edge-disjoint paths between u and v, a contradiction. This means that G
is a cycle P0, as desired. Now, if G is a cycle, then it is clear that P (G) = 2(J − I).
�

Here, we determine the edge-path matrix of trees, unicyclic and bicyclic graphs.
It is clear that for a tree T, P (T ) = EP (T ). If G is a unicyclic graph, then
P (G) = EP (G).
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Remark 8 Let G be a bicyclic graph of Type B(1)(a, b, c) or B(3)(a, b, c), then
P (G) = EP (G), but if G is a bicyclic graph of Type B(2)(a, b), (see Figure 2),
then EP (G) 6= P (G).

Here, we characterize all graphs with EP (G) = k(J − I), where k = 1 or 2.
Clearly, a graph G is a tree if and only if EP (G) = J − I.

Theorem 9 Let G be a graph of order n. Then EP (G) = 2(Jn − In) if and only if
each block of G is a cycle.

Proof. Let C1, . . . , Ck be k blocks of G which all of them are cycles. Note that each
pair Ci and Cj(i 6= j) share at most one vertex in common. By induction on n, we
show that EP (G) = 2(Jn− In). It is clear that if G is a cycle, EP (G) = 2(Jn− In).
Now, let C1, . . . , Ck be k blocks of G. Without loss of generality, suppose that Ck

is a leaf block of G. If we remove E(Ck) from E(G) then, by induction hypothesis,
EP (G \ E(Ck)) = 2(Jn−t+1 − In−t+1), where t = |V (Ck)|. Now, let H = G \ E(Ck)
and v ∈ V (H)∩V (Ck). For each vertex v 6= x ∈ V (Ck), there are exactly two edge-
disjoint paths between x and v, so by induction hypothesis, EP (G) = 2(Jn − In).
Conversely, if EP (G) = 2(Jn − In), then there are exactly two edge-disjoint paths
between each pair of vertices of G. Thus G is 2-edge connected. By Theorem 6, G
has an ear-decomposition. It means that G has a cycle P0 with some ears. If G is
a cycle, then we are done. Let Pi be an ear in this decomposition with endpoints u
and v, where u 6= v. Obviously, there are at least three edge-disjoint paths between
u and v, a contradiction. This implies that every ear in this decomposition is a
cycle, as desired. �

For a k-edge connected k-regular graph G, EP (G) = k(J − I). Brouwer and
Haemers [8] showed that a distance-regular graph of degree k is k-edge connected
and strongly regular graphs are distance-regular. Hence, Theorem 2 yields that for
such a graph, we obtain EP (G) = k(J − I).

Theorem 10 [9] Let G be a connected vertex-transitive k-regular graph of order
n. Then G is k-edge connected

Theorem 10 implies that each vertex-transitive graph satisfies in the equation EP (G) =
k(J−I). For example, since all Cayley graphs are vertex-transitive, if G is a Cayley
graph, then EP (G) is a multiple of J − I. If EP (G) = k(J − I), then determining
the structure of G is not an easy task. Here, we give some properties of these kind
of graphs.

Remark 11 If P (G) = k(J − I), then G is minimally k-edge connected.
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Conjecture 1. Let G = (V,E) be a graph of order n and EP (G) ≤ k(J − I). Then
|E(G)| ≤ (k + 1)(n− 1)/2.

Theorem 12 If k = 2, then the Conjecture holds.

Proof. If EP (G) = 2(J − I), then by Theorem 9 each block of G is a cycle. If
G = Cn, then clearly the assertion holds. Now, suppose that G is not a cycle and
let Ck be a leaf block of G. By induction on n, we show that E(G) ≤ 3(n − 1)/2.
Let H = G\(V (Ck)− v), where v is the unique cut-vertex of G contained in V (Ck).
Since EP (H) = 2(J − I), by induction hypothesis, |E(H)| ≤ 3(n− (k− 1)− 1)/2 =
3/2(n−k). Therefore, we obtain |E(G)| ≤ 3/2(n−k)+k = (3n−k)/2 ≤ 3/2(n−1),
as desired. Now, if EP (G) < 2(J−I), then by Theorem 2, G is not 2-edge connected
and thus G has a cut edge. By induction on n, we show that E(G) ≤ 3/2(n − 1).
Now, let e = uv be a cut edge of G. Suppose that G1 and G2 are two components
of G \ e. Let |V (Gi)| = ni, i = 1, 2. By induction hypothesis, |E(Gi)| ≤ 3/2(ni− 1).
Therefore |E(G)| ≤ 3/2(n1 + n2 − 2) + 1 ≤ 3/2(n− 1). The proof is complete. �

4 The Generalized Edge-Path Matrix

Here, we define the generalized edge-path matrix EP (G) of graph G as follows. The
ij-th entry of this matrix is defined as the maximum number of edge-disjoint paths
between two vertices vi and vj. Notice that the diagonal entries of this matrix are
not zero.

Example 13 The generalized edge-path matrix of Cn is

EP (Cn) =



1 2 2 2 2 · · · 2
2 1 2 2 2 · · · 2
2 2 1 2 2 · · · 2
2 2 2 1 2 · · · 2
2 2 2 2 1 · · · 2
... 2 2 2 2 · · · 2
2 2 2 2 2 · · · 1


= 2J − I.

Hence, its spectrum is

SpecEP (G)(G) = {[2n− 1]1, [−1]n−1}.
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It is clear that EP (G) = EP (G) if and only if G is a tree. Also, the generalized
edge-path energy, EEP (G) is defined as the sum of absolute value of eigenvalues of
EP (G). The following theorem will be useful for the characterization of graphs for
which EP (G) is a multiple of J .

Theorem 14 [10] Let G be an edge-minimally k-edge connected graph. Then G
has a vertex of degree k.

Theorem 15 There is no graph G whose generalized edge-path matrix is a multiple
of J .

Proof. Let EP (G) = kJ. By Theorem 2, G is k-edge connected. If G is not
minimally k-edge connected, then there exists e = uv ∈ E(G) such that G \ e is still
k-edge connected. Hence there are at least k edge-disjoint paths between u and v in
G \ e. So, there are k+ 1 edge-disjoint paths between u and v in G, a contradiction.
Therefore G is minimally edge connected. Now, by Theorem 14, G has a vertex of
degree k, say vi which yields that (EP (G))ii 6= k, a contradiction. �

Here, we investigate the generalized edge-path energy of bicyclic graphs.

Theorem 16 Let a, b ≥ 3 and G be a bicyclic graph of Type B(1)(a, b, c) of order
n = a+ b+ c.

(i) If c = 0, then EEP (G) = 3n− 4.
(ii) If c > 0, then EEP (G) = a+ b− 3 + |α− 1|+ β − 1|+ |γ − 1|, where α, β, γ

are roots of λ3 − (2a+ 2b+ c)λ2 + (3ab+ ac+ bc)λ− abc.

Proof. (i) Let v1, . . . , va be the vertices of Ca and va+1, . . . , va+b be the vertices of
Cb. Then the generalized edge-path matrix of G is

EP (G) =

(
2Ja − I J

J 2Jb − I

)
.

Let C = EP (G)+I. Then the rank and nullity of C are 2 and a+b−2, respectively.
It means that matrix EP (G) has the eigenvalue −1 with multiplicity a+ b− 2. The
quotient matrix B of G is as follows:

B =

(
2a− 1 b
a 2b− 1

)
.

The eigenvalues of matrix B are a+ b− 1±
√
a2 + b2 − ab. This yields that

SpecEP (G) = {[−1]a+b−2, [a+ b− 1 +
√
a2 + b2 − ab]1, [a+ b− 1−

√
a2 + b2 − ab]1},
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and thus

EEP (G) = a+ b− 2 + 2(a+ b− 1) = 3a+ 3b− 4 = 3n− 4.

(ii) Let v1, . . . , va be the vertices of Ca and va+1, . . . , va+b be the vertices of Cb,
and va+b+1, . . . , va+b+c be the other vertices of G. The generalized edge-path matrix
of G is

EP (G) =

2Ja − Ia J J
J Jc − Ic J
J J 2Jb − Ib

 .

Let C = EP (G) + I. Then the rank and nullity of C are 3 and a + b + c − 3,
respectively. It means that matrix EP (G) has the eigenvalue −1 with multiplicity
a+ b− 3. Also, the quotient matrix B of G is as follows:

B =

2a− 1 c b
a c− 1 b
a c 2b− 1

 .

On the other hand, the characteristic polynomial of matrix

B
′
=

2a c b
a c b
a c 2b


is χB′ (λ) = λ3 − (2a + 2b + c)λ2 + (3ab + ac + bc)λ − abc. Suppose α, β and γ are
the roots of χB′ (λ). Then α − 1, β − 1 and γ − 1 are the other eigenvalues of B.
Therefore EEP (G) = a+ b− 3 + |α− 1|+ β − 1|+ |γ − 1|. �

Theorem 17 Let a, b ≥ 3 and G be a bicyclic graph of Type B(2)(a, b) of order
n = a+ b− 1. Then EEP (G) = n− 2 +

√
4n2 − 4n+ 9.

Proof. Let v1, . . . , va be the vertices of Ca and va+1, . . . , va+b−1 be the vertices of
Cb except the common vertex of Ca and Cb. The generalized edge-path matrix of G
is as follows:

EP (G) =

(
2 2J1×n−1

2Jn−1×1 2Jn−1×n−1 − In−1

)
.

Let C = EP (G) + I. It is not hard to see that, the rank and nullity of the matrix
C = EP (G) + I are 2 and a+ b− 3, respectively. It means that EP (G) has −1 as
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an eigenvalue with multiplicity a + b − 3. Now, the quotient matrix B of G is as
follows:

B =

(
2 2n− 2
2 2n− 3

)
.

The eigenvalues of matrixB are−1

2
+ n+

1

2

√
4n2 − 4n+ 9,−1

2
+ n− 1

2

√
4n2 − 4n+ 9.

This yields that

SpecEP (G) = {[−1]a+b−3, [−1

2
+n+

1

2

√
4n2 − 4n+ 9]1, [−1

2
+n− 1

2

√
4n2 − 4n+ 9]1},

and thus

EEP (G) = a+ b− 3 +
√

4n2 − 4n+ 9 = n− 2 +
√

4n2 − 4n+ 9.

�

Theorem 18 Let a, b ≥ 3 and G be a bicyclic graph of Type B(3)(a, b, c) of order
n = a+ b− c− 2. Then EEP (G) = n− 1 +

√
4n2 − 4n+ 17.

Proof. Let v1, . . . , va and va+1, . . . , va+b−c−2 are the vertices of Ca and Cb, respec-
tively. Then the generalized edge-path matrix of EP (G) has the following form:

EP (G) =

(
3J2×2 − 2I2×2 2J2×n−2

2Jn−2×2 2Jn−2×n−2 − In−2×n−2

)
.

A similar argument shows that the rank and nullity of C = EP (G) + I are 3 and
a + b − c − 5, respectively. This means that −1 is an eigenvalue of EP (G) with
multiplicity a+ b− c− 5. The eigenvalues of quotient matrix is

B =

(
4 2n− 4
4 2n− 5

)
,

are −1

2
+ n+

1

2

√
4n2 − 4n+ 17,−1

2
+ n− 1

2

√
4n2 − 4n+ 17.

Since, tr(EP (G)) = n = a+ b− c− 2. Hence, λ1 = −2. This yields that,

SpecEP (G) = {[−1]a+b−c−5,−2, [−1

2
+n+

1

2

√
4n2 − 4n+ 17]1, [−1

2
+n−1

2

√
4n2 − 4n+ 17]1},

and thus

EEP (G) = a+ b− c− 5 + 2 +
√

4n2 − 4n+ 17 = n− 1 +
√

4n2 − 4n+ 17.

�

We close the paper with the following conjecture.
Conjecture 2. A graph is Eulerian if and only if every entry of EP (G) is even.
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