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Abstract

For an integer ℓ ≥ 2, the ℓ-connectivity κℓ(G) of a graph G is defined to

be the minimum number of vertices of G whose removal produces a discon-

nected graph with at least ℓ components or a graph with fewer than ℓ vertices.

The ℓ-edge-connectivity λℓ(G) of a graph G is the minimum number of edges

whose removal leaves a graph with at least ℓ components if |V (G)| ≥ ℓ, and

λℓ(G) = |E(G)| if |V (G)| < ℓ. Given integers k ≥ 0 and ℓ ≥ 2, we investi-

gate κℓ(G(n, p)) and λℓ(G(n, p)) when np ≤ log n + k log log n. Furthermore,

our arguments can be used to show that in the random graph process, the

hitting times of minimum degree at least k and of ℓ-connectivity (or ℓ-edge-

connectivity) at least k(ℓ − 1) coincide with high probability. These results

generalize the work of Bollobás and Thomason on classical connectivity.

Keywords: ℓ-connectivity; ℓ-edge-connectivity; random graph; threshold func-

tion; hitting time
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1 Introduction

All graphs in this paper are undirected, finite and simple. We follow [8] for

traditional graph theoretical notations and terminologies.

The connectivity κ(G) of a graph G is the minimum number of vertices whose

removal produces a disconnected graph or the trivial graph. Chartrand et al. [10]

introduced the concept of generalized connectivity. Throughout the paper, unless

otherwise noted, we use ℓ to denote a positive integer that is at least 2. The ℓ-

connectivity κℓ(G) of a graph G is defined to be the minimum number of vertices

of G whose removal produces a disconnected graph with at least ℓ components or

a graph with fewer than ℓ vertices. Note that κ2(G) = κ(G), and κℓ(G) = 0 if

and only if G has at least ℓ components or the number of vertices in G is at most

ℓ − 1. Similarly, in [4], Boesch and Chen defined the ℓ-edge-connectivity λℓ(G) of a

connected graph to be the minimum number of edges whose removal leaves a graph

with at least ℓ components if |V (G)| ≥ ℓ, and λℓ(G) = |E(G)| if |V (G)| ≤ ℓ. Note

that λ2(G) = λ(G) is the classical edge-connectivity of G. As a natural extension

of the classical connectivity, this concept is related to the toughness of a graph [13].

The toughness t(G) of a connected graph G is the minimum of the quotient |S|
c(G−S)

over all subsets S of V (G) such that c(G− S) > 1, where c(H) denotes the number

of connected components of the graph H. Note that for a noncomplete connected

graph G, we have t(G) = min2≤ℓ≤α κℓ(G)/ℓ, where α is the independence number of

G. For more details on toughness, one can refer to [1, 3, 9, 11, 20]. Also note that

properties of the classical connectivity do not always hold for the generalized version.

In particular, although κ2(G) ≤ λ2(G), no such domination relation exists between

κℓ(G) and λℓ(G) when ℓ ≥ 3. For example, consider the graph G in Figure 1, it is

easy to check that λ3(G) = 2 and κ3(G) = 4, and consequently λ3(G) < κ3(G). On

the other hand, for a star S4 on 4 vertices, we have λ3(S4) = 2 and κ3(S4) = 1, and

hence λ3(S4) > κ3(S4).

A graph G is called (k, ℓ)-connected if κℓ(G) ≥ k, and a graph is called (k, ℓ)-edge-

connected if λℓ(G) ≥ k. The generalized connectivity, edge-connectivity, along with

the (k, ℓ)-connectedness and (k, ℓ)-edge-connectedness have been extensively studied.

The ℓ-connectivity and ℓ-edge-connectivity for some special graphs are considered

in [12, 17, 21, 23, 25, 26, 28, 29]. In particular, Oellermann [26] established several suf-

ficient or necessary conditions for a graph being (k, ℓ)-connected or being (k, ℓ)-edge-
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Figure 1: A graph with λ3(G) < κ3(G).

connected, while Cioabă and Gu [12] studied the (k, ℓ)-connectedness from a spectral

perspective. Furthermore, minimal (k, ℓ)-connected graphs and minimal (k, ℓ)-edge-

connected graphs are investigated in [13, 21, 22]. Recently, the ℓ-connectivity of

pseudorandom graphs has been studied in [19].

On the other hand, the study of connectivity of random graphs has been in-

teresting to many researchers [6, 15, 16, 18, 24], among others. Two of the most

common models of random graphs are G(n,M) and G(n, p). The first one consists

of all graphs with n vertices and M edges, in which each graph has the same prob-

ability. The model G(n, p) consists of all graphs with n vertices in which the edges

are chosen independently with probability p. We say an event A happens with high

probability (w.h.p.) if the probability that it happens approaches 1 as n → ∞, i.e.,

Pr[A] = 1− o(1).

A graph property P is said to be monotone increasing if for two graphs G and

H on n vertices, whenever E(G) ⊆ E(H) and G satisfies P , then H also satisfies P .

In other words, adding edges does not destroy the property. For any fixed ℓ and r,

it is easy to see that both κℓ(G) ≥ r and λℓ(G) ≥ r are monotone increasing graph

properties.

In one of the first papers on random graphs, Erdős and Rényi [14] showed that

m = n log n/2 is a sharp threshold for connectivity in G(n,m). Later, Stepanov [27]

established the sharp threshold of connectivity for G(n, p). Erdős and Rényi [15]

characterized the strength of κ(G(n,m)) and λ(G(n,m)), and Ivchenko [24] studied

the strength of κ(G(n, p)) and λ(G(n, p)). In this paper, we extend the studies above

of classical connectivity to ℓ-connectivity and ℓ-edge-connectivity.

Our first main result concerns ℓ-connectivity and ℓ-edge-connectivity of G(n, p),

where np ≤ log n+ k log log n for some fixed integer k ≥ 0 and ℓ ≥ 2.

For j = 0, 1, 2, . . . , n, let b(j;n, p) =
(
n
j

)
pj(1− p)n−j, the probabilities of binomial

distribution Bin(n, p).
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Theorem 1.1 Fix ℓ ≥ 2, and set ρk := ρk(n) = nb(k;n−1, p). If np− log n → −∞,

then w.h.p.

κℓ(G(n, p)) = λℓ(G(n, p)) = 0.

If np = log n+(k− 1) log log n+ f(n) for some fixed integer k ≥ 1, where f(n) → ∞
and f(n)− log log n → −∞, then w.h.p.

κℓ(G(n, p)) = λℓ(G(n, p)) = k(ℓ− 1).

If np = log n+ k log log n+ y + o(1) for some integer k ≥ 0 and real number −∞ <

y < ∞, then for any integer 0 ≤ r ≤ ℓ− 2,

Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r] ∼ Pr [λℓ(G(n, p)) = (ℓ− 1)(k + 1)− r] ∼ e−ρkρrk
r!

,

and

Pr [κℓ(G(n, p)) = k(ℓ− 1)] ∼ Pr [λℓ(G(n, p)) = k(ℓ− 1)] ∼ 1−
ℓ−2∑
j=0

e−ρkρjk
j!

.

In particular, ρk is the expected number of degree k and ρk ∼ e−y/k!.

A random graph process on V = {1, 2, · · · , n}, or simply a graph process, is a

Markov chain G̃ = (Gt)
N
0 with N =

(
n
2

)
, which starts with the empty graph on n

vertices at time t = 0 and where at each step one edge is added, chosen uniformly

at random from those not already present in the graph, until at time N we have a

complete graph. We call Gt the state of a graph process G̃ = (Gt)
N
0 at time t. For a

monotone increasing graph property P , the time τ(P ) when P occurs is the hitting

time of P :

τ(P ) = min{t ≥ 0: Gt has property P}.

Bollobás and Thomason [6] proved that for almost every random graph process,

the hitting time of the graph having connectivity κ(G) at least k is equal to the

hitting time of the graph having the minimum degree at least k. This important

result, among others, builds the bridge between the connectivity and the minimum

degree.

Theorem 1.1 can be further adapted to show observations analogous to that

of Bollobás and Thomason [6], on the hitting times of ℓ-connectivity and ℓ-edge-

connectivity. Our result is as follows.

Theorem 1.2 Given positive integers k and ℓ ≥ 2, in the random graph process

G̃ = (Gt)
N
0 with N =

(
n
2

)
, then

τ(κℓ(G) ≥ k(ℓ− 1)) = τ(λℓ(G) ≥ k(ℓ− 1)) = τ(δ(G) ≥ k)

with high probability.
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First, we present some previously established results in Section 2. With them

we will prove Theorem 1.1 in Section 3. The proof of Theorem 1.2 is provided in

Section 4.

2 Preliminaries

Throughout the paper, letXj = Xj(G(n, p)) be the number of vertices with degree

j in G(n, p). The following result provides an elegant characterization of the behavior

of Xj. Recall that b(j;n, p) =
(
n
j

)
pj(1− p)n−j for j = 0, 1, 2, . . . , n.

Theorem 2.1 (Theorem 3.1 in [7]) Let ϵ be fixed, ϵn−3/2 ≤ p = p(n) ≤ 1−ϵn−3/2,

let j = j(n) be a natural number and set ρj := ρj(n) = nb(j;n− 1, p). Then we have

the following:

(i) If lim
n→∞

ρj(n) = 0, then lim
n→∞

Pr[Xj = 0] = 1.

(ii) If lim
n→∞

ρj(n) = ∞, then lim
n→∞

Pr[Xj ≥ t] = 1 for every fixed t.

(iii) If 0 < lim inf
n→∞

ρj(n) < lim sup
n→∞

ρj(n) < ∞, then Xj has an asymptotic distribu-

tion with mean ρj:

Pr[Xj = r] ∼
e−ρjρrj
r!

for every fixed r.

The following theorem is a consequence of Theorem 2.1.

Theorem 2.2 (Theorem 3.5 in [7]) Let k and y be fixed, k ≥ 0, y ∈ R. If

p =
log n+ k log log n+ y

n
,

then

Pr[δ(G(n, p)) = k] → 1− e−e−y/k! and Pr[δ(G(n, p)) = k + 1] → e−e−y/k!.

From Theorem 2.2, we see that if p0 = {log n+ k log log n+ y}/n for some k ≥ 0

and y ∈ R, then w.h.p. the minimum degree of G(n, p0) is either k or k+1. Hence, if

p ≤ {log n+k log log n}/n, then the minimum degree of G(n, p) is w.h.p. at most k+1.
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Let F , G andH be graphs. We call a property Q convex if: whenever F ⊂ G ⊂ H,

F satisfies Q, and H satisfies Q, then G satisfies Q.

In the next a few statements we let N = 1
2
n(n− 1) for convenience.

Theorem 2.3 (Theorem 2.2 (ii) in [7]) If Q is a convex property and p(1 −
p)N → ∞, then G(n, p) w.h.p. satisfies Q if and only if for every fixed x, G(n,M)

w.h.p. satisfies Q, where M = ⌊pN + x(p(1− p)N)1/2⌋.

Let Yj(G) be the number of vertices with degree at most j in G, then Yj(G) ≥ t is

a convex property, where t is a fixed integer. By Theorem 2.3, we obtain the following

observation.

Observation 2.1 Fix j, t ≥ 0, if Yj(G(n, p)) ≥ t and p(1 − p)N → ∞, then w.h.p.

Yj(G(n,M)) ≥ t, where M = ⌊pN⌋.

In our arguments we will call a vertex v small if the degree of v is less than

log n/100 and large otherwise. The following property of small vertices will be fre-

quently used in our proofs.

Lemma 2.1 If log n + y + o(1) ≤ np ≤ 2 log n for some fixed −∞ < y < ∞, then

w.h.p. every two small vertices of G(n, p) are at distance 3 or more apart.

Proof. Let B denote the event that there exist two small vertices which are adjacent

or sharing a common neighbor, then

Pr[B] ≤
(
n

2

){
p

 logn
100

−2∑
i=0

(
n− 2

i

)
pi(1− p)n−2−i

2

+

(
n− 2

1

)
p2

 logn
100

−2∑
i=0

(
n− 3

i

)
pi(1− p)n−3−i

2}

≤n2
[
p+ np2

] [
2

(
n

logn
100

)
p

logn
100 (1− p)n−2− logn

100

]2
. (2.1)

Since log n+ y + o(1) ≤ np ≤ 2 log n,(
n

logn
100

)
p

logn
100 (1− p)n−2− logn

100 ≤ (200e)
logn
100 e− logn+O(1) < n−0.9.

Consequently,

Pr[B] ≤
[
n(2 log n) + n(2 log n)2

]
n−1.8 = o(1).

�

The proof of Theorem 1.1 will also use the following Chernoff-type bound.
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Lemma 2.2 (Theorems A.1.11, A.1.13 in [2]) Let n be a positive integer, p ∈
[0, 1] and X ∼ Bin(n, p). For every positive a,

Pr[X < np− a] < exp

(
−a2

2np

)
, and Pr[X > np+ a] < exp

(
−a2

2np
+

a3

2(np)2

)
.

3 Proof of Theorem 1.1

The case for ℓ = 2 of Theorem 1.1 is already established in [15] and [24]. In what

follows, we assume ℓ ≥ 3. We first prove the part of Theorem 1.1 for ℓ-connectivity

in Section 3.1. The part for ℓ-edge-connectivity will be dealt with in Section 3.2.

3.1 On the ℓ-connectivity

It is known that the thresholds for k-connectedness and minimum degree being k

coincide (see Chapter 7 of [7]). Our proof follows the same approach, first used by

Bollobás and Thomason [6].

Given a graph G, a vertex set S is called a (k, ℓ)-cut if |S| = k and G − S has

at least ℓ components. Denote by W1, W2, . . . , Wq the vertex sets of those q ≥ ℓ

components of G − S, such that |W1| ≤ |W2| ≤ · · · ≤ |Wℓ−1| ≤ |Wℓ| ≤ · · · ≤ |Wq|.
A (k, ℓ)-cut is trivial if |W1| = |W2| = · · · = |Wℓ−1| = 1. We present the following

lemma that is crucial to our proof.

Lemma 3.1 For any integers k ≥ 1, ℓ ≥ 3 and s > 0, if log n + y + o(1) ≤ np ≤
log n+ k log log n for some fixed −∞ < y < ∞, then w.h.p. G(n, p) does not contain

a nontrivial (s, ℓ)-cut.1

Proof. Suppose that there are q ≥ ℓ components after we delete a vertex subset S

from G(n, p), where |S| = s. Denote by W1, W2, . . . , Wq the vertex sets of those q

components. Let xi = |Wi| for 1 ≤ i ≤ q, then 1 ≤ x1 ≤ x2 ≤ . . . ≤ xℓ−1 ≤ xℓ ≤
. . . ≤ xq. Denote by Aa the event that G(n, p) contains a nontrivial (s, ℓ)-cut with

|Wℓ−1| = xℓ−1 = a. It is easy to see that a ≤ n/2.

Set a0 = 3(s+ ℓ+ 1), a1 = n1/3 and a2 = n/2. To prove Lemma 3.1, it suffices to

prove that

Pr

[
a2∪
a=2

Aa

]
= o(1). (3.1)

1The conclusion of Lemma 3.1 still holds when np−log n → −∞. Indeed, when np−log n → −∞,

w.h.p. there are at least ℓ − 1 isolated vertices in G(n, p). Thus, for any vertex subset S, we have

|Wℓ−1| = 1, i.e., w.h.p. G(n, p) does not contain a nontrivial (s, ℓ)-cut.
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Noting that (3.1) holds if

Pr

[
a0∪
a=2

Aa

]
+ Pr

[
a1∪

a=a0

Aa

]
+ Pr

[
a2∪

a=a1

Aa

]
= o(1), (3.2)

we now investigate each of the three probabilities in (3.2).

(1) For the first probability Pr

[
a0∪
a=2

Aa

]
, we use the following fact (see the proof of

Lemma 7.5 in [7]):

Given any integer t, w.h.p. G(n, p) satisfies that no two vertices of degree at most

t are at distance at most t. Indeed, the expected number of paths of length b ≥ 1

connecting vertices of degree i and j is at most

nb+1pb(pn)i−1(pn)j−1(1− p)2n−i−j−2 = o(1).

Since |Wℓ−1| = a and a ≤ a0, every vertex inWℓ−1 has degree less than a+s ≤ a0+

s and the distance between every two vertices inWℓ−1 is at most a−1 < a+s ≤ a0+s,

by the above fact this happens with probability o(1). Hence

Pr

[
a0∪
a=2

Aa

]
= o(1).

(2) Now we estimate the second term in (3.2). Let the number of isolated vertices

be X0 = r. If r ≥ ℓ− 1, then |Wℓ−1| = 1 and the conclusion of Lemma 3.1 holds.

Assume that 0 ≤ r ≤ ℓ− 2. Then xi = 1 for 1 ≤ i ≤ r. This time, we concentrate

on Wr+1,Wr+2, . . . ,Wℓ−1. Let x′ =
ℓ−1∑

i=r+1

xi. The subgraph spanned by the vertex

subset Wr+1 ∪Wr+2 ∪ . . .∪Wℓ−1 ∪S w.h.p. has at least 1
2
x′ edges (since every vertex

in it has degree at least one). Given |Wi| = xi for r + 1 ≤ i ≤ ℓ− 1 and |S| = s, and

the fact that there are at most
(
x′+s
2

)
edges in Wr+1 ∪Wr+2 ∪ . . . ∪Wℓ−1 ∪ S, such a

graph exists with probability at most( (
x′+s
2

)
1
2
x′

)
p

1
2
x′ ≤

(
(2x′)2ep

x′

) 1
2
x′

≤ n−(2/3−o(1))x′/2,

where the first inequality holds since x′ > xℓ−1 = a ≥ a0 > s. Notice that Wr+1,

Wr+2, . . . , Wℓ−1 and S are chosen from the n−r non-isolated vertices of G(n, p). For

given xr+1, xr+2, . . . , xℓ−1 = a, and fixed s, the number of choices of Wr+1, Wr+2,

. . . , Wℓ−1 and S is(
n

s

)(
n− r − s

a

)(
n− r − s− a

xr+1

)(
n− r − s− a− xr+1

xr+2

)
· · ·
(
n− r − s− (x′ − xℓ−2)

xℓ−2

)
.
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Also note that, the number of possible choices of xr+1, xr+2, . . . , xℓ−1 is at most the

number of partitions of n − r − s vertices into ℓ − r sets Wi with |Wi| = xi (such

that xr+1 ≤ xr+2 ≤ . . . ≤ xℓ with xℓ−1 = a), which is at most (n − r − s)ℓ−r. Now

summing over all possible choices of the sets Wr+1, Wr+2, . . . , Wℓ−1 and S, we have

Pr

[
a1∪

a=a0

Aa

]
≤

a1∑
a=a0

(n− r − s)ℓ−r

(
n− r

s

)(
n− r − s

a

)(
n− r − s− a

xr+1

)
(
n− r − s− a− xr+1

xr+2

)
· · ·
(
n− r − s− (x′ − xℓ−2)

xℓ−2

)
· n−(2/3−o(1))x′/2(1− p)α,

where α = a(n− r− s− a)+ xr+1(n− r− s− a− xr+1)+ xr+2(n− r− s− a− xr+1 −
xr+2) + · · ·+ xℓ−2(n− r − s− x′). Note that ℓ ≥ 3, the right-hand side of the above

inequality is at most

a1∑
a=a0

nℓ−r+s+x′−(2/3−o(1))x′/2 · n−(x′−a(ℓ−r−1)x′/n−sx′/n)

≤ n1/3+ℓ−r+s−((2/3−o(1))/2−(a1(ℓ−r−1)+s)/n)(a0+ℓ−2) = o(1).

(3) Let us now turn to the third term in (3.2). Denote by V the vertex set of G(n, p).

For given Wℓ−1 and S with |Wℓ−1| = a and |S| = s, since there are no edges between

Wℓ−1 and V \(S∪Wℓ−1), such a graph exists with probability at most (1− p)a(n−a−s).

By considering all the possible choices of sets Wℓ−1 and S, we have that

Pr

[
a2∪

a=a1

Aa

]
≤

a2∑
a=a1

(
n

a

)(
n− a

s

)
(1− p)a(n−a−s)

≤
a2∑

a=a1

(en
a

)a
ns
(
(1− p)n−a−s

)a ≤ a2∑
a=a1

eaa−ana2/n+3s/2 = o(1).

Hence, we have

Pr

[
a0∪
a=2

Aa

]
+ Pr

[
a1∪

a=a0

Aa

]
+ Pr

[
a2∪

a=a1

Aa

]
= o(1),

implying Lemma 3.1. �

We shall now prove the part of Theorem 1.1 concerning ℓ-connectivity. This is

done through cases according to the value of p.

(i) If np−log n → −∞, then, by Theorem 2.1 (ii), w.h.p. X0 ≥ ℓ−1. Thus, w.h.p.

there are already ℓ components of G(n, p). Consequently, w.h.p. κℓ(G(n, p)) = 0.
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(ii) If np = log n+(k− 1) log log n+ f(n) for some fixed k ≥ 1, where f(n) → ∞
and f(n) − log log n → −∞, then, by Theorem 2.1 (i) and (ii), lim

n→∞
Pr[Xj = 0] = 1

for 0 ≤ j ≤ k − 1, and lim
n→∞

Pr[Xk ≥ ℓ − 1] = 1. That is, there are at least ℓ − 1

vertices with minimum degree k in G(n, p). By Lemma 2.1, w.h.p. these ℓ−1 vertices

are at distance at least 3 apart from each other. Therefore, removing the neighbors

of each of these ℓ− 1 vertices yields ℓ− 1 isolated vertices. Consequently, we have a

trivial (k(ℓ− 1), ℓ)-cut. Hence, w.h.p.

κℓ(G(n, p)) ≤ k(ℓ− 1). (3.3)

From Lemma 3.1, w.h.p. G(n, p) contains no nontrivial (k(ℓ− 1), ℓ)-cut. We now

consider the possibility of any trivial (s, ℓ)-cut for 0 < s ≤ k(ℓ− 1). By Lemma 2.1,

we have w.h.p., every two small vertices are neither adjacent nor sharing a common

neighbor. In order for a trivial cut to happen we need at least ℓ− 1 isolated vertices

after removing some vertices from G(n, p).

• If at least ℓ−1 of these isolated vertices are small, then at least k(ℓ−1) vertices

need to be removed (since each of them has degree at least k and no two share

a common neighbor).

• If at least one of these isolated vertices is large, then at least log n/100 > k(ℓ−1)

vertices need to be removed.

Consequently, w.h.p. κℓ(G(n, p)) ≥ k(ℓ − 1). Combining with (3.3), we have w.h.p.

κℓ(G(n, p)) = k(ℓ− 1).

(iii) If np = log n + k log log n + y + o(1) for some fixed −∞ < y < ∞, then ρk,

the expected number of Xk, satisfies that

ρk ∼ n
(np)k

k!
e(n−1) log(1−p) ∼ e−y

k!
.

We first establish the following relation between Xk and κℓ(G(n, p)).

Claim 3.1 Let k ≥ 0 and ℓ ≥ 3 be fixed integers. Then

(i) for any 0 ≤ d ≤ ℓ− 2 we have

Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)− d | Xk = d] = 1− o(1).

(ii) and,

Pr[κℓ(G(n, p)) = k(ℓ− 1) | Xk ≥ ℓ− 1] = 1− o(1).
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Proof. (i) Let Xk = d. If d ≥ 1, then let vi (i = 1, . . . , d) be the d vertices

with degree k of G(n, p). Since Pr[Xk = d] > 0 by Theorem 2.1 (iii), we have

Pr[Xk+1 < ℓ − d − 1 | Xk = d] ≤ Pr[Xk+1 < ℓ − d − 1]/Pr[Xk = d] = o(1) by

Theorem 2.1 (ii). Let ℓ − d − 1 such vertices be uj (with degree k + 1 of G(n, p))

for j = 1, . . . , ℓ − d − 1. Applying Lemma 2.1, we have w.h.p. all the vertices vi, uj

for i = 1, . . . , d and j = 1, . . . , ℓ − d − 1 are pairwise at distance 3 or more apart.

Therefore, there are at least ℓ components after removing the neighbors of each of

vertices vi, uj for i = 1, . . . , d and j = 1, . . . , ℓ − d − 1. Moreover, the total number

of vertices we removed is dk + (ℓ− d− 1)(k + 1) = (ℓ− 1)(k + 1)− d.

Consequently, if Xk = d with 0 ≤ d ≤ ℓ− 2, then w.h.p.

κℓ(G(n, p)) ≤ (ℓ− 1)(k + 1)− d. (3.4)

By Lemma 3.1, w.h.p. G(n, p) contains no nontrivial ((ℓ − 1)(k + 1) − d, ℓ)-cut.

Note that, when considering the trivial cut, there are at least ℓ− 1 isolated vertices

after we remove all the vertices in a trivial cut. Also note that Lemma 2.1 implies

w.h.p. every two small vertices are neither adjacent nor sharing a common neighbor.

Thus:

• if at least ℓ−1 of these isolated vertices are small, then at least (ℓ−1)(k+1)−d

vertices need to be removed, because there are d vertices of degree k in G(n, p)

and the other vertices have degree at least k + 1.

• if at least one of these isolated vertices is large, then at least log n/100 >

(ℓ− 1)(k + 1)− d vertices need to be removed.

Therefore, if Xk = d with 0 ≤ d ≤ ℓ− 2, then w.h.p.

κℓ(G(n, p)) ≥ (ℓ− 1)(k + 1)− d. (3.5)

Combing (3.4) and (3.5), we have

Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)− d | Xk = d] = 1− o(1)

for 0 ≤ d ≤ ℓ− 2.

(ii) Let Xk = d. If d ≥ ℓ − 1, then we take ℓ − 1 vertices vj with degree k in

G(n, p), for j = 1, . . . , ℓ − 1. Again by Lemma 2.1, w.h.p. any two vertices of vi,

for i = 1, . . . , ℓ − 1 are at distance 3 or more apart. Therefore, by removing all the

neighbors of each of vi for i = 1, . . . , ℓ − 1, we obtain at least ℓ components. That

implies if Xk = d with d ≥ ℓ− 1, then w.h.p.

κℓ(G(n, p)) ≤ k(ℓ− 1). (3.6)
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On the other hand, through arguments similar to case (i), we have that w.h.p.

κℓ(G(n, p)) ≥ k(ℓ− 1). Indeed, w.h.p. G(n, p) contains no nontrivial (k(ℓ− 1), ℓ)-cut

by Lemma 3.1. And there are at least ℓ − 1 isolated vertices after we delete all the

vertices of a trivial cut. Again, if at least ℓ−1 of these isolated vertices are small, then

at least k(ℓ − 1) vertices need to be removed (since Lemma 2.1 implies that w.h.p.,

every two small vertices are neither adjacent nor sharing a common neighbor). And

if at least one of these isolated vertices is large, then at least log n/100 > k(ℓ − 1)

vertices need to be removed. Hence, if Xk = d with d ≥ ℓ− 1, then w.h.p.

κℓ(G(n, p)) ≥ k(ℓ− 1). (3.7)

Therefore, by (3.6) and (3.7),

Pr[κℓ(G(n, p)) = k(ℓ− 1) | Xk ≥ ℓ− 1] = 1− o(1).

�

We will also need the following simple corollary of Claim 3.1 (i) in our proof.

Claim 3.2 Let I ⊆ {0, 1, . . . , ℓ− 2} with |I| ≥ 1. Then

Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk | Xk ∈ I] = 1− o(1).

Proof. For any integer i with 0 ≤ i ≤ ℓ− 2, let

∆i = Pr[Xk = i, κℓ(G(n, p)) ̸= (ℓ− 1)(k + 1)− i].

Clearly, ∆i ≥ 0. And we have

Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk, Xk = i] = Pr[Xk = i]−∆i (3.8)

for every i. Note that

Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk | 0 ≤ Xk ≤ ℓ− 2]

=
Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk, 0 ≤ Xk ≤ ℓ− 2]

Pr[0 ≤ Xk ≤ ℓ− 2]

=

∑ℓ−2
i=0 Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk, Xk = i]∑ℓ−2

i=0 Pr[Xk = i]
. (3.9)

By (3.8), we have that the right hand side of (3.9) is

1−
∑ℓ−2

i=0 ∆i∑ℓ−2
i=0 Pr[Xk = i]

. (3.10)
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On the other hand, from Claim 3.1 (i), we have

Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk | 0 ≤ Xk ≤ ℓ− 2] = 1− o(1).

Therefore, (3.10) is 1 − o(1). Since
∑ℓ−2

i=0 Pr[Xk = i] is a constant by Theorem 2.1

(iii), we have, for every i,

∆i = o(1). (3.11)

Thus, for any subset I ⊆ {0, 1, . . . , ℓ− 2} with |I| ≥ 1, we have

Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk | Xk ∈ I]

=
Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk, Xk ∈ I]

Pr[Xk ∈ I]

=

∑
i∈I Pr[κℓ(G(n, p)) = (ℓ− 1)(k + 1)−Xk, Xk = i]∑

i∈I Pr[Xk = i]

= 1− o(1)

where the last equality follows from (3.8) and (3.11). �

We are now ready to finish the proof by estimating

(A) Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r] for 0 ≤ r ≤ ℓ− 2; and

(B) Pr [κℓ(G(n, p)) = k(ℓ− 1)].

(A) We will compute Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r] for 0 ≤ r ≤ ℓ − 2

according to the value of Xk. First we have

Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r]

= Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r | 0 ≤ Xk ≤ ℓ− 2, Xk ̸= r]

· Pr [0 ≤ Xk ≤ ℓ− 2, Xk ̸= r]

+ Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r | Xk ≥ ℓ− 1] Pr [Xk ≥ ℓ− 1]

+ Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r | Xk = r] Pr [Xk = r] . (3.12)

The related terms on the right hand side of (3.12) are considered separately.

Note that (ℓ− 1)(k + 1)−Xk ̸= (ℓ− 1)(k + 1)− r when Xk ̸= r. Therefore,

Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r | 0 ≤ Xk ≤ ℓ− 2, Xk ̸= r]

≤ Pr [κℓ(G(n, p)) ̸= (ℓ− 1)(k + 1)−Xk | 0 ≤ Xk ≤ ℓ− 2, Xk ̸= r] = o(1)

(3.13)

where the last equality follows from Claim 3.2.

13



Next we estimate Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r | Xk ≥ ℓ− 1] . Since (ℓ −
1)(k + 1)− r ̸= k(ℓ− 1) for r ̸= ℓ− 1, we have

Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r | Xk ≥ ℓ− 1]

≤ Pr [κℓ(G(n, p)) ̸= k(ℓ− 1) | Xk ≥ ℓ− 1] = o(1) (3.14)

by Claim 3.1 (ii). By (3.12), (3.13), and (3.14), we have

Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r]

= Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r | Xk = r] Pr[Xk = r] + o(1). (3.15)

By Claim 3.2, we have Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r | Xk = r] = 1−o(1). Con-

sequently, (3.15) and Theorem 2.1 (iii) imply that

Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r] ∼ Pr[Xk = r] ∼ e−ρkρrk
r!

.

(B) It is easy to see that

Pr [κℓ(G(n, p)) = k(ℓ− 1)]

= Pr [κℓ(G(n, p)) = k(ℓ− 1) | Xk ≥ ℓ− 1] Pr [Xk ≥ ℓ− 1]

+Pr [κℓ(G(n, p)) = k(ℓ− 1) | 0 ≤ Xk ≤ ℓ− 2] Pr [0 ≤ Xk ≤ ℓ− 2] . (3.16)

From Claim 3.1 (ii), we have

Pr [κℓ(G(n, p)) = k(ℓ− 1) | Xk ≥ ℓ− 1] = 1− o(1). (3.17)

Since (ℓ− 1)(k + 1)−Xk ̸= k(ℓ− 1) for Xk < ℓ− 1, we have

Pr [κℓ(G(n, p)) = k(ℓ− 1) | 0 ≤ Xk ≤ ℓ− 2]

≤ Pr [κℓ(G(n, p)) ̸= (ℓ− 1)(k + 1)−Xk | 0 ≤ Xk ≤ ℓ− 2] = o(1) (3.18)

where the last equality holds by Claim 3.1 (i). From (3.16), (3.17), and (3.18), we

have

Pr [κℓ(G(n, p)) = k(ℓ− 1)] ∼ Pr[Xk ≥ ℓ− 1],

which is asymptotically equal to 1−
∑ℓ−2

j=0

e−ρkρjk
j!

by Theorem 2.1 (iii).

3.2 On the ℓ-edge-connectivity

First we note that it is possible to prove the ℓ-edge-connectivity part of Theo-

rem 1.1 with an “edge-version” of Lemma 3.1, and the rest arguments are rather

14



similar to the proofs in the previous subsection. We decide to employ a different

approach here. We first introduce a key observation. For convenience, let

g(r) =

(ℓ− 1)(k + 1)− r, if 0 ≤ r ≤ ℓ− 2,

k(ℓ− 1), if r ≥ ℓ− 1.

Claim 3.3 For ℓ ≥ 3, the following assertions hold.

(i) If np = log n + (k − 1) log log n + f(n) for some fixed k ≥ 1 (where f(n) → ∞,

f(n) − log log n → −∞), and G(n, p) − L has at least ℓ components for some edge

set L with |L| ≤ k(ℓ− 1), then w.h.p. there are ℓ− 1 vertices ui such that: the degree

of ui in G(n, p) is k for i = 1, . . . , ℓ− 1; every edge in L is incident to some ui; each

ui is an isolated vertex in G(n, p)− L.

(ii) If np = log n+k log log n+y+o(1) for some fixed y (where k ≥ 0 and −∞ < y <

∞), and G(n, p)−L has at least ℓ components for some edge set L with |L| ≤ g(Xk),

then w.h.p. there are min{Xk, ℓ−1} vertices ui (i = 1, . . . ,min{Xk, ℓ−1}) with degree

k, and max{0, ℓ−1−Xk} vertices uj (j = min{Xk, ℓ−1}+1, . . . , ℓ−1}) with degree

k + 1, such that every edge in L is incident to some ui unless ui has degree k = 0,

and each ui is an isolated vertex in G(n, p)− L.

Proof. Let p satisfy the conditions of either (i) or (ii) in Claim 3.3. Further let

h := h(p) =

k(ℓ− 1), if np = log n+ (k − 1) log log n+ f(n),

g(Xk), if np = log n+ k log log n+ y + o(1),

where f(n) and y are also as stated in Claim 3.3. Let L be an edge set such that

|L| ≤ h. (3.19)

Suppose that there are q ≥ ℓ components in G(n, p)−L. Denote by W1, W2, . . . , Wq

the vertex sets of the components in G(n, p)−L, such that |W1| ≤ |W2| ≤ · · · ≤ |Wq|.
If p satisfies Claim 3.3 (ii) with k = 0 and X0 ≥ ℓ − 1, then the conclusion of

Claim 3.3 (ii) clearly holds. So we only need to consider p satisfying the condition

of Claim 3.3 (i), or satisfying the condition of Claim 3.3 (ii) with X0 ≤ ℓ − 2 when

k = 0.

First assume that |Wℓ−1| > 1. Note that w.h.p. Wℓ−1 cannot consist of small

vertices by Lemma 2.1. Hence, there is at least one large vertex belonging to Wℓ−1,

which implies that

|Wℓ−1| ≥
log n

100
− |L| > log n

101
. (3.20)
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Denote by V the vertex set of G(n, p). For any vertex subset U , let U = V \ U ,

and denote by e(U,U) the number of edges between U and U . For any constant K,

and any vertex subset U with |U | = x, by Lemma 2.2,

Pr[e(U,U) < K] < exp

(
− (x(n− x)p−K)2

2x(n− x)p

)
< eK

(
e−

1
2
(n−x)p

)x
. (3.21)

We consider the event A that there exists a vertex subset U with |U | = x, such that

n8/9 ≤ x ≤ n/2 and |e(U,U)| < K for a fixed constant K. From (3.21), A happens

with probability

Pr[A] ≤
n/2∑

x=n8/9

(
n

x

)
eK
(
e−

1
2
(n−x)p

)x
≤

n/2∑
x=n8/9

eK
(ne
x
e−

1
2
(n−x)p

)x
<

n/2∑
x=n8/9

n−O(1)·x = o(1).

Note that e(Wℓ−1,Wℓ−1) ≤ |L|. Consequently Wℓ−1 contains less than n8/9 vertices.

Together with (3.20), we have w.h.p.

log n

101
< |Wℓ−1| < n8/9. (3.22)

To estimate the probability of the existence of the edge set L, such that Wℓ−1 satisfies

(3.22), we take two parts of edges into account: the edges spanned by Wℓ−1, and the

edges between Wℓ−1 and Wℓ−1.

Let t = |Wℓ−1| and ζ = max{k, 1}. The number of edges spanned by Wℓ−1 is at

least 1
2
ζt − |L|, which is at least 1

2
ζt − h by (3.19). For any vertex subset R with t

vertices, the event that R spans at least 1
2
ζt − h edges, happens with probability at

most ( (
t
2

)
1
2
ζt− h

)
p

1
2 ζt−h

≤
(
4tep

ζ

) 1
2
ζt−h

. (3.23)

Consider the edges between Wℓ−1 and Wℓ−1. Let z = e(Wℓ−1,Wℓ−1), we have z ≤
|L| ≤ h. Take over the possible sizes of Wℓ−1, along with (3.23), such a subgraph

exists with probability at most

n8/9∑
t= logn

101

h∑
z=0

(
n

t

)(
t(n− t)

z

)
pz(1− p)t(n−t)−z

(
4tep

ζ

) 1
2
ζt−h

. (3.24)

We claim that (3.24) is o(1). Indeed, let C(t, z) =
(
n
t

)(
t(n−t)

z

)
pz(1−p)t(n−t)−z

(
4tep
ζ

) 1
2
ζt−h

.

For integers t and z such that logn
101

≤ t ≤ n8/9 and 0 ≤ z ≤ h, we have

C(t, z) ≤ nt+zt(
1
2
ζ−1)t+z−hp

1
2
ζt+z−h

(
4

ζ

) 1
2
ζt−h

e−p(t(n−t)−z)+( 1
2
ζ+1)t+z−h.
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Since logn−log log logn
n

≤ p ≤ 2 log
n

, we obtain that

nt+zt(
1
2
ζ−1)t+z−hp

1
2
ζt+z−h

(
4

ζ

) 1
2
ζt−h

≤ e((1−
1
2
ζ)t+h) logn+(( 1

2
ζ−1)t+z−h) log t+( 1

2
ζ+o(1))t log logn

and

e−p(t(n−t)−z)+( 1
2
ζ+1)t+z−h ≤ e−(1−o(1))t logn.

Therefore,

n8/9∑
t= logn

101

h∑
z=0

C(t, z) ≤ (h+ 1)
n8/9∑

t= logn
101

e(−
1
2
ζt logn+o(t logn)) = o(1).

Thus, the probability of |Wℓ−1| > 1 is o(1). Therefore, we have w.h.p. |W1| = |W2| =
. . . = |Wℓ−1| = 1, i.e., they are isolated vertices in G(n, p)−L. Hence, L contains all

edges incident to some vertex in W1 ∪W2 ∪ . . . ∪Wℓ−1. If there is a large vertex in

W1∪W2∪. . .∪Wℓ−1, then |L| ≥ logn
100

, a contradiction. So W1∪W2∪. . .∪Wℓ−1 consists

of ℓ− 1 small vertices. By Lemma 2.1, any two vertices in W1 ∪W2 ∪ . . . ∪Wℓ−1 are

not adjacent.

Since |L| ≤ h, we conclude that:

(i) if np = log n + (k − 1) log log n + f(n), then w.h.p. all the vertices in W1 ∪
W2 ∪ . . . ∪Wℓ−1 have degree k, and L consists of the edges incident to some vertex

in W1 ∪W2 ∪ . . . ∪Wℓ−1;

(ii) if np = log n+k log log n+ y+ o(1), then w.h.p. W1∪W2∪ . . .∪Wℓ−1 consists

of Xk vertices with degree k and ℓ−1−Xk vertices with degree k+1, and L consists

of the edges incident to some vertex in W1 ∪W2 ∪ . . . ∪Wℓ−1.

The proof of Claim 3.3 is thus complete. �

We are now ready to prove the ℓ-edge-connectivity part of Theorem 1.1, based on

the values of p.

(i) If np− log n → −∞, then by Theorem 2.1 (ii), w.h.p. X0 ≥ ℓ−1. Thus, w.h.p.

there are already ℓ components of G(n, p). This implies w.h.p. λℓ(G(n, p)) = 0.

(ii) If np = log n+(k− 1) log log n+ f(n) for some fixed k ≥ 1, where f(n) → ∞
and f(n) − log log n → −∞, then lim

n→∞
Pr[Xk ≥ ℓ − 1] = 1 by Theorem 2.1 (ii).

Choose ℓ − 1 vertices with degree k in G(n, p), by removing the edges incident to

each of those ℓ− 1 vertices, we obtain at least ℓ components. Therefore,

w.h.p. λℓ(G(n, p)) ≤ k(ℓ− 1). (3.25)

Assume that there is an edge set L with |L| < k(ℓ − 1) such that G(n, p) − L

contains at least ℓ components. Then, by Claim 3.3 (i), we know that w.h.p. there
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are ℓ−1 vertices ui, i = 1, . . . , ℓ−1, such that the degree of ui is k for i = 1, . . . , ℓ−1,

and every ui is an isolated vertex in G(n, p) − L. Applying Lemma 2.1, we obtain

that w.h.p. ui and uj are not adjacent for any i ̸= j. Thus, to isolate ui for i =

1, · · · , ℓ − 1, the number of edges in L is |L| = k(ℓ − 1), which contradicts our

assumption. Hence, w.h.p. λℓ(G(n, p)) ≥ k(ℓ − 1). Combining with (3.25), we

obtain that w.h.p. λℓ(G(n, p)) = k(ℓ− 1).

(iii) If np = log n + k log log n + y + o(1) for some fixed −∞ < y < ∞, we first

establish an observation, similar to Claim 3.1, to describe the relationship between

ℓ-edge-connectivity and the number of vertices with degree k.

Claim 3.4 Let k ≥ 0 and ℓ ≥ 3 be fixed integers. Then

(i) for any 0 ≤ d ≤ ℓ− 2 we have

Pr[λℓ(G(n, p)) = (ℓ− 1)(k + 1)− d | Xk = d] = 1− o(1).

(ii) and,

Pr[λℓ(G(n, p)) = k(ℓ− 1) | Xk ≥ ℓ− 1] = 1− o(1).

Proof. Suppose that Xk = d. Recall the notation

g(d) =

(ℓ− 1)(k + 1)− d, if 0 ≤ d ≤ ℓ− 2,

k(ℓ− 1), if d ≥ ℓ− 1.

Assume, now, that there is an edge set L with |L| < g(d) such that G(n, p) − L

contains at least ℓ components. Then, by Claim 3.3 (ii), we know that w.h.p. there

are ℓ− 1 isolated vertices in G(n, p)−L, such that among these ℓ− 1 vertices, there

are min{d, ℓ− 1} vertices having degree k in G(n, p), and there are max{0, ℓ− 1− d}
vertices having degree k + 1 in G(n, p). Applying Lemma 2.1, we obtain that w.h.p.

those ℓ−1 vertices are pairwise not adjacent in G(n, p)−L. Thus, to isolate those ℓ−1

vertices in G(n, p), the number of edges needed in L is |L| = g(d), which contradicts

our assumption. Hence, if Xk = d, then w.h.p.

λℓ(G(n, p)) ≥ g(d). (3.26)

By Theorem 2.1 (ii), w.h.p. there are more than t vertices with degree k + 1 in

G(n, p), for any fixed t. Let the vertex subset U consist of ℓ − 1 vertices of G(n, p),

such that among those ℓ−1 vertices, there are min{d, ℓ−1} vertices of degree k, and

max{0, ℓ−1−d} vertices of degree k+1. Let L be the edge set consisting of the edges
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incident to any vertex of U , then |L| ≤ g(d) and there are at least ℓ components of

G(n, p)− L. Therefore, if Xk = d, then w.h.p.

λℓ(G(n, p)) ≤ g(d). (3.27)

Claim 3.4 follows from (3.26) and (3.27). �

Replacing κℓ with λℓ, we can obtain an “edge version” of Claim 3.2. The re-

maining computations of Pr[λℓ(G(n, p)) = (ℓ− 1)(k + 1)− r] for 0 ≤ r ≤ ℓ− 2, and

Pr [λℓ(G(n, p)) = k(ℓ− 1)] are identical to those of Pr [κℓ(G(n, p)) = (ℓ− 1)(k + 1)− r]

and Pr [κℓ(G(n, p)) = k(ℓ− 1)], with κℓ replaced by λℓ. We conclude the proof of The-

orem 1.1 here without repeating these details.

4 Proof of Theorem 1.2.

For κ2(G) = κ(G), the result on the hitting times of minimum degree at least

k and of κ(G) at least k has been shown in [6]. Since λ2(G) = λ(G) ≥ κ(G),

Theorem 1.2 holds for ℓ = 2. In what follows we assume ℓ ≥ 3. We will prove w.h.p.

(I) τ(δ(G) ≥ k) = τ(κℓ(G) ≥ k(ℓ− 1)), and

(II) τ(δ(G) ≥ k) = τ(λℓ(G) ≥ k(ℓ− 1)).

(I) To prove w.h.p. τ(δ(G) ≥ k) = τ(κℓ(G)) ≥ k(ℓ− 1)) holds, we first prove

τ(δ(G) ≥ k) ≥ τ(κℓ(G) ≥ k(ℓ− 1)). (4.1)

We employ the method used by Bollobás and Thomason in [6]. They made use of the

probability space G(n, p;≥ k) to derive τ(δ(G) ≥ k) ≥ τ(κ(G) ≥ k). The probability

space G(n, p;≥ k), originally defined in [5], consists of graphs whose edges are colored

blue and green. Let k ≥ 1 be fixed and p = {log n+(k−1) log log n−ω(n)}/n, where
ω(n) → ∞ and ω(n) ≤ log log log n. An element Gc of G(n, p;≥ k) can be obtained

as follows: select a random element Gp of G(n, p) and color the edges blue. Let

x1, x2, . . . , xs be the vertices of degree less than k in Gp. For each xi pick randomly a

vertex yi from the set of vertices not adjacent to xi and add green edges x1y1, . . . , xsys

to Gp. The space G(n,M ;≥ k) is defined analogously. For a property Q, a graph

Gc ∈ G(n, p;≥ k) is said to have Q if the graph obtained from Gc by ignoring the

colors has Q. The following lemma presented in both [5] and [6] is needed.

Lemma 4.1 ([5, 6]) Let k = k(n) ∈ N, M = M(n) ∈ N and 0 < p = p(n) < 1

be such that w.h.p. δ(G(n,M)) < k and δ(G(n, p)) < k. Furthermore, let Q be a
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monotone increasing property of graphs. If “w.h.p. an element of G(n,M ;≥ k) has

Q” or “w.h.p. an element of G(n, p;≥ k) has Q”, then w.h.p.

τ(Q) ≤ τ(δ(G) ≥ k)

for every random graph process G̃ = (Gt)
N
0 with N =

(
n
2

)
.

In [6], the authors investigated several structural properties of Gc. Some of them

are stated in the following lemma.

Lemma 4.2 (Lemma 3 in [6]) Let p = (log n+ (k − 1) log log n− ω(n))/n, where

ω(n) → ∞ and ω(n) ≤ log log log n. W.h.p. Gc ∈ G(n, p;≥ k) has the following

properties.

(i) The number of edges in Gp is e(Gp) = (1 + o(1))n
2
log n, and the minimum

degree of Gp is δ(Gp) = k − 1.

(ii) Gc has at least 1
2(k−1)!

eω(n) and at most 2
(k−1)!

eω(n) < 2 log log n green edges,

and each green edge is incident with a vertex of degree at least 1
2
log n and the green

edges are independent.

For a vertex v, we denote by dGp(v) the degree of v in Gp, and denote by dGc(v)

the degree of v in Gc. For a vertex set U , let NGc(U) = {v : v /∈ U and ∃u ∈
U such that uv ∈ Gc}. We also set s = k(ℓ− 1) for the arguments below.

Lemma 4.3 Let p = {log n + (k − 1) log log n − ω(n)}/n, where ω(n) → ∞ and

ω(n) ≤ log log log n. Let d > 0 be a fixed integer and D be a set of d vertices, such

that for any v ∈ D, dGc(v) < s. Then w.h.p. D does not contain two vertices sharing

a common neighbor in Gc.

Proof. Letting r = (log n)2s, it is not difficult to see that, in Gp, there are at most r

vertices with degree less than s. Indeed, let A denote the event that there exists a

vertex set R with order r, such that each vertex v ∈ R have degree less than s in Gp.

Then

Pr [A] ≤
n∑

t=r

(
n

t

)[ s∑
i=0

(
n− 1

i

)
pi(1− p)n−1−i

]t

≤
n∑

t=r

(ne
t

)t [((n− 1)e

s

)s(
2 log n

n

)s

e
logn
n

(n−1−s)

]t
≤

n∑
t=r

[
O(1) · (log n)

s

t

]t
≤ n

[
O(1) · (log n)

s

r

]r
= o(1).
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Since dGc(v) ≥ dGp(v) for any vertex v, we have w.h.p.

the number of vertices with degree less than s in Gc is at most r = (log n)2s. (4.2)

Given a set D, by Lemma 2.1, w.h.p. there are no vertices in D sharing a common

neighbor in Gp. Therefore, if u, v ∈ D such that uw, vw ∈ Gc, then one of uw and

vw must be a green edge. Suppose there are d1 vertices u1, u2, . . . , ud1 in D such that

dGp(ui) < s for 1 ≤ i ≤ d1. Let XD denote the number of green edges between D

and NGc(D). We will prove that

Pr[XD > 0] = o(1). (4.3)

Noting that (4.3) implies w.h.p. there are no vertices in D sharing a common neighbor

in Gc. Denote by Xi the number of green edges uiw such that w ∈ NGc(D), where

1 ≤ i ≤ d1. Then XD =
d1∑
i=1

Xi, and

Pr[Xi > 0] = Pr[Xi = 1] <
sd

n− (k − 1)
.

Thus,

Pr[XD > 0] ≤
d1∑
i=1

Pr[Xi > 0] <
sdd1

n− (k − 1)
≤ n−1+o(1).

W.h.p. there are at most
(
r
d

)
choices of D by (4.2), and there are at most d+1 possible

values of d1. Realize that (
r

d

)
(d+ 1)n−1+o(1) = o(1),

we conclude that for any vertex subset D satisfying the conditions of Lemma 4.3,

Pr[XD > 0] = o(1). �

By Lemma 2.1, we obtain that w.h.p. every small vertex is adjacent to a large

vertex in Gp, and a large vertex is adjacent to at most one small vertex. After adding

green edges, from Lemma 4.2, we derive that v is a small vertex in Gp iff it is a small

vertex in Gc; v is a large vertex in Gp iff it is still a large vertex in Gc. Moreover,

we have that, in Gc every small vertex is adjacent to a large vertex and every large

vertex is adjacent to at most two small vertices.

Let Q be the property that κℓ(G) ≥ k(ℓ−1), and set p = {log n+(k−1) log log n−
log log log n}/n. From Lemma 4.1, to prove (4.1), we need to prove that w.h.p. every

Gc ∈ G(n, p;≥ k) satisfies κℓ(Gc) ≥ k(ℓ − 1). Assume, on the contrary, that there

exists a Gc with κℓ(Gc) < k(ℓ − 1). Then there is a vertex subset S with |S| < s
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such that Gc − S has q ≥ ℓ components. Let U1, U2, . . . , Uq be the vertex sets of

those q ≥ ℓ components of Gc − S, such that |U1| ≤ |U2| ≤ . . . ≤ |Uq|. If |Uℓ−1| = 1,

then |U1| = |U2| = . . . = |Uℓ−1| = 1. Applying Lemma 4.3 with d = ℓ − 1 and

D = U1∪U2∪ . . .∪Uℓ−1, we have that w.h.p. |NGc(D)| ≥ δ(Gc)(ℓ−1) = k(ℓ−1) = s.

So |S| ≥ |NGc(D)| ≥ s, a contradiction. Hence |Uℓ−1| > 1. And it contains at least

one large vertex, therefore

|Uℓ−1| >
log n

100
− |S| > log n

101
. (4.4)

Let e(W ) denote the number of edges with two ends in the vertex set W . Further,

we claim that

e(Uℓ−1) ≥ logn
800

|Uℓ−1|. (4.5)

Denote by x the number of small vertices in Uℓ−1, and y the number of large vertices

in Uℓ−1. Clearly, x + y = |Uℓ−1|, and y ≥ x/2. For any vertex v ∈ Uℓ−1, let d(v)

denote the degree of v in Gc, and dS(v) the number of edges between v and S, with

dS(v) ≤ |S| < s. Then we have

2e(Uℓ−1) =
∑

u∈Ui−1

[d (u)− dS (u)] ≥ x(k − s) + y

(
log n

100
− s

)
≥ (x+ y)

log n

400
+ x

(
k − s− log n

400

)
+ y

(
log n

100
− s− log n

400

)
. (4.6)

Since y ≥ x/2, (4.6) is at least

(x+ y)
log n

400
+ x

(
log n

200
+ k − 2s− 3 log n

800

)
≥ (x+ y)

log n

400
.

Therefore, 2e(Uℓ−1) ≥ |Uℓ−1| logn400
.

Next we show that such Uℓ−1 satisfying (4.4) and (4.5) w.h.p. does not exist.

In fact, for logn
101

≤ t ≤ n
e810

, the expected number of t-sets U , which span at least

j = t logn
800

edges in Gc, is at most

n
e810∑

t= logn
101

(
n

t

)((t
2

)
s

)(
2 log n

n

)j

≤ n
(en

t

)t(800et

n

)j

≤ n−1 = o(1).

If |Uℓ−1| > n
e810

, then |Uℓ| ≥ |Uℓ−1| > n
e810

. However, the probability that Gc con-

tains two disjoint sets R1 and R2, satisfying |R1| = |R2| = t0 =
n

e810
and e(R1, R2) = 0,

is at most (
n

t0

)2(
1− 2 log n

n

)t02

≤ e1630n−t02/(2n) = o(1).
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Thus we have considered all the possible sizes of Uℓ−1, and we conclude that with

probability o(1), there is a vertex subset S with |S| < s, such that Gc − S has at

least ℓ components. Then (4.1) follows from Lemma 4.1.

Now we prove w.h.p.

τ(δ(G) ≥ k) ≤ τ(κℓ(G) ≥ k(ℓ− 1)). (4.7)

Let τ(κℓ(G) ≥ k(ℓ− 1)) = t0, we claim that w.h.p.

δ(GM) ≥ k for M ≥ t0. (4.8)

Assume, to the contrary, that w.h.p. there is an M ≥ t0 such that κℓ(GM) ≥ k(ℓ− 1)

but δ(GM) ≤ k − 1. We claim that w.h.p. M > n
2
(log n − log log n). Indeed, let

p∗ = (log n − log log n)/n. Applying Theorem 2.1 (ii) with j = 0 and t = ℓ − 1,

we obtain that w.h.p. there are at least ℓ − 1 isolated vertices in G(n, p∗). Let

M∗
x = ⌊p∗N + x(p∗(1 − p∗)N)1/2⌋, where N = 1

2
n(n − 1) and x is an arbitrary fixed

real number. Then for x > 0, we have

M∗
x >

n

2
(log n− log log n). (4.9)

Let Q∗ be the property of having at least ℓ− 1 isolated vertices. Then Theorem 2.3

implies that w.h.p. GM∗
x
satisfies Q∗ for every fixed x. Therefore, we have that w.h.p.

κℓ(GM∗
x
) = 0 for every fixed x. Since we assume that w.h.p. κℓ(GM) ≥ k(ℓ− 1) > 0,

we obtain that w.h.p. M > M∗
x for every fixed x. Combining with (4.9), we have that

w.h.p. M > n
2
(log n− log log n).

Since δ(GM) ≤ k − 1, we have w.h.p.

M <
n

2
{log n+ (k − 1) log log n+ log log log n} .

Hence, we conclude that w.h.p.

n

2
(log n− log log n) < M <

n

2
{log n+ (k − 1) log log n+ log log log n} .

Letting p = M/N where N =
(
n
2

)
, then p satisfies the condition of Theorem 2.1.

Since w.h.p. δ(GM) ≤ k − 1, we have w.h.p. δ(G(n, p)) ≤ k − 1 by Theorem 2.3.

Let the number of vertices with degree k in G(n, p) be denoted by Xk. Applying

Theorem 2.1 (ii) and note that
ρj+1

ρj
= (n−j−1)p

(j+1)(1−p)
, we have w.h.p. Xk ≥ t for any fixed

integer t. Therefore, letting the number of vertices with degree at most k in G(n, p)

be denoted by Yk(G(n, p)), we have w.h.p. Yk(G(n, p)) ≥ t for any fixed integer t.

Note that p satisfies the condition of Observation 2.1. So for any fixed integer t,

w.h.p. GM has at least t vertices with degree at most k. (4.10)
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Let V be the vertex set of GM and N(v) be the set of neighbors of v in GM . Pick

a vertex u1 with minimum degree δ(GM) in GM . Then, for i = 2, 3, . . . , ℓ − 1, pick

vertex ui with degree at most k in V \
∪i−1

j=1N(uj), such that ui is different from

u1, . . . , ui−1. Note that w.h.p. this process can be successively completed since w.h.p.

there are more than (k−1)+(ℓ−2)k vertices in GM with degree at most k by (4.10).

Now let U = {ui : i = 1, . . . , ℓ − 1}. Since ui ∈ V \
∪i−1

j=1 N(uj) for i = 2, . . . , ℓ,

then ui is not adjacent to any uj such that 1 ≤ j ≤ i− 1. Therefore no two vertices

in U are adjacent. To isolate all the vertices in U , one only need to delete at most

δ(GM) + (ℓ− 2)k ≤ k(ℓ− 1)− 1 vertices (the inequality holds since δ(GM) ≤ k− 1).

This is a contradiction to our assumption that κℓ(GM) ≥ k(ℓ − 1). Thus, we have

proved (4.8) and consequently (4.7).

(II) If Q is the property that λℓ(G) ≥ k(ℓ− 1), then we can also use Lemma 4.1 to

prove

τ(δ(G) ≥ k) ≥ τ(λℓ(G) ≥ k(ℓ− 1)). (4.11)

What we need to prove is that w.h.p. every Gc ∈ G(n, p;≥ k) satisfies λℓ(Gc) ≥
k(ℓ− 1). The approach is very similar to that in the proof of (4.1), so we skip some

details. Here, again we assume the contrary, that there is a Gc containing an edge

subset L with |L| < s = k(ℓ − 1), such that Gc − L has q ≥ ℓ components. Let

U1, U2, . . . , Uq be the vertex sets of those q ≥ ℓ components of Gc − L, such that

|U1| ≤ |U2| ≤ . . . ≤ |Uq|. Then through exactly the same proof as in (I), we have

that |Uℓ−1| > 1. Hence it contains at least one large vertex, therefore |Uℓ−1| ≥ logn
100

.

By replacing the term dS(u) with |L|, we can also claim that

e(Uℓ−1) ≥ logn
800

|Uℓ−1|.

Recall that we have proved such Uℓ−1 exists with probability o(1) in (I). So (4.11)

follows.

For

τ(δ(G) ≥ k) ≤ τ(λℓ(G) ≥ k(ℓ− 1)), (4.12)

if w.h.p. it does not hold, then there is an M ≥ τ(λℓ(G) ≥ k(ℓ − 1)) such that

λℓ(GM) ≥ k(ℓ− 1)) but δ(GM) < k. Let p = M/N , where N =
(
n
2

)
. Through similar

arguments as in the proof of (4.7), we have δ(G(n, p)) ≤ k− 1. And we can conclude

that, in addition to a vertex with degree δ(GM) ≤ k−1, there are ℓ−2 other vertices

in GM with degree at most k. Let U be the vertex set consisting of the above ℓ− 1

vertices and L be the set of the edges incident to any vertex of U , then |L| < k(ℓ−1)

and GM − L has at least ℓ components. This is a contradiction to our assumption
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that λℓ(GM) ≥ k(ℓ− 1). Therefore, (4.12) holds.

Acknowledgement. We are in great debt to the anonymous referees for their

patience and numerous detailed suggestions.

Ran Gu was partially supported by National Natural Science Foundation of China

(No. 11701143). Xiaofeng Gu was partially supported by a grant from the Simon-

s Foundation (# 522728). Yongtang Shi was partially supported by the National

Natural Science Foundation of China (No. 11922112), Natural Science Foundation of

Tianjin (Nos. 20JCZDJC00840, 20JCJQJC00090). Hua Wang was partially support-

ed by the Simons Foundation (# 245307).

References

[1] N. Alon, Tough ramsey graphs without short cycles, J. Algebraic Combin. 4(3)

(1995) 189–195.

[2] N. Alon, J. Spencer, The Probabilistic Method, Wiley-Interscience Series in Dis-

crete Mathematics and Optimization. John Wiley & Sons, Inc., third edition,

2008.

[3] D. Bauer, H. J. Broersma, E. Schmeichel, Toughness of graphs - a survey, Graphs

Combin. 22 (2006) 1–35.

[4] F.T. Boesch, S. Chen, A generalization of line connectivity and optimally invul-

nerable graphs, SIAM J. Appl. Math. 34 (1978) 657–665.

[5] B. Bollobás, The evolution of sparse graphs, Graph theory and combinatoric-

s: proceedings of the Cambridge Combinatorial Conference, in honour of Paul
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