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Abstract

In an edge-colored graph G, a subgraph is rainbow if all its edges have different

colors. A strongly edge-colored graph is an edge-colored graph in which each path of

length three is rainbow. A cycle C in an edge-colored graph G of order n is called

a rainbow Hamiltonian cycle if the cycle is rainbow and its length is n. An edge-

colored graph G of order n is rainbow vertex(edge)-pancyclic if each vertex(edge) of

G is contained in a rainbow cycle of length k for each k with 3 ≤ k ≤ n. Cheng et al.

in 2019 showed that every strongly edge-colored graph G of order n with minimum

degree δ ≥ 2n
3 contains a rainbow Hamiltonian cycle. Later in 2021, Wang et al.

extended this result and showed that every strongly edge-colored graph G of order n

with minimum degree δ ≥ 2n
3 is rainbow vertex-pancyclic. In this paper, we further

show that every strongly edge-colored graph G of order n with minimum degree

δ ≥ 2n+1
3 is rainbow edge-pancyclic. Moreover, from the proof we get a polynomial

time algorithm for every given edge e in any such graph G to find a rainbow l-cycle

for each 3 ≤ l ≤ n that contains the edge e.

Keywords: Rainbow; Strongly edge-colored graph; Rainbow Hamiltonian cycle;

Rainbow vertex(edge)-pancyclic.
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1 Introduction

In this paper, we only consider finite, undirected and simple graphs. Let G be a graph

consisting of a vertex set V (G) and an edge set E(G). We use d(v) to denote the number

1Supported by NSFC No.12131013 and 11871034.
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of edges incident to a vertex v in G, called the degree of v in G. Furthermore, we use

δ(G) to denote the minimum value of d(v) over all vertices v in G, called the minimum

degree of G. The length of a path or a cycle is the number of edges on it. We call a

cycle(path) of length k a k-cycle(path). For a vertex subset X ⊆ V (G), we denote by

G[X] the subgraph of G induced by X. For two distinct vertex subsets X and Y of G, we

use E(X, Y ) to denote the edge subset of G such that one end of each edge of E(X, Y ) in

X and the other end in Y . An edge-coloring of G is a mapping c : E(G) → N, where N
is a color set. An edge-colored graph is a graph with an edge-coloring. In an edge-colored

graph G, we use c(e) to denote the color of an edge e of G and c(G) to denote the set

of colors assigned to the edges of G. A subgraph is rainbow (properly colored) in an

edge-colored graph G if any two (adjacent) edges of the subgraph have different colors. A

strongly edge-coloring of G is an edge-coloring such that every path of length three in G is

rainbow. A cycle C in an edge-colored graph G of order n is called a rainbow Hamiltonian

cycle if C is rainbow and its length is n. An edge-colored graph of order n is rainbow

vertex(edge)-pancyclic if each vertex(edge) of G is contained in a rainbow cycle of length

k for each k with 3 ≤ k ≤ n. Let dc(v) denote the number of different colors on the edges

incident with a vertex v in an edge-colored graph G, called the color-degree of v in G, and

let δc(G) denote the minimum value of dc(v) over all vertices v in G, called the minimum

color-degree of G. For notation and terminology not defined here, we refer the reader to

[2].

The classical Dirac’s theorem states that every graph G of order n with minimum

degree δ ≥ n
2

contains a Hamiltonian cycle. Inspired by this famous theorem, Hendry in

[7] showed that every graphG of order n with minimum degree δ ≥ n+1
2

is vertex-pancyclic.

Recently, the problems on the existences of properly colored cycles and rainbow cycles in

an edge-colored graph attracted much attention, and thus a lot of work have been done

extensively. For more details, the reader can find results on the properly colored cycles

in [6, 9, 11, 12, 14] and on the rainbow cycles in [4, 5, 8]. For the edge-colored version

of Dirac’s problem, Lo in [10] proved the the following asymptotic result by probabilistic

method.

Theorem 1.1. [10] For any ε > 0, there is an integer n0 such that every edge-colored

graph G with n ≥ n0 vertices and δc(G) ≥ (2
3

+ ε)n contains a properly edge-colored cycle

of length k for all 3 ≤ k ≤ n.

In 2019, Cheng et al. in [3] considered the problem of the existence of rainbow Hamil-

tonian cycles in strongly edge-colored graphs and proposed the following conjecture.

Conjecture 1.2. [3] Every strongly edge-colored graph G with n vertices and minimum

degree δ ≥ n+1
2

has a rainbow Hamiltonian cycle.

They constructed a class of graphs in [3] to show that the lower bound of Conjecture
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1.2 is tight if it was true. To support the correctness of Conjecture 1.2, they proved the

following result.

Theorem 1.3. [3] Let G be a strongly edge-colored graph G with n vertices and minimum

degree δ. If δ ≥ 2n
3

, then G has a rainbow Hamiltonian cycle.

In fact, Bondy in [1] stated a significant conjecture that almost any condition that

implies a graph being Hamiltonian will imply the graph being pancyclic, possibly with a

well defined class of exceptional graphs. Hence, Wang et al. in [13] considered the rainbow

vertex-pancyclicity of strongly edge-colored graphs under the condition of Theorem 1.3,

and they got the following result.

Theorem 1.4. [13] Let G be a strongly edge-colored graph G with n vertices and minimum

degree δ. If δ ≥ 2n
3

, then G is rainbow vertex-pancyclic.

Inspired by the above results, we consider the rainbow edge-pancyclicity of strongly

edge-colored graphs further in this paper, and obtain the following result.

Theorem 1.5. Let G be a strongly edge-colored graph G of order n with minimum degree

δ. If δ ≥ 2n+1
3

, then G is rainbow edge-pancyclic. Furthermore, for every edge e of G, one

can find a rainbow l-cycle containing e for each l with 3 ≤ l ≤ n in polynomial time.

As one can see that for the results in both [3] and [13] the authors did not discuss the

sharpness of the lower bounds for the minimum degree. This is so because it could be

very difficult to get the best possible lower bounds. For us, the same problem exists, too.

So, we also cannot construct examples to show the sharpness of our result, at least at the

moment.

From the proof of Theorem 1.4 in [13], we can also get a polynomial time algorithm to

find a rainbow l-cycle containing v for each l with 3 ≤ l ≤ n.

Corollary 1.6. Let G be a strongly edge-colored graph G of order n with minimum degree

δ ≥ 2n
3

. Then for every vertex v of G, one can find a rainbow l-cycle containing v for

each l with 3 ≤ l ≤ n in polynomial time.

The rest of the paper is to give a proof of our this result.

2 Proof of Theorem 1.5

Before proving Theorem 1.5, we first introduce more useful notation and lemmas.

Let G be a strongly edge-colored graph with an edge-coloring c. For every vertex v of

G, the color neighborhood of v in G, denoted by CNG(v), is defined as the set of colors
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assigned to the edges that are incident to v. When there is no confusion, we write CN(v)

instead of CNG(v). For a subgraph H of G, c(H) denotes the set of colors used on the

edges of H. Let C = v1v2 · · · vlv1 be a rainbow cycle in G. We call a color f a C-color

(C̃-color) if f ∈ c(C) (f /∈ c(C)). An edge e is called a C-color edge (C̃-color edge)

if c(e) ∈ c(C) (c(e) /∈ c(C)). For any two vertices x and y, we say that x and y are

C-adjacent (C̃-adjacent) if c(xy) ∈ c(C) (c(xy) /∈ c(C)). For any two disjoint vertex

subsets V1 and V2, we use EC(V1, V2) and EC̃(V1, V2) to denote the C-color edges and

C̃-color edges of E(V1, V2), respectively. Similarly, for two subgraphs H1 and H2 of G,

we use EC(H1, H2) and EC̃(H1, H2) to denote EC(V (H1), V (H2)) and EC̃(V (H1), V (H2)),

respectively. Choose two vertices vi and vj in C, we use viCvj to denote the rainbow path

vivi+1 · · · vj−1vj on C, where all the subscripts of vertices are taken by mod l.

Lemma 2.1. Let G be a strongly edge-colored graph of order n ≥ 5 with minimum degree

δ ≥ 2n+1
3

. Then each edge of G is contained in rainbow cycles of lengths 3, 4 and 5,

respectively.

Proof. It is straightforward to deduce that each edge of G is contained in a rainbow

triangle. If n ≤ 6, thenG is a rainbow complete graph and it is not difficult to check thatG

is rainbow edge-pancyclic. Next, we consider n ≥ 7. Choose an arbitrary edge xy, and let

xyzx be a rainbow triangle containing xy. Note that d(x)+d(z)−n ≥ 4n+2
3
−n = n+2

3
≥ 3.

Then there is a vertex w such that w ∈ N(x) ∩ N(z) − {y} in G. Clearly, xyzwx is a

rainbow cycle of length four in G.

Finally, we show that xy is contained in a rainbow cycle of length five. Since d(x) +

d(w)−n ≥ 4n+2
3
−n = n+2

3
≥ 3, there is a vertex u such that u ∈ N(x)∩N(w)−{y, z} in

G. Hence, xyzwux is a rainbow cycle of length five in G, and the result thus follows.

Let G be an edge-colored graph and C = v1v2 · · · vtv1 be a rainbow cycle in G. A vertex

u ∈ V (G)− V (C) is called an extendable vertex respect to v1v2 if u is C̃-adjacent to two

successive vertices vi and vi+1 in {v2, v3, ..., vt, v1 = vt+1}. It is clear that viuvi+1Cvi is a

rainbow (t+ 1)-cycle containing v1v2 in G if u is an extendable vertex respect to v1v2.

Lemma 2.2. Let G be a strongly edge-colored graph of order n with minimum degree

δ ≥ 2n+1
3

. Then each edge of G is contained in a rainbow cycle of length l for each l with

3 ≤ l ≤ n+8
3

. Furthermore, one can find these rainbow cycles for each fixed edge of G in

polynomial time.

Proof. In fact, choose an arbitrary edge v1v2. To prove that each edge of G is contained

in a rainbow cycle of length l for each l with 3 ≤ l ≤ n+8
3

. We only need to show that

v1v2 is contained in a rainbow (t+ 1)-cycle if v1v2 is contained in a rainbow t-cycle for all

3 ≤ t ≤ n+5
3

in G. Let C = v1v2 · · · vtv1 be a rainbow cycle in G. From Lemma 2.1, we

consider t ≥ 5. Suppose that c is the strong edge-coloring of G and c(vivi+1) = i, where
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1 ≤ i ≤ t and vt+1 = v1. Next, we find a rainbow (t + 1)-cycle containing the edge v1v2

in G.

We assert that there is an extendable vertex respect to v1v2 in V (G) − V (C). If not,

assume that Ni is the set of vertices on C which are adjacent to vi and Mi is the set of

vertices in V (G)−V (C) which are C̃-adjacent to vi. Note that the color j is not in CN(vi)

if vj ∈ Ni, where 1 ≤ j ≤ i − 2 or i + 1 ≤ j ≤ t. This implies that there are at least

(|Ni|−1) C-colors that do not appear in CN(vi). Then the number of C-colors included in

CN(vi) is at most t−|Ni|+ 1. Combining the fact that c(vivi+1) = i and c(vi−1vi) = i−1

belong to CN(vi), we can get that |EC(vi, V (G)−V (C))| ≤ t−|Ni|+ 1−2 = t−|Ni|−1.

Since |E(vi, V (G)− V (C))| ≥ δ − |Ni|, we have

|Mi| = |EC̃(vi, V (G)− V (C))| = |E(vi, V (G)− V (C))| − |EC(vi, V (G)− V (C))|,

where 1 ≤ i ≤ t. Then,

|Mi| ≥ δ − |Ni| − (t− |Ni| − 1) = δ − t+ 1.

The hypothesis that G contains no extendable vertex implies that M2 ∩M3 = ∅. Since

|M2|+ |M3|+ t ≤ n, we have t ≥ 2δ + 2− n ≥ n+8
3

, a contradiction. Then M2 ∩M3 6= ∅.
Clearly, each vertex of M2 ∩M3 is an extendable vertex and we can find an extendable

vertex u ∈ V (G)− V (C) in polynomial time. Hence, v2uv3Cv2 is a rainbow (t+ 1)-cycle

containing v1v2 in G, the result thus follows.

Lemma 2.3. Let G be a strongly edge-colored graph of order n with δ ≥ 2n+1
3

. If an

edge e of G is contained in a rainbow t-cycle in G, then e is also contained in a rainbow

(t + 1)-cycle in G, where t ∈ {n − 2, n − 1}. Furthermore, one can find the rainbow

(t+ 1)-cycle in polynomial time.

Proof. Assume that c is the strong edge-coloring of G, C = v1v2 · · · vn−2v1 is a rainbow

cycle, and c(vivi+1) = i, where 1 ≤ i ≤ t and vt+1 = v1. Without loss of generality,

suppose e = v1v2. Next, we need to show that there is a rainbow (n− 1)-cycle containing

v1v2 in G.

We assert that there is an extendable vertex respect to v1v2 in V (G) − V (C). If

not, choose an arbitrary vertex u ∈ V (G) − V (C). Let p = |EC(u, V (C))| and q =

|EC̃(u, V (C))|. Then,

p+ q = |E(u, V (C))| ≥ δ − 1 ≥ 2n− 2

3
.

For each edge uvi, note that the colors i − 1 and i cannot appear in CN(u). Hence,

there are at least (p + q) C-color edges that are not incident to u, which means that

p ≤ n− 2− (p+ q). Then,

2p+ q ≤ n− 2. (1)
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Assume that vi1 , vi2 , ..., viq are all the vertices in C that are C̃-adjacent to u, where

1 ≤ i1 < i2 · · · < iq ≤ t. Then the hypothesis that there is no extendable vertex respect

to v1v2 in V (G)−V (C) implies that u is not C̃-adjacent to two successive vertices vi and

vi+1 in C for all 2 ≤ i ≤ t. Therefore, we have |ij+1 − ij| ≥ 2 for all j ∈ {2, 3, ..., q − 1}.
Then i1 − 1, i1, i2, i3 − 1, i3, ..., iq − 1, iq are pairwise distinct. Furthermore, the definition

of a strong edge-coloring implies that

{i1 − 1, i1, i2, i3 − 1, i3, ..., iq − 1, iq} ∩ CN(u) = ∅.

Hence, we have 2q − 1 + p ≤ n − 2. Then 2q + p ≤ n − 1. From Inequality (1), we

know that 3|E(u, V (C))| = 3p + 3q ≤ 2n − 3. Then, |E(u, V (C))| ≤ 2n−3
3

. However,
2n+1

3
≤ d(u) ≤ |E(u, V (C))| + 1 ≤ 2n

3
, a contradiction. Suppose that u ∈ V (G) − V (C)

is an extendable vertex respect to v1v2 and u is C̃-adjacent to two successive vertices vi

and vi+1 in C, where 2 ≤ i ≤ t. Then viuvi+1Cvi is a rainbow (n − 1)-cycle containing

v1v2 in G. Clearly, we can find the above rainbow in polynomial time. Similarly, we can

show that for the case t = n− 1, and the result also follows.

Now we are ready to give a proof of our Theorem 1.5.

Proof of Theorem 1.5: Choose an arbitrary edge e∗ = v1v2 in G. In fact, To prove

that G is rainbow edge-pancyclic, we only need to prove that v1v2 is contained in a

rainbow (t + 1)-cycle if v1v2 is contained in a t-cycle in G for each 3 ≤ t ≤ n − 1. Let

C = v1v2 · · · vtv1 be a rainbow t-cycle in G. From Lemmas 2.2 and 2.3, we only need to

consider the case that n+8
3
≤ t ≤ n− 3. Without loss of generality, suppose that c is the

strong edge-coloring of G and c(vivi+1) = i, where 1 ≤ i ≤ t and vt+1 = v1.

If there is an extendable vertex respect to v1v2 in V (G)− V (C), by a similar argument

to the proofs of Lemmas 2.2 and 2.3, the result follows. Hence, we suppose there is no

extendable vertex respect to v1v2 in V (G)− V (C) in the following.

Let H = Km be a maximal complete subgraph in G[V (G) \ V (C)] such that each

edge of H is a C̃-color edge and let F be the induced subgraph of the vertex subset

V (G) \ V (C) \ V (H). Choose an arbitrary vertex u ∈ H, and set pu = |EC̃(u,C)|,
qu = |EC(u,C)|, ru = |EC̃(u, F )| and su = |EC(u, F )|. Then,

d(u) = pu + qu + ru + su + (m− 1) ≥ δ. (2)

For each edge uvi, note that the colors i − 1 and i cannot appear in CN(u). Hence,

there are at least (pu + qu) C-color edges that are not incident to u, which means that

qu + su ≤ t− (pu + qu). Then,

2qu + su + pu ≤ t. (3)

Assume that vi1 , vi2 , ..., vipu are all the vertices in C that are C̃-adjacent to u, where

1 ≤ i1 < i2 · · · < ipu ≤ t. Note that if u is C̃-adjacent to v1 and v2, then v1uv2Cv1 is
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a rainbow (t + 1)-cycle that does not contain the edge v1v2. The fact that u is not an

extendable vertex respect to v1v2 implies that |ij+1 − ij| ≥ 2 for all j ∈ {2, 3, ..., pu − 1}.
Then i1−1, i1, i2, i3−1, i3, ..., ipu−1, ipu are pairwise distinct. Furthermore, the definition

of a strong edge-coloring implies that

{i1 − 1, i1, i2, i3 − 1, i3, ..., ipu − 1, ipu} ∩ CN(u) = ∅.

Hence, we have

2pu + qu + su ≤ t+ 1. (4)

Noticing that V (F ) = V (G) \ V (C) \ V (H), we have ru + su ≤ n − t −m. Combining

with Inequalities (3) and (4), we can get

3qu + 3pu + 3su + ru ≤ n+ t+ 1−m.

Next, set P =
∑

u∈H pu, Q =
∑

u∈H qu, R =
∑

u∈H ru and S =
∑

u∈H su. Then, we have

3Q+ 3P + 3S +R ≤ m(n+ t+ 1−m). (5)

The maximality of H implies that each vertex of F is C̃-adjacent to at most m−1 vertices

of H. Then, we have

R ≤ (m− 1)(n− t−m). (6)

Note that

mδ ≤ P +Q+R + S +m(m− 1). (7)

Hence, using Inequalities (2), (5) and (6), we have

3mδ ≤ 3P + 3Q+ 3R + 3S + 3m(m− 1)

≤ m(n+ t+ 1−m) + 2(m− 1)(n− t−m) + 3m(m− 1)

≤ n(3m− 2) + t(2−m).

We can see that if m = 1, then t ≥ n, a contradiction. If m = 2, then δ ≤ 2n
3

, a

contradiction. In conclusion, we have m ≥ 3. Let H∗ be an induced subgraph by all

the C̃-color edges of G[V (G) \ V (C)]. Since we can get H∗ by visiting all edges of

G[V (G) \ V (C)], and then we can easily find a maximal clique in a graph in polynomial

time. Hence, we can construct H from H∗ in polynomial time.

Since H is complete, the definition of a strong edge-coloring implies that E(H) ∪
E(H,F ∪ C) is rainbow. We can see that

Q+ S ≤ t. (8)

We assert that

P ≥ t. (9)
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If not, we suppose P ≤ t− 1. From Inequalities (6), (7) and (8), we have

mδ ≤ P +Q+ S +R +m(m− 1) ≤ 2t− 1 + (m− 1)(n− t),

which means that m(n− t− δ) ≥ n+ 1− 3t. If n− t− δ < 0, recalling that m ≥ 3, then

3(n− t− δ) ≥ m(n− t− δ) ≥ n+ 1− 3t. This can deduce that δ ≤ 2n−1
3

, a contradiction.

If n− t− δ ≥ 0, then t ≤ n
3
, which contradicts Lemma 2.2.

Algorithm 1 Find a sequence of l disjoint paths P1, P2, ..., Pl respect to a rainbow cycle

C = v1v2 · · · vtv1 and a rainbow clique Km in a strongly edge-colored graph G.

Input: A strongly edge-colored graph G, a rainbow cycle C = v1v2 · · · vtv1 and a rainbow

clique H = Km such that C and H are disjoint.

Output: A sequence of l disjoint paths P1, P2, ..., Pl such that Pi is a subgraph of C.

1: Set a1 be the smallest subscript such that EC̃(va1 , H) 6= ∅ for 1 ≤ a1 ≤ t.

2: if a1 = 1 then

3: Set vk = vt+2−k for all 2 ≤ k ≤ t, a1 = 2 and go to 4.

4: if a1 ≥ 2 then

5: Set j = 1.

6: if aj +m < t+ 1 then

7: Set Pj = vajvaj+1 · · · vaj+m
8: if EC̃(v,H) = ∅ for all v ∈ {vaj+m+1, ..., vt, v1} then
9: Set l = j.

10: return P1, P2, ..., Pl.

11: else Set j = j + 1, aj be the smallest subscript such that EC̃(vaj , H) 6= ∅ for

aj−1 +m+ 1 ≤ aj ≤ t+ 1 and go to 6.

12: else Set Pj = vajvaj+1 · · · vtv1 and l = j.

13: return P1, ..., Pl.

By Algorithm 1, we can construct a sequence of disjoint paths P1, P2, ..., Pl respect

to C and H. Firstly, we prove the correctness of Algorithm 1. Clearly, Inequality (9)

implies that such an a1 exists. Since |V (C)| is finite and P1, P2, ..., Pl are pairwise disjoint,

Algorithm 1 will stop and output a result in polynomial time. Secondly, from Algorithm

1 we can see that

Pi =

{
vaivai+1 · · · vai+m, 1 ≤ i ≤ l − 1;

vaivai+1 · · · vtv1, i = l.

Note that e∗ /∈ E(Pi) for all 1 ≤ i ≤ l.

For any two vertices u,w ∈ H, we call (u,w) an extendable pair respect to v1v2 if u and

w are C̃-adjacent to two vertices vj and vk of C such that 2 ≤ k − j ≤ m+ 1 and vjCvk

contains no v1v2. Note that if we can find an extendable pair (u,w) respect to v1v2 in H,
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without loss of generality, assume that uvj, wvk ∈ EC̃(H, {vj, vk}) and 2 ≤ k− j ≤ m+ 1.

Clearly, vjuQwvkCvj is a rainbow (t+1)-cycle containing v1v2, where Q is a rainbow path

of length (k − j − 1) in H. Hence, we only need to show that there is an extendable pair

respect to v1v2 in H in the following. If not, recalling that there is no extendable vertex

in H, we show the following claim.

Claim 1. (1) |EC̃(Pi, H)| ≤ m if |V (Pi)| ≤ 2 for all 1 ≤ i ≤ l;

(2) |EC̃(Pi, H)| ≤ m + 1 for all 1 ≤ i ≤ l. In particular, EC̃(vai+m+1, H) = ∅ if

|EC̃(Pi, H)| = m+ 1 for all 1 ≤ i ≤ l − 1.

Proof. It is clear that |EC̃(Pi, H)| ≤ m if |V (Pi)| = 1. Suppose that |V (Pi)| = 2 and

|EC̃(Pi, H)| ≥ m+1. Then there is at least one vertex w ∈ H such that |EC̃({vai , vai+1}, w)|
= 2, which means that w is an extendable vertex respect to v1v2, a contradiction.

Next, we prove statement (2). In fact, we only need to show it for the case i = 1, i.e.,

|EC̃(P1, H)| ≤ m+ 1.

Firstly, we assume that a1 + m < t + 1 and |EC̃(va1 , H)| ≥ 2. Let h1 and h2 be two

vertices of H such that va1h1, va1h2 ∈ EC̃(va1 , H).

We assert that EC̃(va1+i, H) = ∅ for each vertex va1+i with 2 ≤ i ≤ m. If not, then

there exists a vertex w in H such that va1+iw ∈ EC̃(P1, H). Without loss of generality,

say h1 6= w. Then (w, h1) is an extendable pair respect to v1v2, a contradiction. Hence,

EC̃(P1, H) = EC̃({va1 , va1+1}, H). If |EC̃({va1 , va1+1}, H)| ≥ m+ 1, then there is at least

one vertex w ∈ H such that |EC̃({va1 , va1+1}, w)| = 2. Then w is an extendable vertex

respect to v1v2, a contradiction. Thus, |EC̃(P1, H)| = |EC̃({va1 , va1+1}, H)| ≤ m.

Secondly, we suppose that a1 +m < t+1 and |EC̃(va1 , H)| = 1, say va1h0 ∈ EC̃(va1 , H).

If |EC̃(va1+1, H)| = 0, then |EC̃(va1+i, H)| ≤ 1 for all 2 ≤ i ≤ m. Otherwise, suppose

that there is an integer 2 ≤ i ≤ m such that |EC̃(va1+i, H)| ≥ 2. By a similar discussion,

we can get a contradiction. Then |EC̃(P1, H)| ≤ m.

If |EC̃(va1+1, H)| = 1, say va1+1h1 ∈ EC̃(va1+1, H). Clearly, h1 6= h0. For each

vertex va1+i with 2 ≤ i ≤ m, if EC̃(va1+i, H) 6= ∅, say va1+iw ∈ EC̃(va1+i, H) and

w 6= h1. Consequently, (w, h1) is an extendable pair respect to v1v2, a contradiction.

Thus, EC̃(va1+i, H) = ∅ for 2 ≤ i ≤ m. Then, |EC̃(P1, H)| ≤ 2.

If |EC̃(va1+1, H)| ≥ 2, then by a similar discussion, we have |EC̃(P1 \ va1 , H)| ≤ m.

Thus, |EC̃(P1, H)| ≤ m + 1. Similarly, we can show that |EC̃(P1, H)| ≤ m + 1 when

a1 +m ≥ t+ 1. In conclusion, we have |EC̃(Pi, F )| ≤ m+ 1 for all 1 ≤ i ≤ l.

Finally, we prove the second half of statement (2). It is clear that l ≥ 2. From the above

discussion, we can find that |EC̃(va1+1, H)| ≥ 2 if |EC̃(P1, H)| = m + 1. Let w1 and w2

be two vertices of H such that va1+1w1, va1+1w2 ∈ EC̃(va1+1, H). If EC̃(va1+m+1, H) 6= ∅,
then there is at least one vertex w ∈ H such that va1+m+1w ∈ EC̃(va1+m+1, H). Without
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loss of generality, set w 6= w1. Then (w,w1) is an extendable pair respect to v1v2, a

contradiction. The claim thus follows.

If l = 1, then P = |EC̃(P1, H)| ≤ m + 1 from Claim 1. Combining with Inequalities

(6), (7) and (8), we can get that

mδ ≤ P +Q+R + S +m(m− 1)

≤ m(n− t+ 1) + 2t− n+ 1.

This means that m(δ+ t− n− 1) ≤ 2t− n+ 1. From Lemma 2.2, we know that t ≥ n+8
3

.

Then δ + t− n− 1 > 0. Recalling that m ≥ 3, we have

2t− n+ 1 ≥ m(δ + t− n− 1) ≥ 3(δ + t− n− 1).

From Lemma 2.1, we have t ≥ 5. Consequently, we can conclude that δ ≤ 2n+4−t
3
≤ 2n−1

3
,

a contradiction.

Next, assume l ≥ 2. From the definition of the sequence P1, P2, ..., Pl, we can see that

|V (Pi)| = m + 1 for all 1 ≤ i ≤ l − 1 and 1 ≤ |V (Pl)| ≤ m + 1. Then, from Claim 1, we

have

P = |EC̃(C,H)| =
l−1∑
i=1

|EC̃(Pi, H)|+ |EC̃(Pl, H)|

≤
l−1∑
i=1

|V (Pi)|+ |EC̃(Pl, H)|

≤ t− |V (Pl)| − (a1 − 2)− (l − 1) + |EC̃(Pl, H)|
≤ t− a1 − l + 3− |V (Pl)|+ |EC̃(Pl, H)|.

Now we consider the following two cases.

Case 1. |V (Pl)| ≥ 2.

From Claim 1, we know that |EC̃(Pl, H)| ≤ m + 1 if |V (Pl)| ≥ 3 and |EC̃(Pl, H)| ≤ m

if |V (Pl)| = 2. Then −|V (Pl)| + |EC̃(Pl, H)| ≤ m − 2. Recalling that l ≥ 2 and a1 ≥ 2,

we have P ≤ t+m− 3. Using inequalities (6), (7) and (8), we can get that

mδ ≤ P +Q+R + S +m(m− 1)

≤ t+m− 3 + t+ (m− 1)(n− t−m) +m(m− 1)

≤ 3t− n− 3 +m(n− t+ 1).

Then we have m(δ − n + t − 1) ≤ 3t − n − 3. Recalling that t ≥ n+8
3

and δ ≥ 2n+1
3

, we

can conclude that δ − n+ t− 1 ≥ 2. The result m ≥ 3 implies that

3(δ − n+ t− 1) ≤ m(δ − n+ t− 1) ≤ 3t− n− 3.
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Then δ ≤ 2n
3

, which contradicts the assumption that δ ≥ 2n+1
3

.

Case 2. |V (Pl)| = 1.

From Claim 1, we know that |EC̃(Pl, H)| ≤ m. Recalling that a1 ≥ 2 and l ≥ 2, we

have P ≤ t+m− 2. Using Inequalities (6), (7) and (8), we can get that

mδ ≤ P +Q+R + S +m(m− 1)

≤ t+m− 2 + t+ (m− 1)(n− t−m) +m(m− 1)

≤ 3t− n− 2 +m(n− t+ 1).

Then we have

m(δ − n+ t− 1) ≤ 3t− n− 2.

Recalling that t ≥ n+8
3

and δ ≥ 2n+1
3

, we can conclude that δ − n + t− 1 ≥ 2. If m ≥ 4,

then 3t− n− 2 ≥ 4(δ − n+ t− 1). Hence, δ ≤ 3n−t+2
4

. Using the result t ≥ n+8
3

, we can

get δ ≤ 4n−1
6

< 2n+1
3

, a contradiction. Next, we suppose m = 3. Thus, we can conclude

that δ ≤ 2n+1
3

.

The condition δ ≥ 2n+1
3

implies that δ = 2n+1
3

, which means that a1 = 2, l = 2,

P1 = v2v3v4v5, P2 = v1 and |EC̃(P2, H)| = |EC̃(v1, H)| = m = 3. Then, P ≤ t− a1 − l +

3− |V (P2)|+ |EC̃(P2, H)| = t+ 1. Combining Inequality (9), we have t ≤ P ≤ t+ 1.

We assert that |EC̃(P1, H)| ≥ 3. If not, then P ≤ |EC̃(P1, H)| + |EC̃(P2, H)| ≤ 5.

Hence, using Inequalities (6), (7) and (8), we can get that

3δ ≤ P +Q+R + S +m(m− 1)

≤ 5 + t+ 2(n− t− 3) + 6

≤ 2n− t+ 5.

Since t ≥ 5, we have δ ≤ 2n
3

, a contradiction. Then, from Claim 1, we have 3 ≤
|EC̃(P1, H)| ≤ 4.

v1

v2

v3

v4

v5

v6

x1 x2

x3
C

H

Figure 1: n = 9, |E
C̃
(v1, H)| = 3 and t = 6.

Now we assume that V (H) = {x1, x2, x3}. If |EC̃(P1, H)| = 3, then P = 6 and t = 5

or 6. If P = 6 and t = 5, then n ≥ t + m = 8. Recalling that t ≥ n+8
3

, we have n ≤ 7,

a contradiction. If P = t = 6, then n ≥ t + m = 9. Combining the fact that t ≥ n+8
3

,
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we have 9 ≤ n ≤ 10. If n = 9, then d(v4) ≥ 7. Since (V (C), V (H), V (F )) is a vertex

partition of G, we can obverse that V (F ) = ∅. Thus, E(v4, H) 6= ∅, say v4x1 ∈ E(v4, H);

see Figure 1. The definition of a strong edge-coloring and the fact that |EC̃(v1, H)| = 3

imply that (x1, x3) is an extendable pair respect to v1v2 and v1v2v3v4x1x2x3v1 is a rainbow

7-cycle contains v1v2 in G, a contradiction. Similarly, we can show it for the case n = 10.

If |EC̃(P1, H)| = 4, then P = 7 and t = 6 or 7. If P = 7 and t = 6, by a similar

argument for the case that P = t = 6, we can find a rainbow cycle of length seven

containing e∗ in G, a contradiction. If P = t = 7, using Inequalities (6), (7) and (8), we

can get that 3δ ≤ P + Q + R + S + m(m − 1) ≤ 7 + t + 2(n − 7 − 3) + 6 = 2n, which

means that δ ≤ 2n
3

, a contradiction.

Combining with the above two cases, we prove that there is an extendable pair respect

to v1v2 in H. Clearly, we can find an extendable pair by visiting all the vertex pairs of H.

The operation can be finished in polynomial time, and then we can construct a rainbow

(t+ 1)-cycle containing v1v2 in G in polynomial time, and the result thus follows.

To end of this section, we give an algorithm for finding the (n − 2) rainbow cycles of

different lengths containing a given edge in a strongly edge-colored graph of order n. The

correctness of the algorithm is contained in the proof of Theorem 1.5.
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Algorithm 2 Find (n− 2) rainbow cycles of different lengths containing a given edge in

a strongly edge-colored graph of order n.

Input: A strongly edge-colored graph G of order n with minimum degree δ ≥ 2n+1
3

and

a given edge e∗ = v1v2 ∈ E(G).

Output: (n − 2) rainbow cycles Ci (3 ≤ i ≤ n) such that Ci contains v1v2 and the

length of Ci is i in G.

1: Set i = 3.

2: Choose a vertex v3 such that v3 ∈ N(v1) ∩N(v2).

3: Set Ci = v1v2 · · · viv1 and e∗ = v1v2.

4: if there is an extendable vertex v ∈ V (G)− V (Ci) respect to v1v2 then

5: Choose an extendable vertex v ∈ V (G) − V (Ci) respect to v1v2 such that v is

C̃i-adjacent to vj and vj+1 for 2 ≤ j ≤ t.

6: Set Ci+1 = vjvvj+1Cvj, i = i+ 1 and go to 3.

7: else

8: if n+8
3
≤ i ≤ n− 2 then

9: Choose a maximal complete subgraph H = Km in G[V (G) \ V (Ci)] such that

each edge of H is a C̃-color edge and m ≥ 3.

10: Get a sequence of disjoint paths {P1, P2, ..., Pl} respect to Ci and H in G by

Algorithm 1.

11: for 1 ≤ j ≤ l do

12: if there is an extendable pair respect to v1v2 in H. then

13: Choose an extendable pair (uα, uβ) respect to v1v2 in H and two vertices

vα, vβ ∈ V (Ci) such that vαuα, vβuβ ∈ EC̃i({vα, vβ, }H) and |β − α| ≥ 2.

14: Choose a (β − α− 1)-path P ∗ from uα to uβ in H.

15: Set Ci+1 = vαuαP
∗uβvβCvα, i = i+ 1 and go to 3.

16: return C3, C4, ..., Cn.

Acknowledgments

The authors are very grateful to the referees for their useful comments and suggestions,

which helped to improve the presentation of this paper.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

References

[1] J.A. Bondy, Pancyclic graphs, in: Pancyclic Graphs Proceedings of the Second

Louisiana Conference on Combinatorics, in: Graph Theory and Computing. Louisiana

13



State Univ. Baton Rouge, 1971, pp. 167-172.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer Graduate Texts in Mathematics,

Springer, Berlin, 2008.

[3] Y. Cheng, Q. Sun, T.S. Tan, G. Wang, Rainbow Hamiltonian cycles in strongly edge-

colored graphs, Discrete Math. 342(2019), 1186-11190.

[4] A. Czygrinow, T. Molla, B. Nagle, R. Oursler, On odd rainbow cycles in edge-colored

graphs, European J. Combin. 94(2021), 103316.

[5] S. Ehard, E. Mohr, Rainbow triangles and cliques in edge-colored graphs, European

J. Combin. 84(2020), 103037.

[6] S. Fujita, R. Li, S. Zhang, Color degree and monochromatic degree conditions for short

properly colored cycles in edge-colored graphs, J. Graph Theory 87(2018), 362-373.

[7] G.R.T. Hendry, Extending cycles in graphs, Discrete Math. 85(1990), 59-72.

[8] M. Kano, X. Li, Monochromatic and heterochromatic subgraphs in edge-colored

graphs – a survey, Graphs Combin. 24(2008), 237-263.

[9] R. Li, H. Broersma, S. Zhang, Vertex-disjoint properly edge-colored cycles in edge-

colored complete graphs, J. Graph Theory 94(2020), 476-493.

[10] A. Lo, An edge-colored version of Dirac’s theorem, SIAM J. Discrete Math.

28(1)(2014), 18-36.

[11] A. Lo, Properly colored Hamiltonian cycles in edge-colored complete graphs, Com-

binatorica 36(2016), 471-492.

[12] G. Wang, T. Wang, G. Liu, Long properly colored cycles in edge-colored complete

graphs, Discrete Math. 324(2014), 56-61.

[13] M. Wang, J. Qian, Rainbow vertex-pancyclicity of strongly edge-colored graphs, Dis-

crete Math. 344(2021), 112164.

[14] A. Yeo, A note on alternating cycles in edge-colored graphs, J. Combin. Theory Ser.B

69(1997), 222-225.

14


