Lattice paths and ($n-2$)-stack sortable permutations

Cindy C.Y. Gu ${ }^{1}$ and Larry X.W. Wang ${ }^{2}$
${ }^{1}$ College of Science, Tianjin University of Technology
Tianjin 300384, P.R. China
${ }^{2}$ Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300171, P.R. China
Email: ${ }^{1}$ cindygutjut@gmail.com; ${ }^{2}$ wsw82@nankai.edu.cn

Abstract

We establish a bijection between the ($n-2$)-stack sortable permutations and the labeled lattice paths. Using this bijection, we directly give combinatorial proof for the log-concavity of the numbers of $(n-2)$-stack sortable permutations with k descents. Furthermore, we prove the the numbers of $(n-2)$-stack sortable permutations with k descents satisfy interlacing log-concavity. We also consider a conjecture proposed by Bóna that the sequences of the descents of t-stack sortable permutations of $[n]$ are Hilbert functions for any t and n. We prove this conjecture for $t=n-2$.

Keywords: $(n-2)$-stack sortable permutations, simplicial complex, log-concave, lattice path

AMS Classification: 05A20

1 Introduction

The objectives of this paper are to prove the interlacing log-concavity of the descent statistic of the $(n-2)$-stack sortable permutations and construct a simplicial complex \triangle whose f-vector is the sequences of the descent of the $(n-2)$-stack sortable permutations.

Let S_{n} denote the set of permutations on $[n]:=\{1,2, \ldots, n\}$ and suppose $\pi=$ $\pi_{1} \pi_{2} \cdots \pi_{n}$ is a permutation in S_{n}. The stack-sorting operation s can be defined on the set of all n-permutations as follows. Let $\pi=L n R$ be an n-permutation, with L and R denoting its substring before and after the maximal entry n, respectively. Let $s(\pi)=s(L) s(R) n$, where L and R are defined recursively by the same rule. A permutation π is called t-stack sortable if $s^{t}(\pi)$ is the identity permutation.

Let $W_{t}(n)$ denote the number of t-stack sortable permutations of length n. The study of stack-sorting problem is a major area of research, it began with Knuth's analysis [22], who proved that $W_{1}(n)$ is the Catalan number $C_{n}=\binom{2 n}{n} /(n+1)$. West [25] studied thoroughly this procedure and conjectured that $W_{2}(n)$ is $2(3 n)!/((n+1)!(2 n+1)!)$. This conjecture was first proved by Zeilberger [28]. Other proofs can be found in [17], [20]
and [21]. Duchi, Guerrini, Rinaldi [15] and Fang [16] gave different proofs that new combinatorial objects called "fighting fish" are counted by the numbers $W_{2}(n+1)$. In 2017, Defant [10] introduced "valid hook configurations" to count the cardinality of preimages of permutations under the stack sorting map. This approach further allowed Defant to generalize existing theorems about the stack-sorting map and prove new results, see [10] and [11]. Defant, Engen and Miller [12] showed that valid hook configurations of length n permutations are in bijective correspondence with certain weighted set partitions. Valid hook configurations and a generalization of stack sorting are also used to prove some results about free cumulants and classical cumulants involving colored binary plane trees [13].

There is very little known about t-stack-sortable permutations for $t \geq 3$. Úlfarsson [26] characterized 3-stack-sortable permutations in terms of new "decorated patterns". Albert, Bouvel and Féray[1] showed that for every $t \geq 1$, the set of t-stack-sortable permutations can be described by a sentence in a first-order logical theory which was called ToTo. Recently, Defant [14] gave a new proof of the Zeilberger's formula for the number $W_{2}(n)$ and counted 2-stack-sortable permutations according to different statistics. Furthermore, Defant also obtained a recurrence relation for $W_{3}(n)$.

One of the most important permutation statistics is that of the number of descents. A descent of a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ is an index $i \in\{2,3, \ldots, n-1\}$ such that $\pi_{i}>\pi_{i+1}$. Let $W_{t}(n, k)$ be the number of t-stack sortable permutations with k descents, and let

$$
W_{t, n}(x)=\sum_{k=0}^{n-1} W_{t}(n, k) x^{k}
$$

When $t=n-1$ and $t=1, W_{t, n}(x)$ reduced to the Eulerian polynomial and the Narayana polynomial, respectively. It is well known that they have only real zeros. Thus Bóna [3] raised the question if this is true for general t and proved that for any fixed n and t, the numbers $\left\{W_{t}(n, k)\right\}_{k=0}^{n-1}$ form a unimodal sequence. By using certain real-rootedness preserving linear operator, Brändén [8] proved the real-rootedness for $t=n-2$. Furthermore, Brändén obtained the real-rootedness of the polynomial $A_{n}(x)+k x A_{n-2}(x)$, where $A_{n}(x)$ is the Eulerain polynomials and $k>-2$ is a real number. Zhang [27] gave another proof of the above result by using the theory of s-Eulerian polynomials.

In Section 2, we first consider the log-concavity and the interlacing log-concavity of the descent statistic of the $(n-2)$-stack sortable permutations. Recall that a sequence $\left\{a_{n}\right\}_{n \geq 0}$ of real positive numbers is said to be log-concave if

$$
\begin{equation*}
a_{n}^{2} \geq a_{n+1} a_{n-1} \tag{1.1}
\end{equation*}
$$

holds for all $n \geq 1$. If a sequence $\left\{a_{n}\right\}_{n \geq 0}$ which has a combinatorial meaning is logconcave, then it would be ideal to provide a combinatorial proof, see [6, 7, 23] for some techniques that are used to prove the log-concavity of sequences. Chen, Wang and Xia
[9] gave the definition of interlacing log-concavity as follow. Let $\left\{P_{m}(x)\right\}$ be a sequence of polynomials, where

$$
P_{m}(x)=\sum_{i=0}^{m} a_{i}(m) x^{m}
$$

is a polynomial of degree m. Let

$$
r_{i}(m)=\frac{a_{i}(m)}{a_{i+1}(m)} .
$$

We say that the polynomials $P_{m}(x)(m \geq 0)$ are interlacingly log-concave if the ratios $r_{i}(m)$ interlace the ratios $r_{i}(m+1)$, that is,

$$
r_{0}(m+1) \leq r_{0}(m) \leq r_{1}(m+1) \leq r_{1}(m) \leq \cdots \leq r_{m-1}(m+1) \leq r_{m-1}(m) \leq r_{m}(m+1)
$$

Note that interlacing log-concavity is stronger than log-concavity. Chen, Wang and Xia [9] proved the Boros-Moll polynomials are interlacingly log-concave and gave a criterion for the interlacing log-concavity of the polynomials whose coefficients satisfying certain three term recurrence relations. As consequences, the interlacing log-concavity of the second kind of Stirling numbers, the Narayana numbers and the Whitney numbers are immediate. In a previous paper, the authors [19] proved the interlacing log-concavity of the Brenti's derangement polynomials and the Eulerian polynomials by a directly combinatorial injection. By a similar argument, we shall establish a bijection between the ($n-2$)-stack sortable permutations and the labeled lattice paths. Applying this construction, we give a combinatorial proof of the log-concavity and the interlacing log-concavity of the sequences $\left\{W_{n-2}(n, k)\right\}_{0 \leq k \leq n-1}$.

In Section 3, we shall prove that for $n \geq 1$, the sequences $\left\{W_{n-2}(n, k)\right\}_{0 \leq k \leq n-1}$ are Hilbert function. Recall that a simplicial complex is a collection of sets \triangle with the property that if $A \in \triangle$ and $B \subseteq A$ then $B \in \triangle$. We call the elements of \triangle the faces of \triangle. For $S \in \triangle$, the dimension of S is $|S|-1$. The dimension of \triangle is $\operatorname{dim}(\triangle) \stackrel{\text { def }}{=}\{|A|-1$: $A \in \triangle\}$. Given a simplicial complex \triangle of dimension $d-1$, we define

$$
f_{i-1}(\triangle) \stackrel{\text { def }}{=}|\{A \in \triangle:|A|=i\}|
$$

for $i=0,1, \ldots, d$, and call $\mathbf{f}(\triangle) \stackrel{\text { def }}{=}\left(f_{0}(\triangle), f_{1}(\triangle), \ldots, f_{d-1}(\triangle),\right)$ the f -vector of \triangle. It is known [24] that if $\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ is the f -vector of a simplicial complex then $\left\{1, f_{0}, \ldots, f_{d-1}\right\}$ is a Hilbert function.

Denote by $[n]$ the set $\{1,2, \ldots, n\}$. Gasharov [18] proved that there exists a simplicial complex whose $(k-1)$-dimensional faces correspond to permutations of $[n]$ with k descents. Bóna [4] constructed a simplicial complex whose ($k-1$)-dimensional faces correspond to t stack sortable permutations with k descents for $t=1$ and $t=2$ and proposed a conjecture that $W_{n, t}(x)$ are Hilbert function for all t. In Section 3, we give an affirmative answer to this question for $t=n-2$.

2 Interlacing log-concavity of $W_{n-2}(n, k)$

In this section, we will construct a bijection between the set of $(n-2)$-stack sortable permutations and a set $\mathscr{P}^{\prime}(n, k)$ of certain labeled lattice paths. Recall that a lattice path P in the plane $Z \times Z$ is a path using only steps $(1,0)$ and $(0,1)$. In [5], Bóna constructed a bijection $\Upsilon_{n, k}$ between the set $\mathscr{A}(n, k)$ of n-permutations with k descents and the set $\mathscr{P}(n, k)$ of labeled lattice paths with n edges, exactly k of which are vertical.

We briefly recall Bóna's bijection here. For each $\pi \in \mathscr{A}(n, k)$, to obtain a path $p \in$ $\mathscr{P}(n, k)$ that have edges $a_{1}, a_{2}, \ldots a_{n}$ and that corresponding positive integers $e_{1}, e_{2}, \ldots, e_{n}$ as labels, for $2 \leq i \leq n$, restrict π to the i first entries and relabel the entries to obtain a permutation $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{i}$ of $[i]$.

1. If the position $i-1$ is a descent of the permutation p (equivalently, of the permutation γ), then let the edge a_{i} be vertical and the label e_{i} be equal to γ_{i}.
2. If the position $i-1$ is an ascent of the permutation p, then let the edge a_{i} be horizontal and the label e_{i} be equal to $i+1-\gamma_{i}$. (See Figure 1 for an example.)

Figure 1: The path corresponding to $\pi=314652$.
Let $\mathcal{S}(n, k)$ be the set of $(n-2)$-stack sortable permutations of length n with k descents. It is easy to check that a permutation $\pi \in \mathfrak{S}_{n}$ is $(n-2)$-stack sortable if and only if it is not of the form $\sigma n 1$, see [2]. Therefore, the paths corresponding to $(n-2)$-stack sortable permutations of length n with k in $\mathscr{P}(n, k)$ can not have the following forms:

- a_{n-1} is horizontal and $e_{n-1}=1$;
- a_{n} is vertical and $e_{n}=1$.

Denote by $\mathscr{P}^{\prime}(n, k)$ the subset of $\mathscr{P}(n, k)$ which is the set of labeled lattice paths corresponding to the permutations in $\mathcal{S}(n, k)$. According to the previous argument, we actually have set up a bijection between $\mathcal{S}(n, k)$ and $\mathscr{P}^{\prime}(n, k)$.

Theorem 2.1 For any positive n, the sequence $W_{n-2}(n, k)_{\{1 \leq k \leq n-1\}}$ is log-concave, that is,

$$
\begin{equation*}
W_{n-2}(n, k-1) W_{n-2}(n, k+1) \leq W_{n-2}(n, k)^{2} \tag{2.2}
\end{equation*}
$$

Proof. According to the bijection between the set $\mathcal{S}(n, k)$ and the set $\mathscr{P}^{\prime}(n, k)$, we only need to construct an injection

$$
\Upsilon: \mathscr{P}^{\prime}(n, k-1) \times \mathscr{P}^{\prime}(n, k+1) \rightarrow \mathscr{P}^{\prime}(n, k) \times \mathscr{P}^{\prime}(n, k) .
$$

We apply the method given by Bona [5], who gave direct combinatorial proofs for the log-concavity of the Eulerian numbers, see [5]. Let $(P, Q) \in \mathscr{P}^{\prime}(n, k-1) \times \mathscr{P}^{\prime}(n, k+1)$. Place the initial points of P and Q at

$$
u_{1}=(0,0), \quad u_{2}=(1,-1),
$$

respectively. Then the endpoints of P and Q are

$$
v_{1}=(n-k+1, k-1), \quad v_{2}=(n-k, k),
$$

respectively. Thus P and Q must intersect. Let X be their first intersection point and let

$$
\begin{aligned}
& P^{\prime}=u_{1} \xrightarrow{P} X \xrightarrow{Q} v_{2}, \\
& Q^{\prime}=u_{2} \xrightarrow{Q} X \xrightarrow{P} v_{1} .
\end{aligned}
$$

1. If P^{\prime} and Q^{\prime} are valid paths, that is, $\left(P^{\prime}, Q^{\prime}\right) \in \mathscr{P}^{\prime}(n, k) \times \mathscr{P}^{\prime}(n, k)$, then define $\Upsilon(P, Q)=\left(P^{\prime}, Q^{\prime}\right)$.
2. What remains to be done is to define $\Upsilon(P, Q)$ for those (P^{\prime}, Q^{\prime}) which are not in $\mathscr{P}^{\prime}(n, k) \times \mathscr{P}^{\prime}(n, k)$. In this case, X must be at their last step, and the corresponding labels are as (a) in Figure 2. Substitute (b) for (a), then it is clear that $\left(P^{\prime}, Q^{\prime}\right) \in$ $\mathscr{P}^{\prime}(n, k) \times \mathscr{P}^{\prime}(n, k)$. Finally, we must show that the image of this case of the domain is disjoint from that of the previous part. This is true because in this case P^{\prime} and Q^{\prime} must not intersect where all the elements of the image of the previous part do not have the property.

Figure 2: Labels and the changed labels around the point X.

Now let us consider the interlacing log-concavity of the sequences $\left\{W_{n-2}(n, k)\right\}_{0 \leq k \leq n-1}$. Notice that the definition of interlacing log-concavity is equal to the following two inequalities

$$
\begin{equation*}
a_{i}(n) a_{i+1}(n+1)>a_{i+1}(n) a_{i}(n+1) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i}(n) a_{i}(n+1)>a_{i-1}(n) a_{i+1}(n+1) . \tag{2.4}
\end{equation*}
$$

Thus we only need to prove the following theorem.

Theorem 2.2 For $n \geq 1$ and $k \geq 0$, we have

$$
\begin{equation*}
W_{n-2}(n+1, k) W_{n-2}(n, k+1)-W_{n-2}(n, k) W_{n-2}(n+1, k+1)<0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{n-2}(n, k) W_{n-2}(n+1, k+2)-W_{n-2}(n+1, k+1) W_{n-2}(n, k+1)<0 \tag{2.6}
\end{equation*}
$$

Proof. The proof is simliar with those in the above theorem. We only adjust the initial and final vertices. To verify (2.5), merely use initial vertex

$$
u_{1}=(0,0), \quad u_{2}=(1,-1)
$$

and the final vertex

$$
v_{1}=(n-k+1, k), \quad v_{2}=(n-k, k) .
$$

To obtain (2.6), use initial vertex

$$
u_{1}=(0,0), \quad u_{2}=(1,-1),
$$

and the final vertex

$$
v_{1}=(n-k, k), \quad v_{2}=(n-k, k+1)
$$

3 Labeled lattic path and ($n-2$)-stack sortable permutation

In this section, we will establish a bijection between labeled lattic path and $(n-2)$-stack sortable permutation. Our construction is based on Gasharov's work [18]. Given a lattice path P, we say that a horizontal edge in P is on row i if it is $i-1$ units above the initial point of P. Similarly, we say that a vertical edge is on column i, if it is $i-1$ units to the right of the initial point of P. Denote by $\mathcal{P}(n-1, k)$ the set of labeled lattice paths
P with $n-1$ edges, of which exactly k are vertical, such that a horizontal edge on row i is labeled with an integer between 1 and i, and similarly a vertical edge on column i is labeled with an integer between 1 and i. Here we do not distinguish between paths that can be obtained from each other by a translation. Let us recall Gasharov's bijection Φ between the sets $\mathscr{A}(n, k)$ and $\mathcal{P}(n-1, k)$, where $\mathscr{A}(n, k)$ denotes the set of permutations of $[n]$ with exact k descents.

For $\pi \in \mathscr{A}(n, k)$, suppose that $\sigma(\tau$, respectively) is the permutation of $[j]([j+1]$, respectively) with the same order as in π. Gasharov inductively constructed a lattice path P with $n-1$ edges $a_{1}, a_{2}, \ldots, a_{n-1}$ of which exactly k are vertical and assigned a label e_{i} to its i-th edge $(1 \leq i \leq n-1)$ as follow:
(1). If $\sigma \in \mathscr{A}(j, i)$ and $\tau \in \mathscr{A}(j+1, i)$, that is, the number of descents of τ is equal to that of σ, then there are exactly i positions $p_{1}, p_{2}, \ldots, p_{i}$ (ordered from left to right) to insert $j+1$ in σ and obtain a permutation in $\mathscr{A}(j+1, i)$. If $j+1$ has to be inserted in position p_{v} to obtain τ, then let a_{j} be horizontal, and $e_{j}=v$;
(2). If $\sigma \in \mathscr{A}(j, i)$ and $\tau \in \mathscr{A}(j+1, i+1)$, that is, when $j+1$ is inserted in σ, the number of descents should be increased by one. There are exactly $n-k$ positions $q_{1}, q_{2}, \ldots, q_{n-k}$ (ordered again from left to right) to insert $j+1$ in σ and obtain a permutation in $\mathscr{A}(j+1, i+1)$. If $j+1$ has to be inserted in position p_{v} to obtain τ, then let a_{j} be vertical and $e_{j}=v$.

See Figure 3 for an example.

Figure 3: The path corresponding to $\pi=514621171091238$.
Applying this bijection, Gasharov [18] obtained a combinatorial proof of the logconcavity of the Eulerian polynomials $A_{n}(x)$. He also proved combinatorially that the
sequence $\{A(n, k)\}_{k=1}^{n}$ of Eulerian numbers is a Hilbert function of a standard graded algebra over a field.

Now let us consider the set of ($n-2$)-stack sortable permutations with exact k descents.
Definition 3.1 Let $\mathcal{Q}(n-1, k)$ be the set of labeled lattice paths with $n-1$ edges, exactly k of which are vertical, such that the following conditions hold:
(1) The edge a_{1} is vertical, then $e_{1}=1$,
(2) For $2 \leq i \leq n-2$, if a_{i} is a horizontal edge on row j, then $1 \leq e_{i} \leq j-1$; similarly, if a_{i} is a vertical edge on column j, then $1 \leq e_{i} \leq j$,
(3) The edge a_{n-1} is horizontal, and $e_{n-1}=k$.

It is obvious that $\mathcal{Q}(n-1, k)$ is a subset of $\mathcal{P}(n-1, k)$.
Theorem 3.2 For $n \geq 1$ and $0 \leq k \leq n-1$, the map Φ defined above restricts a bijection between $\mathcal{Q}(n-1, k)$ and the set of permutations in \mathfrak{S}_{n} of the form $\sigma n 1$, where σ is a permutation on $\{2,3, \ldots, n-1\}$.

Proof. We first verify the path P corresponding to π of the form $\sigma n 1$ that satisfies the conditions in Definition 3.1 term by term.
(1) First, since 1 is in the last position, when we insert 2 as the same order in π, it must increase a descent in p_{1}. The permutation on $\{1,2\}$ is 21 , thus a_{1} is vertical and $e_{1}=1$.
(2) Suppose we have to insert $j+1$ into the permutation γ in $[j]$ with the same order as in π. If the number of descents increases by one, then the number of positions which $j+1$ can be inserted is the same argument in Gasharov's construction. On the other hand, if the number of descents will not change after we insert $j+1$ into γ, then we cannot put $j+1$ at the end of γ since 1 must be in the last position. Thus, P satisfies the condition (2) in Definition 3.1.
(3) Suppose the last three elements of π are $t n 1$, where $1<t<n$. Note that when we insert n to obtain π, the number of descents does not change. Thus a_{n-1} is horizontal. Moreover, n must be inserted in position p_{k} since π has k descents, $e_{n-1}=k$.

To see that Φ is a bijection, let $P \in \mathcal{Q}(n-1, k)$ be a path satisfies the condition in Definition 3.1. Since the edge a_{1} is vertical with label 1 , then the permutation on $\{1,2\}$ must be 21. In general, if the i th edge a_{i} is a horizontal edge on row j with the condition
$1 \leq e_{i} \leq j-1$, then when we insert $i+1$ into the permutation on $[i], i+1$ must be inserted before 1 since 1 is in the last position and the number of descents stays the same. Otherwise, if the i th edge a_{i} is a vertical edge on column j with $1 \leq e_{i} \leq j, i+1$ could not be inserted after 1 since the number of descents should be increased by one. Thus whenever $a_{i}(1 \leq i \leq n-2)$ is horizontal or vertical, 1 always in the last position. Finally, when we insert n into the permutation, n must be inserted right in front of 1 since a_{n-1} is a horizontal edge with label k. Therefore, the permutation corresponding P has the form of $\sigma n 1$, where σ is a permutation on $\{2,3, \ldots, n-1\}$.

Let $\mathcal{R}(n-1, k)=\mathcal{P}(n-1, k) \backslash \mathcal{Q}(n-1, k)$. The above theorem actually leads to a bijection between $\mathcal{S}(n, k)$ and $\mathcal{R}(n-1, k)$.

4 Simplicial complex

In this section, we will construct a simplicial complex \triangle whose ($k-1$)-dimensional faces correspond to $(n-2)$-stack sortable permutations on $[n]$ with k descents for $1 \leq k \leq n$. Here we borrow the idea from Gasharov [18].

We will identify the elements of $\mathcal{S}(n, k)$ with the elements of $\mathcal{R}(n-1, k)$ via the bijection Φ. Let P be a lattice path. Denote $h(P)$ the number of horizontal edges in P. If $P \in \mathcal{R}(n-1, k)$, then for $1 \leq i \leq k$, we denote by $h_{i}(P)$ the number of horizontal edges in P whose horizontal edges are at most on row i. Let $V=\mathcal{Q}(n-1,1)$ be the vertex set of \triangle. Let $P \in \mathcal{Q}(n-1, k)$, we will associate to P a k-element subset $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ of \triangle. For a labeled path P, denote by \bar{P} the path obtained from P by deleting the labels. For $1 \leq i \leq k$, let \bar{P}_{i} be the unlabeled lattice path with one vertical edge, $h_{1}\left(\bar{P}_{i}\right)=h_{i}(P)+i-1$, and $h\left(\bar{P}_{i}\right)=h(P)+k-1$. Place the initial point of P at $(0,0)$ and for $1 \leq i \leq k$, place the initial point of \bar{P}_{i} at $(-i+1, i-1)$. See Figure 4 for an example.

Figure 4: The subset $\left\{\bar{P}_{1}, \bar{P}_{2}, \ldots, \bar{P}_{5}\right\}$ corresponding to $\pi=514621171091238$.

In this construction, the only vertical edge of $\bar{P}_{i}, 1 \leq i \leq k$, coincides with the i-th vertical edge of P and the range of labels we can assign to the vertical edge of \bar{P}_{i} is not less than the range of labels we can assign to the i-th vertical edge of P. In fact, if the i-th vertical edge of P is t units to the right of the initial point of P, then the vertical edge of \bar{P}_{i} is $(t+i-1)$ units to the right of the initial point of \bar{P}_{i}.

Now we proceed to label the edges of \bar{P}_{i} to make them the vertices in V. Label the vertical edge of $\bar{P}_{i}, 1 \leq i \leq k$, by the label of the i-th vertical edge of P. Label the level- 1 horizontal edges in $\bar{P}_{1}, \ldots, \bar{P}_{k}$ by 1. Label the level- 2 horizontal edges in \bar{P}_{1} which are also edges in P by their labels as edges in P. To label the level- 2 horizontal edges in $\bar{P}_{2}, \ldots, \bar{P}_{k}$, first draw the northwest strips bounded by \bar{P}_{1} and P. The northeast border of each such strip is either a vertical or a horizontal edge. If it is a vertical edge, label all horizontal edges in the strip 1. Now suppose the northwest border of a strip is a horizontal edge whose level and label in P are i and j, respectively. Then $j \leq i$ and the strip has exactly $i-1$ horizontal edges. Order these edges from southeast to northwest and label the first $i-j$ horizontal edges 1 and the remaining $j-1$ horizontal edges 2 . In this way we obtain paths P_{1}, \ldots, P_{k} in V.

Definition 4.1 Define $\triangle_{\text {stack }}$ to be the collection of subsets $\left\{P_{1}, \ldots, P_{k}\right\}$ in V satisfy the following conditions,
(1) $\bar{P}_{i} \neq \bar{P}_{j}$ for $1 \leq i \neq j \leq k$.
(2) Suppose P_{1}, \ldots, P_{k} are ordered such that for $1 \leq i \leq k-1, P_{i}$ has fewer level 1 horizontal edges than P_{i+1}. (This can be done in view of (1).) Then if we draw P_{1}, \ldots, P_{k} such that the initial point of P_{i+1} is one unit up and to the left of the initial point of P_{i} for $1 \leq i \leq k-1$, the labels of their level-2 horizontal edges weakly increase in each northwest strip bounded by P_{1} and P. See as Figure 5. When a northwest strip ends with a vertical edge, then all horizontal edges in it are labeled 1. If the vertical edge of P_{i} is t units to the right of the initial point of P_{i}, then the range of labels of the vertical edge of P_{i} is not more than $t-i+1$.
(3) The following k-element sets should not be included: The first edge of P_{1} is vertical and all level-2 horizontal edges of P_{1} labeled 1.
(4) The last horizontal edges of P_{2}, \ldots, P_{k} are labeled 2.

Now we are in a position to prove our main theorem.

Theorem $4.2 \triangle_{\text {stack }}$ is a simplicial complex whose $(k-1)$-dimensional faces correspond to ($n-2$)-stack sortable permutations with k descents.

Proof. First we aim to prove $\triangle_{\text {stack }}$ is a simplicial complex. A set of k paths from V satisfying the above conditions determines a path from $\mathcal{Q}(n, k)$. Also, given a subset of the set satisfy the above four conditions, one can see that the subset also satisfies the conditions (1), (2), (3) and(4). The above discussion shows that Δ is a simplicial complex with the desired properties.

Now we proceed to prove $(k-1)$-dimensional face of $\triangle_{\text {stack }}$ correpsond to $(n-2)$ stack sortable permutations with k descents. It is easily seen that the first two conditions correspond to permutations in \mathfrak{S} with k descents. Thus we just need to verify that the last two conditions correspond the permutations on the form $\sigma n 1$ with k descents. By the Definition 3.1, if the northwest border of a strip is a horizontal edge (not the last edge) whose level is i and label is j, then $j \leq i-1$. Thus the number of edges which are labeled 1 is $i-j \geq 1$, that is, whatever the northwest border of each strip is horizontal or vertical, the labels in the 2-level horizontal edges of P_{1} are always 1. Moreover, since both of the level and label of the last horizontal edge is k, the number of edges which are labeled by 1 in the last strip is $i-j=0$, then all the 2 -level horizontal edges of the last strip labeled 2. Thus the k-element subset P_{1}, \ldots, P_{k} associated to a permutation not of the form $\sigma n 1$ must satisfy the above condition.

Figure 5:The simplicial complex corresponding to $\pi=514621171091238$.

References

[1] M. Albert, M. Bouvel, V. Féray, Two first-order logics of pemutations, J. Combin. Theory Ser. A, 171 (2020), 105-158.
[2] M. Bóna, A survey of stack-sorting disciplines. Electron. J. Combin., 9(2), 2002.
[3] M. Bóna, Symmetry and unimodality in t-stack sortable permutatiions, J. Combin. Theory Ser. A, 98 (2002) 201-209.
[4] M. Bóna, A simplicial complex of 2-stack sortable permutation, Advances in Applied Mathematics, 29 (2002), 499-508.
[5] M. Bóna, A combinatorical proof of the log-concavity of the numbers of permutations with k runs, J. Combin. Theory A, 90(2000), 293-303.
[6] M. Bóna, A combinatorial proof of the log-concavity of a famous sequence counting permutations, Elec. J. Combin. 11(2005), $\sharp \mathrm{N} 2$.
[7] M. Bóna, R. Ehrenbourg, A combinatorial proof of the log-concaveity of the numbers of permutations with k runs, J. Combin. Theory. Ser. A 90(2000), 293-303.
[8] P. Brändén, On linear transformations preserving the Polya frequency property, Trans. Amer. Math. Soc., 358(2006), 3697-3716.
[9] William Y.C. Chen, Larry X.W. Wang and Ernest X.W. Xia, Interlacing logconcavity of the Boros-polynomials, Pacific J. Math., 254(2011), 89-99.
[10] C. Defant, Postorder preimages, Discrete Math. Theor. Comput. Sci., 19(2017), 1.
[11] C. Defant, Preimages under the stack-sorting algorithm, Graphs Combin., 33(2017), 103-122.
[12] C. Defant, M. Engen and J.A. Miller, Stack sorting, set partitions, and Lassalle's sequence, J. Combin. Theory. Ser. A, 175(2020).
[13] C. Defant, Troupes, cumulants, and stack-sorting, arXiv:2004. 11367.
[14] C. Defant, Counting 3-stack-sortable permutations, J. Combin. Theory. Ser. A, 172(2020), 1-26.
[15] E. Duchi, V. Guerrini, S.Rinaldi, G. Schaeffer, Fighting fish, J. Phys. A, 50(2017).
[16] W. Fang, Fighting fish and two stack sortable permutations, Sém. Lothar. Combin. 80 (2018).
[17] S. Dulucq, S. Gire and J. West, Permutations with forbidden subsequences and nonseparable planar maps, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), Discrete Math., 153(1996), 85-103.
[18] V. Gasharov, On the Neggers-Stanley conjecture and the Eulerian polynomials, J. Combin. Theory Ser. A, 82(1998), 134-146.
[19] C.C.Y. Gu and L.X.W. Wang, Interlacing log-concavity of the derangement polynomials and the Eulerian polynomials, European J. Combin., 58(2016), 52-60.
[20] I. P. Goulden and J. West, Raney paths and a combinatorial relationship between rooted nonseparable planar maps and two-stack-sortable permutations, J. Combin. Theory Ser. A, 75(1996), 220-242.
[21] B. Jacquard and G. Schaeffer, A bijective census of nonseparable planar maps, J. Combin. Theory Ser. A, 83(1998), 1-20.
[22] D.E. Knuth, The Art of Computer Programming, Volume 3, Addison-Wesley Publishing Co., Reading MA, 1973.
[23] C. Krattenthaler, Combinatorial proof of the log-concavity of the sequence of matching numbers, J. Combin. Theory. Ser. A, 74(1996), 351-354.
[24] F.S. Macaulay, Some properties of the enumeration in the theory of modular systems, Proc. London Math. Soc., 26(1927), 531-555.
[25] J. West, Sorting twice through a stack, Theoret. Comput. Sci., 117 (1993), 303-313.
[26] H. Úlfarsson, Describing West-3-stack-sortable permutations with permutation patterns, Sém. Lothar. Combin., 67 (2012).
[27] P. B. Zhang, On the Real-rootedness of the Descent Polynomials of $(n-2)$-Stack Sortable Permutations, Electron. J. Combin., 22(4),2015.
[28] D. Zeilberger, A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is $2(3 n)!/((n+1)!(2 n+1)!)$, Discrete Math., 102(1992), 85-93.

