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Abstract

Let G be a vertex-colored connected graph. A subset U of the vertex set of G is

called monochromatic, if all vertices of U are assigned the same color. The vertex-

colored graph G is called monochromatic vertex-disconnected if for any two distinct

vertices x and y, there is a monochromatic vertex-subset S of G such that x and y

belong to different components of G − S if x and y are nonadjacent, and if x and

y are adjacent, then x or y has the same color as S and x and y belong to distinct

components of (G − xy) − S. The monochromatic vertex-disconnection number of

a connected graph G, denoted by mvd(G), is defined as the maximum number of

colors that are allowed to make G monochromatic vertex-disconnected. The con-

cept is inspired by the concepts of rainbow vertex-disconnection number rvd(G)

and monochromatic disconnection number md(G). In this paper, we present some

sufficient conditions for a connected graph G to have mvd(G) = 1, and show that al-

most all graphs have monochromatic vertex-disconnection number 1. Moreover, we

present Nordhaus-Gaddum-type results for the new parameter mvd(G). At last, we

investigate the monochromatic vertex-disconnection numbers for four graph prod-

ucts.

Keywords: monochromatic vertex-cut, monochromatic vertex-disconnection col-

oring (number), Nordhaus-Gaddum-type result, graph products.

1Supported by NSFC No.12131013 and 11871034.

1



AMS subject classification 2020: 05C15, 05C40, 05C75.

1 Introduction

Let G be a finite and undirected graph with vertex set V (G) and edge set E(G). We

use m(G) and n(G) to denote the number of vertices and the number of edges of G,

respectively, or simply m and n if there is no confusion. For a positive integer k, let [k]

denote the set {1, 2, · · · , k} of positive integers. For a vertex v of G, we use dG(v) to

denote the degree of v. We use Cn to denote a cycle of length n. If n = 2k + 1, then

we call Cn an odd cycle; otherwise, we call Cn an even cycle. Let Pt denote a path with

t vertices. If Pt is an {x, y}-path, we call x and y the end vertices of Pt. For undefined

notation and terminology, we refer to the book [1].

An edge-coloring of G is a mapping f : E(G)→ [k], where [k] denotes the set of colors.

For u, v ∈ V (G), a {u, v}-edge-cut is defined as an edge subset S of G such that u and

v are contained in different components of G − S, and we say that S separates u and

v. Moreover, if every edge of S is assigned with a distinct color, then S is called a

{u, v}-rainbow-cut. An edge-coloring of G is called a rainbow disconnection coloring, if

for any two vertices, there is a rainbow-cut separating them. The rainbow disconnection

number of a connected graph G, denoted by rd(G), is defined as the minimum number of

colors that are needed in a rainbow disconnection coloring of G, which was introduced by

Chartrand et al. in [7]. For more relevant results, readers can be referred to [3, 4, 5, 6, 10].

A vertex-coloring of G is a mapping f ′: V (G)→ [k′], where [k′] denotes the set of colors.

For x, y ∈ V (G), an {x, y}-vertex-cut is defined as a vertex subset S ′ of G such that x and

y belong to different components of G−S ′ if x and y are nonadjacent, and if x and y are

adjacent, then x and y belong to distinct components of (G−xy)−S ′. In this case we also

say that S ′ separates x and y. Moreover, if all vertices of S ′ are assigned with different

colors when x and y are nonadjacent, and all vertices of S ′ ∪ {x} or S ′ ∪ {y} are assigned

with different colors when x and y are adjacent, then S ′ is called an {x, y}-rainbow vertex-

cut. A vertex-coloring of G is called a rainbow vertex-disconnection coloring, if for any two

vertices, there is a rainbow vertex-cut separating them. The rainbow vertex-disconnection

number of a connected graph G, denoted by rvd(G), is defined as the minimum number of

colors are needed in a rainbow vertex-disconnection coloring of G, which was introduced

by Bai et al. in [2]. Readers can be referred to [8, 14] for more relevant results.

Contrary to the concepts of rainbow disconnection coloring and rainbow vertex-disconnection
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coloring, monochromatic versions of these concepts can be naturally introduced. Li et

al. in [11] firstly introduced and studied the monochromatic disconnection colorings.

Consider an edge-coloring of G and x, y ∈ V (G). An {x, y}-edge-cut S ′ is called a

monochromatic-cut if all edges of S ′ are assigned the same color. An edge-coloring of

G is called a monochromatic disconnection coloring if for any two vertices of V (G), there

is a monochromatic-cut separating them. The monochromatic disconnection number of

a connected graph G, denoted by md(G), is defined as the maximum number of colors

that are allowed in a monochromatic disconnection coloring of G. More results for the

monochromatic disconnection number of graphs, we refer to [12, 13]. Inspired by rainbow

vertex-disconnection coloring and monochromatic disconnection coloring, now we intro-

duce a new definition, the monochromatic vertex-disconnection coloring (MVD-coloring

for short). Consider a vertex-coloring f of G, and u, v ∈ V (G). A {u, v}-vertex-cut S is

called a monochromatic vertex-cut if all vertices of S are assigned with the same color if u

and v are nonadjacent, and if u and v are adjacent, then all vertices of S ∪{u} or S ∪{v}
are assigned with the same color. An MVD-coloring of G is a vertex-coloring such that any

two vertices have a monochromatic vertex-cut. The monochromatic vertex-disconnection

number (MVD-number, for short) of a connected graph G, denoted by mvd(G), is de-

fined as the maximum number of colors that are allowed for an MVD-coloring of G. An

MVD-coloring f is called an extremal MVD-coloring if it uses mvd(G) colors.

The MVD-number (MVD-coloring) is not only a natural combinatorial parameter, but

can also be applied in logistics transportation, computer network and many other fields.

For example, in the process of logistics transportation, we often need to intercept illegal

goods, such as smuggled drugs and explosives. We intercept the goods on some road

it may pass through. In order to save the output of manpower, we need to use the

application-model of MVD coloring.

Consider cities as vertices, and if there is a transport road between two cities, we assign

an edge between the two vertices. The resulting graph is denoted by G. Besides, each

city has a marking instrument and a scanning instrument that receives a fixed frequency.

Therefore, each vertex is assigned a color according to the frequency that received by

the corresponding city. Suppose that the illegal goods are transported from city x to

city y. Because the illegal goods will be marked by the marking instrument when passing

through city x, if x and y are not adjacent, then we can get feedback through the scanning

instrument of each city on the vertex-cut between x and y, and so they need the same

frequency, that is, the corresponding vertices are assigned the same color. Then police

can obtain the transportation route of illegal goods, and immediately assign policemen
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to intercept illegal goods; If x and y are adjacent, we also need to consider the feedback

of the scanning instrument in y, that is, the fixed frequency of the scanning machine

in y must be the same as that on the {x, y}-vertex-cut of G − xy. Furthermore, if

the fixed frequency of the scanning instrument of city x can also feedback whether the

illegal goods are transported directly on the road xy, then this situation corresponds to a

monochromatic vertex-cut of x and y in the graph G. If the interception is unsuccessful,

then continue the next interception. Therefore, a monochromatic vertex-cut is required

between any two vertices. In order to improve the accuracy, we require that the more

types of scanning machines, the better, that is, the more frequencies, the better, but the

premise is to ensure that there is a monochromatic vertex-cut between any two different

cities. Therefore, in this problem, the maximum number of types of scanning machines

that we need, is the MVD-number of the corresponding graph G.

A block B of G is a maximal subgraph of G without a cut-vertex. If B = e = uv, then

we call B trivial; otherwise, we call B nontrivial. Moreover, if dG(u) = 1, then u is called

a pendent vertex, uv is called a pendent edge, of G. Let f be an MVD-coloring of G and

U be a subset of V (G). Then let f(U) and |f(U)| be the set and the number of colors

used on U under f . Especially, if v is a vertex of G, then f(v) is the color assigned on v.

Furthermore, if H is a connected subgraph of G, then f(H) and |f(H)| are the set and

the number of colors used on the set of vertex in H under f . Besides, we put the vertices

with the same color together to form a vertex-subset, and call it a color class. Obviously,

f contains |f | color classes.

Let G be a graph without loops. For any edge e = uv of G, if e has parallel edges,

then we delete all its parallel edges but e and obtain an underlying graph G′ of G. Since

a vertex-subset V ′ of G is a vertex-cut of two vertices in V (G) if and only if V ′ is a

vertex-cut of the two corresponding vertices in V (G′), we have the following result.

Proposition 1.1. Let G be a graph without loops and G′ be an underlying graph of G.

Then mvd(G) = mvd(G′).

If G has several connected components, then the following result is clear.

Proposition 1.2. If G is a graph with t components G1, G2, · · · , Gt, then mvd(G) =
t∑

i=1

mvd(Gi).

2 Some basic results

In this section, we first present some basic and useful results or tools.
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Let G be a connected graph with at least two blocks. A vertex-coloring of G is an

MVD-coloring if and only if it is an MVD-coloring restricted on each block of G. Then

we have the following theorem.

Theorem 2.1. If G has b blocks B1, B2, · · · , Bb, then mvd(G) =
b∑

i=1

mvd(Bi)− (b− 1).

Proposition 2.1. If G is a cycle Cn, then mvd(G) = bn
2
c. Besides, if G is a unicyclic

graph with cycle C, then mvd(G) = n− dn(C)
2
e.

Proof. If G is a unicyclic graph with cycle C, then every vertex of V (G)\V (C) is assigned

a new distinct color under any extremal MVD-colorings. By Theorem 2.1, we only need

to prove that mvd(G) = bn
2
c if G is a cycle.

Let G = Cn = v1v2 · · · vn−1vnv1 and r = bn
2
c. For i ∈ [r] and j ∈ [n], if j ≡ i(mod

r), we assign vj with color i. Then this is obviously an MVD-coloring of G, and thus

mvd(G) ≥ r.

Next we show that mvd(Cn) ≤ r. To the contrary, suppose mvd(Cn) > r. Then there

is an MVD-coloring f such that f(Cn) ≥ r + 1. So there is a vertex vi of V (Cn) such

that vi is assigned the unique color. Since G is a cycle, there are two distinct vertices u

and v adjacent to vi. Then there is no monochromatic vertex-cut separating u and v, a

contradiction.

Proposition 2.2. If G = Kn1,n2 is a complete bipartite graph with n1, n2 ≥ 2, then

mvd(G) = 2.

Proof. Suppose V1 and V2 are the bipartition of V (G). Consider a vertex-coloring f of G

such that f(V1) = {1}, f(V2) = {2}. It is not hard to verify that f is an MVD-coloring of

G, and so mvd(G) ≥ 2. For any two vertices u and v of V1, V2 is the minimal vertex-cut

of them, and thus all vertices of V2 are assigned the same color. Similarly, all vertices of

V1 are assigned the same color. Thus, mvd(G) ≤ 2. So, mvd(G) = 2.

Corollary 2.1. Suppose G is a graph obtained by adding an edge e on two nonadjacent

vertices of a complete bipartite graph Kn1,n2 with n1, n2 ≥ 2. Then mvd(G) = 1.

Proposition 2.3. Let H be a subgraph of G and f be an MVD-coloring of G. Then f is

an MVD-coloring of H.

Proof. Let f ′ be a vertex-coloring by restricting f on H. For any two vertices x and y of

V (H), if S is a monochromatic vertex-cut separating x and y in G under f , then S∩V (H)

is a monochromatic vertex-cut separating x and y in H under f ′; otherwise, there is a
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path P with length at least two connecting x and y in H \ S, and so P is in G \ S, a

contradiction.

Lemma 2.1. If H is a connected spanning subgraph of G, then mvd(H) ≥ mvd(G).

Proof. Suppose f is an extremal MVD-coloring of G. By Proposition 2.3, f is an MVD-

coloring restricted on H. From the definition of MVD-number, we have mvd(H) ≥
mvd(G).

Theorem 2.2. Let G be a connected graph on n vertices. Then mvd(G) ≤ n, where

equality holds if and only if G is a tree.

Proof. Since every connected graph G has a spanning tree T , by Theorem 2.1, mvd(T ) =

n. Combining with Lemma 2.1, we have mvd(G) ≤ mvd(T ) = n. On the other hand, if

G is connected, mvd(G) = n and G is not a tree, then G contains at least one cycle. By

Proposition 2.1 and Lemma 2.1, we have mvd(G) < n− 1, a contradiction.

Lemma 2.2. Let H =
r⋃

i=1

Hi. If
⋂
i∈[r]

V (Hi) 6= ∅ and mvd(Hi) = 1 for any i ∈ [r], then

mvd(H) = 1.

Proof. Suppose f is an MVD-coloring of H such that |f(H)| ≥ 2. Then there exist two

vertices v and w of H, such that f(v) = 1 and f(u) = 2. From the definition of Hi,

suppose v ∈ V (H1) and u ∈ V (H2). By Proposition 2.3, f is also an MVD-coloring

restricted on H1 and H2 and mvd(H1) = mvd(H2) = 1. Then all vertices of H1 are

colored 1 and all vertices of H2 are colored 2, which contradicts
⋂
i∈[r]

V (Hi) 6= ∅.

Lemma 2.3. Let G be a connected graph. Suppose v ∈ V (G) and v is neither a cut-vertex

nor a pendent vertex of G. Then mvd(G) ≤ mvd(G− v).

Proof. We can obtain the above Lemma by deducing directly from the following Claim.

Claim 1. Suppose v ∈ V (G) and v is neither a cut-vertex nor a pendent vertex. Then

for any extremal MVD-coloring f of G, f(G) \ f(G− v) = ∅.

Proof. Suppose that f(v) /∈ f(G− v) but f(v) ∈ f(G). Since v ∈ V (G) and v is neither a

cut-vertex nor a pendent vertex, v is contained in at least one cycle C of G. Furthermore,

suppose that the neighbors of v on C are u and w. Consider the monochromatic vertex-

cut S of u and w. Then S must contain v, but v is the only vertex with color f(v). Then

there is no monochromatic vertex-cut separating u and w, a contradiction.
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From Claim 1, mvd(G) = |f(G)| ≤ |f(G− v)| ≤ mvd(G− v), completing the proof of

Lemma 2.3.

Theorem 2.3. Let G be a k-connected graph with n vertices, where k is a positive integer.

Then mvd(G) ≤ bn
k
c.

Proof. If G is a connected graph with a cut-vertex, then mvd(G) ≤ n is obvious, by

Theorem 2.2, when the equality holds only if G is a tree.

If G is a k-connected graph with k ≥ 2, suppose f is an extremal MVD-coloring of

G. Then we claim that there are at least k vertices contained in each color class under

f . Suppose that V ′ is a color class of f and v ∈ V ′. Then we need to prove that

|V ′| ≥ n. Since G is k-connected with k ≥ 2, there are at least two neighbors of v,

say u,w. Consider the monochromatic vertex-cut between u and w. Then the color of

monochromatic vertex-cut that separating u and w is f(v). If u and w are adjacent, then

the color of u or w is f(v). Besides, there are at least k− 1 internally disjoint paths with

length at least two connecting u and w. In order to separating u and w, each of the above

paths has at least one vertex assigned with color f(v). So we find k vertices with color

f(v). If u and w are nonadjacent, similarly, we can also find that there are at least k

vertices assigned with color f(v). Consequently, |V ′| ≥ k. Due to the arbitrariness of the

selection of V ′, it follows that each color class contains at least k vertices. As a result, we

complete the proof.

By Theorem 2.2 and Proposition 2.1, the upper bound is sharp when k ≤ 2.

3 Graphs with MVD-number 1

In this section, we are going to characterize some graphs with MVD-number 1, and to

show that for almost all graphs G, we have mvd(G) = 1.

Proposition 3.1. Let G be a connected graph. If any two vertices of V (G) have at least

two common neighbors, then mvd(G) = 1.

Proof. We can easily see the above proposition by the following claim.

Claim 2. Let u and v be two vertices of a connected graph G such that they have at least

two common neighbors. Then for any MVD-colorings of G, u and v are assigned the same

color.
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Proof. Suppose u and v have two common neighbors x and y. Then uxv and uyv are two

internally disjoint {u, v}-paths. So, xuy and xvy are two internally disjoint {x, y}-paths.

Therefore, u and v are assigned the identical color for any MVD-colorings.

For any two vertices u and v of G, fixing the vertex u, by the claim above, we can

obtain our proposition by arbitrary selection of v.

Corollary 3.1. For any integer n ≥ 3, mvd(Kn) = 1.

Next we define a relation θ on V (G) as follows. For two vertices u and v, we say uθv

if there exists a sequence G1, · · · , Gt of subgraphs in G such that mvd(Gj) = 1 for all

j ∈ [t], u ∈ V (G1) and v ∈ V (Gt) and |V (Gi) ∩ V (Gi+1)| ≥ 1 for any i ∈ [t − 1]. It is

not hard to verify that θ has the symmetric, reflexive and transitive properties. So, θ is

a equivalence relation on V (G).

We call G a closure on V (G), if uθv holds for any two vertices u and v of V (G).

Lemma 3.1. If G is a closure on V (G), then mvd(G) = 1.

Proof. Since G is a closure on V (G), then G is connected. Suppose mvd(G) ≥ 2 and

f is an extremal MVD-coloring of G. Then there are two vertices v1 and v2 of V (G)

such that f(v1) 6= f(v2). Since G is a closure on V (G), there is a sequence G1, · · · , Gt of

subgraphs in G such that mvd(Gj) = 1 for all j ∈ [t], v1 ∈ V (G1) and v2 ∈ V (Gt) and

|V (Gi) ∩ V (Gi+1)| ≥ 1 for any i ∈ [t− 1]. So, there is at least one common vertex of Gi

and Gi+1 for i ∈ [t]. Then all vertices of V (Gi) and V (Gi+1) are assigned the same color,

that is, f(Gi) = f(Gi+1). Therefore, f(G1) = · · · = f(Gi+1) = 1. Thus mvd(G) = 1.

Proposition 3.2. If G is a connected graph and every edge of E(G) is contained in a

subgraph G′ with mvd(G′) = 1, then mvd(G) = 1.

Proof. In order to show mvd(G) = 1, it is sufficient to show that G is a closure on V (G).

Choose any two vertices u and v of V (G). If u and v are adjacent, then uv is contained in

a same subgraph G′ with mvd(G′) = 1. If u and v are not adjacent, since G is connected,

then there is a path P connecting them, and every edge of P is contained in a subgraph

with monochromatic vertex-disconnection number 1. So, G is a closure on V (G).

Next we will give several specific graphs with MVD-number 1. We say H ∨v is the join

of v and H, where v /∈ V (H), which means that there is an edge connecting v and each

vertex of H. A triangular graph is a connected graph with every edge in a triangle. Then

we have the following result.
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Theorem 3.1. If G satisfies one of the following conditions, then mvd(G) = 1.

1) G = H ∨ v, where H contains no isolated vertices.

2) G = Kn1,··· ,nk
is a complete multipartite graph with k ≥ 3.

3) G = H2, where H is a connected graph with order at least 3 and H2 denotes the

square graph of H.

4) G is a 2-connected chordal graph.

5) G ∈ {H,L(H)} satisfies that H is a triangular graph with order n ≥ 3, where L(H)

is the line graph of H.

Proof. For 1), choose any edge e = xy of G. If x, y ∈ V (H), then xyv is a triangle; if

x ∈ V (H) and y = v, since there is no isolated vertices in H, there exists w ∈ V (H)

such that xw ∈ E(H), and so xvw is a triangle. Thus, each edge of G is contained in a

triangle, and by Proposition 3.2, mvd(G) = 1.

For 2), let V1, V2, · · · , Vk be the vertex-partition of G with k ≥ 3. If there is a part

Vi (i ∈ [k]) such that |Vi| = 1, similar to the proof of 1), then mvd(G) = 1. Otherwise,

for any two vertices of V (G), we can easily find their two common neighbors, and by

Proposition 3.1, mvd(G) = 1.

For 3), we prove the result by induction on n(H). when n(H) = 3, H is a P3 or a K3.

Then H2 = K3, and so mvd(G) = 1. When n(H) ≥ 4, let T be a spanning tree of H and

v be a leaf of T . Then T 2 − v = (T − v)2. Since v is neither a cut-vertex nor a pendent

vertex of T 2, by Lemma 2.3, mvd(T 2) ≤ mvd((T − v)2) = 1. Because T 2 is a spanning

tree of H2, mvd(H2) ≤ mvd(T 2). So, mvd(G) = 1.

Observe that if there are two vertices u, v ∈ V (G) such that the length of a path

connecting u and v is larger than 2 (say k), then mvd(Hk) = 1.

For 4), recall that a chordal graph is defined as a simple graph contains no induced

cycle of length four or larger. If G is a 2-connected chordal graph, then every edge of

E(G) is contained in a triangle, and so mvd(G) = 1.

For 5), the line graph of a triangular graph is a triangular graph. By the definition of

triangular graph, mvd(H) = mvd(L(H)) = 1.

Furthermore, we get the following result.

Theorem 3.2. For almost all graphs G, mvd(G) = 1.

Proof. Consider the random graphs G(n, 1
2
). By Proposition 3.1, mvd(G) = 1 if any two

vertices have at least two common neighbors. So it is sufficient to show that it is almost
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certain that there are at least two common neighbors for any two vertices in G(n, 1
2
). For

any two vertices u, v of V (G), let A be the event that w is a common neighbor of u and v,

and A be the event that w is not a common neighbor of u and v, where w ∈ V (G)\{u, v}.
Then Pr(A) = 1

2
· 1
2

= 1
4
, and Pr(A) = 1− Pr(A) = 3

4
.

Let A be the event that there is a pair of vertices in G that has at most one common

neighbor, and let Au,v denote the event that vertices u and v have at most one common

neighbor. Then

Pr(A) = Pr(
⋃
u6=v

Au,v) ≤
∑
u6=v

Pr(Au,v)

=

(
n

2

)
[(

3

4
)n−2 + (n− 2)(

3

4
)n−3 · (1

4
)]

< n3(
3

4
)n−4 → 0, as n→∞.

This implies that for almost all graphs G, any two vertices of G have at least two common

neighbors, and therefore, by Proposition 3.1, almost surely mvd(G) = 1.

4 The Nordhaus-Gaddum-type results

In this section, we consider the Nordhaus-Gaddum-type results for the MVD-number.

For convenience, we assume that our graph G and the complement G are simple and

connected in advance, and so n ≥ 4. We first introduce the following definition and a

useful lemma.

Definition 4.1. A deletable vertex of a connected graph G is a vertex which is not a

cut-vertex of G.

Lemma 4.1. [11] Let G and G be connected graphs of order at least 5. Then there is a

vertex x ∈ V (G) such that x is a deletable vertex of both G and G.

Theorem 4.1. Suppose G and G are connected graphs. Then mvd(G) + mvd(G) ≤ n+ 2

for n ≥ 5, mvd(G) + mvd(G) ≥ 2 for n ≥ 7. Furthermore, these bounds are sharp.

Proof. It is obvious that mvd(G) + mvd(G) ≥ 2 for n ≥ 7, since G and G are connected.

Then we need to explain mvd(G) + mvd(G) ≤ n+ 2 for n ≥ 5. We prove it by induction

on n. When n = 5, by symmetry there are five cases for {G,G} to be considered, as

shown in Figure 1.
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G1 G2 G3 G4 G5

G1 G2 G3 G4 G5

1

2
3 4 5

1 2

3

45

1
2 2

2
2

1
1 1

1 1

1

1

1 2

2

1
1

12

2

1 1

1
23

3
3

2

2

1

1

2

2 2

3

1

2

2

2

3

Figure 1: Five cases of {G,G} with n = 5.

Observe that mvd(G) + mvd(G) ≤ 7 for all five cases with n = 5, and when {G,G} =

{G1, G1}, mvd(G) + mvd(G) = 7.

When n ≥ 6, by Lemma 4.1, for connected graphs G and G, there is a deletable vertex,

say v. Let G′ = G−v. Then G′ and G′ are two connected graphs, by induction hypothesis,

mvd(G′) + mvd(G′) ≤ n + 1. Let f be an extremal MVD-coloring of G. Since n ≥ 5,

max{dG(v), dG(v)} ≥ 2. Suppose dG(v) = t ≥ 2. Then v is neither a cut-vertex nor

a pendent vertex of G. By Lemma 2.3, mvd(G) ≤ mvd(G′). If dG(v) ≥ 2, mvd(G) ≤
mvd(G′) also holds. Then mvd(G)+mvd(G) ≤ mvd(G′)+mvd(G′) ≤ n+1. If dG(v) = 1,

mvd(G) = mvd(G′) + 1, then mvd(G) + mvd(G) ≤ mvd(G′) + mvd(G′) + 1 ≤ n+ 2.

Now we show that the upper bound is tight for n ≥ 5. For any integer n with n ≥ 5, let

Bn be a spanning tree of Kn with ∆(Bn) = n− 2. Then mvd(Bn) = n, and Bn is a graph

obtained by adding a pendent edge to one vertex of K−n−1 with minimum degree. By 1)

of Theorem 3.1 and Theorem 2.1, mvd(Bn) = 2. Thus, mvd(Bn) + mvd(Bn) = n+ 2.

Next we show that the lower bound is tight for n ≥ 7. Let V (Kn) = A ∪ B and

0 ≤ |A| − |B| ≤ 1. Consider the complete bipartite graph K|A|,|B|. Since n ≥ 7, assume

A = {u1, u2, u3, u4, · · · , u|A|} and B = {v1, v2, · · · , v|B|}. Let Dn = G[A,B] ∪ {u2u3} \
{v1u1, v1u4}. Then Dn = K−|A|∪K|B|∪{vu1, vu4}, where Dn and Dn are shown in Figure 2.

u1

u2

u3

u4

u|A|

K|A| − u2u3

v1

v2

v|B|

K|B|

Dn

u1

u2

u3

u4

u|A|

v1

v2

v|B|

A BB A

K|A|,|B|

Dn

Figure 2: Extremal graphs of {Dn, Dn} with mvd(Dn) + mvd(Dn) = 2 for n ≥ 7.

Suppose f is an extremal MVD-coloring of Dn. Consider v1 and v2 of B in Dn. Since
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every vertex of A is their common neighbors, |f(A)| = 1, say f(A) = {1}. Similarly,

we have |f(B)| = 1. Since v1u2u3 is a triangle, f(v1) = f(u2) = f(u3). Therefore,

f(A) = f(B) = {1}. Then, mvd(Dn) = 1. Next we consider the MVD-number of

Dn. Since Dn(A) = K−|A|, Dn(B) = K|B| and u1u4v1 is a triangle, by Theorem 3.1

mvd(Dn(A)) = mvd(Dn(B)) = mvd(u1u4v1) = 1. Then G is a closure on V (G), and from

Lemma 3.1, mvd(Dn) = 1.

Remark: Note that the upper bounds of mvdG) + mvd(G) for n ≤ 6 and the lower

bounds of mvd(G) + mvd(G) for n = 4 have not been given.

When n = 4, G = G = P4, then mvd(G) = mvd(G) = 4, and so mvd(G)+mvd(G) = 8.

When n = 5, as shown in Figure 1, if {G,G} = {G3, G3}, we get the minimum value 4

of mvd(G) + mvd(G).

When n = 6, m(G) + m(G) = 15. To get the lower bound of mvd(G) + mvd(G), by

symmetry there are three cases to be considered. If m(G) = 5 and m(G) = 10, G is a tree,

then mvd(G) + mvd(G) ≥ 7. If m(G) = 6 and m(G) = 9, then G is a unicyclic graph and

the length of the unique cycle is at most 6. By Proposition 2.1, mvd(G) + mvd(G) ≥ 4,

and the equality holds when the unique cycle is C6 or C5. If m(G) = 7 and m(G) = 8,

suppose G has r blocks. When r = 1, there are three cases to consider, as depicted in

Figure 3. For all three cases of {G,G} with one block, we have mvd(G) + mvd(G) ≥ 3,

1

2

1 2

2

1

1 1

1

1 1

1

1 1

1
2

1 2

1

1

1

2

2

1

2

1

2

1

2

1

1

1

1

1

1

1

G1

G1 G2 G3

G2 G3

Figure 3: Three cases of {G,G} with a block for n = 6.

and when {G,G} = {G1, G1}, the equality holds.

When r = 2, then G is isomorphic to one of the following four graphs. For each graph of

the four cases, mvd(G) = 2. Together with mvd(G) ≥ 1, we have mvd(G) + mvd(G) ≥ 3.

When r ≥ 3, since n = 6 and m = 7, m = n + 1, then G is a bicyclic graph. It is

easy to verify that there are at most 3 blocks in G, and then r = 3. Suppose C is the set

of vertices on the cycles of G. Then 4 ≤ |C| ≤ 6. If |C| = 4, C = {K−4 }, and there are

two trivial blocks added on some vertices of K−4 . Then mvd(G) = 3 by Theorem 2.1. So,

mvd(G) + mvd(G) ≥ 4. If |C| = 5, then the graph G is depicted in Figure 5(a), and so
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1
1

1
1

1
2

1
1

1

1

1

2

1

1

1

1

1

2

2

21

1

1 1

(1) (2) (3) (4)

Figure 4: Four cases of G with two blocks for n = 6.

mvd(G) = 2 and mvd(G) + mvd(G) ≥ 3. If |C| = 6, then the graph G is shown in Figure

5(b), and so mvd(G) = 2 and mvd(G) + mvd(G) ≥ 3. Thus, mvd(G) + mvd(G) ≥ 3 when

1

1

1 1

1

2

(a)

1

1

1 2

2

2(b)

Figure 5: Some graphs of G with three blocks for n = 6.

n = 6.

For convenience of reading, we sum up the lower bounds and upper bounds of mvd(G)+

mvd(G) for n ≥ 4 in the following table.

n = 4 n = 5 n = 6 n ≥ 7

Lower Bound 8 4 3 2

Upper Bound 8 7 8 n+ 2

Table 1: The bounds of mvd(G) + mvd(G) for n ≥ 4.

Next we study the bounds of mvd(G) ·mvd(G).

Theorem 4.2. Suppose G and G are connected graphs of order n ≥ 4. Then mvd(G) ·
mvd(G) = 16 when n = 4, 4 ≤ mvd(G) · mvd(G) ≤ 10 when n = 5, 2 ≤ mvd(G) ·
mvd(G) ≤ 12 when n = 6, and 1 ≤ mvd(G) ·mvd(G) ≤ 2n when n ≥ 7. Moreover, these

bounds are tight.

Proof. Let G and G be connected. When n = 4, G = G = P4, then mvd(G)·mvd(G) = 16.

When n = 5, as shown in Figure 1, 4 ≤ mvd(G) · mvd(G) ≤ 10. If {G,G} = {G3, G3},
then mvd(G) · mvd(G) = 4. If {G,G} = {G1, G1}, then mvd(G) · mvd(G) = 10. When

n = 6, since 3 ≤ mvd(G) + mvd(G) ≤ 8, mvd(G) ·mvd(G) ≤ 2, and one pair of {G,G}
achieving the lower bound of mvd(G) ·mvd(G) is {G3, G3}, which is showed in Figure 3,

13



Next we show that the upper bound of mvd(G) ·mvd(G) is 2n for n ≥ 5. We mainly

proceed by induction on n. When n = 5, by above analyses, mvd(G) ·mvd(G) ≤ 10 = 2n.

When n > 5, by Lemma 4.1, there is a vertex w such that w is deletable for G and G,

i.e., G− w and G− w are connected. Now we distinguish two cases to discuss.

Case 1. dG(w) ≥ 2 and dG(w) ≥ 2.

Then w is neither a cut-vertex nor a pendent vertex of G and G. From Lemma 4.1,

mvd(G) ≤ mvd(G − w) and mvd(G) ≤ mvd(G − w). So, mvd(G) ·mvd(G) ≤ mvd(G −
w) ·mvd(G− w). When n ≥ 6, by the induction hypothesis,

mvd(G) ·mvd(G) ≤ mvd(G− w) ·mvd(G− w) ≤ 2(n− 1) < 2n.

Case 2. dG(w) = 1 and dG(w) = n− 2.

Suppose wu ∈ E(G). Then w is adjacent to every vertex of V (G) \ {w, u} in G.

Therefore, G − u = w ∨ (G − {w, u}). If G − {u,w} contains no isolated vertices, by 1)

of Theorem 3.1, mvd(G − u) = 1, and so mvd(G) = 1. Otherwise, suppose there are j

isolated vertices s1, · · · , sj contained in G−{u,w}. By Theorem 2.1, mvd(G−u) = 1+j.

Since G − v is connected, every vertex si with i ∈ [j] is adjacent to u. Then {w, u} and

{s1, · · · , sj} form a vertex-bipartition of a complete bipartite graph G′ of G, mvd(G′) = 2

and the colors assigned on u and w are identical. By Theorem 2.1 and 1) of Theorem 3.1,

mvd(G) = 2. Since mvd(G) ≤ n, mvd(G) ·mvd(G) ≤ 2n. The graphs Bn and Bn defined

in the proof of Theorem 4.1 satisfy mvd(G) · mvd(G) = 2n, and so the upper bound is

tight.

Now we consider the lower bound of mvd(G) · mvd(G) for n ≥ 7. Since mvd(G) +

mvd(G) ≥ 2 for n ≥ 7, mvd(G) · mvd(G) ≥ 1. The graphs Dn and Dn defined in the

proof of Theorem 4.1 satisfy mvd(G) ·mvd(G) = 1 for n ≥ 7, and so the lower bound is

tight.

For ease of reading, we summarize the lower bounds and upper bounds of mvd(G) ·
mvd(G) for n ≥ 4 in Table 2.

n = 4 n = 5 n = 6 n ≥ 7

Lower Bound 16 4 2 1

Upper Bound 16 10 12 2n

Table 2: The bounds of mvd(G) ·mvd(G) for n ≥ 4.
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5 Results for four kinds of graph products

In this section, we mainly consider the MVD-coloring of four kinds of graph products:

Cartesian product, strong product, lexicographic product and direct product. Suppose

G and H are two simple connected graphs with vertex sets V (G) = {v1, · · · , vn1} and

V (H) = {u1, · · · , un2}. Then the concepts of the four kinds of graph products on G and

H are defined as follows:

Definition 5.1. The Cartesian product of G and H is the graph G�H with vertex set

V (G�H) = V (G)× V (H) and edge set E(G�H) being the set of all pairs (vi, uj)(vs, ut)

for i, s ∈ [n1] and j, t ∈ [n2], such that either vivs ∈ E(G) and us = ut, or ujut ∈ E(H)

and vi = vs.

The direct product of G and H is the graph G × H with V (G × H) = V (G) × V (H)

and edge set E(G × H) = {(vi, uj)(vs, ut) : vivs ∈ E(G) and ujut ∈ E(G) for i, s ∈
[n1] and j, t ∈ [n2]}.

The strong product of G and H is the graph G � H whose vertex set is V (G � H) =

V (G) × V (H) and whose edge set E(G � H) is the union of edge sets of the Cartesian

and the direct product.

The lexicographic product (or composition) of G and H is the graph G ◦H with vertex

set V (G ◦H) = V (G)× V (H) in which (vi, uj) is adjacent to (vs, ut) if and only if either

vivs ∈ E(G), or vi = vs and ujut ∈ E(H), where i, s ∈ [n1] and j, t ∈ [n2].

We first consider the MVD-number of Cartesian product of G and H. Some useful

lemmas are shown as follows.

Lemma 5.1. Suppose G and H are two connected graphs. If v is a vertex of G, then

mvd(G�H) ≤ mvd((G− v)�H).

Proof. For convenience, let v = v1. To the contrary, suppose mvd(G�H) > mvd((G −
v)�H). Assume f is an extremal MVD-coloring of G�H. By Proposition 2.3, f is

an MVD-coloring of (G − v)�H, since (G − v)�H is a subgraph of G�H. From the

definition of Cartesian product, G�H is composed of its pairwise disjoint and distinct

subgraphs v1�H, v2�H, · · · , vn1�H by connecting edges between corresponding pairs of

vertices. Then there is a vertex (v1, ui) such that f((v1, ui)) is contained in f(v1�H) but

not in f(vj�H) for each integer j ≥ 2. Since G and H are connected, v1 has at least

one neighbor in G, say v′, and ui has at least one neighbor in H, write u′. Then vv′u′ui

is a 4-cycle in G�H. By the definition of f , f is not an MVD-coloring of vv′u′ui, which

contradicts with Proposition 2.3.
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Corollary 5.1. If v is a vertex of G and u is a vertex H, then mvd(G�H) ≤ mvd((G−
v)�(H − u)).

Proof. Since v is a vertex of G, by Lemma 5.1, mvd(G�H) ≤ mvd((G− v)�H). Because

u ∈ V (H), mvd((G− v)�H) ≤ mvd((G− v)�(H − u)). Thus, mvd(G�H) ≤ mvd((G−
v)�(H − u)).

Lemma 5.2. [9] Cartesian product of bipartite graphs is a bipartite graph.

Lemma 5.3. (1) mvd(Ps�Pt) = 2 for any two integers s and t with s, t ≥ 2;

(2) mvd(C2k+1�P2) = 1 for any positive integer k.

Proof. For (1), any 4-cycle C4 has two kinds of MVD-colorings on it: Each vertex is

assigned with a same color 1, or its vertices are assigned with the colors 1 and 2, alterna-

tively. Since every edge of Ps�Pt is contained in a 4-cycle and there is no cut-vertex and

pendent vertex in Ps�Pt, we have mvd(Ps�Pt) ≤ 2. Note that the proper 2-coloring of

any connected bipartite graph is an MVD-coloring of this graph, and so mvd(Ps�Pt) = 2.

For (2), suppose to the contrary, there is an MVD-coloring f ′ such that |f ′(C2k+1�P2)| =
2. Suppose C2k+1 = v1v2 · · · v2k+1v1 and P2 = u1u2. Then V (C2k+1�P2) = {(vi, uj), i ∈
[2k+1] and j ∈ [2]}. By Proposition 2.3, there are two adjacent vertices (for convenience,

write (v1, u1) and (v2, u1)) of u1�C2k+1 that are colored with the same color, say 1. Then

(v1, u2) and (v2, u2) are assigned the color 1. By the assumption, suppose i is the minimum

integer such that (vi, u1) or (vi, u2) are colored with a distinct color, say 2, under f ′. If

f ′(vi, u1) = f ′(vi, u2) = 2 or f ′(vi, u1) = 2 6= f ′(vi, u2), then f ′ is not an MVD-coloring of

the 4-cycle formed by the vertices (vi−1, u1), (vi−1, u2), (vi, u1) and (vi, u2), a contradiction

to Proposition 2.3. Therefore, mvd(C2k+1�P2) = 1.

Theorem 5.1. Suppose G and H are two connected graphs. Then we have the two

following results.

(1) If both G and H are bipartite, then mvd(G�H) = 2,

(2) If one of G and H is non-bipartite, then mvd(G�H) = 1.

Proof. For (1), since both G and H are bipartite, by Lemma 5.2, G�H is a bipartite

graph. Then we can find a complete bipartite graph G′ which contains G�H as a spanning

subgraph. By Proposition 2.2 and Lemma 2.1, mvd(G�H) ≥ mvd(G′) = 2. On the other

hand, since G is connected, then we can find a spanning tree T of G. We delete in turn

the leaves of T or the new tree until the new tree is a path. Suppose the final path
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we obtain is P ′. Analogically, we can get a path of H through the above operation,

write P ∗. Together with Lemma 2.1, Corollary 5.1 and (1) of Lemma 5.3, we have

mvd(T�H) ≤ mvd(P ′�P ∗) = 2. Thus, mvd(G�H) = 2.

For (2), suppose C2t+1 is an odd cycle of G. We contract C2t+1 into a vertex u0, and

let G′ be the new graph. Then G′ is connected and so we can find a spanning tree T ′

of G′. We delete in turn the leaves of T ′ or the new tree until the remaining vertex is

u0. Finally, we restore u0, and get the graph C2t+1. Since H is connected, we can find

a spanning tree T ′′ of H. We delete in turn the leaves of T ′′ or the new tree until the

new tree is P2. Combining with Lemma 2.1, Corollary 5.1 and (2) of Lemma 5.3, we have

mvd(G�H) ≤ mvd(C2t+1�P2) = 1. So, mvd(G�H) = 1.

For any three connected graphs G1, G2 and G3, since G1�G2�G3 = (G1�G2)�G3, the

following results is clearly true.

Corollary 5.2. Suppose G1, G2, · · · , Gk are k connected graphs of orders at least 2. Then

we have the two following results.

(1) If each graph Gi is bipartite for i ∈ [k], then mvd(G1� · · ·�Gk) = 2,

(2) If at least one of G1, G2, · · · , Gk is non-bipartite, then mvd(G1� · · ·�Gk) = 1.

In the following, we consider the MVD-number of the strong product of two graphs G

and H.

Lemma 5.4. If s ≥ 2 and t ≥ 2, then Ps � Pt is a closure on V (Ps � Pt).

Proof. We proceed the proof by induction on s + t. When s = 2 and t = 2, then

Ps � Pt = K4, so we are done. Suppose s + t ≥ 5 and s, t ≥ 2. Let Ps = v1v2 · · · vs and

Pt = u1u2 · · ·ut. Suppose P = Ps − vs. By the induction hypothesis, P � Pt is a closure

on V (P � Pt), and {vs−1vs}� Pt is also a closure on V ({vs−1vs}� Pt). Since P � Pt and

{vs−1vs}� Pt contain a common vertex (us−1, vt), Ps � Pt is a closure on V (Ps � Pt).

Theorem 5.2. For two connected graphs G and H of orders at least 2, we have mvd(G�

H) = 1.

Proof. We only need to show that G � H is a closure on V (G � H). Suppose V (G) =

{x1, · · · , xs} and V (H) = {y1, · · · , yt}. For any two distinct vertices (xa, yb) and (xc, yd)

of G�H, we need to find a closure containing them. If a 6= c and b 6= d, then there is a

path Pac in G connecting xa and xc, and there is also a path Pbd in H connecting yb and

yd. Thus Pac � Pbd is a subgraph in G �H that contains (xa, yb) and (xc, yd). Together
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with Lemma 5.4, Pac � Pbd is a closure on V (Pac � Pbd). If a 6= c and b = d, then there

is a path Pac in G connecting xa and xc. Since H is connected and n(H) ≥ 2, there is a

vertex y′ in H adjacent to y1. By Lemma 5.4, Pac� {y1y′} is a closure on V (Pac� {y1y′})
that contains (xa, yb) and (xc, yd). If a = c and b 6= d, analogically, we can also find a

closure containing (xa, yb) and (xc, yd). Due to the arbitrary selection of the two vertices

(xa, yb) and (xc, yd), G�H is a closure on V (G�H).

Proposition 5.1. [12] Suppose G and H are connected graphs. Then G�H is a connected

spanning subgraph of G ◦H.

Combining with Lemma 2.3, we can easily obtain the following theorem.

Theorem 5.3. Suppose G and H are connected graphs. Then mvd(G ◦H) = 1.

For the MVD-number of the direct product G×H of two connected graphs G and H,

we need some known tools as follows.

Proposition 5.2. [15] For two connected graphs G and H, G × H is connected if and

only if at least one of G,H is not bipartite.

Definition 5.2. [12] Suppose G is a connected graph and V ′ = {v1, v2, · · · , vt} is a vertex

subset of G. Let G = G0 and Gi = Gi−1 − vi for i ∈ [t]. We call a vertex sequence

γ = (v1, v2, · · · , vt) a softer layer of G if the degree of vi in Gi−1 is at least 2 and Gi is

connected for i ∈ [t].

From Lemma 2.3, we can deduce the following lemma directly.

Lemma 5.5. Suppose G is connected and the vertex sequence γ = (v1, v2, · · · , vt) is a

softer layer of G. Then mvd(G) ≤ mvd(Gt).

Lemma 5.6. Let G′ be a connected subgraph of a connected graph G, and H be a connected

graph with δ(H) ≥ 2. If at least one of G′, H is not bipartite, then mvd(G × H) ≤
mvd(G′ ×H).

Proof. We proceed the proof by induction on the value of n(G)−n(G′). If n(G)−n(G′) =

0, then G′ is a spanning subgraph of G, and so G′×H is a spanning subgraph of G×H.

Since at least one of G′ and H are not bipartite, G × H and G′ × H are connected by

Proposition 5.2. By Lemma 2.1, mvd(G×H) ≤ mvd(G′ ×H).

Now we assume n(G) − n(G′) ≥ 1. Since G′ is a connected subgraph of G, there is

a spanning tree T with a leaf v, such that v /∈ V (G′). Let Ĝ = G − v. Then Ĝ is a
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connected subgraph of G which contains G′ as a subgraph. Since Ĝ × H is connected

and n(Ĝ) − n(G′) ≤ n(G) − n(G′), by induction, mvd(Ĝ × H) ≤ mvd(G′ × H). Let

V (H) = {u1, u2, · · · , un} and let G×Hi = G×H−{(v, u1), (v, u2), · · · , (v, ui)} for i ∈ [n].

Furthermore, suppose S = {(v, ui) : i ∈ [n]}. Then S is an independent set of G×H, and

G×H−S = Ĝ×H. For each element (v, ui) of S, since δ(H) ≥ 2, ui has two neighbors in

Hi−1, write ui1, ui2 . Similarly, let v′ be one of the neighbors of v in G. Then (v′, ui1) and

(v′, ui2) are two neighbors of (v, ui) in G×Hi−1. Then each vertex (v, ui) of S has at least

two neighbors in G × Hi−1. Therefore, the vertex sequence ((v, u1), (v, u2), · · · , (v, un))

is a soft layer of G ×H. By Lemma 5.5, mvd(G ×H) ≤ mvd(Ĝ ×H) ≤ mvd(G′ ×H).

Consequently, mvd(G×H) ≤ mvd(G′ ×H).

Theorem 5.4. Let G′ and H ′ be connected subgraphs of two connected graphs G and H,

respectively, satisfying that either δ(H) ≥ 2 and δ(G′) ≥ 2, or δ(G) ≥ 2 and δ(H ′) ≥ 2.

If at least one of G′, H ′ is not bipartite, then mvd(G×H) ≤ mvd(G′ ×H ′).

Proof. We only need to prove the case that δ(H) ≥ 2 and δ(G′) ≥ 2. Since at least one

of G′ and H ′ is not bipartite, at least one of G,H is not bipartite, and so are G′ and H.

Then G × H, G′ × H and G′ × H ′ are connected by Proposition 5.2. Since δ(H) ≥ 2,

by Lemma 5.6, mvd(G × H) ≤ mvd(G′ × H). Analogously, since δ(G′) ≥ 2, we have

mvd(G′ ×H) ≤ mvd(G′ ×H ′). Therefore, mvd(G×H) ≤ mvd(G′ ×H ′).
Symmetrically, for the case that δ(G) ≥ 2 and δ(H ′) ≥ 2, we can also obtain mvd(G×

H) ≤ mvd(G′ ×H ′).

Definition 5.3. [12] For a non-bipartite graph G, the odd girth of G, denoted by go(G),

is the minimum value of the lengths of all odd cycles of G. If G is a bipartite graph, we

set go(G) = +∞, which is because a bipartite graph has no odd cycle.

Corollary 5.3. Let G and H be two connected graphs without pendent edges, and at least

one of them is not bipartite. Then mvd(G×H) ≤ min{go(G), go(H)}.

Proof. For convenience, supposeG contains an odd cycle Co such that n(Co) = min{go(G),

go(H)}. Since there is no pendent edges in H, suppose H contains a cycle C ′. By Theo-

rem 5.4, mvd(G ×H) ≤ mvd(Co × C ′). By Lemma 5.6, mvd(C × C ′) ≤ mvd(Co × P2).

Since Co × P2 = C2·n(Co), we have mvd(Co × P2) = n(Co). Thus, mvd(G × H) ≤
min{go(G), go(H)}.

Lemma 5.7. If G is a bipartite graph, then G×Kn is also a bipartite graph.
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Proof. Suppose V1 = {u11, u12, · · · , u1a} and V2 = {u21, u22, · · · , u2b} are the bipartition of

V (G). Let V (Kn) = {v1, v2, · · · , vn}. Then two vertices (uij, vp) and (ust, vq) of G∗Kn are

adjacent if i 6= s, uijust ∈ E(G) and p 6= q. Therefore, V ′1 = {(u1i, vj) : i ∈ [a] and j ∈ [n]}
and V ′2 = {(u2i, vj) : i ∈ [b] and j ∈ [n]} form a bipartition of V (G ×Kn) and there are

no edges that connects any two vertices of V ′1 and V ′2 , respectively. Thus, G × Kn is a

bipartite graph with vertex-bipartition V ′1 and V ′2 .

Since a subgraph of a bipartite graph is also bipartite, if G is a bipartite graph and H

is a connected non-bipartite graph, then G×H is also a bipartite graph.

Lemma 5.8. (1) mvd(P3 ×K3) = 2.

(2) mvd(P2 ×Kq) = 2 for q ≥ 4.

(3) mvd(K3 × C2k+1) = 1 for k ≥ 1.

Proof. For (1), since P3 is a bipartite graph, together with Lemma 5.7, Proposition 2.2 and

Proposition 2.3, we have mvd(P3 ×K3) ≥ 2. Let P3 = u1u2u3 and V (K3) = {v1, v2, v3}.
For ease of understanding and stating, we depict P3 × K3 in Figure 6(a), and let xji =

(ui, vj) for i ∈ [3] and j ∈ [3]. Then the unique unlabeled vertex is x22. Suppose f
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P3

K3
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Figure 6: P3 ×K3 and P2 ×K4.

is an extremal MVD-coloring of P3 × K3. In Figure 6(a), since x12x
3
1x

2
2x

3
3 is a 4-cycle,

x12 and x22 (x31 and x33) have two common distinct neighbors, and so f(x12) = f(x22) and

f(x31) = f(x33). Similarly, since x11x
2
2x

1
3x

3
2 is a 4-cycle, x12 and x32 have two common distinct

neighbors, and so f(x12) = f(x32) and f(x11) = f(x13). Thus, f(x12) = f(x22) = f(x32).

Similarly, we have f(x21) = f(x23), because x12x
2
1x

3
2x

2
3 is a 4-cycle in P3 ×K3. Suppose to

the contrary, |f | ≥ 3. Then, at least one color of {f(x11), f(x21), f(x31)} is different from

the other two. Without loss of generality, suppose f(x11) 6= f(x21) and f(x21) = f(x31).

Then f(x12) 6= f(x11) 6= f(x21). However, there is no monochromatic vertex-cuts separating

x22 and x32 under f , a contradiction. Analogically, for the other cases, we can also get a

contradiction. Thus, mvd(P3 ×K3) = 2.
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For (2), since P2 is a bipartite graph, together with Lemma 5.7, Proposition 2.2 and

Proposition 2.3, we have mvd(P2 × Kq) ≥ 2 for q ≥ 4. On the other hand, since K4 is

a subgraph of Kn for n ≥ 4, by Lemma 5.6, we only need to show mvd(P2 × K4) ≤ 2.

Let P2 = a1a2 and V (K4) = {b1, b2, b3, b4}. For ease of understanding and stating, we

depict P2 ×K4 in Figure 6(b), and let yji = (ai, bj) for i ∈ [2] and j ∈ [4]. Suppose g is

an extremal MVD-coloring of P2 ×K4. For y11 and y21, since y32 and y42 are two common

neighbors of them, we have g(y11) = g(y21). Then, consider y31 and y41. Since y12 and y22
are two common neighbors of them, we have g(y31) = g(y41). Similarly, for y21 and y31,

since y12 and y42 are two common neighbors of them, we have g(y21) = g(y31). Therefore,

g(y11) = g(y21) = g(y31) = g(y41). Analogically, we obtain g(y12) = g(y22) = g(y32) = g(y42).

Then, |g(P2 ×K4)| ≤ 2. Therefore, mvd(P2 ×K4) = 2. Consequently, mvd(P2 ×Kq) = 2

for q ≥ 4.

For (3), suppose V (K3) = {u1, u2, u3} and V (C2k+1) = {v1, v2, · · · , v2k+1}. Let Vi =

{(u1, vi), (u2, vi), (u3, vi)} for i ∈ [2k + 1]. Then V1, V2, · · · , V2k+1 form a partition of

V (K3×C2k+1). Suppose f is an extremal MVD-coloring of K3×C2k+1. Since K3×P2k+1

is a subgraph of K3 × C2k+1, from the proof of (1), we have |f(V1)| = |f(V2)| = · · · =

|f(V2k+1)| = 1 and |f(K3 × C2k+1)| ≤ 2 due to Proposition 2.3. To the contrary, suppose

f(K3 × C2k+1) ≥ 2. Then f(K3 × C2k+1) = 2. Since 2k + 1 is odd, there is a positive

integer p such that f(Vp) = f(Vp+1). Let i′ be the minimum integer (module 2k+1) larger

than p+ 1 such that f(Vi′) 6= f(Vp). Consider any two vertices u and v of Vi′−1. From the

definition of direct product, u and v are not adjacent. Then we need to delete some vertices

of Vi′−2 and Vi′ to separate them. Since f(Vi′−2) 6= f(Vi′), there is no monochromatic

vertex-cuts separating u and v under f , which contradicts with Proposition 2.3. Therefore,

mvd(K3 × C2k+1) = 1 for k ≥ 1.

Corollary 5.4. Let G be a connected graph and H = Kn (n ≥ 3). Then we have the two

following results.

(1) If G is a bipartite graph except mvd(K3 × P2) = 3, then mvd(G×H) = 2.

(2) If G is non-bipartite, then mvd(G×H) = 1.

Proof. For (1), suppose G is a connected bipartite graph. By Lemma 5.7, G × H is a

bipartite graph. Together with Proposition 2.3 and 2.2, we have mvd(G × H) ≥ 2. On

the other hand, when G = P2 and H = K3, G × H = C6, we have mvd(G × H) =

mvd(C6) = 3. When n(G) ≥ 3 and n(H) = 3, by Lemma 5.6 and (1) of 5.8 we have

mvd(G × H) ≤ mvd(P3 × K3) = 2. Then, mvd(G × H) = 2. When n(G) ≥ 2 and

n(H) ≥ 4, by Lemma 5.6 and (2) of 5.8 we have mvd(G × H) ≤ mvd(P2 × Kn) = 2.
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Then, mvd(G×H) = 2.

For (2), suppose G is a connected non-bipartite graph. Then G contains an odd cycle,

say C2k+1, where k ≥ 1. Combining with Theorem 5.4 and (3) of Lemma 5.8 we have

mvd(G×H) ≤ mvd(K3 × C2k+1) = 1. Therefore, mvd(G×H) = 1.

For more general case, we have the following result.

Corollary 5.5. Let H be a connected graph without pendent edges and with at least one

triangle. Then

(1) if G is a connected bipartite graph and contains an even cycle, then mvd(G×H) = 2.

(2) If G is a non-bipartite graph, then mvd(G×H) = 1.

Proof. For (1), since G is a bipartite, by Lemma 5.7 we have G × H is bipartite. So,

mvd(G×H) ≥ 2. From the definition of G, there are some pendent edges in G. Then we

obtain a graph G′ by deleting all pendent edges of G one by one, and G′ is a connected

bipartite graph with δ(G) ≥ 2. By Theorem 5.4 and Corollary 5.4, we have mvd(G×H) ≤
mvd(G′ ×K3) = 2. Thus, mvd(G×H) ≤ 2. So, mvd(G×H) = 2.

For (2), since G is not bipartite, G contains a odd cycle, say C2k+1. Because δ(H) ≥ 2,

by Theorem 5.4 and (3) of Lemma 5.8 we have mvd(G × H) ≤ mvd(K3 × C2k+1) = 1.

Thus, mvd(G×H) = 1.

As one can see, for the former three products, Cartesian product, strong product and

lexicographic product (or composition), we have completely got the exact values of their

MVD-numbers. Only for the last product, direct product, we have not completely solved

the problem. To completely solve it, further work of more detailed structural analysis

needs to be done.
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