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Abstract

A double Roman dominating function on a graph G = (V (G), E(G)) is a function
f : V (G)→ {0, 1, 2, 3} satisfying the property that every vertex assigned 0 has at least
two neighbours assigned 2 or one neighbour assigned 3, and every vertex assigned 1 has
at least one neighbor assigned 2 or 3. A double Roman dominating function f is called
a restrained double Roman dominating function (RDRD-function) if the induced sub-
graph of G by the vertices assigned 0 under f has no isolated vertex. The weight of
an RDRD-function f is the value w(f) =

∑
v∈V (G) f(v), and the minimum weight

over all RDRD-functions on G is the restrained double Roman domination number
(RDRD-number) γrdR(G) of G. In this paper, we first characterize the graphs with
small RDRD-numbers, and then show the sharp bounds of γrdR(G) +γrdR(G) for any
connected graph G with order at least 3. Finally, a linear-time algorithm for comput-
ing the RDRD-number of any cograph is presented. These results partially answer
two open problems posed by Mojdeh et al. [ RAIRO-Oper. Res., 2022].

Keywords: Domination, double Roman domination, restrained double Roman dom-
ination number, linear-time algorithm
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1 Introduction

Throughout this paper, we concentrate only on finite and simple graphs. Given a graph
G = (V (G), E(G)) and set the order n = |V (G)|. The open neighborhood of a vertex
v ∈ V (G) is NG(v) = {u ∈ V (G) : uv ∈ E(G)}, and its closed neighborhood is NG[v] =
NG(v) ∪ {v}. The degree of v in G, denoted by dG(v), is defined as |NG(v)|. We use d(v)
for dG(v) if there is no ambiguity. The minimum degree and maximum degree among
the vertices of G is denoted by δ(G) and ∆(G), respectively. For a set S ⊆ V (G),
its open neighborhood is the set NG(S) =

⋃
v∈S NG(v), and its closed neighborhood is

NG[S] = NG(S) ∪ S. A set S ⊆ V (G) is called a dominating set of G if NG[S] = V (G).
The minimum cardinality over all dominating sets of G is domination number γ(G).

The domination problem of graphs plays a key role in graph theory and in practical
applications, especially in theoretical computer science. For example, monitor a commu-
nication system by placing as few devices in the system as possible is closely related to
the dominating set problem. The important theoretical and practical significance of the
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domination issues are emphasized in [6, 11, 12]. In the light of the above, the classical
domination and its variations have been extensively studied in [7, 10,13,21,23].

Roman domination, as a variation of domination, originated from the problem of how
to develop defense strategies to defend the Roman Empire [20]. Naturally, in modern
practical application, it is well suited to solving the security problems of communication
networks so that network system is defended against attacks. Double Roman domination
is the stronger version of Roman domination, which was introduced by Beeler et al. [4].
Since then, it has been attracted considerable attentions in recent years [1,14,17,19,22,24].

A function f : V (G) → {0, 1, 2, 3} is a double Roman dominating function (DRD-
function) on a graph G, if the following conditions hold.

(i) If f(v) = 0, then vertex v has at least two neighbors in V2 or one neighbor in V3;

(ii) If f(v) = 1, then vertex v has at least one neighbor in V2 ∪ V3.

where Vi denote the set of vertices assigned i by function f . The weight of a double Roman
dominating function is the sum

∑
v∈V (G) f(v). This also equals to |V1|+2|V2|+3|V3|. The

double Roman domination number γdR(G) is the minimum weight of a double Roman
domination of G.

Recently, Mojdeh el at. [18] introduced a new version of double Roman domination,
which is defined as follows. A restrained double Roman dominating function (for short,
RDRD-function) f : V (G)→ {0, 1, 2, 3} is a double Roman dominating function satisfying
the property that the subgraph induced by V0 contains no isolated vertex. The weight of
an RDRD-function f is the value w(f) =

∑
v∈V (G) f(v), and the minimum weight over

all RDRD-functions on G is the restrained double Roman domination number (RDRD-
number) γrdR(G) of G. For the sake of convenience, an RDRD-function f of a graph G
with weight γrdR(G) is called a γrdR(G)-function. Note that for any graph G, γrdR(G) ≥
γdR(G).

In [18], Mojdeh el at. showed that the decision problem associated with computing
RDRD-number of a graph isNP -hard, and then they presented an upper bound on RDRD-
number of a connected graph G in terms of the order of G and characterize the graphs
attaining this bound. In the end of their paper, they also posed some open problems for
further consideration. Among them, the following two problems are stated as follows.

Problem 1: For any graph G, provided the characterizations of graphs with small or
large RDRD-numbers.

Problem 2: To provide some families of graphs for which there might be some
polynomial-time algorithms for computing the RDRD-numbers.

Motivated by the above problems, we continue the research on the RDRD-number
in this paper. In the next section, the characterizations of graphs with RDRD-numbers
{3, 4, 5} are given. And then we show the sharp bounds for γrdR(G) + γrdR(G) for any
graph G with order at least 3 in section 3. Finally, we present a linear-time algorithm
for computing the RDRD-number of any cograph and further give a characterization of
cograph with RDRD-number 2n− 2 in section 4.

Before ending this section, some definitions and concepts are needed. Given a set
S ⊆ V (G), we set G[S] denote the subgraph of G induced by S. Let [n] be the set
of positive integers at least 1 and at most n. A vertex v is called a common vertex if
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d(v) = n− 1. A pendant vertex is a vertex with degree one, the edge adjacent to pendant
vertex is called as a pendant edge. If d(v) = 0, we call it an isolated vertex. For two
vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of G1 and G2

is G1 ∪G2 = (V1 ∪ V2, E1 ∪E2). The join of G1 and G2, denoted by G1 ∨G2, includes all
possible edges between V1 and V2, that is G1∨G2 = (V1∪V2, E1∪E2∪{v1v2|v1 ∈ V1, v2 ∈
V2}). We follow [5] for graph theoretical notation and terminology not defined here.

2 Small RDRD-numbers

In this section, the characterizations for graphs with RDRD-numbers γrdR(G) ∈ {3, 4, 5}
are presented. Before giving the main results, we need the following proposition.

Proposition 2.1. If G is a connected graph of order n ≥ 2, then γrdR(G) ≥ 3.

Proof. It is known that γdR(G) ≥ 3 for any graph G with n(G) ≥ 2. Then the result holds
according to γdR(G) ≤ γrdR(G).

Observation 2.2. If |V2| = |V3| = 0, then |V0| = |V1| = 0.

Let f = (V0, V1, V2, V3) be a γrdR-function of a graph G with order at least 2. By
the definition of RDRD-function, we have γrdR(G) = |V1| + 2|V2| + 3|V3| ≥ 3. Firstly
we consider to give the characterization of the graphs with RDRD-number 3. We only
consider the connected graph G, since there is no disconnected graph with RDRD-number
3.

Theorem 2.3. Let G be a connected graph of order n ≥ 2. Then γrdR(G) = 3 if and only
if one of the following two conditions holds.

(i) G is a graph with n ≥ 3 containing a common vertex and no pendant edges.

(ii) G is a K2.

Proof. Let G be a graph satisfying the condition (i). We define the function f by assigning
3 to the common vertex v and 0 to the remaining vertices. It is easy to see that f is an
RDRD-function of G, and then γrdR(G) ≤ 3. Otherwise, G is a K2, then γrdR(G) ≤ 3
by assigning the two vertices by 1 and 2, respectively. Hence γrdR(G) = 3 by combining
Proposition 2.1.

Conversely, if γrdR(G) = 3, then |V1| + 2|V2| + 3|V3| = 3. The following two cases
should be considered by using Observation 2.2.

Case 1. |V3| = 1 and |V1| = |V2| = 0.

Without loss of generality, we assume V3 = {v}. Since n ≥ 2 and the definition of
RDRD-function, it follows that |V0| ≥ 2 and n ≥ 3. And further, any vertex in V0 is
adjacent to the vertex v and thus d(v) = |V0| = n − 1. Since G[V0] contains no isolated
vertex, then the degree of any vertex in V0 is at least 2, this is, there is no pendant edge
in G.

Case 2. |V3| = 0 and |V1| = |V2| = 1.

From the definition of RDRD-function, we know that |V0| = 0 and thus n = |V1|+|V2| =
2. Then G = K2.
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Theorem 2.4. Let G be a graph of order n ≥ 3. Then γrdR(G) = 4 if and only if one of
the following conditions holds.

(i) G is a connected graph with n ≥ 4 containing exactly one common vertex and one
pendant edge.

(ii) G = K2 ∨ G1 is a connected graph with n ≥ 6 and ∆(G) = n − 2 such that G1

contains no isolated vertex.

(iii) G is a P3.

(iv) G is a disconnected graph and G is a K2.

Proof. Note that (iv) is trivial, we thus need to show that (i)-(iii) are true. Now we first
prove that if G is a graph satisfying one of the above conditions (i)-(iii), then γrdR(G) = 4.
If G satisfies the condition (i), then we define the function f by assigning 3 to the common
vertex, 1 to the pendant vertex and 0 to the remaining vertices in G. If G satisfies the
condition (ii), then we define f as follows. The two vertices in K2 are assigned 2, and
the remaining vertices are assigned 0. It is check that f is an RDRD-function of G and
γrdR(G) ≤ 4. By using Theorem 2.3, we have γrdR(G) ≥ 4. So γrdR(G) = 4. Now if
G = P3, then it is easy to check that γrdR(G) = 4.

Conversely, if γrdR(G) = 4, then |V1| + 2|V2| + 3|V3| = 4. We will prove the result by
considering the following cases.

Case 1. |V3| = |V1| = 1, |V2| = 0.

By the definition of RDRD-function, we get that |V0| = n − 2 ≥ 2 and n ≥ 4. Now
we assume that V1 = {x}, V3 = {y}, V0 = {vi|i ∈ [n − 2]}. Again from the definition of
RDRD-function, we know that x and vi (i ∈ [n− 2]) are adjacent to y, and G[V0] has no
isolated vertices. Thus d(y) = n− 1 and d(vi) ≥ 2 for i ∈ [n− 2]. Now we claim that x is
a pendant vertex. Otherwise, γrdR(G) = 3 since Theorem 2.3. This is a contradiction. So
G is a graph containing exactly one common vertex and one pendant edge.

Case 2. |V3| = |V1| = 0, |V2| = 2.

We get that |V0| = n− 2. Let V2 = {x, y}, V0 = {vi|i ∈ [n− 2]}. By the definition of
RDRD-function, every vertex in V0 is adjacent to both x and y, and G[V0] has no isolated
vertices. Thus d(x) = d(y) ≥ n − 2 ≥ 2 and d(vi) ≥ 3 (i ∈ [n − 2]). Since there are no
pendant edges and Theorem 2.3, then ∆(G) ≤ n− 2. It follows that ∆(G) = n− 2. That
is to say, 3 ≤ d(vi) ≤ n − 2 for every i ∈ [n − 2], and d(x) = d(y) = n − 2 (i.e., x and
y are not adjacent). Set K2 = {x, y} and G1 = G[V0], then G = K2 ∨ G1. Finally, we
only need to prove that n ≥ 6. Since 3 ≤ d(vi) ≤ n − 2, then n ≥ 5. Suppose n(G) = 5.
Since G1 contains no isolated vertex, then there must be a vertex vi ∈ G1 such that
dG1(vi) = 2 > n(G1)− 2 = 1, this is a contradiction.

Case 3. |V1| = 2, |V2| = 1, |V3| = 0.

By using the definition of RDRD-function, we get that |V0| = 0 and n = |V1|+ |V2| = 3.
From Theorem 2.3, we know that G is not a K3, and thus G = P3.

Theorem 2.5. Let G be a graph of order n ≥ 4. Then γrdR(G) = 5 if and only if one of
the following conditions holds.
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(i) G is a connected graph with n ≥ 5 and ∆(G) = n − 2 satisfying the following
conditions.

(a) G contains two non-adjacent vertices x, y such that d(x) ≤ n− 3, d(y) = n− 2;

(b) G[V \{x, y}] contains no isolated vertex.

(ii) G is a connected graph with n ≥ 5 containing exactly one common vertex and two
pendant edges.

(iii) G is a connected graph with n ≥ 5 and ∆(G) = n − 2 satisfying the following
conditions.

(a) G contains two non-adjacent vertices x, y such that d(x) ∈ {n − 3, n − 2} and
d(y) = n− 2;

(b) There exists only one vertex z in G with 1 ≤ d(z) ≤ 2, and G[V \{x, y, z}] has
no isolated vertex.

(iv) G is a K1,3.

(v) G is a disconnected graph and it is a disjoint union of an isolated vertex and a graph
with RDRD-number 3.

Proof. Note that (v) is trivial, we thus need to show that (i)-(iv) are also true. We first
prove that if G satisfies one of the above conditions (i)-(iv), then γrdR(G) = 5. First we
have γrdR(G) ≥ 5 by Theorem 2.3 and Theorem 2.4. Now we only need to give the upper
bounds.

If G is a graph satisfying (i), then we define f by assigning 2 to x, 3 to y and 0 to
the remaining vertices. It is easy to check that f is an RDRD-function of G, and then
γrdR(G) ≤ 5. If G is a graph satisfying (ii), then we define f by assigning 3 to the common
vertex, 1 to the two pendant vertices and 0 to the remaining vertices in G. So f is an
RDRD-function of G, and γrdR(G) ≤ 5. If G is a graph satisfying (iii), then we give f by
assigning 2 to x, y, 1 to z and 0 to the remaining vertices in G. So f is an RDRD-function
of G, and thus γrdR(G) ≤ 5. Now if G is a K1,3, then it is easy to check that γrdR(G) = 5.

Conversely, if γrdR(G) = 5, then |V1| + 2|V2| + 3|V3| = 5. By Observation 2.2, the
following cases should be considered.

Case 1. |V3| = |V2| = 1, |V1| = 0.

Let V2 = {x}, V3 = {y}, V0 = {vi|i ∈ [n − 2]}. By the definition of RDRD-function,
every vertex in V0 is adjacent to y, and G[V0] contains no isolated vertex. We claim that
x is not adjacent to y. If not, suppose x is adjacent to y, then we give an RDRD-function
f as (V −{x, y}, {x}, ∅, {y}). And thus γrdR(G) ≤ 4, a contradiction. From the above, we
have d(y) = n− 2, d(x) ≤ n− 2. Now we want to prove ∆(G) = n− 2, it is only to prove
that every vertex in V0 has degree at most n − 2. Indeed, if a vertex v0 ∈ V0 such that
d(v0) = n−1, then a new RDRD-function can be defined as (V −{v0, x}, {x}, ∅, {v0}) and
thus γrdR(G) ≤ 4, this is a contradiction. Actually, d(x) ≤ n − 3, otherwise γrdR(G) = 4
through using Theorem 2.4 (ii).

Now we only need to show n ≥ 5. Note that n ≥ 4 is obviously. Suppose that n = 4,
and then |V0| = 2. Without lose of generality, set V0 = {v1, v2} and let v1 is adjacent to
x. We define a new RDRD-function as (V − {x, v1}, {x}, ∅, {v1}), then γrdR(G) ≤ 4, this
is a contradiction.
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Case 2. |V3| = 1, |V1| = 2, |V2| = 0.

From |V0| = n− 3 ≥ 2, then n ≥ 5. Let V1 = {x1, x2}, V3 = {y}, V0 = {vi|i ∈ [n− 3]}.
By the definition of RDRD-function and |V2| = 0, we get that every vertex in V0 ∪ V1
is adjacent to y. And further, G[V0] contains no isolated vertex. Thus d(y) = n − 1
and d(vi) ≥ 2 for every i ∈ [n − 3]. We claim that x1 and x2 are pendant vertices.
Otherwise γrdR(G) ≤ 4 by Theorem 2.3 (i) and Theorem 2.4, this is a contradiction. Thus
2 ≤ d(vi) ≤ n− 3 and G contains exactly one common vertex and two pendant edges.

Case 3. |V2| = 2, |V1| = 1, |V3| = 0.

Since |V0| = n−3 ≥ 2, then n ≥ 5. Let V2 = {x, y}, V1 = {z}, V0 = {vi|i ∈ [n−3]}. By
the definition of RDRD-function and V3 = ∅, we know that every vertex in V0 is adjacent
to both x and y, G[V0] has no isolated vertices and z is adjacent to at least one vertex in
V2. Without lose of generality, suppose z is adjacent to x. Now we claim x and y are not
adjacent. Otherwise an RDRD-function can be defined as (V − {x, y}, {z}, ∅, {x}), then
γrdR(G) ≤ 4, a contradiction. From the above, d(x) = n − 2 and n − 3 ≤ d(y) ≤ n − 2
hold. If d(z) = n− 1 or d(vi) = n− 1 for some i ∈ [n− 3], then there is no pendant edge,
and γrdR(G) = 3 by using Theorem 2.3, this is a contradiction. Thus ∆(G) = n− 2.

Now if d(y) = n−3 and G[V \{x, y}] has no isolated vertex, then G is a graph described
in (i). Otherwise, there exists only one isolated vertex z in G[V \{x, y}], then d(z) = 1. If
d(y) = n−2, then it implies that (y, z) ∈ E(G). Suppose G[V \{x, y}] contains no isolated
vertex, then an RDRD-function can be defined as (V − {x, y}, ∅, {x, y}, ∅), it follows that
γrdR(G) ≤ 4, this is a contradiction. Now there is an isolated vertex z in G[V \ {x, y}],
then d(z) = 2. Note that 3 ≤ d(vi) ≤ n − 2 for every i ∈ [n − 3], then the vertex z is a
vertex with minimum degree in G. Combining the above analysis, the result holds.

Case 4. |V1| = 3, |V2| = 1, |V3| = 0.

From the definition of RDRD-function, we know that |V0| = 0 and n = |V1|+ |V2| = 4.
Let V1 = {x, y, z}, V2 = {v}. By the definition of RDRD-function, v is adjacent to x, y
and z. If G[V1] contains an edge, say (x, y), then an RDRD-function can be defined as
({x, y}, {z}, ∅, {v}), it follows γrdR(G) ≤ 4, this is a contradiction. Thus G is a K1,3.

3 Nordhaus-Gaddum inequalities

In this section we provide sharp bounds on the sum of the RDRD-numbers of a graph and
its complement, that is, Nordhaus-Gaddum inequalities for RDRD-numbers of a graph.

Proposition 3.1. [22] Let G be an n-vertex graph and n ≥ 3. Then 8 ≤ γdR(G) +
γdR(G) ≤ 2n+ 3.

Proposition 3.2. Let G be a graph with n vertices and ∆(G) = ∆. Then γrdR(G) ≤
2n−∆.

Proof. Let v be a vertex with the degree ∆. Then (∅, N(v), V (G) \N(v), ∅) is a RDRD-
function of G, thus γrdR(G) ≤ ∆ + 2(n−∆) = 2n−∆.

Now we give the main theorem in this section as follows.

Theorem 3.3. Let G be a graph with the order n ≥ 3. Then

9 ≤ γrdR(G) + γrdR(G) ≤ 3n.
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Proof. Let G be a graph with n ≥ 3. For the lower bound of the inequality, recall
γrdR(G) ≥ γdR(G) and Proposition 3.1, we get γrdR(G)+γrdR(G) ≥ γdR(G)+γdR(G) ≥ 8.
Now we want to prove that there is no graph satisfying γrdR(G) + γrdR(G) = 8. Suppose
G is a graph satisfying γrdR(G) + γrdR(G) = 8. The result will be proved by considering
the following two cases.

Case 1. γrdR(G) = 3, γrdR(G) = 5.

Since γrdR(G) = 3 and Theorem 2.3 (i), we have ∆(G) = n − 1 and δ(G) ≥ 2. And
thus ∆(G) ≤ n − 3 and δ(G) = 0. This is to say, there is an isolated vertex in G, say v.
Set G1 = G − {v}. Then ∆(G1) ≤ n(G1) − 2. By using Theorem 2.3, γrdR(G1) > 3. So
γrdR(G) = γrdR(G1) + γrdR(G[v]) > 5, a contradiction.

Case 2. γrdR(G) = γrdR(G) = 4.

As stated in Theorem 2.4 (iv), if G is disconnected and γrdR(G) = 4, then G = K2, a
contradiction. Now we complete this proof by the following subcases, since γrdR(G) = 4
and Theorem 2.4. If G is a graph described in Theorem 2.4 (i), then ∆(G) = n − 1 and
thus G is disconnected (note that there is no disconnected graph with n ≥ 3 satisfying
γrdR(G) = 4), a contradiction. If G is a graph described in Theorem 2.4 (ii), then
∆(G) = n − 2 and δ(G) ≥ 3. It follows that ∆(G) ≤ n − 4 and δ(G) ≥ 1. It is easy to
check that G is not a graph described in any case of Theorem 2.4. Thus γrdR(G) 6= 4, a
contradiction. Finally, G = P3, and then γrdR(P3) + γrdR(P3) = 9, a contradiction.

Combining the above analysis, we know that γrdR(G) + γrdR(G) ≥ 9.

For the upper bound, we can get the following inequality by Proposition 3.2.

γrdR(G) + γrdR(G) ≤ (2n−∆(G)) + (2n−∆(G))

= 4n− (∆(G) + ∆(G))

= 4n− (∆(G) + (n− δ(G)− 1))

= 3n− (∆(G)− δ(G)) + 1.

In above inequality, if G is a irregular graph, note that ∆(G) > δ(G), then we have
γrdR(G) + γrdR(G) ≤ 3n. If G is a regular graph, then γrdR(G) + γrdR(G) ≤ 3n+ 1. Now
we want to prove that there is no regular graph attaining this upper bound.

Suppose G is d-regular satisfying γrdR(G) + γrdR(G) = 3n + 1. By symmetry, we
can assume that d ≤ (n − 1)/2. Since Proposition 3.2 and equality holds, we get that
γrdR(G) = 2n− d and γrdR(G) = n+ d+ 1.

Take any vertex v ∈ V (G). Let G1 = G[V (G)\N [v]]. If there exists a vertex u outside
N [v] which has at least one neighbor outside N [v], then define a new RDRD-function
as (∅, N(v) ∪ NG1(u), V (G) − N(v) − NG1(u), ∅), and further γrdR(G) ≤ 2n − d − 1, a
contradiction. Thus every vertex outside N [v] has all neighbors in N [v]. If there exists
a vertex w ∈ N(v) which has at least two neighbors outside N [v], then we define a new
RDRD-function as (∅, (N(v) − {w}) ∪ NG1(w), V (G) − NG1(w) − (N(v) − {w}), ∅). It
follows that γrdR(G) ≤ 2n − d − 1, this is a contradiction. Now we get that every vertex
in N(v) has at most one neighbor outside N [v].

Counting the edges joining N [v] and V (G)\N [v] from both sides, we have d(n−d−1) ≤
d. By simplification, n ≤ d+ 2 for d 6= 0. Note that n ≥ 2d+ 1, we only need to consider
two cases, d = 1 or d = 0. If d = 1, then n = 3, the graph is not exists. If d = 0, then
G = Kn. We can get γrdR(Kn) + γrdR(Kn) = 2n+ 3. Note 2n+ 3 < 3n+ 1 always holds
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for n ≥ 3, this is a contradiction.

Combining the above analysis, there is no regular graph attaining this upper bound
3n+ 1. Thus we have γrdR(G) + γrdR(G) ≤ 3n for regular graph G.

Note that both the bounds in the above theorem are sharp. In fact, if G or G is C3,
P3, C4 or P4, then the upper bound is arrived; if G or G is C3 or P3, the lower bound is
arrived.

4 The RDRD-number of a cograph

In this section, we present a linear-time algorithm to compute the RDRD-number of a
connected cograph G, it is easily apply to all cographs, since the RDRD-number of a
disconnected cograph equals the sum of RDRD-numbers of its connected components.

A cograph is exactly not containing the induced path of four vertices, and it is also
called P4-free graph. It can be defined recursively as follows: (i) Starting from a single
vertex graph. (ii) Two cographs performing disjoint union and join are cographs. (iii)
The complement of a cograph is a cograph. There have been many studies on cographs
in recent years [2, 3, 15]. A cograph has a property that each cograph corresponds to a
unique tree representation, called a cotree [8]. We denote the cotree of a cograph G by TG.
The leaves of TG are the vertices of G and internal nodes of TG are labeled join or union
depending on the corresponding operation. The labels join and union appear alternately
along every path starting from the root of TG. A cograph can be recognized and the
corresponding cotree can be constructed in linear time [9]. Figure 4.1 illustrate a cograph
G and its corresponding cotree TG.

Figure 4.1: The cograph G and the cotree TG.

Lemma 4.1. Let G be a connected cograph with G = G1 ∨G2, where Gi (i ∈ {1, 2}) is a
cograph with n(Gi) ≥ 2 and V (G1) ∩ V (G2) = ∅. Then

(i) γrdR(G) = 3 if and only if one of G1 and G2 contains a common vertex.

(ii) γrdR(G) = 4 if and only if one of G1 and G2 is K2, and there is no isolated vertex
in the other graph with order n0 ≥ 4 and maximum degree at most n0 − 2.

(iii) γrdR(G) = 5 if and only if one of the following conditions holds.
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(a) One of G1 and G2 contains two non-adjacent vertices x, y, where d(x) ≤ n− 3,
d(y) = n− 2, n(G1) + n(G2) ≥ 5 and ∆(Gi) ≤ n(Gi)− 2 (i ∈ {1, 2}).

(b) One of G1 and G2 is K2, and there is exactly one isolated vertex in the other
graph, where n(G1) + n(G2) ≥ 5 and ∆(Gi) ≤ n(Gi)− 2 (i ∈ {1, 2}).

(iv) γrdR(G) = 6 otherwise.

Proof. Let f = (V0, V1, V2, V3) be a γrdR-function of G. By the definition of RDRD-
function of G, we have γrdR(G) = |V1| + 2|V2| + 3|V3| ≥ 3. Since G is the join of G1 and
G2, then every vertex in G1 is adjacent to every vertex in G2. Since n(Gi) ≥ 2, it implies
that n(G) ≥ 4, δ(G) ≥ 2 and there are no pendant edges in G.

(i) If v ∈ G1(or G2) has a common vertex, then it is also a common vertex in G.
By Theorem 2.3 (i), γrdR(G) = 3. Conversely, if γrdR(G) = 3, we only need to consider
the graph described in Theorem 2.3 (i). Let v be the common vertex in G. Then v is
also a common vertex in G1 (or G2), say v ∈ G1. Since n(G1) ≥ 2, then G[V (G) \ {v}]
contains no isolated vertices. Now we define a RDRD-function as (V (G) \ {v}, ∅, ∅, v).
Thus γrdR(G) = 3.

(ii) If one of G1 and G2 is K2, and there are no isolated vertices in the other graph,
where n(G1) + n(G2) ≥ 6 and ∆(Gi) = n − 2 (i ∈ {1, 2}). By Theorem 2.4 (ii), then
γrdR(G) = 4. Conversely, if γrdR(G) = 4, then only possibility that meets the conditions
of cographs is the graphs described in Theorem 2.4 (ii). That is G = K2 ∨ G0 and G0

contains no isolated vertex. If G0 is a cograph, then the result holds. Suppose G0 is not a
cograph, then there exists a induced path P4 = v1v2v3v4 in G0. It is easy to check that P4

is still an induced path under the operation ∨. It implies that P4 = v1v2v3v4 is an induced
path in G, a contradiction.

(iii) If the conditions in Lemma 4.1 (iii) (a) are satisfied, without loss of generality, we
assume that G1 contains two non-adjacent vertices x, y, where d(x) ≤ n− 3, d(y) = n− 2,
n(G1) + n(G2) ≥ 5 and ∆(Gi) ≤ |V (Gi)| − 2 (i ∈ {1, 2}). It implies that there exists at
least one vertex in G1 besides x and y. Thus G[V (G) \ {x, y}] has no isolated vertices.
By Theorem 2.5 (i), γrdR(G) = 5. If the conditions in Lemma 4.1 (iii) (b) are satisfied,
without loss of generality, we assume that G1 is K2, and there is exactly one isolated
vertex v in G2, where n(G1) + n(G2) ≥ 5 and ∆(Gi) ≤ |V (Gi)| − 2 (i ∈ {1, 2}). It implies
that the degree of vertices in G1 is n − 2, d(v) = 1 and v is isolated in G[V (G \ G1)],
further G[V (G \G1 ∪ {v})] has no isolated vertices. Thus γrdR(G) = 5 by using Theorem
2.5 (iii).

Conversely, if γrdR(G) = 5, then the possibilities that meet the conditions of cographs
with n(G) ≥ 4 and δ(G) ≥ 2 are (i) and (iii) of Theorem 2.5. That is |V (G1)|+|V (G2)| ≥ 5
and ∆(Gi) ≤ |V (Gi)| − 2 (i ∈ {1, 2}).

Case 1. For the class of graphs in Theorem 2.5 (i), there are two non-adjacent vertices,
say x, y, with degree d(x) ≤ n − 3, d(y) = n − 2 in G. In this case, there are only two
possible RDRD-functions for G as follows. If d(x) < n − 3, then f(x) = 2, f(y) = 3, and
the remaining vertices are assigned 0; if d(x) = n − 3, then f(x) = f(y) = 2, the only
vertex adjacent to y but not adjacent to x is assigned 1, and the remaining vertices are
0. From the definition of the operation ∨, we know that x and y are both in the same
subgraph, say x, y ∈ G1, and whatever the possible assignments, there is always at least
one vertex in G1 besides x and y. Thus in this case, G[V (G)\{x, y}] will not have isolated
vertices. Combining the above analysis, the condition (iii)(a) holds.
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Case 2. For the class of graphs in Theorem 2.5 (iii), there are two non-adjacent
vertices, say x, y, with degree d(x) ∈ {n − 3, n − 2}, d(y) = n − 2. If d(x) = n − 3,
then we can get the class of cographs in Lemma 4.1 (iii) (a). If d(x) = n − 2, then x
and y are both in the same subgraph, say x, y ∈ G1. Now we claim that there are no
other vertices except x, y in G1. Otherwise, if there exists another vertex v in G1, we
define a new RDRD-function as (V (G) \ {x, y}, ∅, {x, y}, ∅), and thus γrdR(G) ≤ 4, this is
a contradiction. Thus G1 is K2. By Theorem 2.5 (iii), we can get that there is exactly
one isolated vertex in the G2. Combining the above analysis, the condition (iii) (b) holds.

(iv) For any connected cograph G = G1∨G2. Let u ∈ V (G1) and v ∈ V (G2), it is easy
to see (V (G) − {u, v}, ∅, ∅, {u, v}) is an RDRD-function of G. Then γrdR(G) ≤ 6. And
further if G is not any case (i)-(iii), then γrdR(G) = 6.

This completes the proof.

Observation 4.2. For a connected cograph G = G1 ∨G2, where G1 has order 1, and let
s to be the number of isolated vertices in G2. Then

γrdR(G) =

{
s+ 2, if and only if s = n(G2),
s+ 3, if and only if 0 ≤ s ≤ n(G2)− 1.

Based on Lemma 4.1 and Observation 4.2, we give Algorithm 1 for computing the
RDRD-number of a connected cograph G.

Algorithm 1 RDRD-number of a Cograph

Require: A connected cograph G with its cotree
Ensure: The restrained double Roman domination number γrdR(G)

Let G be the join of G1 and G2

The number of isolated vertices in Gi is si, where i ∈ {1, 2}
if n(G1) ≥ 2 and n(G2) ≥ 2 then
if G1 or G2 contains a common vertex then
return γrdR(G) = 3.

else if ∆(Gi) ≤ n(Gi)− 2(i ∈ {1, 2}) and n(G1) + n(G2) ≥ 5
Case 1: G1 or G2 contains two non-adjacent vertices x, y, where d(x) ≤ n − 3,
d(y) = n− 2
Case 2: ∃ i such that Gi is K2 and si( mod 2)+1 = 1, where i ∈ {1, 2} then

return γrdR(G) = 5.
else if n(G1)+n(G2) ≥ 6, ∃ i such that Gi is K2 and si( mod 2)+1 = 0, where i ∈ {1, 2}
then
return γrdR(G) = 4.

else
return γrdR(G) = 6.

end if
else if ∃ i such that n(Gi) = 1 and si( mod 2)+1 = n(Gi( mod 2)+1), where i ∈ {1, 2} then
return γrdR(G) = si( mod 2)+1 + 2.

else if ∃ i such that n(Gi) = 1 and 0 ≤ si( mod 2)+1 ≤ n(Gi( mod 2)+1)−1, where i ∈ {1, 2}
then
return γrdR(G) = si( mod 2)+1 + 3.

end if

In the following, we present the correctness and complexity of Algorithm 1.
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Theorem 4.3. The restrained double Roman domination number of cograph can be com-
puted in linear time.

Proof. By Lemma 4.1 and Observation 4.2, the algorithm is correct. Now we analyze its
time complexity. For a cograph G, it is a linear time to determine G1 and G2 in [9]. Since
determining the degree of each vertex needs a linear time, then the number of isolated
vertices can be determined in a linear time. Further, finding the vertex that meets the
required degree condition is in a linear time. And it is also linear time to determine
whether a graph is K2. Hence, the time complexity to computing the RDRD-number of
a cograph is linear.

In [16], the authors gave the characterizations of connected graphs with RDRD-number
2n−1. As an application of the above algorithm, we give the characterization of cographs
with RDRD-number 2n− 2.

Corollary 4.4. Let G be a cograph, then γrdR(G) = 2n−2 if and only if G ∈ {P3, 2K2,K1∪
K1,2, C4}.

Proof. If G ∈ {P3, 2K2,K1 ∪ K1,2, C4}, then it is easy to check γrdR(G) = 2n − 2 by
Algorithm 1. Conversely, if γrdR(G) = 2n − 2, then 2 ≤ γrdR(G) = 2n − 2 ≤ 6 by the
definition of RDRD-function and Lemma 4.1, that is 2 ≤ n(G) ≤ 4. Now we completes
the proof as follows.

If n = 2, then γrdR(G) = 2. It is easy to check that there is no cograph satisfying the
condition. If n = 3, then γrdR(G) = 4. Note that there is no disconnected cograph G with
γrdR(G) = 4. For connected cograph, we can get the only case satisfying the condition is
K1∨K2, that is G = P3 by Observation 4.2. If n = 4, then γrdR(G) = 6. Now we consider
the components of G. If the number of components of G at least 3. Using Observation
4.2 for each connected component, and then sum. We can get there is no cograph can
meet γrdR(G) = 2n− 2. If G has two connected components, then the cographs meet the
condition are K1 ∪K1,2 and 2K2 by Observation 4.2. If G has one connected component,
that is G is connected. Let G = G1 ∨G2. If one of G1 and G2 has order 1, say n(G1) = 1.
It follows n(G2) = 3. Then γrdR(G) ≤ n(G2) + 2 = 5 by Observation 4.2. This is a
contradiction. If n(Gi) = 2 (i ∈ {1, 2}), then the dGi(v) = 1, otherwise γrdR(G) = 3 by
Lemma 4.1. Thus the connected cograph is K2 ∨K2, that is C4.
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