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Abstract

Let G be an edge-colored graph and v be a vertex of G. Define the monochromatic-
degree d™°"(v) of v to be the maximum number of edges with the same color incident
with v in G, and the maximum monochromatic-degree A”°"(G) of G to be the max-
imum value of d"°"(v) over all vertices v of G. A cycle (path) in G is called properly
colored if any two adjacent edges of the cycle (path) have distinct colors. Wang et
al. in 2014 showed that an edge-colored complete graph K with A™"(K;) < [ 5]
contains a properly colored cycle of length at least [§]+2. In this paper, we obtain
a generalization of their result that an edge-colored complete graph K| of order n
with A™"(K¢) = d < n — 2 contains a properly colored cycle of length at least

n—d+1.

Keywords: edge-colored (complete) graph; (minimum) color-degree; (maximum)

monochromatic-degree; properly colored cycle (path).
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1 Introduction

An edge-coloring of a graph is an assignment of colors to the edges of the graph. An

edge-colored graph is a graph with an edge-coloring. Let K¢ denote an edge-colored
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complete graph with an edge-coloring ¢. A cycle (path) in an edge-colored graph G is
properly colored, or PC for short, if any two adjacent edges of the cycle (path) have

distinct colors. For other notation and terminology not defined here, we refer to [4].

In an edge-colored graph G, the color-degree of a vertex v of GG is the number of colors
on the edges incident with v in G, denoted by d(v). Let §°(G) denote the minimum value
of d°(v) over all vertices v € V(G), called the minimum color-degree of G. Actually, there
are many results on the color-degree conditions for the existence of PC cycles, for which

we refer the reader to [9, 10].

In this paper, we consider the monochromatic-degree conditions for the existence of
PC cycles. The monochromatic-degree of a vertex v of G is the maximum number of
edges with the same color incident with v in G, denoted by d™°"(v). Let A™"(G) de-
note the maximum value of d™"(v) over all vertices v € V(G), called the mazimum
monochromatic-degree of G. In recent years, many people have worked on the conditions
for the existence of a PC Hamilton cycle in an edge-colored graph. In 1976, Bollobas and

Erdés in [3] posed the following famous conjecture.

Conjecture 1 ([3]). If A™"(K;) < [5], then K, contains a PC Hamiltonian cycle.

Li et al. in [9] studied long PC cycles in K and proved that if A™"(K;) < [%],
then K¢ contains a PC cycle of length at least [%2] + 1. Later on, Wang et al. in [15]

improved the bound on the lengths of PC cycles.

Theorem 2 ([15]). If A™"(Ky) < 5], then K, contains a PC cycle of length at least
[51+2.

In this paper, we obtain a bound on the lengths of PC cycles under monochromatic-

degree conditions.

Theorem 3. If A""(KS) = d < n — 2, then K¢ contains a PC cycle of length at least
n—d+1.

Remark. Theorem 3 can be seen as a generalization of Theorem 2, since from A™"(K¢) =
d < %], we have

w

n—

n is odd;
d <

| [\
[\

5= n s even,
and then n —d +1 > [5] + 2.

The main idea is the rotation-extension technique of Pdsa [12], which was used on
edge-colored graphs in [10, 15].



Since A™"(K¢) + 0°(K) < n, we can get the following corollary.

Corollary 4. If §°(K¢) > 2, then K¢ contains a PC cycle of length at least 0°(KE) + 1.

Thus we completely solve the problem “Does every edge-colored complete graph K
with 0°(K¢) > 2 contain a PC cycle of length at least 6°(K¢) 7", which was posed by Li
et al. in [7].

The paper is organized as follows. In Section 2, we give some notation and tools. In
Section 3 we prove our main result Theorem 3. In Section 4, we give a remark concerning

the lengths of PC cycles in Theorem 3 and pose two conjectures.

2 Preliminaries

Grossman and Héggkvist in [6] gave a condition for the exitance of a PC cycle in an
edge-colored graph with two colors, and later on, Yeo in [16] extended the result to an

edge-colored graph with any number of colors.

Theorem 5 ([6, 16]). Let G be an edge-colored graph containing no PC cycles. Then G
contains a vertex v such that no component of G — v is joined to v with edges of more

than one color.

Li et al. [8] observed that in an edge-colored complete graph G, for any PC cycle
C, each vertex v € V(C) is contained in a PC cycle C” of length at most 4 such that
V(C") C V(C). Combining this observation and Theorem 5, they got the following result.

Theorem 6 ([8]). If A™"(K¢) < n —2, then K¢ contains a PC cycle of length at most
4.

For convenience, let the vertices of K be labeled from 1 to n. A path of length ¢ —1 is
considered to be an (-tuple, (iy,is,- - ,i¢), where iy,1is,--- ,i, are distinct. Let [a,b] and
[b] denote the sets {i € N:a < i <b} and {i € N:1 <i < b}, respectively.

Given a longest PC path P = (i1,14y, - ,i), we define two sets

X(P)={j ell]: clir,ij) # c(ir, ia)},
Y<P) = {.] € [6] : C(lfalj) # C(ibif—l)})
of indices and two subsets

N¥(ir; P) = {i, : # € X(P)},
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Ne(ig; P) = {iy -y € Y(P)}

of vertices. Clearly, min{|X(P)|,|Y(P)|} > n — A™"(G) — 1. Apparently, as P is a
longest PC path, N¢(iy; P), N¢(ig; P) C V(P). We say that P has a crossing if there
exist z and y with 1 <y < o < £ such that y € Y(P) and x € X(P). If i; € N°(i; P)
and c(ig, ;) # c(ij,ij_1), then (1,49, -+ , 45,40, %1, - ,4;41) is also a PC path, which is
called a rotation of P with endpoint i; and pivot point i;. A reflection of P is simply
the PC path (ig,%_1,- -+ ,41). The set of PC paths that can be obtained by a sequence
of rotations and reflections of P is denoted by R(P). Note that if P is a longest PC
path, then all paths in R(P) are longest PC paths. Let ¢(P) = max{j : j € X(P)} and
r(P) =min{j : j € Y(P)}. Then the next lemmas follow easily.

Lemma 1. Let A™"(K¢) =d < n—2. Suppose P = (i1,is, -+ i) is a longest PC path
in K. If there does not exist a PC cycle of length at least n —d + 1, then c(iy, igp)) =

c(iqpy, iqp)—1) and c(iy, ir(py) = c(ir(p), ir(P)+1)-

Proof. Suppose not, then (71,4, - -, iqp), 1) and (in(py, ir(P)+1, - - -, ie, ip(p)) are PC cycles
containing N¢(iy; P) U {i1,12} and N°(ig; P) U {is, i1}, respectively, a contradiction. [

Lemma 2. Let A™"(K.) =d <n—2. Let P be a longest PC path in K. If there does
not exist a PC cycle of length at least n — d + 1, then each path in R(P) has a crossing.

Proof. Suppose, to the contrary, that there is a path Q = (i1, 42, - , i) in R(P) such that
@ does not have a crossing. Then we have ¢(Q) < r(Q). Since d < n—2, we have r(Q) <
¢ — 2. Hence, ¢(Q) < £ — 2. Therefore, c(i1,i—1) = c(i1,4¢) = c(i1,12) # c(i1,iqq)). From

Lemma 1, c(i1,i4@)) = ¢(ig@): ta(@)-1) # liq(@)s la(@)+1)- Then (i1, 74(@), ta@)+1, -+ » 16, 1)
or (i1, ig(Q), lg(Q)+1, " - * »%e—1,71) is a PC cycle containing N°(ig; Q) U {i1,4¢-1}, a contra-
diction. O]

Given a longest PC path P = (i, - i), X(P) and Y (P), we define some indices

on P, which can be regarded as functions of P.

H(P) = min{y -y € Y(P)}:

s(P) = max{s' : s’ € Y(P) such that c(i(,i,) = c(iy, iy+1) for every y € Y(P) N [s]};

uw(P) = max{u : v € X(P)\ {¢} such that c(iy,i,) = c(iy,iz41) for every z € X(P)N
[s(P) + 1, u]};

w(P) =min{z : z € X(P)N[u(P)+1,(}.

Note that s(P),u(P),w(P) exist not for an arbitrary P. If s(P) exists, then we further
define the set S(P) to be {i, : y € Y(P) N [s(P)]} and ¢(P) = u(P) — |S(P)|+ 1. In
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the following lemma, we show that r(P), s(P),u(P),w(P),t(P) exist for all longest PC

paths. For simplicity, we use r, s, u,w,t to denote them.

Lemma 3. Let A™"(K¢) =d <n—2 and let P = (iy1,ia,- - ,i7) be a longest PC path
in K¢. If there does not exist a PC cycle of length at least n —d + 1, then r,s,u,w exist.

Moreover, the following statements hold:

(a)1<r<s<u<w</landu<n-—d;

(b) c(iv,iy) = c(iy,iyt1), for all iy, € S(P);
(c) c(it,ig) = c(ig,igs1), for all x € [r+ 1,ul N X (P);

( ) C(Zh Zﬂ)) (Zwa Zw—i—l) wa < g;

(i1, 1) = (i, y—1) if w="~.

Proof. From Lemma 1, ¢(ig,i,) = ¢(i,i,41). Hence s exists with r < s < ¢ — 2. Next we

prove a claim to show that u exists.
Claim 1. s <q.
We may assume p < ¢ — 2. Let y € Y(P) be the maximum such that y < ¢. S-

ince P has a crossing by Lemma 2, y exists. If c¢(if,iy) = c(iy,iy41) # c(iy,1y—1), then
(i1,92, - iy, g, G—1, " -+ ,1q,11) is a PC cycle containing N¢(is; P)U {4, -1}, a contradic-
tion. Hence, c(ig,iy) # c(iy, iy+1). Thus, according to the definition of s, s < y. Hence,
s <q.

Let z € X(P) be the minimum such that s < z. By Claim 1, = exists. If z = ¢,
then c(iy,ia) # c(ip,i1) = c(ig,i0-1) # c(ig,is). Since c(ip,is) = c(is,is11) # c(is,is-1),
(11,49, ,is,14,11) is a PC cycle containing N¢(i1; P) U {i1,i2}, a contradiction. Then,
x < £ — 1. Suppose, to the contrary, that u does not exist. Then, c(i1,4,) # c(iz,ig41). If
s # 1, then (i1,i9, - ,is, 90,001, ,iz,11) is a PC cycle containing N°(i1; P) U {i1, 2},
a contradiction. If s = 1, then from Lemma 1, c(ig, i¢_1) # c(i1,10) = c(iq, i) # (i1, 1z).
Thus, (41,4, 9011, ,%,%1) is a PC cycle containing N¢(iy; P) U {i1, ¢}, a contradiction.
So, u exists. According to Lemma 1, w exists. Since c(i1,iy) = ¢(iy, tut1) F# (i, tu—1),
(11,19, ,14,11) is a PC cycle of length at least u. Hence, u < n — d. Therefore, from
the definitions of r, s, u, w, (a), (b) and (d) hold.

Next we show that c(iy,i;) = c(ij,1;41) for j € [r+1,s + 1] N X(P). Otherwise, if
there exists an x € [r 4+ 1,s 4+ 1] N X (P) such that c(iy,4,) # c(iy,iz11), letting y be the
maximum such that y € [1,s|NY (P) and y < x, then (i1, 42, -+ , 0y, 0p,lp—1, -+ ,iz,%1) 1S &
PC cycle containing N¢(is; P) U{¢ — 1,¢}, a contradiction. Then, let v be the maximum
such that c(i1,4;) = c(ij,4;41) for all j € [s+ 1,ulN X(P) and s < u < ¢. Thus (c)



holds. O

According to Lemma 3, for any longest PC path @, we have S(Q) # (). Now given a PC
path P and the set R(P), without loss of generality, assume that |S(P)| is maximum over
all the longest PC paths. In the next lemma, we find a longest PC cycle Cj in an edge-
colored complete graph which does not have PC cycles of length at least n — A™"(G) +1,

and get some useful properties.

Lemma 4. Let G be an edge-colored complete graph K, such that A™"(G) = d <
n — 2, and let P = (iy,19,- -+ ,i¢). If there does not exist a PC cycle of length at least
n—d+1, then the following statements are true (for simplicity, we use r,s,u,w,t instead
of r(P),s(P), u(P), w(P),t(P)):
(a) Co = (i1,09,+ ,ls,0p,00—1," " ,lw,11) s a PC cycle (see Fig.1).
(b) |Col =n—d, | X(P)]=n—d+1 and S(P) = {i, : y € [r,s]}.
B,r]U[t,u] Uw,l], ifr>3,
(c) t > mazx{3,r + 1} and X(P) = 4 [t,u] U [w, /], if r=2, where all the
[t,u] U w, € — 1], if r=1.
intervals are non-empty and pairwise disjoint.
(d) cli,iz) = c(ig,izy1) for allt < x < u.
(e) Given an integer a withr < a < s, the path P* = (iq41, 0012, 580, 0a, la—1, " ,01) €
R(P); moreover, if a < t, then N°(iy; P*) = N°(iy; P) and S(P*) = {i, : y € [t,ul}.
(f) If P* € R(P) with |S(P*)| = |S(P)|, then the corresponding statements of (a)-(e)
hold.

Figure 1: Co = (91,92, ,4s,%¢,00—1, ", fw, 1)

Proof. From Lemma 3, (a) holds.

Since C(ifyir) - C(iryir-l—l) 7& C(ira ir—1)7 P = (ir-‘rla ir+27 e aifa ir7ir—1a T 72.1) € R(P)
Clearly, N¢(iy; P1) = N°¢(iy; P). By Lemma 3 (c), c(i1,i:) = ¢(ig,ips1) for all z € [r +
L,ulNX(P). Then, {i,:y € [r+1,uJNnX(P)} C S(Pr). By the maximality of S(P), we



have |[r,s]| NY (P)| = |S(P)| > |S(P)| > |[r + 1,u] N X(P)|. Then

1Col =11 |+Hw 4l
X(P) + [, I\ X(P)| + [[w, ] 0 X(P)] + [[w, (] \ X(P)]
X( )|—|[8+1 ul N X(P)| + L, 8]\ X (P)] + [fw, ]\ X(P)|
X(P) = |lr + Lul n X(P)[ 4 [[r + 1, s]| + |[1, 7]\ X(P)] + [[w, €]\ X (P)]
X(P)| =l s] VY (P)| + [[r, s]| + [[2, 7] \ X(P)] + [[w, ]\ X(P)]
X(P)| 4112, 7]\ X(P)] + [[w, ]\ X(P)]
X( )

vV IV IV IV

Since |Cy| < n—d, we have |Cy| = n—d. Therefore, all the inequalities become equalities.
Then |X(P)|=n—d—1, and
|2, 7]\ X(P)] + [[w, €]\ X(P)] = 1, (1)
[ 8]l = [[r, sl VY (P)] = [[r + 1, u] 0 X (P)]. (2)
Moreover, as 2 ¢ X (P), (1) implies that
3,r]Uw,¢] C X(P), ifr>3,
[wag]gX(P% if r=2,
[w, ¢ —1] C X(P), if r=1,
and (2) implies that S(P) = {i, : y € [r,s]NY(P)} = {i, : y € [r,s]} and S(P) =
{iy 1y € [r+1,ulNX(P)}. By the definition of u, we have c(i1,%,) = c(iy, tyt1) and
c(iy,iy) # c(iy,iz). Thus, i, € S(P;). Since |S(Py)| = |S(P)|, we deduce that S(Fy) is
also an interval by taking P = P;. Then, [r + 1,u] N X(P) = [t, u|. Therefore,
B,r| Ut,ul Uw, ], ifr>3,
X(P) =4 [t,u] Ufw, ], if r=2, (3)
[t,u] U w, ¢ — 1], if r=1.
So far, (b)-(d) hold.

Next, we are going to prove (e). If a = r, then there is nothing to prove. Hence,
suppose 1 < a < s. Since a € S(P), c(i,iq) = ¢(la,la+1). Then P* is a PC path. Note
that P* is obtained from P by a rotation with endpoint 7; and pivot point ¢, followed by
a reflection. Therefore, P* € R(P). Further, if a < t, clearly N¢(iy; P*) = N¢(i1; P). We
can get {i, : y € [t,u]} C S(P*). By the maximality of |S(P)|, S(P*) = {i, : y € [t,u|}
and so (e) holds. Apparently, (f) follows from (a)-(e). O

Now we are ready to give the proof of Theorem 3.
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3 Proof of Theorem 3

If d = n — 2, then the result follows from Theorem 6. Then, we may assume d < n — 3.
Suppose, to the contrary, that each PC cycle in K is of length at most n —d. Let P be a
longest PC path in K¢, and for simplicity, we label the the vertices of P by (1,2,--- /)
and P' = (¢,£ —1,---,1). According to Lemma 3, we know that r(P), s(P),t(P),u(P)
and w(P) do exist. For convenience, we use r, s, t, u, w instead. Without loss of generality,
assume that P is a longest PC path satisfying that |S(P)| is maximum over all the longest
PC paths. Since P is a longest PC path, N¢(1; PYUN‘(¢; P) C V(P). Thus, £ > n—d+1.
Moreover, if £ € N¢(1; P) and 1 € N¢(¢; P), then (1,2,---,¢,1) is a PC cycle of length
¢ >n—d+1. Hence, £ ¢ N¢(1;P) or 1 ¢ N°(¢; P). So, { > n —d+ 2. Note that if
¢ —1¢€ X(P), then £ —1 € S(P); otherwise, (1,2,---,¢—1,1) is a PC cycle of length
n —d + 1, a contradiction. In the following, we show some claims which will be used in

our proof.
[t,u] U w, ¢, r=2,

[tu]Ulw, 0 —1], r=1.
Moreover, if r = 1 then r(P’) = 2, and if » = 2 then r(P’) = 1.

Claim 1. If [S(P)| = |S(P)|, then r € {1,2} and X(P) =

Proof. Let P' = (vy, v, -+ ,v). Since |S(P’)| = |S(P)], by Lemma 4 (f) and (c), we have

X(P) = [3, /(P U [E(P"), u(P)] U [w(F), ], {f r(P) =2, @
[t(P"), u(P")] U [w(P"), ¢ — 1], if r(P')=1.

Suppose, to the contrary, that r > 3. Then, ¢ € X(P). Therefore, ¢(1,¢) = ¢({,0 — 1),
which implies that 1 ¢ N¢(¢; P). Noticing that ¢ = vy, we have r(P’) = 1. Hence, by
(4), vg_1 = 2 € N¢(¢; P') = N¢(¢; P), which implies that » = 2, a contradiction. Hence,
r € {1,2}. Moreover, if r = 1 then r(P’) = 2, and if r = 2 then r(P’) = 1. O

Claim 2. For each y € N°(¢; P) N [s + 1,w — 1], we have that ¢({,y) = c(y,y — 1) and
N6 P s+ 1w — 1]] < [S(P)]

Proof. Since ¢(1,w) # c¢(w, w+1), we have that Q = (w—1,w—2,--+ ,s+1,s,- -, 1w, w+
1,---,0) is a longest PC path. Clearly, N°(¢; P) = N¢(¢; Q). Since |Cy| = n — d, for any
y € N°((;P)N[s+ 1,w — 1] we have c¢({,y) = c(y,y — 1); otherwise, (1,2,---,s,s +
1, y, 0,0 —1,--- ,w,1) is a PC cycle of length at least n — d + 1, a contradiction.
Then, N°(¢; P)N [s + 1L,w — 1] C S(Q). Therefore, [N¢(¢; P) N [s+ 1,w — 1]| < [S(Q)].
By the maximality of |S(P)|, we have |[N°(¢; P) N [s+ 1,w — 1]| < [S(P)]. O
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Claim 3. |S(P)| > 3.

Proof. Suppose, to the contrary, that |S(P)| < 2. Assume r # 1. Since if r = 1, by
Lemma 4 (e) we take P = (2,3,---,¢,1). Then we have N°(1; P) = [3,7] U [t,u] U [w, {].
We divide the proof into cases, depending on the value of w.

Casel. w</{—1.

Now we consider P’ = (¢,£—1,--- ,1). Note that N¢(1; P) = N¢(1; P') and N¢(¢; P) =
Ne¢(l; P"). Since w < ¢ — 1, we have ¢,¢ —1 € S(P’). By the maximality of |S(P)|, we
have |S(P)| = |S(P')] = 2. According to Claim 1, we have r = 2 and s = 3. Then,
N¢(1; P) = [t,u] U [w, ], and

c(l, 0 —1) #c(l,3) =c(3,4) # ¢(3,2). (5)
Let P, = (3,4,---,¢0,2,1) = (v1,va,- -+ ,v0) € R(P).

Subcase 1.1. w=/{—1.

In this subcase, it follows that N¢(1; P) = {¢t,t + 1,/ — 1,4}, n—d=5and t + 1 < 5.
Since t > 3, we have t = 3 or 4.

If t = 3, then by Lemma 4 (e), S(P;) = {3,4}. Thus, r(P;) = 1. Then, applying
Lemma 4 (f) and (c) with P* = P, we have X(P,) = [t(P),t(P) + 1] U [¢ — 2,0 — 1].
Therefore, ¢,2 € N¢(3; P;). Hence, ¢(3,¢) # ¢(3,4), a contradiction to (5).

If t = 4, then S(P;) = [4,5] and r(P) = 2. Applying Lemma 4 (f) and (c) with
P* = Py, we have X (P,) = [t(P),t(P1) + 1] U[¢ —1,¢]. By Lemma 4 (d),

0(37 4) 7é 0(37 vt(Pl)) = C<vt(P1)7 Ut(P1)+1) 7& C(Ut(P1)> /Ut(Pl)*l)' (6)
Noticing that ¢ = v,_5, and ¢ ¢ N¢(3; P;) by (5), we have t(P;) € [3,¢ — 4] and vyp
[5,¢ — 2]. According to Lemma 4 (e), P, = (4,5,---,¢,3,2,1) € R(P), Nc(l,PQ)
{4,5,0 — 1,0} and S(P,) = {4,5}. Thus, r(P2) = 1. Applying Lemma 4 (f) and (e) with
P* = P,, we have £ — 1 € X(P), that is, 2 € N°(4; P). Then, we have
c(4,5) # c(4,2) = ¢(2,3) # (1, 2). (7)
Recalling that ¢ — 1 € S(P’) and 3 € S(P), we have
c(1,2) #£c(1,l—1)=c(l —1,0—=2) #c(l —1,0) # ¢(3,0) = ¢(3,4). (8)

Since 4 =t <u <w = {— 1, we have { > 7. Therefore, combining (5), (6), (7) and (8),
we can get that (1,2,4,5, -, vyp)—1,vyp)), 3,6, £ — 1,1) is a PC cycle of length at least

6 (see Figure 2), a contradlctlon.



Figure 2: A PC cycle of length at least 6: (1,2,4,5, -+ ,v¢;—1,v¢,,3,£,¢—1,1)

Subcase 1.2. w < /¢ — 2.
In this subcase, it follows that ¢ — 2 ¢ S(P’), and

c(1,2) #c(1,0 —2) # c(l — 2,0 — 3). 9)

Hence, C; = (1,2,--- ,0 —2,1) is a PC cycle. Clearly, |C}| = £ —2 < n —d. Then,
¢ = n—d+ 2 Applying Lemma 4 (f) and (b), [IN°(; P) =n—d—1 = (- 3.
Since 1,/ — 1 ¢ N¢(¢; P'), we have N¢(¢; P') = [2,¢ — 2]. According to Lemma 4 (a),
|Col =n—d=/¢—2and s = 3, we have that w =6 and ¢ > 8.

If ¢ =n, then |[N°((; P")|=¢—-3=n—-3=n—d—1. Thus, d = 2. By Lemma 3, we
have 3 = s < u < w = 6. Then, u = 4 or 5. Since d = 2, we have s ¢ [t, u]; otherwise,
c(l,s) = ¢(s,s + 1) = ¢(¢,s) which implies that d™°"(s) > 3, a contradiction. Hence,
t =4 and u=>5. So, N°(1; P) = {4,5,¢{ —1,¢}. Then, |X(P)| = n— 3 = 4, which implies
that n = ¢ = 7, a contradiction.

If ¢ < n, then there exists a vertex z € V(G) \ V(P). Since s = 3, by Lemma 4 (e)
(1,2,3,6,0 —1,---,5,4) € R(P). Then

c(4,2) = c(4,5) # c(3,4). (10)
Since ¢ > 8, we have 5 € N¢(¢; P). Since s = 3 and w = 6, from Claim 2 we have that
c(5,0) = c(4,5) # ¢(5,6). (11)

Combining (9), (10) and (11), (2,4,3,2,1,/ —2,0—3,--- ,5,£,£ — 1) is a PC path longer
than P (see Figure 3), a contradiction.

Figure 3: A PC path of length £+ 1: (2,4,3,2,1,£ — 2,0 —3,--- ,5,£,£— 1)

Case 2. w = /(.
We divide this case into subcases, depending on the value of |S(P)].

Subcase 2.1. |S(P)| = 2.
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In this subcase, it follows that N¢(1; P) = [3,r] U [t,t + 1] U {¢}. Since |[N¢(1; P)| =
n—d—1landt+1<n-—d wehavet =n—d—1and r =n —d— 2. From Claim
2, n—d—1<|N;P)| = |[r,s]] + [N°(¢(; P) N [s + 1,£ — 2]| < 2|S(P)| = 4. Then,
n—d—1<4. Sincet > 3, we have n —d =4 or 5.

Subcase 2.1.1. n —d = 4.

In this subcase, it follows that r =2, s =t =3, N°(1; P) = {3,4, ¢} and

c(1,3) = ¢(3,4). (12)

Given a path @ = (v1,vs,- -+ ,vy), we define the path ¢(Q) = (vs, vy, -, Vg, U2, v1). Set
Py=P=(1,2,---,{). Define P, to be ¢(P,_1), i > 1. We write p§- to be the j* vertex
of P;. We are going to prove following statements for ¢ > 1.

) P € R(F).
it) S(P;) = {pj : j € {1.2}}.
iit) N°(pi; P) = {p} : j € {3,4,0 = 1}} and c(p}, p}) = c(p}, ply1), J = 3, 4.

v) Ne(py; Py) = {p’ : j € {1,4,5}}; moreover, c(ph,pt) = c(ph,p, 1), j = 4,5.

Firstly, we are going to show (i)-(iii) by induction on i. Note that N¢(1; P) = {3,4, ¢}
and s = 3. Then by Lemma 4, P, € R(P), r(P1) = 1 and S(P,) = {3,4} = {p1,p3}.
Since t(P}) +1 <n—d =4 and t(P,) > 3, we have t(P,) = 3. Therefore, N°(p}; P;) =
{pjl. :j € {3,4,0 — 1}}. Thus, the statements hold for i = 1. Assume that they are
true for ¢+ — 1, where ¢ > 2. For the sake of simplicity, we use r;, s;, t;, u;, w; instead of
T(Pi>7 S(Pi)v t(Pi)v U(Pl)v w<PZ)

(i) According to the induction hypothesis, we have p5 ' € S(P,_1). Then by Lemma 4
(e)a Pl = (péilvpzilila e 7p2717p§717pi171) S R(PO)

(ii) According to the induction hypothesis, we have S(P_;) = {pi' : j € {1,2}}
and Ne(pi™";Po1) = {p/' : j € {3,4,0—1}}. Then, r,_; = 1 and t;_; = 3. Since
rio1 <2 <s;1and 2 < t;_1, according to Lemma 4 (e), we have S(P;) = {pﬁ‘1 i j €
{3,4}} = {pj :j e {1.2}}.

(ili) Since r; = 1 and |S(P;)| = 2, we have N°(p}; P;) = {p} : j € {ts,t; + 1,0 — 1}}
(w; =€ —1as |[N°(p}; )] =4). Since t;, + 1 <n—d =4 and t; > 3, we have t; = 3.
Hence, N°(pi; P;) = {p} : j € {3,4,{ — 1}}.

(iv) Since pj € S(F;), by Lemma 4 (e), PP = (p,p%, -+, P p1) =
R(P), N(py; Pi) = Ne(py; P?) and S(P?) = {pj : j € {3,4}}. Then, r(P,
Lemma 4 (f) and (c) with P* = P?, we have N¢(pb; P?) = {v; : j € {t(P;

(i
(
(
(i

(UI)U27 T aW) €
2) = 2. Applying
?), H(P?) 41,03},
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Since t(P?) +1 < n—d =4 and t(P?) > 3, we have t(P?) = 3. Therefore, N°(ph; P?) =
{vs, va,ve} = {p} : j € {4,5,1}}. Moreover, by Lemma 4 (d), c(py, p) = c(p, phy),
j=4,5.

Since3=s<u<w=4¥¢¢>5. If {is odd, taking : = ”71, then PZ-&-TI =(1,4,3,--- ,{—
1,0 —2,20). If ¢ is even, taking i = g, then Pé =(2,1,4,3,--- ,¢,£ —1). By (iii) and
(iv), ¢(1,3) # ¢(3,4), a contradiction to (12).

Subcase 2.1.2. n —d =5.

In this subcase, it follows that ¢t = s = 4, r = 3. According to Lemma 4 (e), P, =
(4,5,6,---,0,3,2,1) = (v1,v9,--- ,v7) € R(P) and S(P;) = {4,5}. Then, r(P) =1 and
s(Py) = 2. Applying Lemma 4 (f) and (c), we have X (P,) = {t(P),t(P)+1,0—1,0—2}.
Since t(P) +1 < n—d = 5 and t(P;) > 3, we have t(P;) = 3 or 4. Since r(P;) <
t(P1) —2 < s(Py), we have Py = (Vy(p)—1,Vypy), - Ve Vy(py)—2, " »01) € R(P) and
S(Py) =A{v; : j € {t(P1),t(P) + 1}}. Then, r(P2) =2 and s(P%) = 3. Applying Lemma
4 (f) and (c), we have X (P,) = {t(P),t(P;) + 1,0 —1,¢}. Since t(P2) +1<n—-d=>5
and t(P,) > 3, we have ¢(P,) = 3 or 4. Hence, we can apply Subcase 1.1 with P = P,.
If t(P,) = 3, then c(vi, vyp)+1) 7 c(Vy(p)+1, Ve(py)+2), & contradiction. If ¢(P,) = 4, then

there is a PC cycle of length at least 6, a contradiction.
Subcase 2.2. |S(P)| = 1.

According to Lemma 3 and the maximality of |S(P)|, s(P’) exists and |S(P’)| = 1.
Moreover by Claim 1, 7 = 2 and r(P’) = 1. Then according to Lemma 4 (f) and (c),
N¢(1; P) = {t,¢}. Then, |[N¢(1; P)| = 2, which implies that d°(1) < 3 and n — d = 3.
Hence, t = t(P’) = 3. Then, N¢(1; P) = {3,(} and N°(¢; P) = {2,¢ — 2}. Thus,

c(1,2) # ¢(1,3) = ¢(3,4) # ¢(2,3), (13)
c(1,2) #c(1,0) =c(l, 0 — 1) # c(l — 1,0 —2), (14)

and
c(lb—1)F#cl,l—=2)=c(l—2,0—-3)Fc(l—2,0—1). (15)

According to Lemma 4 (e), (f) and (c¢), P, = (3,4,---,¢,2,1) € R(P) and N¢(3; P,) =
{2,5}. Then
c(3,4) # ¢(3,5) # c(5,4). (16)

Subcase 2.2.1. d°(1) = 2.

In this subcase, it follows that
c(3,4) = ¢(1,3) = ¢(1,0) = c(£, 0 —1). (17)
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If ¢ =5, then ¢(3,4) = ¢(4,5) by (13), (14) and (17), a contradiction. If ¢ = 6, then
c(6,4) = ¢(3,4) by (15). Then, ¢(6,4) = ¢(5,6) by (13), (14) and (17), a contradiction.
Thus, ¢ > 7, and then ¢(3,0 — 1) = ¢(3,4) # ¢(2,3). By (17), ¢(3,0 — 1) # c¢({ — 1,{ — 2).
Combining these with (13), (14), (17), (1,2,3,¢ — 1, —2,¢,1) is a PC cycle of length 6

(see Figure 4), a contradiction.

1 2 3 [—21—-1 1

Figure 4: A PC cycle of length 6: (1,2,3,£—1,¢—2,¢,1)

Subcase 2.2.2. d°(1) = 3.

In this subcase, it follows that ¢(1,3) # ¢(1,¢). If £ = 5, then by (13), (14) and (15),
(1,3,5,4,1) is a PC cycle of length 4, a contradiction. If £ = 6, then by (13), (14), (15)
and (16), (1,3,5,4,6,1) is a PC cycle of length 5, a contradiction. Thus, ¢ > 7, and then

c(3,0—1)=1¢(3,4). (18)

We may assume that

c(3,0—1)=c(l—1,0—2); (19)
orelse, (1,2,3,/—1,0—2,¢,1) is a PC cycle of length 6, (see Figure 4), a contradiction.
If £ =7, then ¢(3,4) # ¢(3,5) = ¢(5,6) = ¢(3,6). Since 6 ¢ N¢(3, P;), we have ¢(3,6) =
¢(3,4), a contradiction. Hence, ¢ > 8. Then, ¢(3,4) = ¢(3,¢ — 2). Combining (18) and
(19), we have ¢(3,¢ —2) = ¢(f — 1,{ — 2). Hence together with (13), (14) and (15),
(1,2,3,0—2,¢,1) is a PC cycle of length 5, a contradiction. The proof of Claim 3 is thus
complete. O

Claim 4. There exists a path Q € R(P) with [S(Q)| = |S(P)] such that t(Q) > r(Q)+3.

Proof. By contradiction, suppose t < r + 2. Since |S(P)| > 3, we have t — 1 € S(P).
Without loss of generality, we assume r = 1; otherwise, consider (¢, t+1,--- ,{,t—1,--- /1)
instead. Since maz{3,r + 1} <t <r+ 2, we have t = 3. Since |[t,u]| = [[r, s]|, we have
u=s+22>5. Then, N°(1; P) = [3,s + 2] U [w, ¢ — 1]. By Lemma 4, we have

c(1,3) = ¢(3,4). (20)

Given a path Q = (vy,vq,--- ,vp), we define the path ¢(Q) = (vs, vy, -+ ,vp). Set
Py=P =(1,2,--- (). Define P, to be ¢(P,_1), i > 1. We write p} to be the j" vertex

of P;. We are going to prove the following statements for ¢ > 0.
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i) P, € R(FP).
ii) S(P) = {p}:i€lls]}
i) N°(pi; P) = {p} : j € [3,5+2]U[w, £ —1]}, and ¢(p}, ) = c(p’, pl11), § € [3,5+2].

iv) Ne(py; P) = {p} + j € [4,n —d+ 1] U {1}}; moreover, c(ph,p}) = c(p},piy1),

(
(
(
@

Firstly, we are going to show (i)-(iii) by induction on i. The statements are true for
i = 0. Assume that the statements are true for ¢ — 1, where ¢ > 1. For the sake of
simplicity, we use r;, 8;, t;, u;, w; instead of r(PB;), s(P), t(P;), u(FP;), w(P;).

(i) According to the induction hypothesis, we have p5 ' € S(P,_1). Then by Lemma 4
(e), we have Py = (p5 ', pit - ,pi L pb hpiTh) € R(P).

(11) According to the induction hypothesis, we have S(P_y) = {p/ ' : j € [1,s]} and
Ne(py S Py) = {p ' - j € 3,5+ 2] U [w, 0 —1]}. Then, r;y = 1 and t;_; = 3. Since
rio1 <2 <s;1and 2 < t;_1, according to Lemma 4 (e), we have S(P;) = {pﬁ‘1 D] €
3, 3+2]}:{p§- 7 €1, 8]}

(ili) Since 7; = 1 and |S(P;)| = |S(Py)|, we have N°(p}; P;) = {p} : j € [ti, ti +|S(Po)| —
1 U [we, £ — 1]} (w; = wo as |N(pt; B)| = |[N¢(pY; Po)| by Lemma 4 (b)). If ¢; > 3,
then Claim 4 holds by taking @ = PF,. Thus, t; = 3. Then, N°(p{; P,) = {p} : j €
3,54+ 2] U [w,¢ — 1]}. By Lemma 4 (d), c(pf, p}) = c(p},p%11), J € [3,5 +2].

(iv) Since pj € S(F), by Lemma 4 (e), P? = (p, p, -+, pi i) = (01,02, ,ve) €
R(P), Ne(py; P) = Ne(pi; P?) and S(P?) = {pj : j € [3,5 +2]}. Then, r(P?) = 2.
Applying Lemma 4 (f) and (¢) with P* = P?, we have that N¢(py; P?) = {v; : j €

[t(P?),u(P?)] U [w(P?),€} and |N¢(py; P?)| = n —d — 1. Since pi € S(P;), we have
c(ph, pb) = c(py, py). Thus, p, & N¢(ph; P?). Noticing that p} = v,_1, we have N¢(pl; P?) =
{p! : j € [t(P?),u(P?)] U{¢}}. By Lemmas 3 and 4, we have that u(P?) < n — d and
t(P?) > 3. Hence, u(P?) = n —d and t(P?) = 3. Therefore, N¢(py; P?) = {v; :
jeBn—du{t}y ={p :je [4n—d+1U{1}}). By Lemma 4 (d), we have
c(ph, p%) = e}, pli), J € [4n —d+1].

Since3<s<u<w=4~{¢>5. Ifis odd, taking 1 = ”1 , then P2+1 =(1,4,3,--+ ,{—
1,0 —2,2,5). If £ is even, taking i = 5, then Pg = (2, 1,4 3,0, E 1). By (iii) and
(iv),e(1,3) # ¢(3,4), a contradiction to (20). O

According to Claim 4, we assume t > r + 3.

Claim 5. ¢(r+ 1,7 +3) ¢ {c(r+1,r+2),c(r +3,r+4)}.
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Proof. By Lemma 4 (e), P, = (r+1,r +2,--- 4;r---,1) = (vi,vi, -+ ,v}) € R(P)
and S(P) = [t,u|. Sincet > r+3, r+1 ¢ N¢1,P) = N°1;P,). Then, r(P) >
3. Applying Lemma 4 (f) and (c) with P* = P;, we have N°(r + 1; ) = {v] : j €
3, 7(P1)] U [t(Py),u(Py)] U [w(Py),€]}. Noticing v +3 € {vj : j € [3,7(P1)]}, we have
r+3¢€ N°r+1;P). Hence, ¢(r+ 1,7+ 3) # c(r + 1,7 + 2).

Since |S(P)| > 3, we have r +2 € S(P). By Lemma 4 (e), Po = (r+3,r+4,--- ,{,r+
2,7+ 1,---,1) = (v{,v3,--- ,v7) € R(P) with S(Py) = [t,u] and N°(r + 3; P,) = {v} :
j € X(P,)}, where

iy < | BrPIUEE) WP URP). 0, 1 #1743

[t(Py), u(P2)] U [w(Py), £ — 1], t=r+3.
Then by Lemma 4 (d), c(r + 3,v3) = c(v3,v3,,),t(P) < j < u(P,). Since r +2 € S(P),

we have

c(l,t—=1)#cllyr+2)=c(r+2,r+3)#c(r+3,r+4). (21)
Then, r +2 € N°(r 4+ 3;P) and 7 + 2 € {v} : j € [w(P,),¢ — 1]}. Noticing that
vy | =2, we have [2,r + 2] C N¢(r + 3; P»). In particular, r + 1 € N¢(r + 3; P»). Thus,
c(r+1,r43) # c(r + 3,7 +4). This claim is thus complete. O

T o 0

Figure 5: C=(r+1,r+3,7+4,--- L,r+2,7r+1)

According to Claim 5 and (21), C' = (r+1,r+3,r+4,--- ,{,r+2,r+1) is a PC cycle
containing N¢(¢; P) U{l,{ — 1} \ {r} (see Figure 5). Hence, |C| =n — d.

If ¢ = n, then N¢(¢; P) = [d,{ — 2], which implies r = d. Since 1 ¢ N¢({; P), we
have ¢(1,0) = ¢(¢,¢ — 1), and then c(¢,r + 2) # ¢(¢,1). Noticing that V(P)\ V(Cy) =
[s + 1,w — 1], we have w = s+ d + 1. Since |[r,s]| = |[t,u]| and t > r + 3, we have
u > s+ 3. Hence, d > 3. Note that ¢({ — 1,5) € {c({ — 1,0 —2),¢(j,7 + 1)} for
jel,r—1];orelse, (j,j+1,---,0—1,j)is a PC cycle of length at least n —d + 1, a
contradiction. If there exists a vertex jo € [2,r — 1] such that ¢(¢ — 1, jo) # c({ — 1,0 —2),
then ¢(¢ — 1,jo) = c(jo,Jo + 1) # c(jo,jo — 1). Then combining these with Claim 5,
(r+1,r+3,r+4,--- L—1,50,jo—1,---,1,6,r+ 2,7+ 1) is a PC cycle of length at
least n — d + 1 (see Figure 6), a contradiction. Therefore, ¢(¢ —1,7) = ¢({ — 1,1 — 2) for
je2,r—1]. Ife(1,0—1) # ¢({—1,0—2), then ¢(1,{—1) = ¢(1,2). Hence by Lemma 4 (c),
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_____ V. e o>

1 Jo r+1 r+3 1—1 1

Figure 6: A PC cycle of length at least n —d+1: (r+ 1,7+ 3,7 +4,--- ,£—1,50,50 — 1, ,1,4,r+2,r+ 1)

w = L. Then, ¢(1,¢) # ¢(1,¢ —1). Therefore, (r+1,7+3,r+4,--- {—1,1,1,7+2,7r4+1)
is a PC cycle of length n — d + 1, a contradiction. Since d""(¢ — 1) < d, we have

c(l—1,r)#c(l—1,0—2). (22)

Then, c({—1,r) = ¢(r,r—1),orelse (r+1,r+3,r+4,--- (=1, r,r—1,--- 1,0, 74+2,r+1)
is a PC cycle of length at least n — d + 1, a contradiction. Then

cll,r)y=c(r,r+1)#c(r,r—1)=c(l —1,r). (23)

Since |S(P)| > 3, we have r +1 € S(P). By Lemma 4 (e), P, = (r + 2,7 +3,--- , {,r +
Lir,--- 1) = (v1,02, -+ ,v0) € R(P) with S(P,) = [t,u] and N°(r +2; P,) = {v; : j €
3, 7(P)U[t(P1), w(P1)|U[w(Py), €]}. Then by Lemma 4 (d), ¢(r+2,v;) = c(vj, vj41), t(P1) <
Jj <wu(Py). Sincer+1 € S(P), we have c(¢,(—1) # c(l,r+1) = c(r+1,7+2) # c(r+2,r+
3). Then, r+1 € N¢(r+2; P;) and r+1 € {v; : j € [w(Py),f{—1]}. Noticing that v} ;| = 2,
we have [2,7 + 1] C N¢(r + 2; P;). In particular, r € N(r + 2; P;). Thus, c¢(r + 2,7) #
c(r+2,7+3). Then, c(r+2,r) = c¢(r+1,r), orelse (r+2,7+3,---  £,r+1,r,r+2)isa PC
cycle containing N¢(I; P)U{¢,¢—1}, a contradiction. Therefore, ¢(r+2,r+3) # c(r,r+1).
Since r,7 + 2 € S(P), we have

c(lyr) #c(l,r +2). (24)
Hence combining Claim 5 and (22), (23), (24), (r+1,r+3,r4+4,--- {—=1,r 0, r+2,r+1)
is a PC cycle of length at least n —d 4 1 (see Figure 7), a contradiction.

1 rr_+17’+2_;'+3 l—vi_l

Figure 7: C = (r+1,r+3,7r+4,--- £L—1,r0,r+2,7+1)

z

L

1 T rFLlr+27+3 =1 7

Figure 8: A PC path of length ¢+ 1: (1,2,--- , 7,0, z,r + 2,7+ 1,r+3,r+4,--- ,£—1)

Then we may assume ¢ < n. Hence, there exists a vertex z € V(G) \ V(P). Note that
c(l—1,0) = c(l, z). Sincer+2 € S(P), (1,2,--- ,r+1,£,—1,--- ,r+2) is also a longest PC
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path. Thus, c¢(r+2,7+3) = c(r+2,2) and ¢(r+2,r+3) = c(r+2,0) # c(l,{—1) = ¢({, 2).
Then, ¢(r 4+ 2,2) # c(¢, z). Therefore, (1,2,--- r,l,z,r+2,r+1,r+3,r+4,--- £ —1)
is a PC path longer than P (see Figure 8), a contradiction.

Theorem 3 is thus complete.

4 Concluding remarks

There have been many researchers working on Conjecture 1, which implies that the
bound on the length of a PC cycle in Theorem 3 is not sharp. The author in [13] showed
that A™"(KY) < 2 is sufficient for the existence of a PC Hamiltonian cycle. Up to 2016,
Lo [11] showed that for any € > 0, there exists an integer ny such that every edge-colored
complete graph K¢ with A™"(K¢) < (3 —e)n and n > ng contains a PC Hamiltonian
cycle, which implies a result obtained by Alon and Gutin [1] that for every e > 0 and
n > ng(e), any edge-colored complete graph K¢ with A™"(K¢) < (1 — \/LE
n > ng contains a PC Hamiltonian cycle. Hence, the conjecture of Bollobas and Erdds is

— ¢)n and

true asymptotically.

While the authors in [5] constructed an edge-colored complete graph of order 2m with
d°(G) = m and A™"(G) = m that does not contain a PC Hamiltonian cycle, which
implies that the condition A™"(K}) < % in Conjecture 1 is sharp.

As for the bound A™"(K) > 7, we believe that there is also a potential sharp bound

in Theorem 3. So, we pose the following conjecture.

Conjecture 7. Let Ky, be an edge-colored complete graph such that 5 < A™™(Ky) =d <
n —2. Then K¢ contains a PC cycle of length at least 2(n —d — 1).

Next we give an example of edge-coloring of a complete graph, supporting the conjec-
ture.

Example 8. Consider a complete graph of order n with A™"(K;) =d > %. Let x be the
vertex with the mazimum monochromatic-degree and N;(x) be the set of vertices which

are adjacent to x by color i = 1,2. Then color G[N;(x)] with i, i = 1,2, respectively, and
color the edges in E[Ny(z), Na(x)] with color 3.

In particular, Proposition of [11] (in the Arxiv version) provides with constructions to
support Conjecture 7. Consider the edge-colored complete graph K in our Example 8.
Clearly, when n — d — 1 is odd, the longest PC cycle in K¢ has a length 2(n — d) — 1;
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while when n —d — 1 is even, the longest PC cycle in K¢ has a length 2(n —d —1). Since
I(KE) + A™(KS) < n, we have the following conjecture.

Conjecture 9. Let K, be an edge-colored complete graph such that 2 < 6(Kf) < %.
Then K¢ contains a PC cycle of length at least 20°(K) — 2.

Acknowledgement. The authors are very grateful to the reviewers and the editor for
their very useful suggestions and comments, which helped to improving the presentation

of the paper greatly.
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