Monochromatic-degree conditions for properly colored cycles in edge-colored complete graphs ${ }^{1}$

Xiaozheng Chen, Xueliang Li
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email: cxz@mail.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be an edge-colored graph and v be a vertex of G. Define the monochromaticdegree $d^{m o n}(v)$ of v to be the maximum number of edges with the same color incident with v in G, and the maximum monochromatic-degree $\Delta^{\text {mon }}(G)$ of G to be the maximum value of $d^{\text {mon }}(v)$ over all vertices v of G. A cycle (path) in G is called properly colored if any two adjacent edges of the cycle (path) have distinct colors. Wang et al. in 2014 showed that an edge-colored complete graph K_{n}^{c} with $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$ contains a properly colored cycle of length at least $\left\lceil\frac{n}{2}\right\rceil+2$. In this paper, we obtain a generalization of their result that an edge-colored complete graph K_{n}^{c} of order n with $\Delta^{\text {mon }}\left(K_{n}^{c}\right)=d \leq n-2$ contains a properly colored cycle of length at least $n-d+1$.

Keywords: edge-colored (complete) graph; (minimum) color-degree; (maximum) monochromatic-degree; properly colored cycle (path).

AMS subject classification 2010: 05C15, 05C38, 05C07.

1 Introduction

An edge-coloring of a graph is an assignment of colors to the edges of the graph. An edge-colored graph is a graph with an edge-coloring. Let K_{n}^{c} denote an edge-colored

[^0]complete graph with an edge-coloring c. A cycle (path) in an edge-colored graph G is properly colored, or PC for short, if any two adjacent edges of the cycle (path) have distinct colors. For other notation and terminology not defined here, we refer to [4].

In an edge-colored graph G, the color-degree of a vertex v of G is the number of colors on the edges incident with v in G, denoted by $d^{c}(v)$. Let $\delta^{c}(G)$ denote the minimum value of $d^{c}(v)$ over all vertices $v \in V(G)$, called the minimum color-degree of G. Actually, there are many results on the color-degree conditions for the existence of PC cycles, for which we refer the reader to $[9,10]$.

In this paper, we consider the monochromatic-degree conditions for the existence of PC cycles. The monochromatic-degree of a vertex v of G is the maximum number of edges with the same color incident with v in G, denoted by $d^{\text {mon }}(v)$. Let $\Delta^{\text {mon }}(G)$ denote the maximum value of $d^{m o n}(v)$ over all vertices $v \in V(G)$, called the maximum monochromatic-degree of G. In recent years, many people have worked on the conditions for the existence of a PC Hamilton cycle in an edge-colored graph. In 1976, Bollobás and Erdős in [3] posed the following famous conjecture.

Conjecture 1 ([3]). If $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} contains a PC Hamiltonian cycle.
Li et al. in [9] studied long PC cycles in K_{n}^{c} and proved that if $\Delta^{m o n}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} contains a PC cycle of length at least $\left\lceil\frac{n+2}{3}\right\rceil+1$. Later on, Wang et al. in [15] improved the bound on the lengths of PC cycles.

Theorem 2 ([15]). If $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left\lfloor\frac{n}{2}\right\rfloor$, then K_{n}^{c} contains a PC cycle of length at least $\left\lceil\frac{n}{2}\right\rceil+2$.

In this paper, we obtain a bound on the lengths of PC cycles under monochromaticdegree conditions.

Theorem 3. If $\Delta^{\text {mon }}\left(K_{n}^{c}\right)=d \leq n-2$, then K_{n}^{c} contains a PC cycle of length at least $n-d+1$.

Remark. Theorem 3 can be seen as a generalization of Theorem 2, since from $\Delta^{\text {mon }}\left(K_{n}^{c}\right)=$ $d<\left\lfloor\frac{n}{2}\right\rfloor$, we have

$$
d \leq \begin{cases}\frac{n-3}{2} & n \text { is odd } \\ \frac{n-2}{2} & n \text { is even },\end{cases}
$$

and then $n-d+1 \geq\left\lceil\frac{n}{2}\right\rceil+2$.
The main idea is the rotation-extension technique of Pósa [12], which was used on edge-colored graphs in [10, 15].

Since $\Delta^{\text {mon }}\left(K_{n}^{c}\right)+\delta^{c}\left(K_{n}^{c}\right) \leq n$, we can get the following corollary.
Corollary 4. If $\delta^{c}\left(K_{n}^{c}\right) \geq 2$, then K_{n}^{c} contains a PC cycle of length at least $\delta^{c}\left(K_{n}^{c}\right)+1$.
Thus we completely solve the problem "Does every edge-colored complete graph K_{n}^{c} with $\delta^{c}\left(K_{n}^{c}\right) \geq 2$ contain a PC cycle of length at least $\delta^{c}\left(K_{n}^{c}\right)$?", which was posed by Li et al. in [7].

The paper is organized as follows. In Section 2, we give some notation and tools. In Section 3 we prove our main result Theorem 3. In Section 4, we give a remark concerning the lengths of PC cycles in Theorem 3 and pose two conjectures.

2 Preliminaries

Grossman and Häggkvist in [6] gave a condition for the exitance of a PC cycle in an edge-colored graph with two colors, and later on, Yeo in [16] extended the result to an edge-colored graph with any number of colors.

Theorem 5 ($[6,16])$. Let G be an edge-colored graph containing no PC cycles. Then G contains a vertex v such that no component of $G-v$ is joined to v with edges of more than one color.

Li et al. [8] observed that in an edge-colored complete graph G, for any PC cycle C, each vertex $v \in V(C)$ is contained in a PC cycle C^{\prime} of length at most 4 such that $V\left(C^{\prime}\right) \subseteq V(C)$. Combining this observation and Theorem 5, they got the following result.

Theorem 6 ([8]). If $\Delta^{\text {mon }}\left(K_{n}^{c}\right) \leq n-2$, then K_{n}^{c} contains a PC cycle of length at most 4.

For convenience, let the vertices of K_{n}^{c} be labeled from 1 to n. A path of length $\ell-1$ is considered to be an ℓ-tuple, $\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$, where $i_{1}, i_{2}, \cdots, i_{\ell}$ are distinct. Let $[a, b]$ and $[b]$ denote the sets $\{i \in \mathbb{N}: a \leq i \leq b\}$ and $\{i \in \mathbb{N}: 1 \leq i \leq b\}$, respectively.

Given a longest PC path $P=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$, we define two sets

$$
\begin{gathered}
X(P)=\left\{j \in[\ell]: c\left(i_{1}, i_{j}\right) \neq c\left(i_{1}, i_{2}\right)\right\}, \\
Y(P)=\left\{j \in[\ell]: c\left(i_{\ell}, i_{j}\right) \neq c\left(i_{\ell}, i_{\ell-1}\right)\right\},
\end{gathered}
$$

of indices and two subsets

$$
N^{c}\left(i_{1} ; P\right)=\left\{i_{x}: x \in X(P)\right\},
$$

$$
N^{c}\left(i_{\ell} ; P\right)=\left\{i_{y}: y \in Y(P)\right\}
$$

of vertices. Clearly, $\min \{|X(P)|,|Y(P)|\} \geq n-\Delta^{\text {mon }}(G)-1$. Apparently, as P is a longest PC path, $N^{c}\left(i_{1} ; P\right), N^{c}\left(i_{\ell} ; P\right) \subseteq V(P)$. We say that P has a crossing if there exist x and y with $1 \leq y<x \leq \ell$ such that $y \in Y(P)$ and $x \in X(P)$. If $i_{j} \in N^{c}\left(i_{\ell} ; P\right)$ and $c\left(i_{\ell}, i_{j}\right) \neq c\left(i_{j}, i_{j-1}\right)$, then $\left(i_{1}, i_{2}, \cdots, i_{j}, i_{\ell}, i_{\ell-1}, \cdots, i_{j+1}\right)$ is also a PC path, which is called a rotation of P with endpoint i_{1} and pivot point i_{j}. A reflection of P is simply the PC path $\left(i_{\ell}, i_{\ell-1}, \cdots, i_{1}\right)$. The set of PC paths that can be obtained by a sequence of rotations and reflections of P is denoted by $\mathcal{R}(P)$. Note that if P is a longest PC path, then all paths in $\mathcal{R}(P)$ are longest PC paths. Let $q(P)=\max \{j: j \in X(P)\}$ and $r(P)=\min \{j: j \in Y(P)\}$. Then the next lemmas follow easily.

Lemma 1. Let $\Delta^{\text {mon }}\left(K_{n}^{c}\right)=d \leq n-2$. Suppose $P=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$ is a longest $P C$ path in K_{n}^{c}. If there does not exist a PC cycle of length at least $n-d+1$, then $c\left(i_{1}, i_{q(P)}\right)=$ $c\left(i_{q(P)}, i_{q(P)-1}\right)$ and $c\left(i_{l}, i_{r(P)}\right)=c\left(i_{r(P)}, i_{r(P)+1}\right)$.

Proof. Suppose not, then $\left(i_{1}, i_{2}, \cdots, i_{q(P)}, i_{1}\right)$ and $\left(i_{r(P)}, i_{r(P)+1}, \cdots, i_{\ell}, i_{r(P)}\right)$ are PC cycles containing $N^{c}\left(i_{1} ; P\right) \cup\left\{i_{1}, i_{2}\right\}$ and $N^{c}\left(i_{\ell} ; P\right) \cup\left\{i_{\ell}, i_{\ell-1}\right\}$, respectively, a contradiction.

Lemma 2. Let $\Delta^{\text {mon }}\left(K_{n}^{c}\right)=d \leq n-2$. Let P be a longest $P C$ path in K_{n}^{c}. If there does not exist a PC cycle of length at least $n-d+1$, then each path in $\mathcal{R}(P)$ has a crossing.

Proof. Suppose, to the contrary, that there is a path $Q=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$ in $\mathcal{R}(P)$ such that Q does not have a crossing. Then we have $q(Q) \leq r(Q)$. Since $d \leq n-2$, we have $r(Q) \leq$ $\ell-2$. Hence, $q(Q) \leq \ell-2$. Therefore, $c\left(i_{1}, i_{\ell-1}\right)=c\left(i_{1}, i_{\ell}\right)=c\left(i_{1}, i_{2}\right) \neq c\left(i_{1}, i_{q(Q)}\right)$. From Lemma 1, $c\left(i_{1}, i_{q(Q)}\right)=c\left(i_{q(Q)}, i_{q(Q)-1}\right) \neq c\left(i_{q(Q)}, i_{q(Q)+1}\right)$. Then $\left(i_{1}, i_{q(Q)}, i_{q(Q)+1}, \cdots, i_{\ell}, i_{1}\right)$ or $\left(i_{1}, i_{q(Q)}, i_{q(Q)+1}, \cdots, i_{\ell-1}, i_{1}\right)$ is a PC cycle containing $N^{c}\left(i_{\ell} ; Q\right) \cup\left\{i_{1}, i_{\ell-1}\right\}$, a contradiction.

Given a longest PC path $P=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right), X(P)$ and $Y(P)$, we define some indices on P, which can be regarded as functions of P.

$$
\begin{aligned}
& r(P)=\min \{y: y \in Y(P)\} ; \\
& s(P)=\max \left\{s^{\prime}: s^{\prime} \in Y(P) \text { such that } c\left(i_{\ell}, i_{y}\right)=c\left(i_{y}, i_{y+1}\right) \text { for every } y \in Y(P) \cap\left[s^{\prime}\right]\right\} ; \\
& u(P)=\max \left\{u^{\prime}: u^{\prime} \in X(P) \backslash\{\ell\} \text { such that } c\left(i_{1}, i_{x}\right)=c\left(i_{x}, i_{x+1}\right) \text { for every } x \in X(P) \cap\right. \\
& {\left.\left[s(P)+1, u^{\prime}\right]\right\} ; } \\
& w(P)=\min \{x: x \in X(P) \cap[u(P)+1, \ell]\} .
\end{aligned}
$$

Note that $s(P), u(P), w(P)$ exist not for an arbitrary P. If $s(P)$ exists, then we further define the set $S(P)$ to be $\left\{i_{y}: y \in Y(P) \cap[s(P)]\right\}$ and $t(P)=u(P)-|S(P)|+1$. In
the following lemma, we show that $r(P), s(P), u(P), w(P), t(P)$ exist for all longest PC paths. For simplicity, we use r, s, u, w, t to denote them.

Lemma 3. Let $\Delta^{\text {mon }}\left(K_{n}^{c}\right)=d \leq n-2$ and let $P=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$ be a longest $P C$ path in K_{n}^{c}. If there does not exist a PC cycle of length at least $n-d+1$, then r, s, u, w exist.

Moreover, the following statements hold:
(a) $1 \leq r \leq s<u<w \leq \ell$ and $u \leq n-d$;
(b) $c\left(i_{1}, i_{y}\right)=c\left(i_{y}, i_{y+1}\right)$, for all $i_{y} \in S(P)$;
(c) $c\left(i_{1}, i_{x}\right)=c\left(i_{x}, i_{x+1}\right)$, for all $x \in[r+1, u] \cap X(P)$;
(d) $c\left(i_{1}, i_{w}\right) \neq c\left(i_{w}, i_{w+1}\right)$ if $w<\ell$;
$c\left(i_{1}, i_{w}\right)=c\left(i_{w}, i_{w-1}\right)$ if $w=\ell$.
Proof. From Lemma 1, $c\left(i_{\ell}, i_{r}\right)=c\left(i_{r}, i_{r+1}\right)$. Hence s exists with $r \leq s \leq \ell-2$. Next we prove a claim to show that u exists.

Claim 1. $s<q$.

We may assume $p \leq \ell-2$. Let $y \in Y(P)$ be the maximum such that $y<q$. Since P has a crossing by Lemma 2, y exists. If $c\left(i_{\ell}, i_{y}\right)=c\left(i_{y}, i_{y+1}\right) \neq c\left(i_{y}, i_{y-1}\right)$, then $\left(i_{1}, i_{2}, \cdots, i_{y}, i_{\ell}, i_{\ell-1}, \cdots, i_{q}, i_{1}\right)$ is a PC cycle containing $N^{c}\left(i_{\ell} ; P\right) \cup\left\{i_{\ell}, i_{\ell-1}\right\}$, a contradiction. Hence, $c\left(i_{\ell}, i_{y}\right) \neq c\left(i_{y}, i_{y+1}\right)$. Thus, according to the definition of $s, s<y$. Hence, $s<q$.

Let $x \in X(P)$ be the minimum such that $s<x$. By Claim $1, x$ exists. If $x=\ell$, then $c\left(i_{1}, i_{2}\right) \neq c\left(i_{\ell}, i_{1}\right)=c\left(i_{\ell}, i_{\ell-1}\right) \neq c\left(i_{\ell}, i_{s}\right)$. Since $c\left(i_{\ell}, i_{s}\right)=c\left(i_{s}, i_{s+1}\right) \neq c\left(i_{s}, i_{s-1}\right)$, $\left(i_{1}, i_{2}, \cdots, i_{s}, i_{\ell}, i_{1}\right)$ is a PC cycle containing $N^{c}\left(i_{1} ; P\right) \cup\left\{i_{1}, i_{2}\right\}$, a contradiction. Then, $x \leq \ell-1$. Suppose, to the contrary, that u does not exist. Then, $c\left(i_{1}, i_{x}\right) \neq c\left(i_{x}, i_{x+1}\right)$. If $s \neq 1$, then $\left(i_{1}, i_{2}, \cdots, i_{s}, i_{\ell}, i_{\ell-1}, \cdots, i_{x}, i_{1}\right)$ is a PC cycle containing $N^{c}\left(i_{1} ; P\right) \cup\left\{i_{1}, i_{2}\right\}$, a contradiction. If $s=1$, then from Lemma $1, c\left(i_{\ell}, i_{\ell-1}\right) \neq c\left(i_{1}, i_{\ell}\right)=c\left(i_{1}, i_{2}\right) \neq c\left(i_{1}, i_{x}\right)$. Thus, $\left(i_{1}, i_{x}, i_{x+1}, \cdots, i_{\ell}, i_{1}\right)$ is a PC cycle containing $N^{c}\left(i_{1} ; P\right) \cup\left\{i_{1}, i_{\ell}\right\}$, a contradiction. So, u exists. According to Lemma $1, w$ exists. Since $c\left(i_{1}, i_{u}\right)=c\left(i_{u}, i_{u+1}\right) \neq c\left(i_{u}, i_{u-1}\right)$, $\left(i_{1}, i_{2}, \cdots, i_{u}, i_{1}\right)$ is a PC cycle of length at least u. Hence, $u \leq n-d$. Therefore, from the definitions of $r, s, u, w,(\mathrm{a})$, (b) and (d) hold.

Next we show that $c\left(i_{1}, i_{j}\right)=c\left(i_{j}, i_{j+1}\right)$ for $j \in[r+1, s+1] \cap X(P)$. Otherwise, if there exists an $x \in[r+1, s+1] \cap X(P)$ such that $c\left(i_{1}, i_{x}\right) \neq c\left(i_{x}, i_{x+1}\right)$, letting y be the maximum such that $y \in[1, s] \cap Y(P)$ and $y<x$, then $\left(i_{1}, i_{2}, \cdots, i_{y}, i_{\ell}, i_{\ell-1}, \cdots, i_{x}, i_{1}\right)$ is a PC cycle containing $N^{c}\left(i_{\ell} ; P\right) \cup\{\ell-1, \ell\}$, a contradiction. Then, let u be the maximum such that $c\left(i_{1}, i_{j}\right)=c\left(i_{j}, i_{j+1}\right)$ for all $j \in[s+1, u] \cap X(P)$ and $s<u<\ell$. Thus (c)
holds.
According to Lemma 3 , for any longest PC path Q, we have $S(Q) \neq \emptyset$. Now given a PC path P and the set $\mathcal{R}(P)$, without loss of generality, assume that $|S(P)|$ is maximum over all the longest PC paths. In the next lemma, we find a longest PC cycle C_{0} in an edgecolored complete graph which does not have PC cycles of length at least $n-\Delta^{\text {mon }}(G)+1$, and get some useful properties.

Lemma 4. Let G be an edge-colored complete graph K_{n} such that $\Delta^{\text {mon }}(G)=d \leq$ $n-2$, and let $P=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$. If there does not exist a $P C$ cycle of length at least $n-d+1$, then the following statements are true (for simplicity, we use r, s, u, w, t instead of $r(P), s(P), u(P), w(P), t(P))$:
(a) $C_{0}=\left(i_{1}, i_{2}, \cdots, i_{s}, i_{\ell}, i_{\ell-1}, \cdots, i_{w}, i_{1}\right)$ is a PC cycle (see Fig.1).
(b) $\left|C_{0}\right|=n-d,|X(P)|=n-d+1$ and $S(P)=\left\{i_{y}: y \in[r, s]\right\}$.
(c) $t \geq \max \{3, r+1\}$ and $X(P)= \begin{cases}{[3, r] \cup[t, u] \cup[w, \ell],} & \text { if } r \geq 3, \\ {[t, u] \cup[w, \ell],} & \text { if } r=2, \text { where all the } \\ {[t, u] \cup[w, \ell-1],} & \text { if } r=1 .\end{cases}$ intervals are non-empty and pairwise disjoint.
(d) $c\left(i_{1}, i_{x}\right)=c\left(i_{x}, i_{x+1}\right)$ for all $t \leq x \leq u$.
(e) Given an integer a with $r \leq a \leq s$, the path $P^{*}=\left(i_{a+1}, i_{a+2}, \cdots, i_{\ell}, i_{a}, i_{a-1}, \cdots, i_{1}\right) \in$ $\mathcal{R}(P)$; moreover, if $a<t$, then $N^{c}\left(i_{1} ; P^{*}\right)=N^{c}\left(i_{1} ; P\right)$ and $S\left(P^{*}\right)=\left\{i_{y}: y \in[t, u]\right\}$.
(f) If $P^{*} \in \mathcal{R}(P)$ with $\left|S\left(P^{*}\right)\right|=|S(P)|$, then the corresponding statements of (a)-(e) hold.

Figure 1: $C_{0}=\left(i_{1}, i_{2}, \cdots, i_{s}, i_{\ell}, i_{\ell-1}, \cdots, i_{w}, i_{1}\right)$

Proof. From Lemma 3, (a) holds.
Since $c\left(i_{\ell}, i_{r}\right)=c\left(i_{r}, i_{r+1}\right) \neq c\left(i_{r}, i_{r-1}\right), P_{1}=\left(i_{r+1}, i_{r+2}, \cdots, i_{\ell}, i_{r}, i_{r-1}, \cdots, i_{1}\right) \in \mathcal{R}(P)$. Clearly, $N^{c}\left(i_{1} ; P_{1}\right)=N^{c}\left(i_{1} ; P\right)$. By Lemma $3(\mathrm{c}), c\left(i_{1}, i_{x}\right)=c\left(i_{x}, i_{x+1}\right)$ for all $x \in[r+$ $1, u] \cap X(P)$. Then, $\left\{i_{y}: y \in[r+1, u] \cap X(P)\right\} \subseteq S\left(P_{1}\right)$. By the maximality of $S(P)$, we
have $|[r, s] \cap Y(P)|=|S(P)| \geq\left|S\left(P_{1}\right)\right| \geq|[r+1, u] \cap X(P)|$. Then

$$
\begin{aligned}
\left|C_{0}\right| & =|[1, s]|+|[w, \ell]| \\
& =|[1, s] \cap X(P)|+|[1, s] \backslash X(P)|+|[w, \ell] \cap X(P)|+|[w, \ell] \backslash X(P)| \\
& =|X(P)|-|[s+1, u] \cap X(P)|+|[1, s] \backslash X(P)|+|[w, \ell] \backslash X(P)| \\
& =|X(P)|-|[r+1, u] \cap X(P)|+|[r+1, s]|+|[1, r] \backslash X(P)|+|[w, \ell] \backslash X(P)| \\
& \geq|X(P)|-|[r, s] \cap Y(P)|+|[r, s]|+|[2, r] \backslash X(P)|+|[w, \ell] \backslash X(P)| \\
& \geq|X(P)|+|[2, r] \backslash X(P)|+|[w, \ell] \backslash X(P)| \\
& \geq|X(P)|+1 \\
& \geq n-d .
\end{aligned}
$$

Since $\left|C_{0}\right| \leq n-d$, we have $\left|C_{0}\right|=n-d$. Therefore, all the inequalities become equalities. Then $|X(P)|=n-d-1$, and

$$
\begin{gather*}
|[2, r] \backslash X(P)|+|[w, \ell] \backslash X(P)|=1, \tag{1}\\
|[r, s]|=|[r, s] \cap Y(P)|=|[r+1, u] \cap X(P)| . \tag{2}
\end{gather*}
$$

Moreover, as $2 \notin X(P)$, (1) implies that

$$
\begin{cases}{[3, r] \cup[w, \ell] \subseteq X(P),} & \text { if } r \geq 3 \\ {[w, \ell] \subseteq X(P),} & \text { if } r=2 \\ {[w, \ell-1] \subseteq X(P),} & \text { if } r=1,\end{cases}
$$

and (2) implies that $S(P)=\left\{i_{y}: y \in[r, s] \cap Y(P)\right\}=\left\{i_{y}: y \in[r, s]\right\}$ and $S\left(P_{1}\right)=$ $\left\{i_{y}: y \in[r+1, u] \cap X(P)\right\}$. By the definition of u, we have $c\left(i_{1}, i_{u}\right)=c\left(i_{u}, i_{u+1}\right)$ and $c\left(i_{1}, i_{u}\right) \neq c\left(i_{1}, i_{2}\right)$. Thus, $i_{u} \in S\left(P_{1}\right)$. Since $\left|S\left(P_{1}\right)\right|=|S(P)|$, we deduce that $S\left(P_{1}\right)$ is also an interval by taking $P=P_{1}$. Then, $[r+1, u] \cap X(P)=[t, u]$. Therefore,

$$
X(P)= \begin{cases}{[3, r] \cup[t, u] \cup[w, \ell],} & \text { if } r \geq 3, \tag{3}\\ {[t, u] \cup[w, \ell],} & \text { if } r=2, \\ {[t, u] \cup[w, \ell-1],} & \text { if } r=1\end{cases}
$$

So far, (b)-(d) hold.
Next, we are going to prove (e). If $a=r$, then there is nothing to prove. Hence, suppose $r<a \leq s$. Since $a \in S(P), c\left(i_{l}, i_{a}\right)=c\left(i_{a}, i_{a+1}\right)$. Then P^{*} is a PC path. Note that P^{*} is obtained from P by a rotation with endpoint i_{1} and pivot point i_{a} followed by a reflection. Therefore, $P^{*} \in \mathcal{R}(P)$. Further, if $a<t$, clearly $N^{c}\left(i_{1} ; P^{*}\right)=N^{c}\left(i_{1} ; P\right)$. We can get $\left\{i_{y}: y \in[t, u]\right\} \subseteq S\left(P^{*}\right)$. By the maximality of $|S(P)|, S\left(P^{*}\right)=\left\{i_{y}: y \in[t, u]\right\}$ and so (e) holds. Apparently, (f) follows from (a)-(e).

Now we are ready to give the proof of Theorem 3.

3 Proof of Theorem 3

If $d=n-2$, then the result follows from Theorem 6. Then, we may assume $d \leq n-3$. Suppose, to the contrary, that each PC cycle in K_{n}^{c} is of length at most $n-d$. Let P be a longest PC path in K_{n}^{c}, and for simplicity, we label the the vertices of P by $(1,2, \cdots, \ell)$ and $P^{\prime}=(\ell, \ell-1, \cdots, 1)$. According to Lemma 3, we know that $r(P), s(P), t(P), u(P)$ and $w(P)$ do exist. For convenience, we use r, s, t, u, w instead. Without loss of generality, assume that P is a longest PC path satisfying that $|S(P)|$ is maximum over all the longest PC paths. Since P is a longest PC path, $N^{c}(1 ; P) \cup N^{c}(\ell ; P) \subseteq V(P)$. Thus, $\ell \geq n-d+1$. Moreover, if $\ell \in N^{c}(1 ; P)$ and $1 \in N^{c}(\ell ; P)$, then $(1,2, \cdots, \ell, 1)$ is a PC cycle of length $\ell \geq n-d+1$. Hence, $\ell \notin N^{c}(1 ; P)$ or $1 \notin N^{c}(\ell ; P)$. So, $\ell \geq n-d+2$. Note that if $\ell-1 \in X(P)$, then $\ell-1 \in S(P)$; otherwise, $(1,2, \cdots, \ell-1,1)$ is a PC cycle of length $n-d+1$, a contradiction. In the following, we show some claims which will be used in our proof.
Claim 1. If $\left|S\left(P^{\prime}\right)\right|=|S(P)|$, then $r \in\{1,2\}$ and $X(P)= \begin{cases}{[t, u] \cup[w, \ell],} & r=2, \\ {[t, u] \cup[w, \ell-1],} & r=1 .\end{cases}$ Moreover, if $r=1$ then $r\left(P^{\prime}\right)=2$, and if $r=2$ then $r\left(P^{\prime}\right)=1$.

Proof. Let $P^{\prime}=\left(v_{1}, v_{2}, \cdots, v_{\ell}\right)$. Since $\left|S\left(P^{\prime}\right)\right|=|S(P)|$, by Lemma 4 (f) and (c), we have

$$
X\left(P^{\prime}\right)= \begin{cases}{\left[3, r\left(P^{\prime}\right)\right] \cup\left[t\left(P^{\prime}\right), u\left(P^{\prime}\right)\right] \cup\left[w\left(P^{\prime}\right), \ell\right],} & \text { if } r\left(P^{\prime}\right) \geq 2 \tag{4}\\ {\left[t\left(P^{\prime}\right), u\left(P^{\prime}\right)\right] \cup\left[w\left(P^{\prime}\right), \ell-1\right],} & \text { if } r\left(P^{\prime}\right)=1\end{cases}
$$

Suppose, to the contrary, that $r \geq 3$. Then, $\ell \in X(P)$. Therefore, $c(1, \ell)=c(\ell, \ell-1)$, which implies that $1 \notin N^{c}(\ell ; P)$. Noticing that $\ell=v_{1}$, we have $r\left(P^{\prime}\right)=1$. Hence, by (4), $v_{\ell-1}=2 \in N^{c}\left(\ell ; P^{\prime}\right)=N^{c}(\ell ; P)$, which implies that $r=2$, a contradiction. Hence, $r \in\{1,2\}$. Moreover, if $r=1$ then $r\left(P^{\prime}\right)=2$, and if $r=2$ then $r\left(P^{\prime}\right)=1$.

Claim 2. For each $y \in N^{c}(\ell ; P) \cap[s+1, w-1]$, we have that $c(\ell, y)=c(y, y-1)$ and $\left|N^{c}(\ell ; P) \cap[s+1, w-1]\right| \leq|S(P)|$.

Proof. Since $c(1, w) \neq c(w, w+1)$, we have that $Q=(w-1, w-2, \cdots, s+1, s, \cdots, 1, w, w+$ $1, \cdots, \ell)$ is a longest PC path. Clearly, $N^{c}(\ell ; P)=N^{c}(\ell ; Q)$. Since $\left|C_{0}\right|=n-d$, for any $y \in N^{c}(\ell ; P) \cap[s+1, w-1]$ we have $c(\ell, y)=c(y, y-1)$; otherwise, $(1,2, \cdots, s, s+$ $1, \cdots, y, \ell, \ell-1, \cdots, w, 1)$ is a PC cycle of length at least $n-d+1$, a contradiction. Then, $N^{c}(\ell ; P) \cap[s+1, w-1] \subseteq S(Q)$. Therefore, $\left|N^{c}(\ell ; P) \cap[s+1, w-1]\right| \leq|S(Q)|$. By the maximality of $|S(P)|$, we have $\left|N^{c}(\ell ; P) \cap[s+1, w-1]\right| \leq|S(P)|$.

Claim 3. $|S(P)| \geq 3$.
Proof. Suppose, to the contrary, that $|S(P)| \leq 2$. Assume $r \neq 1$. Since if $r=1$, by Lemma 4 (e) we take $P=(2,3, \cdots, \ell, 1)$. Then we have $N^{c}(1 ; P)=[3, r] \cup[t, u] \cup[w, \ell]$. We divide the proof into cases, depending on the value of w.
Case 1. $w \leq \ell-1$.
Now we consider $P^{\prime}=(\ell, \ell-1, \cdots, 1)$. Note that $N^{c}(1 ; P)=N^{c}\left(1 ; P^{\prime}\right)$ and $N^{c}(\ell ; P)=$ $N^{c}\left(\ell ; P^{\prime}\right)$. Since $w \leq \ell-1$, we have $\ell, \ell-1 \in S\left(P^{\prime}\right)$. By the maximality of $|S(P)|$, we have $|S(P)|=\left|S\left(P^{\prime}\right)\right|=2$. According to Claim 1, we have $r=2$ and $s=3$. Then, $N^{c}(1 ; P)=[t, u] \cup[w, \ell]$, and

$$
\begin{equation*}
c(\ell, \ell-1) \neq c(\ell, 3)=c(3,4) \neq c(3,2) \tag{5}
\end{equation*}
$$

Let $P_{1}=(3,4, \cdots, \ell, 2,1)=\left(v_{1}, v_{2}, \cdots, v_{\ell}\right) \in \mathcal{R}(P)$.
Subcase 1.1. $w=\ell-1$.
In this subcase, it follows that $N^{c}(1 ; P)=\{t, t+1, \ell-1, \ell\}, n-d=5$ and $t+1 \leq 5$. Since $t \geq 3$, we have $t=3$ or 4 .

If $t=3$, then by Lemma 4 (e), $S\left(P_{1}\right)=\{3,4\}$. Thus, $r\left(P_{1}\right)=1$. Then, applying Lemma 4 (f) and (c) with $P^{*}=P_{1}$, we have $X\left(P_{1}\right)=\left[t\left(P_{1}\right), t\left(P_{1}\right)+1\right] \cup[\ell-2, \ell-1]$. Therefore, $\ell, 2 \in N^{c}\left(3 ; P_{1}\right)$. Hence, $c(3, \ell) \neq c(3,4)$, a contradiction to (5).

If $t=4$, then $S\left(P_{1}\right)=[4,5]$ and $r\left(P_{1}\right)=2$. Applying Lemma 4 (f) and (c) with $P^{*}=P_{1}$, we have $X\left(P_{1}\right)=\left[t\left(P_{1}\right), t\left(P_{1}\right)+1\right] \cup[\ell-1, \ell]$. By Lemma $4(\mathrm{~d})$,

$$
\begin{equation*}
c(3,4) \neq c\left(3, v_{t\left(P_{1}\right)}\right)=c\left(v_{t\left(P_{1}\right)}, v_{t\left(P_{1}\right)+1}\right) \neq c\left(v_{t\left(P_{1}\right)}, v_{t\left(P_{1}\right)-1}\right) . \tag{6}
\end{equation*}
$$

Noticing that $\ell=v_{\ell-2}$, and $\ell \notin N^{c}\left(3 ; P_{1}\right)$ by (5), we have $t\left(P_{1}\right) \in[3, \ell-4]$ and $v_{t\left(P_{1}\right)} \in$ $[5, \ell-2]$. According to Lemma $4(\mathrm{e}), P_{2}=(4,5, \cdots, \ell, 3,2,1) \in \mathcal{R}(P), N^{c}\left(1 ; P_{2}\right)=$ $\{4,5, \ell-1, \ell\}$ and $S\left(P_{2}\right)=\{4,5\}$. Thus, $r\left(P_{2}\right)=1$. Applying Lemma $4(\mathrm{f})$ and (e) with $P^{*}=P_{2}$, we have $\ell-1 \in X\left(P_{2}\right)$, that is, $2 \in N^{c}\left(4 ; P_{2}\right)$. Then, we have

$$
\begin{equation*}
c(4,5) \neq c(4,2)=c(2,3) \neq c(1,2) \tag{7}
\end{equation*}
$$

Recalling that $\ell-1 \in S\left(P^{\prime}\right)$ and $3 \in S(P)$, we have

$$
\begin{equation*}
c(1,2) \neq c(1, \ell-1)=c(\ell-1, \ell-2) \neq c(\ell-1, \ell) \neq c(3, \ell)=c(3,4) \tag{8}
\end{equation*}
$$

Since $4=t<u<w=\ell-1$, we have $\ell \geq 7$. Therefore, combining (5), (6), (7) and (8), we can get that $\left(1,2,4,5, \cdots, v_{t\left(P_{1}\right)-1}, v_{t\left(P_{1}\right)}, 3, \ell, \ell-1,1\right)$ is a PC cycle of length at least 6 (see Figure 2), a contradiction.

Figure 2: A PC cycle of length at least $6:\left(1,2,4,5, \cdots, v_{t_{1}-1}, v_{t_{1}}, 3, \ell, \ell-1,1\right)$

Subcase 1.2. $w \leq \ell-2$.
In this subcase, it follows that $\ell-2 \notin S\left(P^{\prime}\right)$, and

$$
\begin{equation*}
c(1,2) \neq c(1, \ell-2) \neq c(\ell-2, \ell-3) . \tag{9}
\end{equation*}
$$

Hence, $C_{1}=(1,2, \cdots, \ell-2,1)$ is a PC cycle. Clearly, $\left|C_{1}\right|=\ell-2 \leq n-d$. Then, $\ell=n-d+2$. Applying Lemma 4 (f) and (b), $\left|N^{c}\left(\ell ; P^{\prime}\right)\right|=n-d-1=\ell-3$. Since $1, \ell-1 \notin N^{c}\left(\ell ; P^{\prime}\right)$, we have $N^{c}\left(\ell ; P^{\prime}\right)=[2, \ell-2]$. According to Lemma 4 (a), $\left|C_{0}\right|=n-d=\ell-2$ and $s=3$, we have that $w=6$ and $\ell \geq 8$.

If $\ell=n$, then $\left|N^{c}\left(\ell ; P^{\prime}\right)\right|=\ell-3=n-3=n-d-1$. Thus, $d=2$. By Lemma 3, we have $3=s<u<w=6$. Then, $u=4$ or 5 . Since $d=2$, we have $s \notin[t, u]$; otherwise, $c(1, s)=c(s, s+1)=c(\ell, s)$ which implies that $d^{\text {mon }}(s) \geq 3$, a contradiction. Hence, $t=4$ and $u=5$. So, $N^{c}(1 ; P)=\{4,5, \ell-1, \ell\}$. Then, $|X(P)|=n-3=4$, which implies that $n=\ell=7$, a contradiction.
If $\ell<n$, then there exists a vertex $z \in V(G) \backslash V(P)$. Since $s=3$, by Lemma 4 (e) $(1,2,3, \ell, \ell-1, \cdots, 5,4) \in \mathcal{R}(P)$. Then

$$
\begin{equation*}
c(4, z)=c(4,5) \neq c(3,4) \tag{10}
\end{equation*}
$$

Since $\ell \geq 8$, we have $5 \in N^{c}(\ell ; P)$. Since $s=3$ and $w=6$, from Claim 2 we have that

$$
\begin{equation*}
c(5, \ell)=c(4,5) \neq c(5,6) \tag{11}
\end{equation*}
$$

Combining (9), (10) and (11), (z,4,3,2, $, \ell-2, \ell-3, \cdots, 5, \ell, \ell-1)$ is a PC path longer than P (see Figure 3), a contradiction.

Figure 3: A PC path of length $\ell+1:(z, 4,3,2,1, \ell-2, \ell-3, \cdots, 5, \ell, \ell-1)$

Case 2. $w=\ell$.
We divide this case into subcases, depending on the value of $|S(P)|$.
Subcase 2.1. $|S(P)|=2$.

In this subcase, it follows that $N^{c}(1 ; P)=[3, r] \cup[t, t+1] \cup\{\ell\}$. Since $\left|N^{c}(1 ; P)\right|=$ $n-d-1$ and $t+1 \leq n-d$, we have $t=n-d-1$ and $r=n-d-2$. From Claim $2, n-d-1 \leq\left|N^{c}(\ell ; P)\right|=|[r, s]|+\left|N^{c}(\ell ; P) \cap[s+1, \ell-2]\right| \leq 2|S(P)|=4$. Then, $n-d-1 \leq 4$. Since $t \geq 3$, we have $n-d=4$ or 5 .

Subcase 2.1.1. $n-d=4$.
In this subcase, it follows that $r=2, s=t=3, N^{c}(1 ; P)=\{3,4, \ell\}$ and

$$
\begin{equation*}
c(1,3)=c(3,4) \tag{12}
\end{equation*}
$$

Given a path $Q=\left(v_{1}, v_{2}, \cdots, v_{\ell}\right)$, we define the path $\phi(Q)=\left(v_{3}, v_{4}, \cdots, v_{\ell}, v_{2}, v_{1}\right)$. Set $P_{0}=P=(1,2, \cdots, \ell)$. Define P_{i} to be $\phi\left(P_{i-1}\right), i \geq 1$. We write p_{j}^{i} to be the $j^{\text {th }}$ vertex of P_{i}. We are going to prove following statements for $i \geq 1$.
(i) $P_{i} \in \mathcal{R}\left(P_{0}\right)$.
(ii) $S\left(P_{i}\right)=\left\{p_{j}^{i}: j \in\{1,2\}\right\}$.
(iii) $N^{c}\left(p_{1}^{i} ; P_{i}\right)=\left\{p_{j}^{i}: j \in\{3,4, \ell-1\}\right\}$ and $c\left(p_{1}^{i}, p_{j}^{i}\right)=c\left(p_{j}^{i}, p_{j+1}^{i}\right), j=3,4$.
(iv) $N^{c}\left(p_{2}^{i} ; P_{i}\right)=\left\{p_{j}^{i}: j \in\{1,4,5\}\right\} ;$ moreover, $c\left(p_{2}^{i}, p_{j}^{i}\right)=c\left(p_{j}^{i}, p_{j+1}^{i}\right), j=4,5$.

Firstly, we are going to show (i)-(iii) by induction on i. Note that $N^{c}(1 ; P)=\{3,4, \ell\}$ and $s=3$. Then by Lemma 4, $P_{1} \in \mathcal{R}\left(P_{0}\right), r\left(P_{1}\right)=1$ and $S\left(P_{1}\right)=\{3,4\}=\left\{p_{1}^{1}, p_{2}^{1}\right\}$. Since $t\left(P_{1}\right)+1 \leq n-d=4$ and $t\left(P_{1}\right) \geq 3$, we have $t\left(P_{1}\right)=3$. Therefore, $N^{c}\left(p_{1}^{1} ; P_{1}\right)=$ $\left\{p_{j}^{1}: j \in\{3,4, \ell-1\}\right\}$. Thus, the statements hold for $i=1$. Assume that they are true for $i-1$, where $i \geq 2$. For the sake of simplicity, we use $r_{i}, s_{i}, t_{i}, u_{i}, w_{i}$ instead of $r\left(P_{i}\right), s\left(P_{i}\right), t\left(P_{i}\right), u\left(P_{i}\right), w\left(P_{i}\right)$.
(i) According to the induction hypothesis, we have $p_{2}^{i-1} \in S\left(P_{i-1}\right)$. Then by Lemma 4 (e), $P_{i}=\left(p_{3}^{i-1}, p_{4}^{i-1}, \cdots, p_{\ell}^{i-1}, p_{2}^{i-1}, p_{1}^{i-1}\right) \in \mathcal{R}\left(P_{0}\right)$.
(ii) According to the induction hypothesis, we have $S\left(P_{i-1}\right)=\left\{p_{j}^{i-1}: j \in\{1,2\}\right\}$ and $N^{c}\left(p_{1}^{i-1} ; P_{i-1}\right)=\left\{p_{j}^{i-1}: j \in\{3,4, \ell-1\}\right\}$. Then, $r_{i-1}=1$ and $t_{i-1}=3$. Since $r_{i-1} \leq 2 \leq s_{i-1}$ and $2<t_{i-1}$, according to Lemma 4 (e), we have $S\left(P_{i}\right)=\left\{p_{j}^{i-1}: j \in\right.$ $\{3,4\}\}=\left\{p_{j}^{i}: j \in\{1,2\}\right\}$.
(iii) Since $r_{i}=1$ and $\left|S\left(P_{i}\right)\right|=2$, we have $N^{c}\left(p_{1}^{i} ; P_{i}\right)=\left\{p_{j}^{i}: j \in\left\{t_{i}, t_{i}+1, \ell-1\right\}\right\}$ $\left(w_{i}=\ell-1\right.$ as $\left.\left|N^{c}\left(p_{1}^{i} ; P_{i}\right)\right|=4\right)$. Since $t_{i}+1 \leq n-d=4$ and $t_{i} \geq 3$, we have $t_{i}=3$. Hence, $N^{c}\left(p_{1}^{i} ; P_{i}\right)=\left\{p_{j}^{i}: j \in\{3,4, \ell-1\}\right\}$.
(iv) Since $p_{1}^{i} \in S\left(P_{i}\right)$, by Lemma 4 (e), $P_{i}^{2}=\left(p_{2}^{i}, p_{3}^{i}, \cdots, p_{\ell}^{i}, p_{1}^{i}\right)=\left(v_{1}, v_{2}, \cdots, v_{\ell}\right) \in$ $\mathcal{R}(P), N^{c}\left(p_{1}^{i} ; P_{i}\right)=N^{c}\left(p_{1}^{i} ; P_{i}^{2}\right)$ and $S\left(P_{i}^{2}\right)=\left\{p_{j}^{i}: j \in\{3,4\}\right\}$. Then, $r\left(P_{i}^{2}\right)=2$. Applying Lemma 4 (f) and (c) with $P^{*}=P_{i}^{2}$, we have $N^{c}\left(p_{2}^{i} ; P_{i}^{2}\right)=\left\{v_{j}: j \in\left\{t\left(P_{i}^{2}\right), t\left(P_{i}^{2}\right)+1, \ell\right\}\right\}$.

Since $t\left(P_{i}^{2}\right)+1 \leq n-d=4$ and $t\left(P_{i}^{2}\right) \geq 3$, we have $t\left(P_{i}^{2}\right)=3$. Therefore, $N^{c}\left(p_{2}^{i} ; P_{i}^{2}\right)=$ $\left\{v_{3}, v_{4}, v_{\ell}\right\}=\left\{p_{j}^{i}: j \in\{4,5,1\}\right\}$. Moreover, by Lemma $4(\mathrm{~d}), c\left(p_{2}^{i}, p_{j}^{i}\right)=c\left(p_{j}^{i}, p_{j+1}^{i}\right)$, $j=4,5$.

Since $3=s<u<w=\ell, \ell \geq 5$. If ℓ is odd, taking $i=\frac{\ell+1}{2}$, then $P_{\frac{\ell+1}{2}}=(1,4,3, \cdots, \ell-$ $1, \ell-2,2, \ell)$. If ℓ is even, taking $i=\frac{\ell}{2}$, then $P_{\frac{\ell}{2}}=(2,1,4,3, \cdots, \ell, \ell-1)$. By (iii) and (iv), $c(1,3) \neq c(3,4)$, a contradiction to (12).

Subcase 2.1.2. $n-d=5$.
In this subcase, it follows that $t=s=4, r=3$. According to Lemma 4 (e), $P_{1}=$ $(4,5,6, \cdots, \ell, 3,2,1)=\left(v_{1}, v_{2}, \cdots, v_{\ell}\right) \in \mathcal{R}(P)$ and $S\left(P_{1}\right)=\{4,5\}$. Then, $r\left(P_{1}\right)=1$ and $s\left(P_{1}\right)=2$. Applying Lemma 4 (f) and (c), we have $X\left(P_{1}\right)=\left\{t\left(P_{1}\right), t\left(P_{1}\right)+1, \ell-1, \ell-2\right\}$. Since $t\left(P_{1}\right)+1 \leq n-d=5$ and $t\left(P_{1}\right) \geq 3$, we have $t\left(P_{1}\right)=3$ or 4. Since $r\left(P_{1}\right) \leq$ $t\left(P_{1}\right)-2 \leq s\left(P_{1}\right)$, we have $P_{2}=\left(v_{t\left(P_{1}\right)-1}, v_{t\left(P_{1}\right)}, \cdots, v_{\ell}, v_{t\left(P_{1}\right)-2}, \cdots, v_{1}\right) \in \mathcal{R}(P)$ and $S\left(P_{2}\right)=\left\{v_{j}: j \in\left\{t\left(P_{1}\right), t\left(P_{1}\right)+1\right\}\right\}$. Then, $r\left(P_{2}\right)=2$ and $s\left(P_{2}\right)=3$. Applying Lemma 4 (f) and (c), we have $X\left(P_{2}\right)=\left\{t\left(P_{2}\right), t\left(P_{2}\right)+1, \ell-1, \ell\right\}$. Since $t\left(P_{2}\right)+1 \leq n-d=5$ and $t\left(P_{2}\right) \geq 3$, we have $t\left(P_{2}\right)=3$ or 4 . Hence, we can apply Subcase 1.1 with $P=P_{2}$. If $t\left(P_{2}\right)=3$, then $c\left(v_{1}, v_{t\left(P_{1}\right)+1}\right) \neq c\left(v_{t\left(P_{1}\right)+1}, v_{t\left(P_{1}\right)+2}\right)$, a contradiction. If $t\left(P_{2}\right)=4$, then there is a PC cycle of length at least 6 , a contradiction.

Subcase 2.2. $|S(P)|=1$.
According to Lemma 3 and the maximality of $|S(P)|, s\left(P^{\prime}\right)$ exists and $\left|S\left(P^{\prime}\right)\right|=1$. Moreover by Claim 1, $r=2$ and $r\left(P^{\prime}\right)=1$. Then according to Lemma 4 (f) and (c), $N^{c}(1 ; P)=\{t, \ell\}$. Then, $\left|N^{c}(1 ; P)\right|=2$, which implies that $d^{c}(1) \leq 3$ and $n-d=3$. Hence, $t=t\left(P^{\prime}\right)=3$. Then, $N^{c}(1 ; P)=\{3, \ell\}$ and $N^{c}(\ell ; P)=\{2, \ell-2\}$. Thus,

$$
\begin{gather*}
c(1,2) \neq c(1,3)=c(3,4) \neq c(2,3), \tag{13}\\
c(1,2) \neq c(1, \ell)=c(\ell, \ell-1) \neq c(\ell-1, \ell-2) \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
c(\ell, \ell-1) \neq c(\ell, \ell-2)=c(\ell-2, \ell-3) \neq c(\ell-2, \ell-1) \tag{15}
\end{equation*}
$$

According to Lemma 4 (e), (f) and (c), $P_{1}=(3,4, \cdots, \ell, 2,1) \in \mathcal{R}(P)$ and $N^{c}\left(3 ; P_{1}\right)=$ $\{2,5\}$. Then

$$
\begin{equation*}
c(3,4) \neq c(3,5) \neq c(5,4) \tag{16}
\end{equation*}
$$

Subcase 2.2.1. $d^{c}(1)=2$.
In this subcase, it follows that

$$
\begin{equation*}
c(3,4)=c(1,3)=c(1, \ell)=c(\ell, \ell-1) . \tag{17}
\end{equation*}
$$

If $\ell=5$, then $c(3,4)=c(4,5)$ by (13), (14) and (17), a contradiction. If $\ell=6$, then $c(6,4)=c(3,4)$ by (15). Then, $c(6,4)=c(5,6)$ by (13), (14) and (17), a contradiction. Thus, $\ell \geq 7$, and then $c(3, \ell-1)=c(3,4) \neq c(2,3)$. By $(17), c(3, \ell-1) \neq c(\ell-1, \ell-2)$. Combining these with (13), (14), (17), ($1,2,3, \ell-1, \ell-2, \ell, 1)$ is a PC cycle of length 6 (see Figure 4), a contradiction.

Figure 4: A PC cycle of length 6: $(1,2,3, \ell-1, \ell-2, \ell, 1)$

Subcase 2.2.2. $d^{c}(1)=3$.
In this subcase, it follows that $c(1,3) \neq c(1, \ell)$. If $\ell=5$, then by (13), (14) and (15), $(1,3,5,4,1)$ is a PC cycle of length 4 , a contradiction. If $\ell=6$, then by (13), (14), (15) and (16), ($1,3,5,4,6,1$) is a PC cycle of length 5 , a contradiction. Thus, $\ell \geq 7$, and then

$$
\begin{equation*}
c(3, \ell-1)=c(3,4) . \tag{18}
\end{equation*}
$$

We may assume that

$$
\begin{equation*}
c(3, \ell-1)=c(\ell-1, \ell-2) ; \tag{19}
\end{equation*}
$$

or else, $(1,2,3, \ell-1, \ell-2, \ell, 1)$ is a PC cycle of length 6 , (see Figure 4), a contradiction. If $\ell=7$, then $c(3,4) \neq c(3,5)=c(5,6)=c(3,6)$. Since $6 \notin N^{c}\left(3, P_{1}\right)$, we have $c(3,6)=$ $c(3,4)$, a contradiction. Hence, $\ell \geq 8$. Then, $c(3,4)=c(3, \ell-2)$. Combining (18) and (19), we have $c(3, \ell-2)=c(\ell-1, \ell-2)$. Hence together with (13), (14) and (15), $(1,2,3, \ell-2, \ell, 1)$ is a PC cycle of length 5 , a contradiction. The proof of Claim 3 is thus complete.

Claim 4. There exists a path $Q \in \mathcal{R}(P)$ with $|S(Q)|=|S(P)|$ such that $t(Q) \geq r(Q)+3$.
Proof. By contradiction, suppose $t \leq r+2$. Since $|S(P)| \geq 3$, we have $t-1 \in S(P)$. Without loss of generality, we assume $r=1$; otherwise, consider $(t, t+1, \cdots, \ell, t-1, \cdots, 1)$ instead. Since $\max \{3, r+1\} \leq t \leq r+2$, we have $t=3$. Since $|[t, u]|=|[r, s]|$, we have $u=s+2 \geq 5$. Then, $N^{c}(1 ; P)=[3, s+2] \cup[w, \ell-1]$. By Lemma 4, we have

$$
\begin{equation*}
c(1,3)=c(3,4) . \tag{20}
\end{equation*}
$$

Given a path $Q=\left(v_{1}, v_{2}, \cdots, v_{\ell}\right)$, we define the path $\phi(Q)=\left(v_{3}, v_{4}, \cdots, v_{\ell}\right)$. Set $P_{0}=P=(1,2, \cdots, \ell)$. Define P_{i} to be $\phi\left(P_{i-1}\right), i \geq 1$. We write p_{j}^{i} to be the $j^{\text {th }}$ vertex of P_{i}. We are going to prove the following statements for $i \geq 0$.
(i) $P_{i} \in \mathcal{R}\left(P_{0}\right)$.
(ii) $S\left(P_{i}\right)=\left\{p_{j}^{i}: i \in[1, s]\right\}$.
(iii) $N^{c}\left(p_{1}^{i} ; P_{i}\right)=\left\{p_{j}^{i}: j \in[3, s+2] \cup[w, \ell-1]\right\}$, and $c\left(p_{1}^{i}, p_{j}^{i}\right)=c\left(p_{j}^{i}, p_{j+1}^{i}\right), j \in[3, s+2]$.
(iv) $N^{c}\left(p_{2}^{i} ; P_{i}\right)=\left\{p_{j}^{i}: j \in[4, n-d+1] \cup\{1\}\right\}$; moreover, $c\left(p_{2}^{i}, p_{j}^{i}\right)=c\left(p_{j}^{i}, p_{j+1}^{i}\right)$, $j \in[4, n-d+1]$.

Firstly, we are going to show (i)-(iii) by induction on i. The statements are true for $i=0$. Assume that the statements are true for $i-1$, where $i>1$. For the sake of simplicity, we use $r_{i}, s_{i}, t_{i}, u_{i}, w_{i}$ instead of $r\left(P_{i}\right), s\left(P_{i}\right), t\left(P_{i}\right), u\left(P_{i}\right), w\left(P_{i}\right)$.
(i) According to the induction hypothesis, we have $p_{2}^{i-1} \in S\left(P_{i-1}\right)$. Then by Lemma 4 (e), we have $P_{i}=\left(p_{3}^{i-1}, p_{4}^{i-1}, \cdots, p_{\ell}^{i-1}, p_{2}^{i-1}, p_{1}^{i-1}\right) \in \mathcal{R}\left(P_{0}\right)$.
(ii) According to the induction hypothesis, we have $S\left(P_{i-1}\right)=\left\{p_{j}^{i-1}: j \in[1, s]\right\}$ and $N^{c}\left(p_{1}^{i-1} ; P_{i-1}\right)=\left\{p_{j}^{i-1}: j \in[3, s+2] \cup[w, \ell-1]\right\}$. Then, $r_{i-1}=1$ and $t_{i-1}=3$. Since $r_{i-1} \leq 2 \leq s_{i-1}$ and $2<t_{i-1}$, according to Lemma 4 (e), we have $S\left(P_{i}\right)=\left\{p_{j}^{i-1}: j \in\right.$ $[3, s+2]\}=\left\{p_{j}^{i}: j \in[1, s]\right\}$.
(iii) Since $r_{i}=1$ and $\left|S\left(P_{i}\right)\right|=\left|S\left(P_{0}\right)\right|$, we have $N^{c}\left(p_{1}^{i} ; P_{i}\right)=\left\{p_{j}^{i}: j \in\left[t_{i}, t_{i}+\left|S\left(P_{0}\right)\right|-\right.\right.$ 1] $\left.\cup\left[w_{0}, \ell-1\right]\right\}\left(w_{i}=w_{0}\right.$ as $\left|N^{c}\left(p_{1}^{i} ; P_{i}\right)\right|=\left|N^{c}\left(p_{1}^{0} ; P_{0}\right)\right|$ by Lemma 4 (b)). If $t_{i}>3$, then Claim 4 holds by taking $Q=P_{i}$. Thus, $t_{i}=3$. Then, $N^{c}\left(p_{1}^{i} ; P_{i}\right)=\left\{p_{j}^{i}: j \in\right.$ $[3, s+2] \cup[w, \ell-1]\}$. By Lemma $4(\mathrm{~d}), c\left(p_{1}^{i}, p_{j}^{i}\right)=c\left(p_{j}^{i}, p_{j+1}^{i}\right), j \in[3, s+2]$.
(iv) Since $p_{1}^{i} \in S\left(P_{i}\right)$, by Lemma 4 (e), $P_{i}^{2}=\left(p_{2}^{i}, p_{3}^{i}, \cdots, p_{\ell}^{i}, p_{1}^{i}\right)=\left(v_{1}, v_{2}, \cdots, v_{\ell}\right) \in$ $\mathcal{R}(P), N^{c}\left(p_{1}^{i} ; P_{i}\right)=N^{c}\left(p_{1}^{i} ; P_{i}^{2}\right)$ and $S\left(P_{i}^{2}\right)=\left\{p_{j}^{i}: j \in[3, s+2]\right\}$. Then, $r\left(P_{i}^{2}\right)=2$. Applying Lemma 4 (f) and (c) with $P^{*}=P_{i}^{2}$, we have that $N^{c}\left(p_{2}^{i} ; P_{i}^{2}\right)=\left\{v_{j}: j \in\right.$ $\left.\left[t\left(P_{i}^{2}\right), u\left(P_{i}^{2}\right)\right] \cup\left[w\left(P_{i}^{2}\right), \ell\right]\right\}$ and $\left|N^{c}\left(p_{2}^{i} ; P_{i}^{2}\right)\right|=n-d-1$. Since $p_{2}^{i} \in S\left(P_{i}\right)$, we have $c\left(p_{\ell}^{i}, p_{2}^{i}\right)=c\left(p_{2}^{i}, p_{3}^{i}\right)$. Thus, $p_{\ell}^{i} \notin N^{c}\left(p_{2}^{i} ; P_{i}^{2}\right)$. Noticing that $p_{\ell}^{i}=v_{\ell-1}$, we have $N^{c}\left(p_{2}^{i} ; P_{i}^{2}\right)=$ $\left\{p_{i}^{j}: j \in\left[t\left(P_{i}^{2}\right), u\left(P_{i}^{2}\right)\right] \cup\{\ell\}\right\}$. By Lemmas 3 and 4 , we have that $u\left(P_{i}^{2}\right) \leq n-d$ and $t\left(P_{i}^{2}\right) \geq 3$. Hence, $u\left(P_{i}^{2}\right)=n-d$ and $t\left(P_{i}^{2}\right)=3$. Therefore, $N^{c}\left(p_{2}^{i} ; P_{i}^{2}\right)=\left\{v_{j}\right.$: $j \in[3, n-d] \cup\{\ell\}\}=\left\{p_{i}^{j}: j \in[4, n-d+1] \cup\{1\}\right\}$. By Lemma 4 (d), we have $c\left(p_{2}^{i}, p_{j}^{i}\right)=c\left(p_{j}^{i}, p_{j+1}^{i}\right), j \in[4, n-d+1]$.

Since $3 \leq s<u<w=\ell, \ell \geq 5$. If ℓ is odd, taking $i=\frac{\ell+1}{2}$, then $P_{\frac{\ell+1}{2}}=(1,4,3, \cdots, \ell-$ $1, \ell-2,2,5)$. If ℓ is even, taking $i=\frac{\ell}{2}$, then $P_{\frac{\ell}{2}}=(2,1,4,3, \cdots, \ell, \ell-1)$. By (iii) and (iv), $c(1,3) \neq c(3,4)$, a contradiction to (20).

According to Claim 4, we assume $t \geq r+3$.
Claim 5. $c(r+1, r+3) \notin\{c(r+1, r+2), c(r+3, r+4)\}$.

Proof. By Lemma 4 (e), $P_{1}=(r+1, r+2, \cdots, \ell, r \cdots, 1)=\left(v_{1}^{1}, v_{2}^{1}, \cdots, v_{\ell}^{1}\right) \in \mathcal{R}(P)$ and $S\left(P_{1}\right)=[t, u]$. Since $t \geq r+3, r+1 \notin N^{c}(1 ; P)=N^{c}\left(1 ; P_{1}\right)$. Then, $r\left(P_{1}\right) \geq$ 3. Applying Lemma 4 (f) and (c) with $P^{*}=P_{1}$, we have $N^{c}\left(r+1 ; P_{1}\right)=\left\{v_{j}^{1}: j \in\right.$ $\left.\left[3, r\left(P_{1}\right)\right] \cup\left[t\left(P_{1}\right), u\left(P_{1}\right)\right] \cup\left[w\left(P_{1}\right), \ell\right]\right\}$. Noticing $r+3 \in\left\{v_{j}^{1}: j \in\left[3, r\left(P_{1}\right)\right]\right\}$, we have $r+3 \in N^{c}\left(r+1 ; P_{1}\right)$. Hence, $c(r+1, r+3) \neq c(r+1, r+2)$.

Since $|S(P)| \geq 3$, we have $r+2 \in S(P)$. By Lemma 4 (e), $P_{2}=(r+3, r+4, \cdots, \ell, r+$ $2, r+1, \cdots, 1)=\left(v_{1}^{2}, v_{2}^{2}, \cdots, v_{\ell}^{2}\right) \in \mathcal{R}(P)$ with $S\left(P_{2}\right)=[t, u]$ and $N^{c}\left(r+3 ; P_{2}\right)=\left\{v_{j}^{2}\right.$: $\left.j \in X\left(P_{2}\right)\right\}$, where

$$
X\left(P_{2}\right)= \begin{cases}{\left[3, r\left(P_{2}\right)\right] \cup\left[t\left(P_{2}\right), u\left(P_{2}\right)\right] \cup\left[w\left(P_{2}\right), \ell\right],} & t \neq r+3, \\ {\left[t\left(P_{2}\right), u\left(P_{2}\right)\right] \cup\left[w\left(P_{2}\right), \ell-1\right],} & t=r+3 .\end{cases}
$$

Then by Lemma $4(\mathrm{~d}), c\left(r+3, v_{j}^{2}\right)=c\left(v_{j}^{2}, v_{j+1}^{2}\right), t\left(P_{2}\right) \leq j \leq u\left(P_{2}\right)$. Since $r+2 \in S(P)$, we have

$$
\begin{equation*}
c(\ell, \ell-1) \neq c(\ell, r+2)=c(r+2, r+3) \neq c(r+3, r+4) . \tag{21}
\end{equation*}
$$

Then, $r+2 \in N^{c}\left(r+3 ; P_{2}\right)$ and $r+2 \in\left\{v_{j}^{2}: j \in\left[w\left(P_{2}\right), \ell-1\right]\right\}$. Noticing that $v_{\ell-1}^{2}=2$, we have $[2, r+2] \subseteq N^{c}\left(r+3 ; P_{2}\right)$. In particular, $r+1 \in N^{c}\left(r+3 ; P_{2}\right)$. Thus, $c(r+1, r+3) \neq c(r+3, r+4)$. This claim is thus complete.

Figure 5: $C=(r+1, r+3, r+4, \cdots, \ell, r+2, r+1)$

According to Claim 5 and (21), $C=(r+1, r+3, r+4, \cdots, \ell, r+2, r+1)$ is a PC cycle containing $N^{c}(\ell ; P) \cup\{\ell, \ell-1\} \backslash\{r\}$ (see Figure 5). Hence, $|C|=n-d$.

If $\ell=n$, then $N^{c}(\ell ; P)=[d, \ell-2]$, which implies $r=d$. Since $1 \notin N^{c}(\ell ; P)$, we have $c(1, \ell)=c(\ell, \ell-1)$, and then $c(\ell, r+2) \neq c(\ell, 1)$. Noticing that $V(P) \backslash V\left(C_{0}\right)=$ $[s+1, w-1]$, we have $w=s+d+1$. Since $|[r, s]|=|[t, u]|$ and $t \geq r+3$, we have $u \geq s+3$. Hence, $d \geq 3$. Note that $c(\ell-1, j) \in\{c(\ell-1, \ell-2), c(j, j+1)\}$ for $j \in[1, r-1]$; or else, $(j, j+1, \cdots, \ell-1, j)$ is a PC cycle of length at least $n-d+1$, a contradiction. If there exists a vertex $j_{0} \in[2, r-1]$ such that $c\left(\ell-1, j_{0}\right) \neq c(\ell-1, \ell-2)$, then $c\left(\ell-1, j_{0}\right)=c\left(j_{0}, j_{0}+1\right) \neq c\left(j_{0}, j_{0}-1\right)$. Then combining these with Claim 5, $\left(r+1, r+3, r+4, \cdots, \ell-1, j_{0}, j_{0}-1, \cdots, 1, \ell, r+2, r+1\right)$ is a PC cycle of length at least $n-d+1$ (see Figure 6), a contradiction. Therefore, $c(\ell-1, j)=c(\ell-1, l-2)$ for $j \in[2, r-1]$. If $c(1, \ell-1) \neq c(\ell-1, \ell-2)$, then $c(1, \ell-1)=c(1,2)$. Hence by Lemma 4 (c),

Figure 6: A PC cycle of length at least $n-d+1:\left(r+1, r+3, r+4, \cdots, \ell-1, j_{0}, j_{0}-1, \cdots, 1, \ell, r+2, r+1\right)$
$w=\ell$. Then, $c(1, \ell) \neq c(1, \ell-1)$. Therefore, $(r+1, r+3, r+4, \cdots, \ell-1,1, l, r+2, r+1)$ is a PC cycle of length $n-d+1$, a contradiction. Since $d^{\text {mon }}(\ell-1) \leq d$, we have

$$
\begin{equation*}
c(\ell-1, r) \neq c(\ell-1, \ell-2) . \tag{22}
\end{equation*}
$$

Then, $c(\ell-1, r)=c(r, r-1)$, or else $(r+1, r+3, r+4, \cdots, \ell-1, r, r-1, \cdots, 1, \ell, r+2, r+1)$ is a PC cycle of length at least $n-d+1$, a contradiction. Then

$$
\begin{equation*}
c(\ell, r)=c(r, r+1) \neq c(r, r-1)=c(\ell-1, r) . \tag{23}
\end{equation*}
$$

Since $|S(P)| \geq 3$, we have $r+1 \in S(P)$. By Lemma $4(\mathrm{e}), P_{1}=(r+2, r+3, \cdots, \ell, r+$ $1, r, \cdots, 1)=\left(v_{1}, v_{2}, \cdots, v_{\ell}\right) \in \mathcal{R}(P)$ with $S\left(P_{1}\right)=[t, u]$ and $N^{c}\left(r+2 ; P_{1}\right)=\left\{v_{j}: j \in\right.$ $\left.\left[3, r\left(P_{1}\right)\right] \cup\left[t\left(P_{1}\right), u\left(P_{1}\right)\right] \cup\left[w\left(P_{1}\right), \ell\right]\right\}$. Then by Lemma $4(\mathrm{~d}), c\left(r+2, v_{j}\right)=c\left(v_{j}, v_{j+1}\right), t\left(P_{1}\right) \leq$ $j \leq u\left(P_{1}\right)$. Since $r+1 \in S(P)$, we have $c(\ell, \ell-1) \neq c(\ell, r+1)=c(r+1, r+2) \neq c(r+2, r+$ 3). Then, $r+1 \in N^{c}\left(r+2 ; P_{1}\right)$ and $r+1 \in\left\{v_{j}: j \in\left[w\left(P_{1}\right), \ell-1\right]\right\}$. Noticing that $v_{\ell-1}^{2}=2$, we have $[2, r+1] \subseteq N^{c}\left(r+2 ; P_{1}\right)$. In particular, $r \in N^{c}\left(r+2 ; P_{1}\right)$. Thus, $c(r+2, r) \neq$ $c(r+2, r+3)$. Then, $c(r+2, r)=c(r+1, r)$, or else $(r+2, r+3, \cdots, \ell, r+1, r, r+2)$ is a PC cycle containing $N^{c}(l ; P) \cup\{\ell, \ell-1\}$, a contradiction. Therefore, $c(r+2, r+3) \neq c(r, r+1)$. Since $r, r+2 \in S(P)$, we have

$$
\begin{equation*}
c(l, r) \neq c(l, r+2) . \tag{24}
\end{equation*}
$$

Hence combining Claim 5 and (22), (23), (24), $(r+1, r+3, r+4, \cdots, \ell-1, r, \ell, r+2, r+1)$ is a PC cycle of length at least $n-d+1$ (see Figure 7), a contradiction.

Figure 7: $C=(r+1, r+3, r+4, \cdots, \ell-1, r, \ell, r+2, r+1)$

Figure 8: A PC path of length $\ell+1:(1,2, \cdots, r, \ell, z, r+2, r+1, r+3, r+4, \cdots, \ell-1)$
Then we may assume $\ell<n$. Hence, there exists a vertex $z \in V(G) \backslash V(P)$. Note that $c(\ell-1, \ell)=c(\ell, z)$. Since $r+2 \in S(P),(1,2, \cdots, r+1, \ell, \ell-1, \cdots, r+2)$ is also a longest PC
path. Thus, $c(r+2, r+3)=c(r+2, z)$ and $c(r+2, r+3)=c(r+2, \ell) \neq c(\ell, \ell-1)=c(\ell, z)$. Then, $c(r+2, z) \neq c(\ell, z)$. Therefore, $(1,2, \cdots, r, \ell, z, r+2, r+1, r+3, r+4, \cdots, \ell-1)$ is a PC path longer than P (see Figure 8), a contradiction.

Theorem 3 is thus complete.

4 Concluding remarks

There have been many researchers working on Conjecture 1, which implies that the bound on the length of a PC cycle in Theorem 3 is not sharp. The author in [13] showed that $\Delta^{m o n}\left(K_{n}^{c}\right) \leq \frac{n}{7}$ is sufficient for the existence of a PC Hamiltonian cycle. Up to 2016, Lo [11] showed that for any $\varepsilon>0$, there exists an integer n_{0} such that every edge-colored complete graph K_{n}^{c} with $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left(\frac{1}{2}-\varepsilon\right) n$ and $n \geq n_{0}$ contains a PC Hamiltonian cycle, which implies a result obtained by Alon and Gutin [1] that for every $\varepsilon>0$ and $n>n_{0}(\varepsilon)$, any edge-colored complete graph K_{n}^{c} with $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\left(1-\frac{1}{\sqrt{2}}-\varepsilon\right) n$ and $n \geq n_{0}$ contains a PC Hamiltonian cycle. Hence, the conjecture of Bollobás and Erdős is true asymptotically.

While the authors in [5] constructed an edge-colored complete graph of order $2 m$ with $\delta^{c}(G)=m$ and $\Delta^{m o n}(G)=m$ that does not contain a PC Hamiltonian cycle, which implies that the condition $\Delta^{\text {mon }}\left(K_{n}^{c}\right)<\frac{n}{2}$ in Conjecture 1 is sharp.

As for the bound $\Delta^{m o n}\left(K_{n}^{c}\right) \geq \frac{n}{2}$, we believe that there is also a potential sharp bound in Theorem 3. So, we pose the following conjecture.

Conjecture 7. Let K_{n}^{c} be an edge-colored complete graph such that $\frac{n}{2} \leq \Delta^{\text {mon }}\left(K_{n}^{c}\right)=d \leq$ $n-2$. Then K_{n}^{c} contains a PC cycle of length at least $2(n-d-1)$.

Next we give an example of edge-coloring of a complete graph, supporting the conjecture.

Example 8. Consider a complete graph of order n with $\Delta^{m o n}\left(K_{n}^{c}\right)=d \geq \frac{n}{2}$. Let x be the vertex with the maximum monochromatic-degree and $N_{i}(x)$ be the set of vertices which are adjacent to x by color $i=1,2$. Then color $G\left[N_{i}(x)\right]$ with i, $i=1,2$, respectively, and color the edges in $E\left[N_{1}(x), N_{2}(x)\right]$ with color 3.

In particular, Proposition of [11] (in the Arxiv version) provides with constructions to support Conjecture 7. Consider the edge-colored complete graph K_{n}^{c} in our Example 8. Clearly, when $n-d-1$ is odd, the longest PC cycle in K_{n}^{c} has a length $2(n-d)-1$;
while when $n-d-1$ is even, the longest PC cycle in K_{n}^{c} has a length $2(n-d-1)$. Since $\delta^{c}\left(K_{n}^{c}\right)+\Delta^{\text {mon }}\left(K_{n}^{c}\right) \leq n$, we have the following conjecture.

Conjecture 9. Let K_{n}^{c} be an edge-colored complete graph such that $2 \leq \delta^{c}\left(K_{n}^{c}\right) \leq \frac{n}{2}$. Then K_{n}^{c} contains a PC cycle of length at least $2 \delta^{c}\left(K_{n}^{c}\right)-2$.

Acknowledgement. The authors are very grateful to the reviewers and the editor for their very useful suggestions and comments, which helped to improving the presentation of the paper greatly.

References

[1] N. Alon, G. Gutin, Properly colored Hamiltonian cycles in edge-colored complete graphs, Random Struct. Algor. 11(2)(1997), 179-186.
[2] J. Bang-Jensen, G. Gutin, Alternating cycles and paths in edge-coloured multigraphs: a survey, Discrete Math. 165-166(1997), 39-60.
[3] B. Bollobás, P. Erdős, Alternating Hamlitonian cycles, Israel J. Math. 23(2)(1976), 126-131.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer (2008).
[5] S. Fujita, C. Magnant, Properly colored paths and cycles, Discrete Appl. Math. 159 (2011), 1391-1397.
[6] J. W. Grossman, R. Häggkvist, Alternating cycles in edge-partitioned graphs, J. Combin. Theory Ser.B 34(1983), 77-81.
[7] R. Li, H. Broersma, C. Xu, S. Zhang, Cycle extension in edge-colored complete graphs, Discrete Math. 340(2017), 1235-1241.
[8] R. Li, H. Broersma, S. Zhang, Vertex-disjoint properly edge-colored cycles in edgecolored complete graphs, J. Graph Theory 94(2020), 476-493.
[9] H. Li, G. Wang, S. Zhou, Long alternating cycles in edge-colored complete graphs, Lecture Notes in Comput. Sci. 4613(2007), 305-309.
[10] A. Lo, A Dirac type condition for properly coloured paths and cycles, J. Graph Theory 76(1)(2014), 60-87.
[11] A. Lo, Properly coloured Hamiltonian cycles in edge-coloured complete graphs, Combinatorica 36(4)(2016), 471-492.
[12] L. Pósa, Hamiltionian circuts in random graphs, Discrete Math. 14(4)(1976), 359-364.
[13] J. Shearer, A property of the colored complete graph, Discrete Math. 25(1979), 175178.
[14] G. Wang, H. Li, Color degree and alternating cycles in edge-colored graphs, Discrete Math. 309(2009), 4349-4354.
[15] G. Wang, T. Wang, G. Liu, Long properly colored cycles in edge colored complete graphs, Discrete Math. 324(2014), 56-61.
[16] A. Yeo, A note on alternating cycles in edge-colored graphs, J. Combin. Theory Ser.B 69(1997), 222-225.

[^0]: ${ }^{1}$ Supported by NSFC No. 12131013,11871034 and 12161141006.

