Weak-odd chromatic index of special digraph classes

Ruijuan Gu^{1}, Hui Lei ${ }^{2 *}$, Xiaopan Lian ${ }^{3}$, Zhenyu Taoqiu ${ }^{3}$
${ }^{1}$ Sino-European Institute of Aviation Engineering Civil Aviation University of China, Tianjin 300300, China
${ }^{2}$ School of Statistics and Data Science, LPMC and KLMDASR
Nankai University, Tianjin 300071, China
${ }^{3}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email: millet90@163.com; hlei@nankai.edu.cn;
xiaopanlian@mail.nankai.edu.cn; tochy@mail.nankai.edu.cn

December 8, 2022

Abstract

Given a digraph $D=(V(D), A(D))$, let $\partial_{D}^{+}(v)=\left\{v w \mid w \in N_{D}^{+}(v)\right\}$ and $\partial_{D}^{-}(v)=$ $\left\{u v \mid u \in N_{D}^{-}(v)\right\}$ be semi-cuts of v. A mapping $\varphi: A(D) \rightarrow[k]$ is called a weak-odd k-edge coloring of D if it satisfies the condition: for each $v \in V(D)$, there is at least one color with an odd number of occurrences on each non-empty semi-cut of v. We call the minimum integer k the weak-odd chromatic index of D. When limit to 2 colors, let $\operatorname{def}(D)$ denote the defect of D, i.e., the minimum number of vertices in D at which the above condition is not satisfied. In this paper, we give a descriptive characterization with respect to the weak-odd chromatic index and the defect of semicomplete digraphs and extended tournaments, which generalize results of tournaments to broader classes. In addition, we initiate the study of weak-odd edge covering on digraphs.

Keywords: weak-odd edge coloring; weak-odd edge covering; semicomplete digraph; extended tournament

1 Introduction

Throughout the paper, we follow the terminology and notion from [1, 2]. Here all digraphs considered are finite.

[^0]Let $G=(V(G), E(G))$ be a graph. Denote by $d_{G}(v)$ the number of edges incident with v in G. A mapping $\varphi: E(G) \rightarrow[k]$ is called a weak-odd k-edge coloring of G if it satisfies the following condition:
(WO) For $v \in V(G)$ with $d_{G}(v)>0$, there is at least one color $i \in[k]$ such that the number of edges incident with v colored by i is odd.

Note that this concept is a relaxation of odd edge coloring of graphs which was first introduced by Pyber in [11]. The odd edge coloring is an edge coloring such that at each non-isolated vertex every color appears an odd number of times or does not appear at all. The weak-odd chromatic index of G, denoted by $\chi_{\text {wo }}^{\prime}(G)$, is the minimum integer k such that G admits a weak-odd k-edge coloring. This concept, motivated by $[4,5,11]$, is given in [9], where Petruševski gave an intuitive characterization of graphs in terms of their weak-odd chromatic index.

Inspired by the study of the weak-odd chromatic index of graphs, Petruševski and Škrekovski [10] generalized this concept to digraphs. Given a digraph $D=(V(D), A(D))$, we use $n(D)$ to denote the number of vertices of D. Let v be a vertex of D. Let $N_{D}^{+}(v)=\{w \mid v w \in A(D)\}$ and $N_{D}^{-}(v)=\{w \mid w v \in A(D)\}$. Let $\partial_{D}^{+}(v)=\left\{v w \mid w \in N_{D}^{+}(v)\right\}$ and $\partial_{D}^{-}(v)=\left\{u v \mid u \in N_{D}^{-}(v)\right\}$ be semi-cuts of v. The out-degree(resp. in-degree) of v which is also called the semi-degree of v, denoted by $d_{D}^{+}(v)$ (resp. $\left.d_{D}^{-}(v)\right)$, is the cardinality of the set $\partial_{D}^{+}(v)\left(\operatorname{resp} . \partial_{D}^{-}(v)\right)$. We say that a vertex $u \in V(D)$ is a peripheral vertex if either $d_{D}^{+}(u)=0$ or $d_{D}^{-}(u)=0$. Specifically, if $d_{D}^{+}(u)=0$, then u is a sink of D, and if $d_{D}^{-}(u)=0$, then u is source. A mapping $\varphi: A(D) \rightarrow[k]$ is said to be a weak-odd k-edge coloring of D if the following holds:
$(\overrightarrow{\mathrm{WO}})$ For any $v \in V(D)$, there is at least one color $i \in[k]$ such that the number of arcs in each nonempty semi-cut of v colored by i is odd.

We say that such a digraph D is weak-odd k-edge colorable, and call the suitable minimum integer k weak-odd chromatic index, denoted by $\chi_{\text {wo }}^{\prime}(D)$.

In the same paper, the authors showed that $\chi_{\text {wo }}^{\prime}(D) \leq 3$ and the bound is sharp. They believed that a descriptive characterization similar to graphs is impossible for all digraphs and they believed that deciding the exact value of $\chi_{\text {wo }}^{\prime}(D)$ is NP-hard. In [6], the authors showed a necessary and sufficient condition for digraphs to be weak-odd 2-edge colorable, and thus $\chi_{\text {wo }}^{\prime}(D)$ can be determined in polynomial time. When limit to 2 colors, let $\operatorname{def}(D)$ denote the defect of D, i.e., the minimum number of vertices in D at which the condition $(\overrightarrow{\mathrm{WO}})$ is not satisfied. Hernández-Cruz, Petruševski and Škrekovski [6] proved that def (D) is related to the matching number of some graphs.

A tournament is an orientation of a complete graph. A digraph is called semicomplete if it is obtained from a complete graph by replacing each edge (u, v) with the arc $u v$ or $v u$
or a pair of symmetric arcs. By extended tournaments we mean the digraph obtained from a tournament by blowing up some of its vertices into independent sets. Hernández-Cruz, Petruševski and Škrekovski [6] made a descriptive characterization of tournaments with respect to the weak-odd chromatic index as follows.

Theorem 1.1 ([6]). For any tournament T, it holds that

$$
\chi_{\mathrm{wo}}^{\prime}(T)= \begin{cases}0 & \text { if } T=K_{1}, \\ 1 & \text { if } T \text { is nontrivial and every vertex semi-degree is odd or zero, } \\ 3 & \text { if } T \text { is nontrival, of odd order, and has just one peripheral vertex, } \\ 2 & \text { otherwise. }\end{cases}
$$

And the defect of a tournament is 1 when the case $\chi_{\mathrm{wo}}^{\prime}(T)=3$.
In addition, they asked whether these results can be extended to classes of digraphs that generalize tournaments.

Problem 1.2 ([6]). Characterize the families of semicomplete digraphs, extended tournaments and multipartite tournaments in terms of their weak-odd chromatic index.

Problem 1.3 ([6]). Characterize the defect in terms of the families of semicomplete digraphs, extended tournaments and multipartite tournaments when their defect is bounded.

We give the complete characterization about the above two problems for the first two graph classes, i.e., semicomplete digraphs and extended tournaments. The results can be helpful for the remaining class. And we think the result of multipartite tournaments is also optimistic.

Hernández-Cruz, Petruševski and Škrekovski [6] also initiated the study of weak-odd edge covering and provided the weak-odd 2-edge covering conditions for graphs. Additionally, they asked about the situation for digraphs. For a digraph D, an edge covering with color set S is a mapping that assigns to each arc of D a nonempty subset of S. The weak-odd edge covering is defined as edge covering such that condition $(\overrightarrow{\mathrm{WO}})$ is satisfied.

Question 1.4 ([6]). Does every digraph admit a weak-odd 2-edge covering?
We give a positive answer to this question in the case of tournaments. This is of positive significance to the study of digraphs. We believe that similar research can be carried out on the simple generalization classes of tournaments.

The paper is organized as follows. In next section, we first introduce the notion and terminology that are not mentioned before, then we list some auxiliary tools that will be used in our proofs. Then, in Sections 3 and 4 we give descriptive characterizations with respect to the weak-odd chromatic index and the defect of semicomplete digraphs
and extended tournaments. In the last section, we prove that every tournament admits a weak-odd 2-edge covering.

2 Preliminary

Given a digraph $D=(V(D), A(D))$, the degree of $v \in V(D)$, denoted by $d_{D}(v)$, is the total number of arcs incoming and outgoing at v, thus $d_{D}(v)=d_{D}^{+}(v)+d_{D}^{-}(v)$. We say that a graph or a digraph is even if every vertex of it has even degree. The minimum out-degree (minimum in-degree) of D is $\delta^{+}(D)=\min \left\{d_{D}^{+}(v) \mid v \in V(D)\right\}\left(\delta^{-}(D)=\min \left\{d_{D}^{-}(v) \mid v \in\right.\right.$ $V(D)\}$). The minimum semi-degree of D is $\delta^{0}(D)=\min \left\{\delta^{-}(D), \delta^{+}(D)\right\}$. For $X, Y \subseteq$ $V(D)$, let $A(X, Y)=\{u v \in A(D) \mid u \in X, v \in Y\}$. A directed $X-Y$ path is an (x, y)-dipath P such that $V(P) \cap X=\{x\}$ and $V(P) \cap Y=\{y\}$. The subdigraph of D induced by $X \subseteq A(D)$ is denoted by $G[X]$. A vertex u is said to dominate a vertex v if $v \in N_{D}^{+}(u)$.

A strong component of a digraph D is a maximal induced subdigraph of D which is strong. If D_{1}, \ldots, D_{t} are the strong components of D, then $V\left(D_{i}\right) \cap V\left(D_{j}\right)=\emptyset$ for every $i \neq j$ as otherwise all the vertices $V\left(D_{i}\right) \cup V\left(D_{j}\right)$ are reachable from each other. The strong component digraph $S C(D)$ of D is obtained by contracting the strong components of D and deleting any parallel arcs obtained in this process. The strong components of D corresponding to the vertices of $S C(D)$ of in-degree (out-degree) zero are the initial (terminal) strong components of D, also called the peripheral strong components.

We shall emphasize that when dealing with graphs, the conception S-join is a powerful tool. Given a graph $G=(V(G), E(G))$ and an even-sized vertex subset S, we call a spanning subgraph H is an S-join of G if $d_{H}(v)$ is odd for all $v \in S$ while $d_{H}(v)$ is even for all $v \in V(G) \backslash S$. It has been proved that if G is a connected graph, then G contains an S-join for any even-sized vertex subset S (see [12]). When turning our attention to digraphs, the problem of determining the weak-odd chromatic index of digraphs can be settled through constructing the following auxiliary graphs. Given a digraph $D=(V, A)$, its bipartite representation or split is a bipartite graph $B G(D)=\left(V^{+}, V^{-}, E\right)$ where $V^{+}=$ $\left\{v^{+}: v \in V\right\}, V^{-}=\left\{v^{-}: v \in V\right\}$, and $\left(u^{+}, v^{-}\right) \in E$ if and only if $u v \in A$. The partial split, $P S(D)$, of D is a graph obtained from $B G(D)$ by re-identifying each pair $\left(u^{+} ; u^{-}\right)$for which both $d_{D}^{+}(u)$ and $d_{D}^{-}(u)$ are odd. See Figure 1.

To solve the problem whether a digraph is weak-odd 2-edge colorable, Hernández-Cruz, Petruševski and Škrekovski [6] defined a 3 -partition $\left\{V_{1} ; V_{2} ; V_{3}\right\}$ of $V(P S(D))$:

- $V_{1}=V(D) \cap V(P S(D))$, i.e., V_{1} consists of the vertices u of D with both $d_{D}^{+}(u)$ and $d_{D}^{-}(u)$ odd.
- $V_{2}=\left\{v \in V(P S(D)) \backslash V_{1}: d_{P S(D)}(v)\right.$ is even $\}$.

Figure 1: The split graph $B G(D)$ and partial split graph $P S(D)$ of D

- $V_{3}=\left\{v \in V(P S(D)) \backslash V_{1}: d_{P S(D)}(v)\right.$ is odd $\}$.

We say that a component K of $P S(D)$ is 'bad' if $V(K) \cap V_{2}$ is of odd size and $V(K) \cap V_{3}=\emptyset$. Let $G_{D}=\left(V_{D}, E_{D}\right)$ be a graph with the vertex set consisting of vertices v_{K} corresponding to bad components K and two distinct vertices $v_{K^{\prime}}$ and $v_{K^{\prime \prime}}$ are adjacent if the respective bad components K^{\prime} and $K^{\prime \prime}$ contain the 'halves' v^{+}and v^{-}of some vertex $v \in V(D)$. Let α_{D}^{\prime} be the cardinality of the maximum matching of G_{D}. The following results proved in [6] will be used later.

Theorem 2.1 ([6]). A digraph D is weak-odd 2-edge colorable if and only if for every nontrivial component K of $P S(D)$ we have that $V(K) \cap V_{2}$ is even-sized or $V(K) \cap V_{3} \neq \emptyset$.

Proposition 2.2 ([6]). If an even digraph D has an odd number of peripheral vertices, then $\chi_{\mathrm{wo}}^{\prime}(D)=3$.

Theorem 2.3 ([6]). For every digraph D, $\operatorname{def}(D)=n\left(G_{D}\right)-\alpha_{D}^{\prime}$ holds.
Finally, we give a useful statement about the weak-odd edge coloring. Let $D=(V(D), A(D))$ be a digraph with $v \in V(D)$. Let D^{\prime} be the digraph obtained from D by deleting v. If D^{\prime} admits a weak-odd 2-edge coloring ϕ, then we define a 2 -edge coloring φ of D such that $(\overrightarrow{\mathrm{WO}})$ is satisfied for each vertex apart from v as follows.
(C) For each $u \in N_{D}(v)$, suppose that color i satisfies the condition ($\overrightarrow{\mathrm{WO}}$) at u for ϕ, where $i \in[2]$. If $u v \in A(D)$, then coloring $u v$ with color $3-i$ when $d_{D^{\prime}}^{+}(u)>0$ and color i when $d_{D^{\prime}}^{+}(u)=0$. If $v u \in A(D)$, then coloring $v u$ with color $3-i$ when $d_{D^{\prime}}^{-}(u)>0$ and color i when $d_{D^{\prime}}^{-}(u)=0$.

3 Semicomplete digraphs

We first state some simple properties of semicomplete digraphs, which can be found in Section 2 of [1]: (i) every semicomplete digraph has a hamiltonian dipath; (ii) every nontrivial
strong semicomplete digraph contains a hamiltonian dicycle; (iii) the strong component digraph of a semicomplete digraph is an acyclic tournament and has an acyclic ordering of vertices; (iv) every semicomplete digraph has only one initial (terminal) strong component.

For simplicity of presentation, we call every nontrivial even semicomplete digraph having only one peripheral vertex 'bad' and others 'good' in the following.

Theorem 3.1. For any semicomplete digraph D, it holds that

$$
\chi_{\mathrm{wo}}^{\prime}(D)= \begin{cases}0 & \text { if } D=K_{1}, \\ 1 & \text { if } D \text { is nontrivial and every vertex semi-degree is odd or zero, } \\ 3 & \text { if } D \text { is a nontrival even digraph with just one peripheral vertex }, \\ 2 & \text { otherwise. }\end{cases}
$$

Proof. By Proposition 2.2 and $\chi_{\text {wo }}^{\prime}(D) \leq 3$, it suffices to show that every good semi-complete digraph is weak-odd 2-edge colorable.

Let D be a good semicomplete digraph. Throughout the proof, we always first find a spanning subdigraph \hat{D} of D. Then we define a 2-edge coloring θ of D as the arc set of \hat{D} with color 1 and $A(D)-A(\hat{D})$ with color 2. It is easy to check that $(\overrightarrow{\mathrm{WO}})$ holds for every vertex of D under θ in each case.

If D is strong, then let \hat{D} be a Hamilton dicycle. If D has two trivial peripheral strong components, say x, y, then let \hat{D} be a (x, y)-Hamilton dipath. If both peripheral strong components of D are nontrivial, then there exists a directed $K_{i}-K_{j}$ path P in D that passes through every vertex $v \notin V\left(K_{i}\right) \cup V\left(K_{j}\right)$, where K_{i} and K_{j} are the initial and terminal strong components of D respectively. Let C_{i} and C_{j}, respectively, be hamiltonian dicycles in K_{i} and K_{j}. Denote by x and y, respectively, the initial and terminal vertex of P. We have that $x y \notin A(P)$ if P is of length $\ell(P)>1$. Let $\hat{D}=D\left[A\left(C_{i} \cup C_{j}\right)\right]$ when $\ell(P)=1$ and $\hat{D}=D\left[A\left(C_{i} \cup C_{j} \cup P\right) \cup\{x y\}\right]$ when $\ell(P)>1$. Then color 1 meets condition $(\overrightarrow{\mathrm{WO}})$ for above cases.

We complete the proof by supposing that exactly one peripheral strong component of D, without loss of generality, the terminal one, is trivial, denoted by $\{y\}$. Then y is the sink of D. Now, there is a vertex $v \in V(D)$ such that $d_{D}(v)$ is odd as D is good. Let D^{\prime} be the semicomplete digraph obtained from D by deleting the vertex v (note that if $d_{D}(y)$ is odd, then v can be the same as y). We proceed by distinguishing whether $v=y$.

Case 1. $v=y$.
First, suppose that D^{\prime} does not contain peripheral strong components. Then we have $\chi_{\text {wo }}^{\prime}\left(D^{\prime}\right) \leq 2$ by the above analysis. Let ϕ be a weak-odd 2-edge coloring of D^{\prime} and φ be a 2-edge coloring defined as in (C). Since $d_{D}(v)$ is odd, color 1 or 2 satisfies the condition ($\overrightarrow{\mathrm{WO}}$) at v under φ. Hence, φ is a weak-odd 2-edge coloring of D.

Now, we may assume that there exists a sink in D^{\prime}, say y^{\prime}. Let K be the initial strong
component of D, and C be a hamiltonian dicycle in K. Take a directed $K-y^{\prime}$ path P in D^{\prime} that passes through every vertex not in $V(K)$. Let x be the initial vertex of P. Then we let $\hat{D}=D\left[A(C \cup P) \cup\left\{x v, y^{\prime} v\right\}\right]$. Then θ is a weak-odd 2-edge coloring of D because $d_{D}(v)$ is odd.

Case 2. $v \neq y$.
Recall that y is the sink of D and thus also of D^{\prime} and $d_{D}^{+}(v), d_{D}^{-}(v)>0$. First, suppose that D^{\prime} has another peripheral vertex, say x. Then x is the source of D^{\prime}. Obviously, $v x$ and $v y$ are contained in $A(D)$. Let P be a hamiltonian dipath in D^{\prime}. If $d_{D}^{+}(v)$ is odd, then there is a vertex $w \in V(P)$ such that $w v \in A(D)$ and $w y \notin A(P)$, and let $\hat{D}=D[A(P) \cup\{v x, w v, w y, v y\}]$. Otherwise, let $\hat{D}=D[A(P) \cup\{v x\}]$.

Now, D^{\prime} has exactly one peripheral vertex y. Suppose that $V\left(D^{\prime}\right)=V(K) \cup\{y\}$ where K is the initial strong component of D^{\prime}. Let C be a hamiltonian dicycle in K. If $d_{D}^{+}(v)$ is odd, then there is a vertex $w \in V(C)$ such that $w v, w y \in A(D)$. Let $\hat{D}=D[A(C) \cup\{w y, w v\}]$. Otherwise, let $\hat{D}=D[A(C) \cup\{v y\}]$.

Finally, we consider the case that $V\left(D^{\prime}\right) \neq V(K) \cup\{y\}$. Take a directed $K-y$ path P in D^{\prime} that passes through every vertex not in $V(K)$. Let x be the initial vertex of P. By our latest assumption, the arc $x y \notin A(P)$. If $d_{D}^{+}(v)$ is even, then let $\hat{D}=D[A(C \cup P) \cup\{v y, x y\}]$. Now, assume that $d_{D}^{+}(v)$ is odd. If $x v \notin A(D)$, then there is a vertex $w \in V\left(D^{\prime}\right) \backslash\{x, y\}$ such that $w v \in A(D)$ and $w y \notin A(P)$. Let $\hat{D}=D[A(C \cup P) \cup\{w y, w v, x y\}]$. Otherwise, let $\hat{D}=D[A(C \cup P) \cup\{x v\}$.

It follows that θ is a weak-odd 2-edge coloring of D for Case 2. Indeed, color 2 fits the condition ($\overrightarrow{\mathrm{WO}}$) at v while color 1 works for every other vertex.

Proposition 3.2. For any semicomplete digraph D, it holds that

$$
\operatorname{def}(D)= \begin{cases}1 & \text { if } D \text { is a nontrival even digraph with just one peripheral vertex, } \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. By Theorem 3.1, we may assume that D is bad and has a sink y. Let D^{\prime} be the digraph obtained from D by deleting the vertex y. It is not hard to find that D^{\prime} is not an even semicomplete digraph. Thus, $\chi_{\mathrm{wo}}^{\prime}\left(D^{\prime}\right) \leq 2$. Apply to $A(D)$ the particular 2-edge coloring constructed as (C). The condition ($\overrightarrow{\mathrm{WO}})$ is satisfied at each vertex apart from y.

Proposition 3.3. Every bad semicomplete digraph D admits a 2-edge coloring such that condition $(\overrightarrow{\mathrm{WO}})$ is satisfied at each vertex apart from a prescribed vertex $v \in V(D)$.

Proof. We may assume that D has a $\operatorname{sink} y$. If $v=y$, then by Proposition 3.2, we are done. Suppose that $v \neq y$. Note that $P S(D)$ has only one nontrivial component K. Observe that $V(K) \cap V_{2}=V_{2} \backslash\left\{y^{+}\right\}$is odd-sized, and $V_{3}=\emptyset$. If $v \in V_{1}$, then let $S=\{v\} \cup\left(V_{2} \backslash\left\{y^{+}\right\}\right)$.

If $v^{+} \in V_{2}$, then let $S=V_{2} \backslash\left\{v^{+}, y^{+}\right\}$. Take an S-join H in K, and then color $E(H)$ with color 1 and the rest of the edges of K with color 2. The obtained 2-coloring of D fits the condition.

4 Extended tournaments

In this section, we characterize the weak-odd chromatic index of extended tournaments. Let $D=(V, A)$ be a digraph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Blow up v_{1}, \ldots, v_{n} into independent sets I_{1}, \ldots, I_{n} of size s_{1}, \ldots, s_{n} respectively, where $s_{i} \geq 1, i \in[n]$. We call the resulted digraph an extended digraph of D and denote it by $E D$. Without loss of generality, suppose that s_{1}, \ldots, s_{ℓ} are odd and others are even where $\ell \leq n$. Denote by $v_{i}^{1}, \ldots, v_{i}^{s_{i}-1}$ the other $s_{i}-1$ copies of v_{i} in $E D$ for $i \in[n]$. Let $I_{i}^{+}=\left\{v_{i}^{+}, v_{i}^{1+}, \ldots, v_{i}^{s_{i-1}+}\right\}$ and $I_{i}^{-}=\left\{v_{i}^{-}, v_{i}^{1-}, \ldots, v_{i}^{s_{i-1}-}\right\}$ for $i \in[n]$. Let $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ and V_{1}, V_{2}, V_{3} be the vertex partitions of $P S(D)$ and $P S(E D)$ as defined in Section 2, respectively.

Theorem 4.1. If $\ell=n$, then $\chi_{\mathrm{wo}}^{\prime}(E D)=\chi_{\mathrm{wo}}^{\prime}(D)$.
Proof. For any vertex $u \in V(E D)$, we have that $d_{E D}^{+}(u) \equiv d_{D}^{+}(u)(\bmod 2), d_{E D}^{-}(u) \equiv d_{D}^{-}(u)$ (mod 2) since each s_{j} is odd for $j \in[n]$. Therefore, $V_{i}^{\prime} \subseteq V_{i}$ and $\left|V_{i}\right| \equiv\left|V_{i}^{\prime}\right|(\bmod 2)$. Thus, $\left|V(K) \cap V_{i}\right| \equiv\left|V\left(K^{\prime}\right) \cap V_{i}^{\prime}\right|(\bmod 2)$ and $\left|V(K) \cap V_{i}\right|=0$ if and only if $\left|V\left(K^{\prime}\right) \cap V_{i}^{\prime}\right|=0$ for $i \in\{2,3\}$. By Theorem 2.1, $\chi_{\mathrm{wo}}^{\prime}(E D)=\chi_{\mathrm{wo}}^{\prime}(D)$.

In the following, let D be a tournament T with $|V(T)|=n, Q_{1}=\bigcup_{i=1}^{\ell} I_{i}$ and $Q_{2}=$ $\bigcup_{i=\ell+1}^{n} I_{i}$. Then we have $V(E T)=Q_{1} \cup Q_{2}$. Denote the orders of $E T, Q_{1}$, and Q_{2} by q, q_{1}, and q_{2}, respectively. Obviously, we have $q=q_{1}+q_{2}$ and $d_{E T}(u)=q-s_{i}$ for any $u \in I_{i}$.

Lemma 4.2. Let V_{2} be the vertex set of $P S(E T)$ as defined before, then the cardinality of V_{2} is always even.

Proof. First, suppose that q is even. If $u \in Q_{1}$, then u contributes 1 to $\left|V_{2}\right|$ as $d_{E T}(u)$ is odd. Otherwise, either $u \in V_{1}$ or u contributes 2 to $\left|V_{2}\right|$. Therefore, $\left|V_{2}\right| \equiv q_{1}(\bmod 2)$ is even as $q_{1}=q-q_{2}$ is even. Now, suppose that q is odd. If $u \in Q_{1}$, then either $u \in V_{1}$ or u contributes 2 to $\left|V_{2}\right|$ as $d_{E T}(u)$ is even. Otherwise, u contributes 1 to $\left|V_{2}\right|$. Therefore, $\left|V_{2}\right| \equiv q_{2}(\bmod 2)$ is even as q_{2} is even.

Theorem 4.3. If $|V(T)| \leq 3$, then $\chi_{\text {wo }}^{\prime}(E T) \leq 2$.
Proof. If $T=K_{1}$, then $\chi_{\mathrm{wo}}^{\prime}(E T)=0$. Suppose that $T=K_{2}=v_{1} v_{2}$. If both v_{1} and v_{2} are in Q_{1}, then $\chi_{\mathrm{wo}}^{\prime}(E T)=1$. Otherwise, the only nontrivial component of $P S(E T)$ satisfies Theorem 2.1 and thus $\chi_{\text {wo }}^{\prime}(E T) \leq 2$.

Now, suppose that $|V(T)|=3$. Suppose $\ell=3$, i.e., s_{1}, s_{2} and s_{3} are all odd. Then $\chi_{\mathrm{wo}}^{\prime}(E T)=\chi_{\mathrm{wo}}^{\prime}(T)=1$ by Theorem 4.1. It suffices to consider the following two cases under $\ell \leq 2$.

Case 1. T is a dicycle and $A(T)=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}\right\}$.
Suppose $\ell=2$. Then $P S(E T)$ has two nontrivial components K and R with $V(K)=$ $I_{1}^{+} \cup I_{2}^{-}$and $V(R)=I_{1}^{-} \cup I_{2}^{+} \cup I_{3}$. Suppose $\ell \leq 1$. Then $P S(E T)$ has three nontrivial components K, R, S such that $V(K)=I_{1}^{+} \cup I_{2}^{-}, V(R)=I_{2}^{+} \cup I_{3}^{-}, V(S)=I_{3}^{+} \cup I_{1}^{-}$. If $\ell=2$, then $V(K) \cap V_{3} \neq \emptyset$ and $V(R) \cap V_{2}$ is of even size. If $\ell=1$, then $V(R) \cap V_{2}$ is of even size and $V(F) \cap V_{3} \neq \emptyset$ for $F \in\{K, S\}$. If $\ell=0$, then $V(F) \cap V_{2}$ is of even size for $F \in\{K, R, S\}$. Hence, by Theorem 2.1, $\chi_{\mathrm{wo}}^{\prime}(E T) \leq 2$.

Case 2. T has two peripheral vertices.
Set $\{i, j, t\}=[3]$. Let v_{i} and v_{j} be the source and the sink of T, respectively. Then $P S(E T)$ has one nontrivial component K such that $V(K)=I_{i}^{+} \cup I_{j}^{-} \cup I_{t}$ when s_{i} and s_{j} are odd, and $V(K)=I_{i}^{+} \cup I_{j}^{-} \cup I_{t}^{+} \cup I_{t}^{-}$otherwise. If $s_{i}+s_{j}$ is even, then $V(K) \cap V_{2}$ is of even size. Otherwise, $V(K) \cap V_{3} \neq \emptyset$. Hence, by Theorem 2.1, $\chi_{\text {wo }}^{\prime}(E T) \leq 2$.

In the following, we consider the case when $|V(T)|>3$. An extended tournament $E T$ with $|V(T)|>3$ is called 'bad' if all of the following conditions are satisfied.
(a) $E T$ is of odd order;
(b) Exactly one independent set is even, i.e., $\left|I_{n}\right|$ is even;
(c) $N_{T}^{+}\left(v_{n}\right)$ dominates $N_{T}^{-}\left(v_{n}\right)$;
(d) Either $\left|N_{T}^{-}\left(v_{n}\right)\right|=1$ or $\left|N_{T}^{+}\left(v_{n}\right)\right|=1$.

We call every other extended tournament 'good'.
Theorem 4.4. For $n>3$ and $\ell<n$, $\chi_{\mathrm{wo}}^{\prime}(E T)=3$ if and only if $E T$ is bad.
Proof. Recall that $|V(E T)|=q$. First, consider that $E T$ is bad, we need to show that $\chi_{\mathrm{wo}}^{\prime}(E T)=3$. Without loss of generality, let $\left|N_{T}^{+}\left(v_{n}\right)\right|=1$ and $N_{T}^{+}\left(v_{n}\right)=v_{i}$. Then $d_{E T}^{-}\left(v_{i}\right)=s_{n}$ and $d_{E T}^{+}\left(v_{i}\right)=d_{E T}^{-}\left(v_{n}\right)=q-s_{n}-s_{i}$ are even, and $d_{E T}^{+}\left(v_{n}\right)=s_{i}$ is odd. Furthermore, for $u \in N_{E T}^{-}\left(v_{n}\right), d_{E T}(u)$ is even and either $u \in V_{1}$ or u contributes 2 to $\left|V_{2}\right|$. Observe that $P S(E T)$ contains exactly two components K and R with $V(K)=I_{n}^{+} \cup I_{i}^{-}$ and $V(R)=V(P S(E T)) \backslash V(K)$. Note that $I_{i}^{-} \subseteq V_{2},\left|I_{i}^{-}\right|$is odd and $V_{3}=I_{n}^{+}$. Thus, we have that $\left|V(R) \cap V_{2}\right|$ is odd by Lemma 4.2 and $V(R) \cap V_{3}=\emptyset$ as $V_{3} \subseteq V(K)$. Therefore, by Theorem 2.1, $\chi_{\mathrm{wo}}^{\prime}(E T)=3$.

Since each digraph has weak-odd chromatic index at most three, it suffices to show that if $E T$ is good, then $\chi_{\text {wo }}^{\prime}(E T) \leq 2$. Now, let $E T$ be good. We proceed our proof by considering the number of peripheral vertices in T.

First, suppose that T has a source v_{i} and a sink v_{j}. Then $P S(E T)$ contains exactly one nontrivial component K with $V(K)=V(P S(E T)) \backslash\left(I_{i}^{-} \cup I_{j}^{+}\right)$. If $v_{i}, v_{j} \in Q_{1}$, then $V(K) \cap V_{3} \neq \emptyset$ when q is even and $V(K) \cap V_{2}$ is of even order or $V(K) \cap V_{3} \neq \emptyset$ when q is odd. Consider, without loss of generality, that $v_{i} \in Q_{1}$ and $v_{j} \in Q_{2}$. If q is even, then $I_{i}^{+} \subseteq V_{3}$, otherwise $I_{j}^{-} \subseteq V_{3}$. In the case when $v_{i}, v_{j} \in Q_{2}$, then by Lemma 4.2 , we have that $V(K) \cap V_{2}$ is of even order. Therefore, by Theorem $2.1, \chi_{\text {wo }}^{\prime}(E T) \leq 2$.

Next, suppose that T has a peripheral vertex v_{j}. Without loss of generality, let v_{j} be a sink. Then we have $V(P S(E T))=V(K) \cup I_{j}^{+}$, where K is a nontrivial component of $P S(E T)$. Assume that $v_{j} \in Q_{1}$. If q is odd, then $\emptyset \neq V_{3} \subseteq V(K)$ as $Q_{2} \neq \emptyset$. Otherwise, $V(K) \cap V_{3} \neq \emptyset$ as $I_{j}^{-} \subseteq\left(V_{3} \cap V(K)\right)$. If $v_{j} \in Q_{2}$, then K satisfies Theorem 2.1 due to Lemma 4.2. Therefore, $\chi_{\text {wo }}^{\prime}(E T) \leq 2$.

Finally, suppose that $\delta^{0}(T) \geq 1$. We choose a vertex v_{i} from Q_{2} such that $A\left(N_{T}^{-}\left(v_{i}\right)\right.$, $\left.N_{T}^{+}\left(v_{i}\right)\right) \neq \emptyset$, otherwise, let v_{i} be any vertex in Q_{2}. Now, we present a vertex partition $X \cup U \cup W$ of $P S(E T)$ with respect to v_{i}. Let $X=I_{i}$ if $v_{i} \in V_{1}$, otherwise, let $X=X_{1} \cup X_{2}$ with $X_{1}=I_{i}^{+}$and $X_{2}=I_{i}^{-}$. Define $U=U_{1} \cup U_{2} \cup U_{3}$ and $W=W_{1} \cup W_{2} \cup W_{3}$ as follows.

$$
\begin{aligned}
U_{1} & =\left\{u^{+}: u \in N_{E T}^{-}\left(v_{i}\right) \backslash V_{1}\right\}, U_{2}=\left\{u^{-}: u \in N_{E T}^{-}\left(v_{i}\right) \backslash V_{1}\right\}, U_{3}=N_{E T}^{-}\left(v_{i}\right) \cap V_{1} \\
W_{1} & =\left\{w^{+}: w \in N_{E T}^{+}\left(v_{i}\right) \backslash V_{1}\right\}, W_{2}=\left\{w^{-}: w \in N_{E T}^{+}\left(v_{i}\right) \backslash V_{1}\right\}, W_{3}=N_{E T}^{+}\left(v_{i}\right) \cap V_{1}
\end{aligned}
$$

Suppose that $P S(E T)$ is a connected graph. Then V_{2} is of even order or V_{3} is nonempty by Lemma 4.2. Hence, by Theorem $2.1, \chi_{\text {wo }}^{\prime}(E T) \leq 2$. So, in the following we consider that $P S(E T)$ is not a connected graph. If both U_{1} and W_{1} are empty sets, then U_{3} and W_{3} are nonempty. Since T is a tournament, there are edges between U_{3} and W_{3}. Thus, $P S(E T)$ is a connected graph. Therefore, without loss of generality, we may assume that $U_{1} \neq \emptyset$. Let K be the nontrivial component of $P S(E T)$ that contains U_{1}. It suffices to show the following two claims.

Claim 1 If v_{i} satisfies $A\left(N_{T}^{-}\left(v_{i}\right), N_{T}^{+}\left(v_{i}\right)\right) \neq \emptyset$, then $\chi_{\text {wo }}^{\prime}(E T) \leq 2$.
Proof. We have $U_{1} \cup U_{3} \cup X \cup W_{3} \cup W_{2} \subseteq V(K)$. If $U_{2} \subseteq V(K)$, then $P S(E T)$ is connected because $\delta^{0}(E T) \geq 1$ and W_{1} (if exists) is an independent set of $P S(E T)$. So, we assume that there exists a vertex $v_{j}^{-} \in U_{2}$ such that $v_{j}^{-} \notin V(K)$. Then v_{j} is a source of the subdigraph of $E T$ induced by $N_{E T}^{-}\left(v_{i}\right)$. Since $d_{T}^{-}\left(v_{j}\right)>0$, there must be a vertex $v_{t}^{+} \in W_{1}$ such that $v_{t}^{+} v_{j}^{-} \in E(P S(E T))$ and $v_{t}^{+} \notin V(K)$. We have that v_{t} is a sink of subdigraph of $E T$ induced by $N_{E T}^{+}\left(v_{i}\right)$. Thus, $P S(E T)$ has two nontrivial components K and R with $R=I_{j}^{-} \cup I_{t}^{+}$. If both s_{j} and s_{t} are even, then $V(R) \cap V_{2}$ is of even size and so $V(K) \cap V_{2}$ is of even size by Lemma 4.2. If both s_{j} and s_{t} are odd, then $V(R) \cap V_{3} \neq$ and $V(K) \cap V_{2}$ is of even size by Lemma 4.2. If exactly one of s_{i} and s_{j} is odd, then $V(R) \cap V_{3} \neq \emptyset$, and $V(K) \cap V_{3} \neq \emptyset$ because $d_{E T}\left(v_{i}\right)=q-s_{i}, s_{i}$ is even and $d_{E T}\left(v_{j}^{+}\right)=d_{E T}\left(v_{t}^{-}\right)=q-s_{j}-s_{t}$. Hence, by Theorem 2.1, $\chi_{\text {wo }}^{\prime}(E T) \leq 2$.

Claim 2 If $A\left(N_{T}^{-}(v), N_{T}^{+}(v)\right)=\emptyset$ for each $v \in Q_{2}$, then $\chi_{\text {wo }}^{\prime}(E T) \leq 2$.
Proof. If $\left|N_{T}^{+}\left(v_{i}\right)\right| \geq 2$ and $\left|N_{T}^{-}\left(v_{i}\right)\right| \geq 2$, then $P S(E T)$ is a connected graph. So, without loss of generality we may assume that $\left|N_{T}^{-}\left(v_{i}\right)\right| \geq 2$ and $\left|N_{T}^{+}\left(v_{i}\right)\right|=1$. If $v_{i} \in V_{1}$ or $W_{3} \neq \emptyset$, then $P S(E T)$ is a connected graph. So, in the following we assume that $v_{i} \notin V_{1}$ and $W_{3}=\emptyset$. Let $v_{j} \in N_{E T}^{+}\left(v_{i}\right)$. Thus, $P S(E T)$ has two nontrivial components K and R with $R=I_{i}^{+} \cup I_{j}^{-}$. If s_{j} is even, then $V(R) \cap V_{2}$ is of even size and so $V(K) \cap V_{2}$ is of even size by Lemma 4.2. If s_{j} is odd, then q is odd because $v_{i} \notin V_{1}$. Since $E T$ is good, there is a vertex $u \in Q_{2}$ with $u \notin I_{i}$. Then $V(R) \cap V_{3}=I_{i}^{+}$and $V(K) \cap V_{3} \neq \emptyset$ as $d_{E T}(u)$ is odd and $\left\{u^{+}, u^{-}\right\} \subseteq V(K)$. Again by Theorem 2.1, $\chi_{\text {wo }}^{\prime}(E T) \leq 2$.

This completes the proof of Theorem 4.4.
Theorem 4.5. For any extended tournament ET, it holds that

$$
\chi_{\mathrm{wo}}^{\prime}(E T)= \begin{cases}0 & \text { if } T=K_{1} \\ 1 & \text { if } \ell=n \text { and } \chi_{\mathrm{wo}}^{\prime}(T)=1 \\ 3 & \text { if } \ell=n \text { and } \chi_{\mathrm{wo}}^{\prime}(T)=3 \text { or } E T \text { is bad }, \\ 2 & \text { otherwise. }\end{cases}
$$

Proof. By Theorem 4.1, Theorem 4.3 and Theorem 4.4, we only need to declare the case that $\chi_{\mathrm{wo}}^{\prime}(E T)=1$. Clearly, if there are s_{i} and s_{j} with different parity, then $\chi_{\mathrm{wo}}^{\prime}(E T) \geq 2$. By Theorem 4.1, if each s_{i} is odd, then $\chi_{\mathrm{wo}}^{\prime}(E T)=\chi_{\mathrm{wo}}^{\prime}(T)$. Therefore, in this case, $\chi_{\mathrm{wo}}^{\prime}(E T)=1$ if and only if $\chi_{\mathrm{wo}}^{\prime}(T)=1$. Now, assume that each s_{i} is even. Thus, we have that for each vertex $v \in E T$, both $d_{E T}^{+}(v)$ and $d_{E T}^{-}(v)$ are even, then $\chi_{\mathrm{wo}}^{\prime}(E T) \geq 2$.

Proposition 4.6. If $\chi_{\mathrm{wo}}^{\prime}(E T)=3$, then $E T$ admits a 2-edge coloring such that condition (WO) is satisfied at each vertex apart from a prescribed vertex $x \in V(T)$.

Proof. If $\ell=n$ and $\chi_{\mathrm{wo}}^{\prime}(T)=3$, then $|V(T)|$ is odd and T has a peripheral vertex, say a $\operatorname{sink} v_{i}$, by Theorem 1.1. Hence, $q=|V(E T)|$ is odd. Observe that $P S(E T)$ has exactly one nontrivial component K with $V(P S(E T))=V(K) \cup I_{i}^{-}$. If $x \in V_{1}$, then let $F=$ $\{x\} \cup\left(V_{2} \backslash I_{i}^{-}\right)$. If $x^{+} \in V_{2}$, then let $F=V_{2} \backslash\left(\left\{x^{+}\right\} \cup I_{i}^{-}\right)$. Take an F-join H in K, and color $E(H)$ with color 1 and the rest of the edges of K with color 2 . The obtained 2-coloring fits the condition.

Now, suppose that $E T$ is bad. We have that $|V(E T)|$ is odd and $\delta^{0}(T) \geq 1$ by the definition. Then $\chi_{\text {wo }}^{\prime}(T) \leq 2$ by Theorem 1.1. Let $E T^{\prime}$ be the extended tournament obtained from $E T$ by deleting x. If $\chi_{\mathrm{wo}}^{\prime}\left(E T^{\prime}\right) \leq 2$, then we obtain a 2-edge coloring of $E T$ from $E T^{\prime}$ by the coloring (\mathbf{C}) such that the condition $(\overrightarrow{\mathrm{WO}})$ is satisfied at each vertex apart from $x \in V(E T)$. Now, we only need to show that $\chi_{\text {wo }}^{\prime}\left(E T^{\prime}\right) \leq 2$. If $x \in Q_{2}$, then each independent set is odd in $E T^{\prime}$. So, $\chi_{\mathrm{wo}}^{\prime}\left(E T^{\prime}\right)=\chi_{\mathrm{wo}}^{\prime}(T) \leq 2$. If $x \in Q_{1}$, then we have that $E T^{\prime}$ is good. Therefore, by Theorem 4.5, we have $\chi_{\text {wo }}^{\prime}\left(E T^{\prime}\right) \leq 2$.

By Proposition 4.6, we obtain directly the following proposition.
Proposition 4.7. For any extended tournament ET, it holds that

$$
\operatorname{def}(E T)= \begin{cases}1 & \text { if } \ell=n \text { and } \chi_{\mathrm{wo}}^{\prime}(T)=3 \text { or } E T \text { is bad } \\ 0 & \text { otherwise }\end{cases}
$$

5 Weak-odd edge covering of tournaments

Here we show that Question 1.4 holds for tournaments.
Proposition 5.1. [6] Every tournament admits a 2-edge coloring such that condition ($\overrightarrow{\mathrm{WO}}$) is satisfied at each vertex apart from a prescribed vertex $v \in V(T)$.

Theorem 5.2. Let T be a tournament. If $\chi_{\mathrm{wo}}^{\prime}(T)=3$, then T admits a weak-odd 2-edge covering φ such that the intersection of color classes is contained within a singleton arc in $A(T)$.

Proof. By Theorem 1.1, we have that T is nontrivial, of odd order, and has just one peripheral vertex. Suppose that T has a sink y. By Proposition 5.1, T admits a 2 -edge coloring ϕ such that $(\overrightarrow{\mathrm{WO}})$ is satisfied at each vertex apart from y. Let T_{i}^{\prime} be the spanning subdigraph of T whose arc set is the color set $\phi^{-1}(i)$ for $i \in[2]$. Then both $d_{T_{1}^{\prime}}^{-}(y)$ and $d_{T_{2}^{\prime}}^{-}(y)$ are even. If there is an arc $x y \in A(T)$ such that $\phi(x y)=i$ and $(\overrightarrow{\mathrm{WO}})$ is satisfied by color i at x for $i \in[2]$, then φ can be given as follows: $\varphi(x y)=\{1,2\}$ and $\varphi=\phi$ for other arcs. It is obvious to see that the condition $(\overrightarrow{\mathrm{WO}})$ is satisfied by color $3-i$ at y and others are taken care of by the same color under ϕ for $i \in[2]$.

Now, suppose that for any arc $x y \in A(T)$ and $i \in[2]$, if $\phi(x y)=i$, then only color $3-i$ satisfies the condition $(\overrightarrow{\mathrm{WO}})$ at x. Without loss of generality, assume that there is an arc $x y \in A(T)$ with $\phi(x y)=1$, which implies that the condition $(\overrightarrow{\mathrm{WO}})$ is satisfied by color 2 at x. Then there is a vertex z such that $z x \in A(T)$ with $\phi(z x)=2$. We can define φ as follows: $\varphi(z x)=1, \varphi(z y)=\{1,2\}, \varphi(x y)=2$ and $\varphi=\phi$ for other arcs. It is easy to check that every vertex in $V(T) \backslash\{x, y, z\}$ is taken care of by the same color as in ϕ. Note that T is a tournament of odd order, thus $d_{T}^{+}(x)$ and $d_{T}^{-}(x)$ have the same parity. Combining that the condition $(\overrightarrow{\mathrm{WO}})$ is satisfied by color 2 at x, we have that both $d_{T_{2}^{\prime}}^{+}(x)$ and $d_{T_{2}^{\prime}}^{-}(x)$ are odd whereas $d_{T_{1}^{\prime}}^{+}(x)$ and $d_{T_{1}^{\prime}}^{-}(x)$ are even. Let T_{i} be the spanning subdigraph of T whose arc set is in $\varphi^{-1}(i)$ for $i \in[2]$. We finish the proof by the following.

Assume that the condition ($\overrightarrow{\mathrm{WO}})$ is satisfied by color i at z under ϕ for $i \in[2]$. Then we have that $\phi(z y)=3-i, d_{T_{i}^{\prime}}^{+}(z)$ and $d_{T_{i}^{\prime}}^{-}(z)$ are odd whereas $d_{T_{3-i}^{\prime}}^{+}(z)$ and $d_{T_{3-i}^{\prime}}^{-}(z)$ are even. Combining the coloring φ, we have that $d_{T_{1}}^{+}(x)=d_{T_{1}^{\prime}}^{+}(x)-1, d_{T_{1}}^{-}(x)=d_{T_{1}}^{-}(x)+1$, $d_{T_{i}}^{+}(z)=d_{T_{i}^{\prime}}^{+}(z)+2(2-i), d_{T_{i}}^{-}(z)=d_{T_{i}^{\prime}}^{-}(z)$ and $d_{T_{3-i}}^{-}(y)=d_{T_{3-i}^{\prime}}^{-}(y)-(-1)^{i}$ are odd.

Hence, we are done.

Acknowledgements. This work was partially supported by the National Natural Science Foundation of China (Nos. 12001296 and 12161141006) and the Natural Science Foundation of Tianjin (Nos. 20JCJQJC00090, 20JCZDJC00840, and 21JCQNJC00060).

References

[1] J. Bang-Jensen, G. Gutin, Classes of Directed Graphs (eds.); Springer: London, UK (2018).
[2] J.A. Bondy and U.S.R Murty, Graph Theory, Springer-Verlag, New York (2008).
[3] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris 249 (1959) 2151-2152.
[4] J. Czap, S. Jendrol̆, Coloring vertices of plane graphs under restrictions given by faces, Discussiones Mathematicae Graph Theory 293 (2009) 521-543.
[5] J. Czap, S. Jendrol̆, F. Kardǒs, R. Soták, Facial parity edge colouring of plane pseudographs, Discrete Mathrmatics 312 (2012) 2735-2740.
[6] C. Hernández-Cruz, M. Petruševski, R. Škrekovski, Notes on weak-odd edge colorings of digraphs, Ars Mathematica Contemporanea (2021) ISSN 1855-3974.
[7] B. Lužar, M. Petruševski, R. Škrekovski, On vertex-parity edge-colorings, Journal of Combinatorial Optimization 35 (2018) 373-388.
[8] L. Rédei, Ein kombinatorischer Satz, Acta. Litt. Sci. Szeged. 7 (1934) 39-43.
[9] M. Petruševski, A note on weak odd edge colorings of graphs, Advances in Mathematics: Scientific Journal 4 (2015) 7-10.
[10] M. Petruševski, R. Škrekovski, Weak-odd edge coloring of digraphs, Bulletin Mathématique, Faculty of Natural Sciences and Mathematics, Skopje 37 (2013) 6174.
[11] L. Pyber, Covering the edges of a graph by..., Graphs and Numbers, Colloquia Mathematica Societatis János Bolyai 60 (1991) 583-610.
[12] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. A, Algorithms and Combinatorics, Springer-Verlag, Berlin (2003).

[^0]: *The corresponding author.

