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Abstract

Given a digraph D = (V (D), A(D)), let ∂+D(v) = {vw|w ∈ N+
D (v)} and ∂−D(v) =

{uv|u ∈ N−
D (v)} be semi-cuts of v. A mapping ϕ : A(D) → [k] is called a weak-odd

k-edge coloring of D if it satisfies the condition: for each v ∈ V (D), there is at least

one color with an odd number of occurrences on each non-empty semi-cut of v. We call

the minimum integer k the weak-odd chromatic index of D. When limit to 2 colors, let

def(D) denote the defect of D, i.e., the minimum number of vertices in D at which the

above condition is not satisfied. In this paper, we give a descriptive characterization

with respect to the weak-odd chromatic index and the defect of semicomplete digraphs

and extended tournaments, which generalize results of tournaments to broader classes.

In addition, we initiate the study of weak-odd edge covering on digraphs.

Keywords: weak-odd edge coloring; weak-odd edge covering; semicomplete digraph;

extended tournament

1 Introduction

Throughout the paper, we follow the terminology and notion from [1, 2]. Here all digraphs

considered are finite.

∗The corresponding author.
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Let G = (V (G), E(G)) be a graph. Denote by dG(v) the number of edges incident with

v in G. A mapping ϕ : E(G) → [k] is called a weak-odd k-edge coloring of G if it satisfies

the following condition:

(WO) For v ∈ V (G) with dG(v) > 0, there is at least one color i ∈ [k] such that the number

of edges incident with v colored by i is odd.

Note that this concept is a relaxation of odd edge coloring of graphs which was first in-

troduced by Pyber in [11]. The odd edge coloring is an edge coloring such that at each

non-isolated vertex every color appears an odd number of times or does not appear at all.

The weak-odd chromatic index of G, denoted by χ′wo(G), is the minimum integer k such that

G admits a weak-odd k-edge coloring. This concept, motivated by [4, 5, 11], is given in [9],

where Petruševski gave an intuitive characterization of graphs in terms of their weak-odd

chromatic index.

Inspired by the study of the weak-odd chromatic index of graphs, Petruševski and

Škrekovski [10] generalized this concept to digraphs. Given a digraph D = (V (D), A(D)),

we use n(D) to denote the number of vertices of D. Let v be a vertex of D. Let

N+
D (v) = {w|vw ∈ A(D)} and N−D (v) = {w|wv ∈ A(D)}. Let ∂+D(v) = {vw|w ∈ N+

D (v)}
and ∂−D(v) = {uv|u ∈ N−D (v)} be semi-cuts of v. The out-degree(resp. in-degree) of v which

is also called the semi-degree of v, denoted by d+D(v) (resp. d−D(v)), is the cardinality of the

set ∂+D(v) (resp. ∂−D(v)). We say that a vertex u ∈ V (D) is a peripheral vertex if either

d+D(u) = 0 or d−D(u) = 0. Specifically, if d+D(u) = 0, then u is a sink of D, and if d−D(u) = 0,

then u is source. A mapping ϕ : A(D) → [k] is said to be a weak-odd k-edge coloring of D

if the following holds:

(
−−→
WO) For any v ∈ V (D), there is at least one color i ∈ [k] such that the number of arcs in

each nonempty semi-cut of v colored by i is odd.

We say that such a digraph D is weak-odd k-edge colorable, and call the suitable minimum

integer k weak-odd chromatic index, denoted by χ′wo(D).

In the same paper, the authors showed that χ′wo(D) ≤ 3 and the bound is sharp. They

believed that a descriptive characterization similar to graphs is impossible for all digraphs

and they believed that deciding the exact value of χ′wo(D) is NP-hard. In [6], the authors

showed a necessary and sufficient condition for digraphs to be weak-odd 2-edge colorable,

and thus χ′wo(D) can be determined in polynomial time. When limit to 2 colors, let def(D)

denote the defect of D, i.e., the minimum number of vertices in D at which the condition

(
−−→
WO) is not satisfied. Hernández-Cruz, Petruševski and Škrekovski [6] proved that def(D)

is related to the matching number of some graphs.

A tournament is an orientation of a complete graph. A digraph is called semicomplete

if it is obtained from a complete graph by replacing each edge (u, v) with the arc uv or vu
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or a pair of symmetric arcs. By extended tournaments we mean the digraph obtained from

a tournament by blowing up some of its vertices into independent sets. Hernández-Cruz,

Petruševski and Škrekovski [6] made a descriptive characterization of tournaments with

respect to the weak-odd chromatic index as follows.

Theorem 1.1 ([6]). For any tournament T , it holds that

χ′wo(T ) =


0 if T = K1,

1 if T is nontrivial and every vertex semi-degree is odd or zero,

3 if T is nontrival, of odd order, and has just one peripheral vertex,

2 otherwise.

And the defect of a tournament is 1 when the case χ′wo(T ) = 3.

In addition, they asked whether these results can be extended to classes of digraphs that

generalize tournaments.

Problem 1.2 ([6]). Characterize the families of semicomplete digraphs, extended tourna-

ments and multipartite tournaments in terms of their weak-odd chromatic index.

Problem 1.3 ([6]). Characterize the defect in terms of the families of semicomplete di-

graphs, extended tournaments and multipartite tournaments when their defect is bounded.

We give the complete characterization about the above two problems for the first two

graph classes, i.e., semicomplete digraphs and extended tournaments. The results can be

helpful for the remaining class. And we think the result of multipartite tournaments is also

optimistic.

Hernández-Cruz, Petruševski and Škrekovski [6] also initiated the study of weak-odd

edge covering and provided the weak-odd 2-edge covering conditions for graphs. Addition-

ally, they asked about the situation for digraphs. For a digraph D, an edge covering with

color set S is a mapping that assigns to each arc of D a nonempty subset of S. The weak-odd

edge covering is defined as edge covering such that condition (
−−→
WO) is satisfied.

Question 1.4 ([6]). Does every digraph admit a weak-odd 2-edge covering?

We give a positive answer to this question in the case of tournaments. This is of positive

significance to the study of digraphs. We believe that similar research can be carried out

on the simple generalization classes of tournaments.

The paper is organized as follows. In next section, we first introduce the notion and

terminology that are not mentioned before, then we list some auxiliary tools that will

be used in our proofs. Then, in Sections 3 and 4 we give descriptive characterizations

with respect to the weak-odd chromatic index and the defect of semicomplete digraphs
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and extended tournaments. In the last section, we prove that every tournament admits a

weak-odd 2-edge covering.

2 Preliminary

Given a digraph D = (V (D), A(D)), the degree of v ∈ V (D), denoted by dD(v), is the total

number of arcs incoming and outgoing at v, thus dD(v) = d+D(v) + d−D(v). We say that a

graph or a digraph is even if every vertex of it has even degree. The minimum out-degree

(minimum in-degree) of D is δ+(D) = min{d+D(v)|v ∈ V (D)} (δ−(D) = min{d−D(v)|v ∈
V (D)}). The minimum semi-degree of D is δ0(D) = min{δ−(D), δ+(D)}. For X,Y ⊆
V (D), let A(X,Y ) = {uv ∈ A(D)|u ∈ X, v ∈ Y }. A directed X-Y path is an (x, y)-dipath

P such that V (P ) ∩ X = {x} and V (P ) ∩ Y = {y}. The subdigraph of D induced by

X ⊆ A(D) is denoted by G[X]. A vertex u is said to dominate a vertex v if v ∈ N+
D (u).

A strong component of a digraph D is a maximal induced subdigraph of D which is

strong. If D1, . . . , Dt are the strong components of D, then V (Di) ∩ V (Dj) = ∅ for every

i 6= j as otherwise all the vertices V (Di) ∪ V (Dj) are reachable from each other. The

strong component digraph SC(D) of D is obtained by contracting the strong components

of D and deleting any parallel arcs obtained in this process. The strong components of

D corresponding to the vertices of SC(D) of in-degree (out-degree) zero are the initial

(terminal) strong components of D, also called the peripheral strong components.

We shall emphasize that when dealing with graphs, the conception S-join is a powerful

tool. Given a graph G = (V (G), E(G)) and an even-sized vertex subset S, we call a

spanning subgraph H is an S-join of G if dH(v) is odd for all v ∈ S while dH(v) is even

for all v ∈ V (G) \ S. It has been proved that if G is a connected graph, then G contains

an S-join for any even-sized vertex subset S (see [12]). When turning our attention to

digraphs, the problem of determining the weak-odd chromatic index of digraphs can be

settled through constructing the following auxiliary graphs. Given a digraph D = (V,A),

its bipartite representation or split is a bipartite graph BG(D) = (V +, V −, E) where V + =

{v+ : v ∈ V }, V − = {v− : v ∈ V }, and (u+, v−) ∈ E if and only if uv ∈ A. The partial

split, PS(D), of D is a graph obtained from BG(D) by re-identifying each pair (u+;u−) for

which both d+D(u) and d−D(u) are odd. See Figure 1.

To solve the problem whether a digraph is weak-odd 2-edge colorable, Hernández-Cruz,

Petruševski and Škrekovski [6] defined a 3-partition {V1;V2;V3} of V (PS(D)):

• V1 = V (D) ∩ V (PS(D)), i.e., V1 consists of the vertices u of D with both d+D(u) and

d−D(u) odd.

• V2 = {v ∈ V (PS(D)) \ V1 : dPS(D)(v) is even}.
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Figure 1: The split graph BG(D) and partial split graph PS(D) of D

• V3 = {v ∈ V (PS(D)) \ V1 : dPS(D)(v) is odd}.

We say that a component K of PS(D) is ‘bad’ if V (K)∩V2 is of odd size and V (K)∩V3 = ∅.
Let GD = (VD, ED) be a graph with the vertex set consisting of vertices vK corresponding

to bad components K and two distinct vertices vK′ and vK′′ are adjacent if the respective

bad components K ′ and K ′′ contain the ‘halves’ v+ and v− of some vertex v ∈ V (D). Let

α′D be the cardinality of the maximum matching of GD. The following results proved in [6]

will be used later.

Theorem 2.1 ([6]). A digraph D is weak-odd 2-edge colorable if and only if for every

nontrivial component K of PS(D) we have that V (K)∩V2 is even-sized or V (K)∩V3 6= ∅.

Proposition 2.2 ([6]). If an even digraph D has an odd number of peripheral vertices, then

χ′wo(D) = 3.

Theorem 2.3 ([6]). For every digraph D, def(D) = n(GD)− α′D holds.

Finally, we give a useful statement about the weak-odd edge coloring. LetD = (V (D), A(D))

be a digraph with v ∈ V (D). Let D′ be the digraph obtained from D by deleting v. If D′

admits a weak-odd 2-edge coloring φ, then we define a 2-edge coloring ϕ of D such that

(
−−→
WO) is satisfied for each vertex apart from v as follows.

(C) For each u ∈ ND(v), suppose that color i satisfies the condition (
−−→
WO) at u for φ, where

i ∈ [2]. If uv ∈ A(D), then coloring uv with color 3 − i when d+D′(u) > 0 and color i

when d+D′(u) = 0. If vu ∈ A(D), then coloring vu with color 3 − i when d−D′(u) > 0

and color i when d−D′(u) = 0.

3 Semicomplete digraphs

We first state some simple properties of semicomplete digraphs, which can be found in Sec-

tion 2 of [1]: (i) every semicomplete digraph has a hamiltonian dipath; (ii) every nontrivial
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strong semicomplete digraph contains a hamiltonian dicycle; (iii) the strong component

digraph of a semicomplete digraph is an acyclic tournament and has an acyclic ordering of

vertices; (iv) every semicomplete digraph has only one initial (terminal) strong component.

For simplicity of presentation, we call every nontrivial even semicomplete digraph having

only one peripheral vertex ‘bad’ and others ‘good’ in the following.

Theorem 3.1. For any semicomplete digraph D, it holds that

χ′wo(D) =


0 if D = K1,

1 if D is nontrivial and every vertex semi-degree is odd or zero,

3 if D is a nontrival even digraph with just one peripheral vertex,

2 otherwise.

Proof. By Proposition 2.2 and χ′wo(D) ≤ 3, it suffices to show that every good semi-complete

digraph is weak-odd 2-edge colorable.

Let D be a good semicomplete digraph. Throughout the proof, we always first find a

spanning subdigraph D̂ of D. Then we define a 2-edge coloring θ of D as the arc set of D̂

with color 1 and A(D)− A(D̂) with color 2. It is easy to check that (
−−→
WO) holds for every

vertex of D under θ in each case.

If D is strong, then let D̂ be a Hamilton dicycle. If D has two trivial peripheral strong

components, say x, y, then let D̂ be a (x, y)-Hamilton dipath. If both peripheral strong

components of D are nontrivial, then there exists a directed Ki-Kj path P in D that passes

through every vertex v /∈ V (Ki) ∪ V (Kj), where Ki and Kj are the initial and terminal

strong components of D respectively. Let Ci and Cj , respectively, be hamiltonian dicycles

in Ki and Kj . Denote by x and y, respectively, the initial and terminal vertex of P . We

have that xy /∈ A(P ) if P is of length `(P ) > 1. Let D̂ = D[A(Ci ∪ Cj)] when `(P ) = 1

and D̂ = D[A(Ci ∪Cj ∪P )∪{xy}] when `(P ) > 1. Then color 1 meets condition (
−−→
WO) for

above cases.

We complete the proof by supposing that exactly one peripheral strong component of

D, without loss of generality, the terminal one, is trivial, denoted by {y}. Then y is the

sink of D. Now, there is a vertex v ∈ V (D) such that dD(v) is odd as D is good. Let D′ be

the semicomplete digraph obtained from D by deleting the vertex v (note that if dD(y) is

odd, then v can be the same as y). We proceed by distinguishing whether v = y.

Case 1. v = y.

First, suppose that D′ does not contain peripheral strong components. Then we have

χ′wo(D
′) ≤ 2 by the above analysis. Let φ be a weak-odd 2-edge coloring of D′ and ϕ be

a 2-edge coloring defined as in (C). Since dD(v) is odd, color 1 or 2 satisfies the condition

(
−−→
WO) at v under ϕ. Hence, ϕ is a weak-odd 2-edge coloring of D.

Now, we may assume that there exists a sink in D′, say y′. Let K be the initial strong
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component of D, and C be a hamiltonian dicycle in K. Take a directed K-y′ path P in D′

that passes through every vertex not in V (K). Let x be the initial vertex of P . Then we

let D̂ = D[A(C ∪P )∪{xv, y′v}]. Then θ is a weak-odd 2-edge coloring of D because dD(v)

is odd.

Case 2. v 6= y.

Recall that y is the sink of D and thus also of D′ and d+D(v), d−D(v) > 0. First, suppose

that D′ has another peripheral vertex, say x. Then x is the source of D′. Obviously,

vx and vy are contained in A(D). Let P be a hamiltonian dipath in D′. If d+D(v) is

odd, then there is a vertex w ∈ V (P ) such that wv ∈ A(D) and wy /∈ A(P ), and let

D̂ = D[A(P ) ∪ {vx,wv,wy, vy}]. Otherwise, let D̂ = D[A(P ) ∪ {vx}].
Now, D′ has exactly one peripheral vertex y. Suppose that V (D′) = V (K)∪{y} where K

is the initial strong component of D′. Let C be a hamiltonian dicycle in K. If d+D(v) is odd,

then there is a vertex w ∈ V (C) such that wv,wy ∈ A(D). Let D̂ = D[A(C) ∪ {wy,wv}].
Otherwise, let D̂ = D[A(C) ∪ {vy}].

Finally, we consider the case that V (D′) 6= V (K)∪ {y}. Take a directed K-y path P in

D′ that passes through every vertex not in V (K). Let x be the initial vertex of P . By our

latest assumption, the arc xy /∈ A(P ). If d+D(v) is even, then let D̂ = D[A(C∪P )∪{vy, xy}].
Now, assume that d+D(v) is odd. If xv /∈ A(D), then there is a vertex w ∈ V (D′) \ {x, y}
such that wv ∈ A(D) and wy /∈ A(P ). Let D̂ = D[A(C ∪ P ) ∪ {wy,wv, xy}]. Otherwise,

let D̂ = D[A(C ∪ P ) ∪ {xv}.
It follows that θ is a weak-odd 2-edge coloring of D for Case 2. Indeed, color 2 fits the

condition (
−−→
WO) at v while color 1 works for every other vertex.

Proposition 3.2. For any semicomplete digraph D, it holds that

def(D) =

{
1 if D is a nontrival even digraph with just one peripheral vertex,

0 otherwise.

Proof. By Theorem 3.1, we may assume that D is bad and has a sink y. Let D′ be the

digraph obtained from D by deleting the vertex y. It is not hard to find that D′ is not

an even semicomplete digraph. Thus, χ′wo(D
′) ≤ 2. Apply to A(D) the particular 2-edge

coloring constructed as (C). The condition (
−−→
WO) is satisfied at each vertex apart from

y.

Proposition 3.3. Every bad semicomplete digraph D admits a 2-edge coloring such that

condition (
−−→
WO) is satisfied at each vertex apart from a prescribed vertex v ∈ V (D).

Proof. We may assume that D has a sink y. If v = y, then by Proposition 3.2, we are done.

Suppose that v 6= y. Note that PS(D) has only one nontrivial component K. Observe that

V (K) ∩ V2 = V2 \ {y+} is odd-sized, and V3 = ∅. If v ∈ V1, then let S = {v} ∪ (V2 \ {y+}).
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If v+ ∈ V2, then let S = V2 \ {v+, y+}. Take an S-join H in K, and then color E(H) with

color 1 and the rest of the edges of K with color 2. The obtained 2-coloring of D fits the

condition.

4 Extended tournaments

In this section, we characterize the weak-odd chromatic index of extended tournaments. Let

D = (V,A) be a digraph with V = {v1, . . . , vn}. Blow up v1, . . . , vn into independent sets

I1, . . . , In of size s1, . . . , sn respectively, where si ≥ 1, i ∈ [n]. We call the resulted digraph

an extended digraph of D and denote it by ED. Without loss of generality, suppose that

s1, . . . , s` are odd and others are even where ` ≤ n. Denote by v1i , . . . , v
si−1
i the other si− 1

copies of vi in ED for i ∈ [n]. Let I+i = {v+i , v
1+
i , . . . , v

si−1+
i } and I−i = {v−i , v

1−
i , . . . , v

si−1−
i }

for i ∈ [n]. Let V ′1 , V ′2 , V ′3 and V1, V2, V3 be the vertex partitions of PS(D) and PS(ED)

as defined in Section 2, respectively.

Theorem 4.1. If ` = n, then χ′wo(ED) = χ′wo(D).

Proof. For any vertex u ∈ V (ED), we have that d+ED(u) ≡ d+D(u) (mod 2), d−ED(u) ≡ d−D(u)

(mod 2) since each sj is odd for j ∈ [n]. Therefore, V ′i ⊆ Vi and |Vi| ≡ |V ′i | (mod 2). Thus,

|V (K)∩Vi| ≡ |V (K ′)∩V ′i | (mod 2) and |V (K)∩Vi| = 0 if and only if |V (K ′)∩V ′i | = 0 for

i ∈ {2, 3}. By Theorem 2.1, χ′wo(ED) = χ′wo(D).

In the following, let D be a tournament T with |V (T )| = n, Q1 =
⋃`

i=1 Ii and Q2 =⋃n
i=`+1 Ii. Then we have V (ET ) = Q1 ∪ Q2. Denote the orders of ET , Q1, and Q2 by q,

q1, and q2, respectively. Obviously, we have q = q1 + q2 and dET (u) = q− si for any u ∈ Ii.

Lemma 4.2. Let V2 be the vertex set of PS(ET ) as defined before, then the cardinality of

V2 is always even.

Proof. First, suppose that q is even. If u ∈ Q1, then u contributes 1 to |V2| as dET (u) is

odd. Otherwise, either u ∈ V1 or u contributes 2 to |V2|. Therefore, |V2| ≡ q1 (mod 2) is

even as q1 = q − q2 is even. Now, suppose that q is odd. If u ∈ Q1, then either u ∈ V1 or

u contributes 2 to |V2| as dET (u) is even. Otherwise, u contributes 1 to |V2|. Therefore,

|V2| ≡ q2 (mod 2) is even as q2 is even.

Theorem 4.3. If |V (T )| ≤ 3, then χ′wo(ET ) ≤ 2.

Proof. If T = K1, then χ′wo(ET ) = 0. Suppose that T = K2 = v1v2. If both v1 and v2 are

in Q1, then χ′wo(ET ) = 1. Otherwise, the only nontrivial component of PS(ET ) satisfies

Theorem 2.1 and thus χ′wo(ET ) ≤ 2.
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Now, suppose that |V (T )| = 3. Suppose ` = 3, i.e., s1, s2 and s3 are all odd. Then

χ′wo(ET ) = χ′wo(T ) = 1 by Theorem 4.1. It suffices to consider the following two cases

under ` ≤ 2.

Case 1. T is a dicycle and A(T ) = {v1v2, v2v3, v3v1}.
Suppose ` = 2. Then PS(ET ) has two nontrivial components K and R with V (K) =

I+1 ∪ I
−
2 and V (R) = I−1 ∪ I

+
2 ∪ I3. Suppose ` ≤ 1. Then PS(ET ) has three nontrivial

components K,R, S such that V (K) = I+1 ∪ I
−
2 , V (R) = I+2 ∪ I

−
3 , V (S) = I+3 ∪ I

−
1 . If

` = 2, then V (K) ∩ V3 6= ∅ and V (R) ∩ V2 is of even size. If ` = 1, then V (R) ∩ V2 is of

even size and V (F ) ∩ V3 6= ∅ for F ∈ {K,S}. If ` = 0, then V (F ) ∩ V2 is of even size for

F ∈ {K,R, S}. Hence, by Theorem 2.1, χ′wo(ET ) ≤ 2.

Case 2. T has two peripheral vertices.

Set {i, j, t} = [3]. Let vi and vj be the source and the sink of T , respectively. Then

PS(ET ) has one nontrivial component K such that V (K) = I+i ∪ I
−
j ∪ It when si and sj

are odd, and V (K) = I+i ∪ I
−
j ∪ I

+
t ∪ I

−
t otherwise. If si + sj is even, then V (K) ∩ V2 is of

even size. Otherwise, V (K) ∩ V3 6= ∅. Hence, by Theorem 2.1, χ′wo(ET ) ≤ 2.

In the following, we consider the case when |V (T )| > 3. An extended tournament ET

with |V (T )| > 3 is called ‘bad’ if all of the following conditions are satisfied.

(a) ET is of odd order;

(b) Exactly one independent set is even, i.e., |In| is even;

(c) N+
T (vn) dominates N−T (vn);

(d) Either |N−T (vn)| = 1 or |N+
T (vn)| = 1.

We call every other extended tournament ‘good’.

Theorem 4.4. For n > 3 and ` < n, χ′wo(ET ) = 3 if and only if ET is bad.

Proof. Recall that |V (ET )| = q. First, consider that ET is bad, we need to show that

χ′wo(ET ) = 3. Without loss of generality, let |N+
T (vn)| = 1 and N+

T (vn) = vi. Then

d−ET (vi) = sn and d+ET (vi) = d−ET (vn) = q − sn − si are even, and d+ET (vn) = si is odd.

Furthermore, for u ∈ N−ET (vn), dET (u) is even and either u ∈ V1 or u contributes 2 to |V2|.
Observe that PS(ET ) contains exactly two components K and R with V (K) = I+n ∪ I−i
and V (R) = V (PS(ET )) \ V (K). Note that I−i ⊆ V2, |I−i | is odd and V3 = I+n . Thus, we

have that |V (R) ∩ V2| is odd by Lemma 4.2 and V (R) ∩ V3 = ∅ as V3 ⊆ V (K). Therefore,

by Theorem 2.1, χ′wo(ET ) = 3.

Since each digraph has weak-odd chromatic index at most three, it suffices to show

that if ET is good, then χ′wo(ET ) ≤ 2. Now, let ET be good. We proceed our proof by

considering the number of peripheral vertices in T .

9



First, suppose that T has a source vi and a sink vj . Then PS(ET ) contains exactly

one nontrivial component K with V (K) = V (PS(ET )) \ (I−i ∪ I
+
j ). If vi, vj ∈ Q1, then

V (K) ∩ V3 6= ∅ when q is even and V (K) ∩ V2 is of even order or V (K) ∩ V3 6= ∅ when q

is odd. Consider, without loss of generality, that vi ∈ Q1 and vj ∈ Q2. If q is even, then

I+i ⊆ V3, otherwise I−j ⊆ V3. In the case when vi, vj ∈ Q2, then by Lemma 4.2, we have

that V (K) ∩ V2 is of even order. Therefore, by Theorem 2.1, χ′wo(ET ) ≤ 2.

Next, suppose that T has a peripheral vertex vj . Without loss of generality, let vj be

a sink. Then we have V (PS(ET )) = V (K) ∪ I+j , where K is a nontrivial component of

PS(ET ). Assume that vj ∈ Q1. If q is odd, then ∅ 6= V3 ⊆ V (K) as Q2 6= ∅. Otherwise,

V (K) ∩ V3 6= ∅ as I−j ⊆ (V3 ∩ V (K)). If vj ∈ Q2, then K satisfies Theorem 2.1 due to

Lemma 4.2. Therefore, χ′wo(ET ) ≤ 2.

Finally, suppose that δ0(T ) ≥ 1. We choose a vertex vi from Q2 such that A(N−T (vi),

N+
T (vi)) 6= ∅, otherwise, let vi be any vertex in Q2. Now, we present a vertex partition

X ∪U ∪W of PS(ET ) with respect to vi. Let X = Ii if vi ∈ V1, otherwise, let X = X1∪X2

with X1 = I+i and X2 = I−i . Define U = U1 ∪ U2 ∪ U3 and W = W1 ∪W2 ∪W3 as follows.

U1 = {u+ : u ∈ N−ET (vi) \ V1}, U2 = {u− : u ∈ N−ET (vi) \ V1}, U3 = N−ET (vi) ∩ V1;

W1 = {w+ : w ∈ N+
ET (vi) \ V1}, W2 = {w− : w ∈ N+

ET (vi) \ V1}, W3 = N+
ET (vi) ∩ V1;

Suppose that PS(ET ) is a connected graph. Then V2 is of even order or V3 is nonempty

by Lemma 4.2. Hence, by Theorem 2.1, χ′wo(ET ) ≤ 2. So, in the following we consider that

PS(ET ) is not a connected graph. If both U1 and W1 are empty sets, then U3 and W3 are

nonempty. Since T is a tournament, there are edges between U3 and W3. Thus, PS(ET )

is a connected graph. Therefore, without loss of generality, we may assume that U1 6= ∅.
Let K be the nontrivial component of PS(ET ) that contains U1. It suffices to show the

following two claims.

Claim 1 If vi satisfies A(N−T (vi), N
+
T (vi)) 6= ∅, then χ′wo(ET ) ≤ 2.

Proof. We have U1∪U3∪X ∪W3∪W2 ⊆ V (K). If U2 ⊆ V (K), then PS(ET ) is connected

because δ0(ET ) ≥ 1 and W1 (if exists) is an independent set of PS(ET ). So, we assume

that there exists a vertex v−j ∈ U2 such that v−j /∈ V (K). Then vj is a source of the

subdigraph of ET induced by N−ET (vi). Since d−T (vj) > 0, there must be a vertex v+t ∈W1

such that v+t v
−
j ∈ E(PS(ET )) and v+t /∈ V (K). We have that vt is a sink of subdigraph

of ET induced by N+
ET (vi). Thus, PS(ET ) has two nontrivial components K and R with

R = I−j ∪ I
+
t . If both sj and st are even, then V (R) ∩ V2 is of even size and so V (K) ∩ V2

is of even size by Lemma 4.2. If both sj and st are odd, then V (R) ∩ V3 6= and V (K) ∩ V2
is of even size by Lemma 4.2. If exactly one of si and sj is odd, then V (R) ∩ V3 6= ∅, and

V (K) ∩ V3 6= ∅ because dET (vi) = q − si, si is even and dET (v+j ) = dET (v−t ) = q − sj − st.
Hence, by Theorem 2.1, χ′wo(ET ) ≤ 2. �
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Claim 2 If A(N−T (v), N+
T (v)) = ∅ for each v ∈ Q2, then χ′wo(ET ) ≤ 2.

Proof. If |N+
T (vi)| ≥ 2 and |N−T (vi)| ≥ 2, then PS(ET ) is a connected graph. So, without

loss of generality we may assume that |N−T (vi)| ≥ 2 and |N+
T (vi)| = 1. If vi ∈ V1 or W3 6= ∅,

then PS(ET ) is a connected graph. So, in the following we assume that vi /∈ V1 and

W3 = ∅. Let vj ∈ N+
ET (vi). Thus, PS(ET ) has two nontrivial components K and R with

R = I+i ∪ I
−
j . If sj is even, then V (R) ∩ V2 is of even size and so V (K) ∩ V2 is of even size

by Lemma 4.2. If sj is odd, then q is odd because vi /∈ V1. Since ET is good, there is a

vertex u ∈ Q2 with u /∈ Ii. Then V (R)∩ V3 = I+i and V (K)∩ V3 6= ∅ as dET (u) is odd and

{u+, u−} ⊆ V (K). Again by Theorem 2.1, χ′wo(ET ) ≤ 2. �

This completes the proof of Theorem 4.4.

Theorem 4.5. For any extended tournament ET , it holds that

χ′wo(ET ) =


0 if T = K1,

1 if ` = n and χ′wo(T ) = 1,

3 if ` = n and χ′wo(T ) = 3 or ET is bad,

2 otherwise.

Proof. By Theorem 4.1, Theorem 4.3 and Theorem 4.4, we only need to declare the case

that χ′wo(ET ) = 1. Clearly, if there are si and sj with different parity, then χ′wo(ET ) ≥ 2.

By Theorem 4.1, if each si is odd, then χ′wo(ET ) = χ′wo(T ). Therefore, in this case,

χ′wo(ET ) = 1 if and only if χ′wo(T ) = 1. Now, assume that each si is even. Thus, we have

that for each vertex v ∈ ET , both d+ET (v) and d−ET (v) are even, then χ′wo(ET ) ≥ 2.

Proposition 4.6. If χ′wo(ET ) = 3, then ET admits a 2-edge coloring such that condition

(
−−→
WO) is satisfied at each vertex apart from a prescribed vertex x ∈ V (T ).

Proof. If ` = n and χ′wo(T ) = 3, then |V (T )| is odd and T has a peripheral vertex, say a

sink vi, by Theorem 1.1. Hence, q = |V (ET )| is odd. Observe that PS(ET ) has exactly

one nontrivial component K with V (PS(ET )) = V (K) ∪ I−i . If x ∈ V1, then let F =

{x}∪(V2 \I−i ). If x+ ∈ V2, then let F = V2 \({x+}∪I−i ). Take an F -join H in K, and color

E(H) with color 1 and the rest of the edges of K with color 2. The obtained 2-coloring fits

the condition.

Now, suppose that ET is bad. We have that |V (ET )| is odd and δ0(T ) ≥ 1 by the

definition. Then χ′wo(T ) ≤ 2 by Theorem 1.1. Let ET ′ be the extended tournament

obtained from ET by deleting x. If χ′wo(ET
′) ≤ 2, then we obtain a 2-edge coloring of ET

from ET ′ by the coloring (C) such that the condition (
−−→
WO) is satisfied at each vertex apart

from x ∈ V (ET ). Now, we only need to show that χ′wo(ET
′) ≤ 2. If x ∈ Q2, then each

independent set is odd in ET ′. So, χ′wo(ET
′) = χ′wo(T ) ≤ 2. If x ∈ Q1, then we have that

ET ′ is good. Therefore, by Theorem 4.5, we have χ′wo(ET
′) ≤ 2.
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By Proposition 4.6, we obtain directly the following proposition.

Proposition 4.7. For any extended tournament ET , it holds that

def(ET ) =

{
1 if ` = n and χ′wo(T ) = 3 or ET is bad,

0 otherwise.

5 Weak-odd edge covering of tournaments

Here we show that Question 1.4 holds for tournaments.

Proposition 5.1. [6] Every tournament admits a 2-edge coloring such that condition (
−−→
WO)

is satisfied at each vertex apart from a prescribed vertex v ∈ V (T ).

Theorem 5.2. Let T be a tournament. If χ′wo(T ) = 3, then T admits a weak-odd 2-edge

covering ϕ such that the intersection of color classes is contained within a singleton arc in

A(T ).

Proof. By Theorem 1.1, we have that T is nontrivial, of odd order, and has just one periph-

eral vertex. Suppose that T has a sink y. By Proposition 5.1, T admits a 2-edge coloring φ

such that (
−−→
WO) is satisfied at each vertex apart from y. Let T ′i be the spanning subdigraph

of T whose arc set is the color set φ−1(i) for i ∈ [2]. Then both d−
T ′1

(y) and d−
T ′2

(y) are even.

If there is an arc xy ∈ A(T ) such that φ(xy) = i and (
−−→
WO) is satisfied by color i at x for

i ∈ [2], then ϕ can be given as follows: ϕ(xy) = {1, 2} and ϕ = φ for other arcs. It is

obvious to see that the condition (
−−→
WO) is satisfied by color 3− i at y and others are taken

care of by the same color under φ for i ∈ [2].

Now, suppose that for any arc xy ∈ A(T ) and i ∈ [2], if φ(xy) = i, then only color 3− i
satisfies the condition (

−−→
WO) at x. Without loss of generality, assume that there is an arc

xy ∈ A(T ) with φ(xy) = 1, which implies that the condition (
−−→
WO) is satisfied by color 2

at x. Then there is a vertex z such that zx ∈ A(T ) with φ(zx) = 2. We can define ϕ as

follows: ϕ(zx) = 1, ϕ(zy) = {1, 2}, ϕ(xy) = 2 and ϕ = φ for other arcs. It is easy to check

that every vertex in V (T ) \ {x, y, z} is taken care of by the same color as in φ. Note that

T is a tournament of odd order, thus d+T (x) and d−T (x) have the same parity. Combining

that the condition (
−−→
WO) is satisfied by color 2 at x, we have that both d+

T ′2
(x) and d−

T ′2
(x)

are odd whereas d+
T ′1

(x) and d−
T ′1

(x) are even. Let Ti be the spanning subdigraph of T whose

arc set is in ϕ−1(i) for i ∈ [2]. We finish the proof by the following.

Assume that the condition (
−−→
WO) is satisfied by color i at z under φ for i ∈ [2]. Then

we have that φ(zy) = 3 − i, d+
T ′i

(z) and d−
T ′i

(z) are odd whereas d+
T ′3−i

(z) and d−
T ′3−i

(z) are

even. Combining the coloring ϕ, we have that d+T1
(x) = d+

T ′1
(x) − 1, d−T1

(x) = d−T1
(x) + 1,

d+Ti
(z) = d+

T ′i
(z) + 2(2− i), d−Ti

(z) = d−
T ′i

(z) and d−T3−i
(y) = d−

T ′3−i
(y)− (−1)i are odd.

Hence, we are done.
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