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Abstract

For integers k and d with k ≥ 2d > 0, a circular k/d-flow of a graph G is an

orientation together with a mapping from E(G) to {±d,±(d + 1), . . . ,±(k − d)} such

that, for each vertex of G, the sum of images on outgoing edges is equal to the sum

of images on incoming edges. Related to the Four Color Problem, a classical result of

Tutte shows that a cubic graph admits a circular 4/1-flow if and only if it is Class I

(i.e., 3-edge-colorable). Tutte’s 3-flow conjecture implies that every 5-regular Class I

graph admits a nowhere-zero 3-flow (equivalently, a circular 6/2-flow) as a special case.

Steffen in 2015 conjectured that every (2t+ 1)-regular Class I graph admits a circular

(2t + 2)/t-flow. He also proposed a more general conjecture that every (2t + 1)-odd-

edge-connected (2t + 1)-regular graph admits a circular (2t + 2)/t-flow for any integer

t ≥ 2, which includes the Circular Flow Conjecture of Jaeger(1981) stating that every

2t-edge-connected graph admits a circular (2t + 2)/t-flow for any even t ≥ 2. Jaeger’s

conjecture was disproved in 2018 for all even t ≥ 6, and based on these results, Mattiolo

and Steffen recently constructed counterexamples to Steffen’s conjecture for Class I

graphs when t = 4k + 2 for any integer k ≥ 1.

In this paper, we extend the above results and construct infinitely many 2t-edge-

connected (2t+1)-regular Class I graphs without circular (2t+2)/t-flows for any integer

t ∈ {6, 8, 10} or t ≥ 12. Our result provides more general counterexamples to Steffen’s

two conjectures for both even and odd t, and simultaneously generalizes the counterex-

amples of Jaeger’s Circular Flow Conjecture to regular Class I graphs.

1 Introduction

We consider loopless graphs with possible multiple edges in this paper. A graph G =

(V (G), E(G)) is k-edge-colorable if there is a mapping from E(G) to a color set {1, 2, . . . , k}
such that any two adjacent edges receive different colors. The chromatic index of G, denoted
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by χ′(G), is the minimum integer k such that G is k-edge-colorable. The celebrated Vizing’s

theorem [21] tells us that ∆(G) ≤ χ′(G) ≤ ∆(G) + µ(G) for any graph G, where ∆(G)

denotes the maximum degree of G and µ(G) denotes the multiplicity of G. A graph G is

called Class I if χ′(G) = ∆(G), and Class II otherwise.

Following papers [2, 10, 11], for given integers k and d with k ≥ 2d > 0, a circular

k/d-flow of a graph G is an orientation D together with a mapping f : E(G) 7→ {±d,±(d+

1), . . . ,±(k − d)} such that, for each vertex of G, the sum of images on outgoing edges is

equal to the sum of images on incoming edges, that is,∑
e∈∂+

D(v)

f(e)−
∑

e∈∂−D(v)

f(e) = 0, ∀v ∈ V (G).

When d = 1, it is called a nowhere-zero k-flow introduced by Tutte [20] from the dual of

planar map coloring problem. The flow index φ(G) of a graph G is defined as the infimum

among all rational numbers k
d such that G admits a circular k/d-flow. It is known from [2]

that φ(G) does exist as a rational number for any bridgeless graph G. Clearly, a graph G

satisfies φ(G) = 2 if and only if every vertex of G is of even degree (or equivalently, G has

no odd edge-cut). Thus odd edge-cuts are critical for many flow problems, as indicated in

[8, 12, 22]. A graph is called (2t+ 1)-odd-edge-connected if each of its odd edge-cuts has a

size at least 2t+ 1.

1.1 Flow Conjectures and Known Results

Tutte’s work [20] showed that a plane graph is k-face-colorable if and only if it admits a

nowhere-zero k-flow. Hence, the Four Color Theorem is equivalent to saying that φ(G) ≤ 4

for every bridgeless planar graph G, and Grötzsch’s theorem [3] can be stated as that

φ(G) ≤ 3 for every 5-odd-edge-connected planar graph G. Some generalizations of those

classical results in literature [3, 7, 22] suggest the following conjecture.

Conjecture 1.1 For every (2t+ 1)-odd-edge-connected planar graph G, φ(G) ≤ 2 + 2
t .

The Petersen graph P10 satisfies φ(P10) = 5 (see [18]), which indicates that the case t = 1

in Conjecture 1.1 cannot be extended to nonplanar graphs; but Tutte’s 5-flow conjecture

asserts that φ(G) ≤ 5 for every bridgeless graph G regardless of planarity. Tutte also

conjectured that the case t = 2 in Conjecture 1.1, which is Grötzsch’s theorem [3], may

be true for all 5-odd-edge-connected graphs, known as Tutte’s 3-flow conjecture. Jaeger [7]

further proposed a general Circular Flow Conjecture, where he believed that all cases of

even t should be true for nonplanar graphs.
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Steffen in [19] made a conjecture suggesting that Conjecture 1.1 may be true for non-

planar graphs whenever t ≥ 2.

Conjecture 1.2 [19] Let t ≥ 2 be an integer. Then for every (2t + 1)-odd-edge-connected

graph G, φ(G) ≤ 2 + 2
t .

Some breakthrough progresses have been made on those problems, and as a result,

Jaeger’s Circular Flow Conjecture has been disproved for each even t ≥ 6.

Theorem 1.3 [4] For each even t ≥ 6, there exists a 2t-edge-connected nonplanar graph G

satisfying φ(G) > 2 + 2
t .

Theorem 1.4 [10, 11, 16] Each of the following statements holds.

(i) [16] For every bridgeless graph G, φ(G) ≤ 6.

(ii)[11] For every (6p− 1)-odd-edge-connected graph G, φ(G) ≤ 2 + 2
2p−1 .

(iii)[10] For every (6p+ 1)-odd-edge-connected graph G, φ(G) ≤ 2 + 1
p .

(iv)[11] For every (6p+ 3)-odd-edge-connected graph G, φ(G) < 2 + 1
p .

By a splitting lemma of Zhang [22] for odd-edge-connectivity, many flow problems, such

as Conjectures 1.1 and 1.2, can be reduced to regular graphs. In fact, an equivalent version

of Conjecture 1.2 on regular graphs was proposed by Steffen in [14, 19]. Tait in 1880 already

proved that the Four Color Theorem is equivalent to the statement that every bridgeless

cubic planar graph is Class I. A classical result of Tutte shows that a cubic graph G has

φ(G) ≤ 4 if and only if it is Class I. Steffen [14, 19] also proposed a conjecture on the

generalization of Tutte’s classical result and suggested that Class I regular graphs may be

easier for flow problems.

Conjecture 1.5 [19] For every (2t+ 1)-regular Class I graph G, φ(G) ≤ 2 + 2
t .

Note that, every (2t+ 1)-regular Class I graph is (2t+ 1)-odd-edge-connected, and thus

Conjecture 1.5 is a special case of Conjecture 1.2, but not vice versa. Those problems are

related to a conjecture of Seymour [15] that every (2t + 1)-odd-edge-connected (2t + 1)-

regular planar graph is Class I. One can observe that, if both Seymour’s conjecture and

Conjecture 1.5 are valid, then Conjecture 1.1 follows. It is known from [5, 17] that Seymour’s

conjecture and Conjectures 1.1, 1.2, and 1.5 are all confirmed for K4-minor-free graphs.

Conjectures 1.2 and 1.5 are both posted on the Open Problem Garden and rated as two

star [14]. However, Theorem 1.3 has already provided a negative answer to Conjecture 1.2

whenever t ≥ 6 is even. Recently, modifying the construction methods in [4] with some new

coloring ideas, Mattiolo and Steffen [13] disproved Conjecture 1.5 for some even t.
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Theorem 1.6 [13] Let t = 4k+ 2, where k ≥ 1 is an integer. Then there exists a (2t+ 1)-

regular Class I graph G such that φ(G) > 2 + 2
t .

1.2 Main Result

Our motivation is to further push forward the above problems and give a more extensive

construction than Theorems 1.3 and 1.6, especially for odd integers t.

Theorem 1.7 For any integer t with t ≥ 12 or t ∈ {6, 8, 10}, there exists a 2t-edge-

connected (2t+ 1)-regular Class I graph G such that φ(G) > 2 + 2
t .

It is worth noting that the construction of Theorem 1.6 in [13] contains some small even

edge-cuts, while our new methods overcome this barrier. Hence, our Theorem 1.7 generalizes

Theorem 1.3 on counterexamples of Jaeger’s Circular Flow Conjecture to regular Class I

graphs.

Note that the construction in Theorem 1.6 is for even integers t in the form of t = 4k+2,

but our new construction works for not only all even t ≥ 6 but also all odd t ≥ 13. Thus

our Theorem 1.7 provides more general counterexamples to Steffen’s Conjectures 1.2 and

1.5 not only for even integers with a wider range but also for large odd integers. As far

as we know, this is the first time appearing in literature to response the above conjectures

with negative answer for odd t.

For even integers t, our constructions are mainly based on the methods developed in

[4, 13], especially we modify the construction strategies in [4] and the edge-coloring ideas

in [13] to achieve our purpose. For odd integers t, another novelty is that we develop a

new method to construct graphs without circular (2 + 2
t )-flows from some newly-developed

orientation techniques in [11].

We feel that Conjectures 1.2 and 1.5 and Theorems 1.6 and 1.7 are of interest for both

even and odd integers t. Recall that, for the case t = 1, the counterpart of Theorem 1.7 is

Tutte’s classical theorem that a cubic graph G is Class I if and only if φ(G) ≤ 4. In the

case t = 2, the truth of Tutte’s 3-flow conjecture would imply that every 5-regular Class I

graph G satisfies φ(G) ≤ 3. For the case t = 3, Conjecture 1.2 states that φ(G) ≤ 8
3 for any

7-odd-edge-connected graph G, whose truth implies a conjecture of Li, Thomassen, Wu,

and Zhang [10] that every 6-edge-connected graph G satisfies φ(G) < 3. For each integer

t ∈ {2, 3, 4, 5, 7, 9, 11}, it remains an interesting open problem that whether the statement

of Theorem 1.7 or its opposite direction (on Conjectures 1.2 and 1.5) is true.
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2 Preliminary

In this section, we will first introduce some more necessary notation and definitions. We

use dG(v) to represent the degree of a vertex v in a graph G. Denote by kG the k-extended

graph of G with V (kG) = V (G) and each edge of E(G) replaced by k multiple edges.

Suppose that A and B are two disjoint subsets of V (G). Denote by ∂G(A,B) the set of

edges of G with one end in A and the other end in B. When A = Bc = V (G) \B, ∂G(A,B)

is abbreviated as ∂G(A).

For an orientation D of G, denote by ∂+D(A) and ∂−D(A) the set of edges with only tails

and only heads in A, respectively. Moreover, we use ∂+D(A,B) to denote the set of edges

in ∂D(A,B) with heads in B and tails in A and denote the set ∂D(A,B) \ ∂+D(A,B) by

∂−D(A,B). When the set contains exactly one vertex, say A = {x}, we omit the brace in the

above notation. Specially, ∂G(x, y) denotes the set of edges between x and y. In addition,

denote by d+D(v) = |∂+D(v)| the outdegree of v in D and d−D(v) = |∂−D(v)| the indegree of v in

D. If d+D(v)−d−D(v) ≡ 0 (mod k) for every vertex v of G, we call D a modulo k-orientation.

The following two lemmas are vital for relating orientations to circular flows, which will

be frequently used through our proofs.

Lemma 2.1 [7] The flow index φ(G) of a graph G satisfies φ(G) ≤ 2 + 1
p if and only if G

admits a modulo (2p+ 1)-orientation.

Lemma 2.2 [11] A graph G admits a circular (2 + 2
2p−1)-flow if and only if 2G admits an

orientation D such that

d+D(v)− d−D(v) ≡ 4pdG(v) (mod 8p), ∀v ∈ V (G). (1)

Lemma 2.3 Let G be a graph with a cycle C. If G−E(C) is bridgeless, then φ(G−E(C)) ≥
φ(G).

Proof. Let G′ = G − E(C), and let φ(G′) = k
d . Suppose that G′ has a circular k/d-flow

(D′, f ′). We obtain an orientation D of G from D′ by orienting the edges in E(C) clockwise.

Let f(e) = f ′(e) for each e ∈ E(G)− E(C), and f(e) = d for each e ∈ E(C). Then (D, f)

is clearly a circular k/d-flow of G. Thus we have φ(G− E(C)) = k
d ≥ φ(G).

Motivated from some ideas in [4] (see Definition 3.6 below), we define a new 2-sum

operation of two graphs for handling circular (2 + 2
2p−1)-flows.

Definition 2.4 Let G1 and G2 be two graphs with x1, y1 ∈ V (G1), |∂G1(x1, y1)| ≥ 2p − 2,

and x2y2 ∈ E(G2). Define G = G1(x1y1) ⊕1
2 G2(x2y2), the 2-sum of G1, G2 on x1y1 and
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x2y2, to be the graph obtained by deleting one edge between x2, y2 and 2p− 2 parallel edges

between x1, y1; and then identifying x1, x2 as a new vertex x and y1, y2 as a new vertex y.

When the vertices x1, y1 ∈ V (G1) and x2, y2 ∈ V (G2) are clear from context, we usually

write G = G1 ⊕1
2 G2 below for convenience.

Lemma 2.5 Let G1 and G2 be two graphs without circular (2 + 2
2p−1)-flows. Assume that

x1, y1 ∈ V (G1), |∂G1(x1, y1)| ≥ 2p− 2, and x2y2 ∈ E(G2). Then G = G1 ⊕1
2 G2 admits no

circular (2 + 2
2p−1)-flow.

Proof. Suppose to the contrary that G = G1(x1y1)⊕1
2G2(x2y2) admits a circular (2+ 2

2p−1)-

flow. By Lemma 2.2, 2G has an orientation D such that d+D(v)−d−D(v) ≡ 4pdG(v) (mod 8p)

for each v ∈ V (G). Let F be a set of 2p − 2 edges in ∂G1(x1, y1), and let 2F be the set of

corresponding 4p − 4 parallel edges in ∂2G1(x1, y1). Denote by D1 the restriction of D on

E(2(G1 \ F )) and denote by D2 the restriction of D on E(2(G2 \ {x2y2})).
We denote

d+D1
(x1)− d−D1

(x1) ≡ 4pdG1(x1) + t1 (mod 8p), (2)

d+D2
(x2)− d−D2

(x2) ≡ 4pdG2(x2) + t2 (mod 8p), (3)

where integers t1 and t2 satisfy that t1, t2 ∈ {0,±2,±4, . . . ,±(4p− 2), 4p}.
We first claim that

t1 ∈ {±(4p− 2), 4p} and t2 ∈ {±4,±6, . . . ,±(4p− 2), 4p}. (4)

Note that t1 and t2 are even integers, since d+D1
(xi)− d−D1

(xi) is even for i ∈ {1, 2}. By

contradiction, we suppose that t1 ∈ {0,±2,±4, . . . ,±(4p− 4)}. Let D′1 be the orientation

obtained by keeping the orientation of D1 and orienting the edges in 2F with 2p − 2 − t1
2

arcs away from x1 and 2p− 2 + t1
2 arcs into x1. Then we have

d+
D′1

(x1)− d−D′1(x1) ≡ d+D1
(x1)− d−D1

(x1)− t1 ≡ 4pdG1(x1) (mod 8p).

As d+
D′1

(v)− d−
D′1

(v) ≡ 4pdG1(v) (mod 8p) for every v ∈ V (G1) \ {y1}, we also have

d+
D′1

(y1)− d−D′1(y1) ≡
∑

v∈V (G1)\{y1}

d−
D′1

(v)−
∑

v∈V (G1)\{y1}

d+
D′1

(v)

≡ −
∑

v∈V (G1)\{y1}

4pdG1(v)

≡ −4p(2|E(G1)| − dG1(y1))

≡ 4pdG1(y1) (mod 8p).
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Hence G1 admits a circular (2 + 2
2p−1)-flow by Lemma 2.2, a contradiction. So we conclude

that t1 ∈ {±(4p− 2), 4p}.
With a similar argument, if t2 ∈ {0,±2}, then we obtain an orientation D′2 of 2G2 by

keeping the orientation of D2 and orienting the remaining two parallel edges in ∂2G2(x2, y2)

with 1− t2
2 arcs from x2 to y2 and 1 + t2

2 arcs from y2 to x2, which implies that D′2 satisfies

d+
D′2

(v) − d−
D′2

(v) ≡ 4pdG2(v) (mod 8p) for each v ∈ V (G2), resulting in a contradiction to

Lemma 2.2. This proves (4).

Next, we see from (4) that

t1 + t2 6≡ 4p (mod 8p).

Adding the left and the right of formulas (2) and (3), respectively, we can get that

d+D1
(x1)− d−D1

(x1) + d+D2
(x2)− d−D2

(x2) ≡ 4p(dG1(x1) + dG2(x2)) + t1 + t2 (mod 8p).

Since dG(x) = dG1(x1)− 2p− 2 + dG2(x2)− 1, we obtain that

d+D(x)− d−D(x) = d+D1
(x1)− d−D1

(x1) + d+D2
(x2)− d−D2

(x2)

≡ 4p(dG1(x1) + dG2(x2)) + t1 + t2

≡ 4pdG(x) + 4p(2p+ 3) + (t1 + t2)

≡ 4pdG(x) + 4p+ (t1 + t2)

6≡ 4pdG(x) (mod 8p).

This is a contradiction to Lemma 2.2. Hence G admits no circular (2 + 2
2p−1)-flow.

A k-cycle is a cycle on k vertices. Let pCk be a k-cycle with vertices: w1, w2, . . . , wk

and each edge of which is replaced by p parallel edges. Let W[k] = K1 ∨ kC2k+3, where the

operation ‘∨’ means connecting each vertex of kC2k+3 with a single edge to a K1 with a

single vertex z.

Lemma 2.6 (see [4]) For any integer p ≥ 1, W[2p−1] has no circular (2 + 1
p)-flow.

Proof. The proof of this lemma has appeared in [4], and we present the argument here for

the reader, which may be helpful in understanding the proof of the next Lemma 2.7.

Suppose to the contrary that W[2p−1] admits a circular (2+ 1
p)-flow. According to Lemma

2.1, there is a modulo (2p+1)-orientation D of W[2p−1], i.e., d+D(v)−d−D(v)≡0 (mod 2p+1)

for each vertex v ∈ V (W[2p−1]). Since every vertex v of V (W[2p−1]) is of odd degree, we have

d+D(v) − d−D(v) ∈ {±(2p + 1)}. Let V + = {v ∈ V (W[2p−1]) | d+D(v) − d−D(v) = 2p + 1} and
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V − = {v ∈ V (W[2p−1]) | d+D(v)− d−D(v) = −(2p+ 1)}. As there are odd number of vertices

in the cycle C4p+1, there must be two adjacent vertices wj , wj+1 such that they are both in

V + or both in V −, i.e., d+D(wj)− d−D(wj) = d+D(wj+1)− d−D(wj+1) ∈ {±(2p+ 1)}. Then we

have

4p = |∂G({wj , wj+1})| ≥ ||∂+D({wj , wj+1})| − |∂−D({wj , wj+1})|| = 4p+ 2,

a contradiction. Therefore W[2p−1] admits no circular (2 + 1
p)-flow for any integer p ≥ 1.

Lemma 2.7 For any integer p ≥ 2, W[2p−2] has no circular (2 + 2
2p−1)-flow.

Proof. The proof is similar to the approach of proving Lemma 2.6, but using a different

Lemma. By contradiction, suppose that W[2p−2] has a circular (2 + 2
2p−1)-flow. By Lemma

2.2, there is an orientation D of 2W[2p−2] satisfying

d+D(z)− d−D(z) ≡ 4p(4p− 1) (mod 8p), and

d+D(wi)− d−D(wi) ≡ 4p(4p− 3) (mod 8p), for each 1 ≤ i ≤ 4p− 1.

Thus d+D(v)− d−D(v) ∈ {±4p} for each v ∈ V (W[2p−2]).

Since |V (C4p−1)| is odd, there are two adjacent vertices wi, wi+1 such that d+D(wi) −
d−D(wi) = d+D(wi+1)− d−D(wi+1) ∈ {±4p}. Furthermore, we have

|∂D({wi, wi+1})| = 8p− 4 < 8p = ||∂+D({wi, wi+1})| − |∂−D({wi, wi+1})||,

which leads to a contradiction. So W[2p−2] has no circular (2 + 2
2p−1)-flow.

One of the referees kindly suggested us that most of the lemmas in this section could

also be proved by using the balanced valuations theorem of Bondy [1] and Jaeger [6], in

which some arguments might become even shorter. Those arguments are very similar to

the proofs above, and readers interested in this approach may take it as an exercise.

3 Proof of Theorem 1.7

In this section, we prove our main result according to the parity of t. We will first con-

struct some graphs and then verify their desired properties accordingly. The methods and

constructions in this part are mainly motivated from [4, 11, 13].
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3.1 When t is odd

Let t = 2p− 1 with p ≥ 7. In this subsection, we will construct a (4p− 2)-edge-connected

(4p+ 1)-regular Class I graph J with φ(J) > 2 + 2
2p−1 .

Let G0 = K4p−2 be a complete graph with vertices v1, v2, . . . , v4p−2. We will modify

the graph G0 and apply the 2-sum operations to construct a (4p− 1)-regular graph J first.

Later on, we shall present several lemmas to show that J admits no circular (2+ 2
2p−1)-flow,

J is Class I (or equivalently, (4p − 1)-edge-colorable), and J is (4p − 2)-edge-connected,

respectively.

Denote p = 3r + s, where r is a non-negative integer and s ∈ {1, 2, 3}. Notice that r

and s are unique for fixed p. Define a multiset A of edges with

A =


∅, for s = 1,

{v4p−3v4p−2, v4p−3v4p−2}, for s = 2,

{v4p−5v4p−4, v4p−4v4p−3, v4p−3v4p−2, v4p−2v4p−5}, for s = 3.

Now we are ready to construct the graph J by the following steps .

(1). The graph G1 is derived from G0 by adding two new vertices x1, x2, two parallel edges

x1x2, and edge-set {x1v1, x2v2, v1v2}
⋃
{xivj |i ∈ {1, 2}, j ∈ {3, 4, . . . , 2p}}.

(2). Let G2 be the graph obtained from G1 by adding edges of 2r vertex-disjoint triangles

v2p+3i−2v2p+3i−1v2p+3i, where 1 ≤ i ≤ 2r.

(3). Denote by Q the graph derived from G2 by adding all edges of the multiset A.

(4). Let Qi(1 ≤ i ≤ 4p− 1) be copies of Q, where the corresponding vertex of v is written

as vi. For each i ∈ {1, 2, . . . , 4p− 1}, apply the 2-sum operation defined in Definition

2.4 on wiwi+1 of W[2p−2] and xi1x
i
2 of Qi, where w4p = w1; and then delete the edges

of cycle w1w2 · · ·w4p−1w1. The final graph is J (see Figure 3.1).

Theorem 3.1 The graph J is a (4p − 1)-regular, (4p − 2)-edge-connected, Class I graph

without circular (2 + 2
2p−1)-flows, for any integer p ≥ 7.

It is straightforward to check that J is (4p − 1)-regular. So the proof of Theorem

3.1 follows from the lemmas below. We shall prove the facts that J admits no circular

(2 + 2
2p−1)-flow and J is Class I, respectively.

Lemma 3.2 The graph Q has no circular (2 + 2
2p−1)-flows, for any integer p ≥ 7.
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Figure 1: The graph J.

Proof. Suppose to the contrary that Q admits a circular (2 + 2
2p−1)-flow. By Lemma 2.2,

there is an orientation D of 2Q such that

d+D(vi)− d−D(vi) ≡ 4p(4p− 1) (mod 8p), ∀1 ≤ i ≤ 4p− 2, and

d+D(xj)− d−D(xj) ≡ 4p(2p+ 1) (mod 8p), for any j ∈ {1, 2}.

Thus d+D(v)− d−D(v) ∈ {±4p} for any v ∈ V (Q).

Let

V + = {v ∈ V (Q) | d+D(v)− d−D(v) = 4p} and

V − = {v ∈ V (Q) | d+D(v)− d−D(v) = −4p}.

Clearly, |V +| = |V −| = 2p. Moreover, x1, x2 are not in the same part of V +, V −.

Otherwise, we must have

8p− 4 = |∂D({x1, x2})| ≥ |(d+D(x1)− d−D(x1)) + (d+D(x2)− d−D(x2))| = 8p,

a contradiction.

For each i ∈ {3, 4, . . . , 2p}, no matter which part vi is in, there is exactly one edge of

{vix1, vix2} in ∂Q(V +, V −). The path x1v1v2x2 provides at most 3 edges to ∂Q(V +, V −).

For any triangle added inside the complete graph, there are at most 2 edges in ∂Q(V +, V −).

Recall that r = p−s
3 , where s ∈ {1, 2, 3}. Hence, considering all the 2r triangles, there are
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at most 4r edges between V + and V − in Q. In addition, a 4-cycle contributes at most 4

edges to ∂Q(V +, V −). As D is an orientation of 2Q, we obtain the following inequalities.

When s = 1, we have

|∂D(V +, V −)| ≤ 2[(2p− 1)2 + 2 + (2p− 2) + 3 + 4r] = 8p2 − 4p

3
+

16

3
.

When s = 2, we have

|∂D(V +, V −)| ≤ 2[(2p− 1)2 + 2 + (2p− 2) + 3 + 4r + 2] = 8p2 − 4p

3
+

20

3
.

When s = 3, we have

|∂D(V +, V −)| ≤ 2[(2p− 1)2 + 2 + (2p− 2) + 3 + 4r + 4] = 8p2 − 4p

3
+ 8.

But, in each case, the above inequalities provide |∂D(V +, V −)| < 8p2 = 4p|V +| =

|∂+D(V +, V −)| when p ≥ 7. This is a contradiction. So Q admits no circular (2 + 2
2p−1)-flow.

Lemma 3.3 The graph J admits no circular (2 + 2
2p−1)-flow, for any integer p ≥ 7.

Proof. Let J ′0 = W[2p−2] and J ′i = Qi(x
i
1, x

i
2)⊕1

2 J
′
i−1(wiwi+1) for i ∈ {1, . . . , 4p− 1}, where

w4p = w1. By applying Lemma 2.5 repeatedly, J ′i has no circular (2 + 2
2p−1)-flow for any i.

It follows from Lemma 2.3 that the graph J , derived from J ′4p−1 by deleting the edges of

cycle w1w2 · · ·w4p−1, admits no circular (2 + 2
2p−1)-flow.

Given an edge-coloring of a graph, we say that a vertex v sees a color α if v is incident

with at least one edge of color α, and a vertex v sees a color-set S if S is composed of all

colors that v sees.

Denote by H the graph obtained by deleting the two parallel edges x1x2 from Q. We

may first give a suitable edge-coloring of H, and then apply this fact to verify that the

graph J is Class I. More specifically, we would pre-color some edges of H and then color

the rest edges of H with certain restricted properties. Here, our edge-coloring methods are

mainly motivated from the ideas of Mattiolo and Steffen [13] with certain modifications.

Lemma 3.4 The graph H is (4p− 1)-edge-colorable, and there is (4p− 1)-edge-coloring of

H such that x1 and x2 see the same color-set.

Proof. We follow the notation from the construction of Q except the labels of ver-

tices in V (Q) \ {x1, x2}. For convenience, reformulate the labels of these vertices as

v0, v1, v2, . . . , v4p−4, v∞ such that each of the following statements holds:
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• The labels are taken modulo 4p − 3, that is, we set vi = vj if i ≡ j (mod 4p − 3).

Besides, the vertex v∞ has a unique distinguished label.

• The set of vertices adjacent to x1 or x2 is {vj : j ∈ {0,±1,±2, . . . ,±(p− 1),∞}, and

a parallel edge is added between v0 and v1.

• The 2r triangles are added as: vp+jvp+1+jvp+2+j and v−(p+j)v−(p+1+j)v−(p+2+j) for

each j ∈ {0, 3, 6, . . . , 3(r − 1)}.

• When s = 2, A = {v2p−2v−(2p−2), v2p−2v−(2p−2)}, and

when s = 3, A = {v2p−2v2p−3, v2p−3v−(2p−2), v−(2p−2)v−(2p−3), v−(2p−3)v2p−2}.

Denote by T the set of edges of the 2r added triangles, and denote

X = {v0x1, v1x2} ∪ {vjxi | i ∈ {1, 2}, j ∈ {−1,∞,±2,±3, . . . ,±(p− 1)}}.

Let {0, 1, . . . , 4p− 2} be the colors that we need. When s ∈ {2, 3} (i.e., A 6= ∅), we first

properly color the edges of A by colors 4p− 3 and 4p− 2. Then we give the way of coloring

for the other edges as follows.

Step 1. Color the edges of Mj = {vjv∞} ∪ {v−i+jvi+j | i ∈ Z4p−3 \ {0}} by j, where

0 ≤ j ≤ 4p− 4. Denote ϕ(e) the color of e for each e ∈ ∪j=4p−4
j=0 Mj .

Step 2. Consider the even cycle C ′: v0v1v2 · · · vp−1v∞v−(p−1) · · · v−2v−1v0. Let c0 = v0, c1 =

v1, . . . , cp−1 = vp−1, cp = v∞, cp+1 = v−(p−1), . . ., and c2p−1 = v−1. Notice that,

each edge of C ′ has been assigned with a different color in Step 1, including 2p

colors of a color-set K with K = {2p − 1, 2p, . . . , 3p − 3, p − 1, 3p − 2, p, . . . , 2p −
4, 2p− 3, 2p− 2}. Now recolor E(C ′) by colors 4p− 3, 4p− 2 alternately. Then we

use the colors in K to color edge-set X by θ : X 7→ K as follows:

θ(x1ci) = ϕ(ci−1ci), for i ∈ Z2p \ {1}, and (5)

θ(x2cj) = ϕ(cjcj+1), for j ∈ Z2p \ {0}. (6)

Notice that the color ϕ(c0c1) is not used for any edge of X. So we can use it to

properly color the added parallel edge v0v1.

Step 3. For edges in T , consider the 6-cycle

C ′′j : vp+jv−(p+1+j)vp+2+jv−(p+2+j)vp+1+jv−(p+j)vp+j ,
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vp+j

vp+1+j

vp+2+j v−(p+2+j)

v−(p+1+j)

v−(p+j)

0

2p− 1

2p− 2

2p− 1

2p− 2

0

⇒

4p− 2

4p− 34p− 3

4p− 24p− 2

4p− 3

2p− 1

2p− 2 2p− 1

2p− 2

0 0

Figure 2: The coloring of Step 3 in Lemma 3.4.

where j ∈ {0, 3, 6, . . . , 3(r − 1)}. The edges of C ′′j have been colored with 0, 2p −
1, 2p − 2 in Step 1. Now we recolor E(C ′′j ) with colors 4p − 3, 4p − 2 alternately.

Then the original colors 0, 2p − 1, 2p − 2 can be assigned to the corresponding

triangles vp+jvp+1+jvp+2+jvp+j and v−(p+j)v−(p+1+j)v−(p+2+j)v−(p+j), for each j ∈
{0, 3, 6, . . . , 3(r − 1)}. The process is shown in Figure 2.

Note that the edges in A have been properly colored by colors 4p− 3 and 4p− 2 before

Step 1. Thus throughout the steps of the construction, we use 4p − 1 colors in total, and

the edge-coloring always keeps proper. Moreover, in Step 2, we have guaranteed that x1

and x2 see the identical color-set. In conclusion, the lemma holds.

Notice that there are lots of permutations for the color classes in edge-colorings. So

by Lemma 3.4 and by permutating colors, we can assign the colors of the edges incident

with xi1 and xi2 such that wi in J receives different colors for distinct i. In the process,

let us color the edges incident to xij with color-set i + {2, 4, . . . , 4p − 2}, where j ∈ {1, 2}
and i ∈ Z4p−1. Then we can check that wi receives 4p − 2 different colors, i.e., colors

i + {2, 4, . . . , 4p − 2} from xi1 and colors i + {1, 3, 5, . . . , 4p − 3} from xi−12 , where colors

are taken modulo 4p − 1. Finally, we color zwi by i, for 1 ≤ i ≤ 4p − 1. Consequently,

this provides a proper edge-coloring of J using 4p − 1 colors, and we obtain the following

conclusion.

Lemma 3.5 The graph J is (4p− 1)-edge-colorable.

Combining Lemmas 3.3 and 3.5, we need only to prove that J is (4p−2)-edge-connected

for Theorem 3.1. Assume S ⊆ V (J) and ∂(S) is an edge-cut with size less than 4p − 2

in J . Since J is (4p − 1)-regular, ∂(S) is a nontrivial edge-cut of J . For any vertex-

set Ai ⊂ V (Ki
4p) ⊂ V (J), we have ∂J(Ai) ≥ min{4p − 1, 8p − 8}. Thus ∂(S) cannot

separate the vertices of Ki
4p, for any 1 ≤ i ≤ 4p − 1. It is similar for the vertex-subset of
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{z, w1, w2, . . . , w4p−1}. Therefore, the small edge-cut ∂(S) only exists between W[2p−2] and

Qi \{xi1, xi2}, where there are exactly 4p−2 edges. Hence, J is (4p−2)-edge-connected and

Theorem 3.1 follows.

3.2 When t is even

For the even case, the main ideas follow from [4, 13] and the proof is similar to the case

that t is odd. So our proof will be brief.

Definition 3.6 [4] Let H1 and H2 be two graphs with u1, v1 ∈ V (H1), |∂H1(u1, v1)| ≥ 2p−1

and u2, v2 ∈ V (H2). Define H = H1 ⊕2
2 H2, the 2-sum of H1 and H2, to be the graph

obtained from H1 and H2 by deleting 2p − 1 parallel edges between u1 and v1 in H1, and

then identifying u1 and u2 as a new vertex u, and identifying v1 and v2 as a new vertex v.

Lemma 3.7 [4] Let H = H1 ⊕2
2 H2 be a 2-sum of H1 and H2 defined in Definition 3.6. If

neither H1 nor H2 admits a modulo (2p + 1)-orientation, then H = H1 ⊕2
2 H2 admits no

modulo (2p+ 1)-orientation.

Denote p = 3r + s, where r is a non-negative integer and s ∈ {0, 1, 2}. Define B as a

mulitiset of edges with

B =


∅ , for s = 0,

{v4p−1v4p, v4p−1v4p} , for s = 1,

{v4pv4p−3, v4p−3v4p−2, v4p−2v4p−1, v4p−1v4p} , for s = 2.

Recalling the definition of W[2p−1] stated in the above Lemma 2.6, we use the same

notation here. Let G be a complete graph with 4p vertices: v1, v2, . . . , v4p−1, v4p.

(1). The graph G1 is constructed from G by adding two new vertices x1, x2, and edges of

{x1x2}
⋃
{xivj | i ∈ {1, 2}, j ∈ {1, 2, . . . , 2p}}.

(2). LetG2 be the graph derived fromG1 by adding edges of 2r disjoint triangles v2p+3i−2v2p+3i−1v2p+3i,

1 ≤ i ≤ 2r.

(3). The graph obtained from G2 by adding all edges from B is denoted by M ′.

(4). Let M ′i(1 ≤ i ≤ 4p + 1) be the 4p + 1 copies of M ′. Denote the vertex v in the

i-th copy of M ′ by vi. For each i ∈ Z4p+1, apply the 2-sum operation defined in

Definition 3.6 on wiwi+1 of W[2p−1] and xi1x
i
2 of M ′i . Then delete the edges of cycle

w1w2 · · ·w4p+1w1, and the obtained graph is denoted by M .
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Our target in this subsection is to prove the even case of Theorem 1.7 as follows, which

generalizes Theorem 1.3 on the counterexamples of Jaeger’s Circular Flow Conjecture [4]

to regular Class I graphs and also extends Theorem 1.6 of Mattiolo and Steffen [13] to all

even integers t = 2p ≥ 6.

Theorem 3.8 For any integer p ≥ 3, the graph M is a (4p+1)-regular, 4p-edge-connected,

Class I graph without circular (2 + 1
p)-flows.

It is easy to check that M is (4p + 1)-regular. The proof that M is 4p-edge-connected

is similar to the proof of J aforementioned, and thus omitted. So we will only prove that

M admits no circular (2 + 1
p)-flow and show how to color E(M) with 4p+ 1 colors briefly.

Lemma 3.9 The graph M admits no circular (2 + 1
p)-flow, for any integer p ≥ 3.

By Lemmas 3.7 and 2.3, Lemma 3.9 follows from the fact that M ′ has no circular

(2 + 1
p)-flow. To this end, by Lemma 2.1 we just need to prove that M ′ has no modulo

(2p+ 1)-orientation as follows.

Lemma 3.10 The graph M ′ has no modulo (2p+ 1)-orientation, for any integer p ≥ 3.

Proof. Notice that dM ′(x1) = dM ′(x2) = 2p + 1 and dM ′(vi) = 4p + 1 for each i ∈
{1, 2, . . . , 4p}. Suppose to the contrary that there is a modulo (2p+ 1)-orientation D of M ′.

For each vertex v ∈ V (M ′), since the degree of v is odd, we have d+D(v)−d−D(v) ∈ {±(2p+1)}.
Let V + = {v ∈ M ′ | d+D(v) − d−D(v) = 2p + 1} and V − = {v ∈ M ′ | d+D(v) − d−D(v) =

−(2p+ 1)}. Clearly, |V +| = |V −| = 2p+ 1. Furthermore, x1, x2 are not in the same part of

V +, V −. Otherwise, there is no appropriate orientation for the edge x1x2.

Recall that p = 3r + s, where s ∈ {0, 1, 2}. For any i ∈ {1, 2, . . . , 2p}, no matter which

part vi is in, there is exactly one edge incident to vi in ∂D(V +, V −). For each triangle added

inside the complete graph, there are at most 2 edges in ∂D(V +, V −). Therefore we obtain

the following inequalities.

When s = 0, we have

|∂D(V +, V −)| ≤ (2p)2 + 2p+ 1 + 4r = 4p2 +
10p

3
+ 1.

When s = 1, we have

|∂D(V +, V −)| ≤ (2p)2 + 2p+ 1 + 4r + 2 = 4p2 +
10p

3
+

5

3
.

When s = 2, we have

|∂D(V +, V −)| ≤ (2p)2 + 2p+ 1 + 4r + 4 = 4p2 +
10p

3
+

7

3
.
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In any case, this derives a contradiction from |∂D(V +, V −)| < (2p+1)2 ≤ |∂+D(V +, V −)|
when p ≥ 3. Therefore M ′ admits no modulo (2p+ 1)-orientations as desired.

Similar to the last subsection, we give a proper edge-coloring with 4p + 1 colors of

H = M ′ \ {x1x2} first.

Lemma 3.11 There is a proper edge-coloring of H which uses 4p + 1 colors such that x1

and x2 see the same color-set.

Proof. Let {0, 1, 2, . . . , 4p} be the colors that we need. Except x1, x2, we label the vertices

of H from {v0, v1, . . . , v4p−2, v∞} as follows:

• Except the unique distinguished vertex v∞, the indices are taken modulo 4p− 1, that

is, we define vi = vj if i ≡ j (mod 4p− 1).

• The set of vertices adjacent to x1 or x2 is {vj | j ∈ {0,±1,±2, . . . ,±(p− 1),∞}}, and

we denote X as the edge-set {vjxi|i ∈ {1, 2}, j ∈ {0,∞,±1,±2, . . . ,±(p− 1)}}.

• The 2r triangles are added as: vp+jvp+1+jvp+2+j and v−(p+j)v−(p+1+j)v−(p+2+j) for

each j ∈ {0, 3, 6, . . . , 3(r − 1)}, and the set of these edges is denoted by T .

• When s = 1, B = {v2p−1v−(2p−1), v2p−1v−(2p−1)}.

When s = 2, B = {v2p−2v−(2p−1), v−(2p−1)v2p−1, v2p−1v−(2p−1), v−(2p−1)v2p−2}.

When B 6= ∅, we color the edges of B by colors 4p − 1 and 4p, alternatively. Then we

color the other edges of E(H) as follows:

Step 1. Color the edges of Mj = {vjv∞}∪{v−i+jvi+j | i ∈ Z4p−1\{0}} by j, for 0 ≤ j ≤ 4p.

Step 2. Consider the even cycle v0v1 · · · vp−1v∞v−(p−1) · · · v−1v0. Notice that, each edge of

the cycle has been assigned with a different color in Step 1. The set of colors used

for the cycle is K = {2p, 2p+ 1, . . . , 3p− 2, p− 1, 3p, p+ 1, p+ 2, . . . , 2p− 1}. Now

recolor the edges of the cycle with colors 4p−1, 4p alternately. Then use the colors

of K to color the edges of X. Suppose that the cycle is u1u2 · · ·u2pu1, and uiui+1

is colored by αi. Then x2ui and x1ui+1 are colored by αi for i ∈ Z2p.

Step 3. For edges in T , consider the 6-cycle

C : vp+jv−(p+j)vp+1+jv−(p+2+j)vp+2+jv−(p+1+j)vp+j ,

where j ∈ {0, 3, 6, . . . , 3(r − 1)}. Note that C has been colored with colors

0, 2p, 2p+ 1 in Step 1. Now we recolor E(C) with colors 4p− 1, 4p alternately, and
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then the colors in {0, 2p, 2p + 1} can be assigned to the corresponding triangles:

vp+jvp+1+jvp+2+j and v−(p+j)v−(p+1+j)v−(p+2+j), for each j ∈ {0, 3, 6, . . . , 3(r−1)}.
The process is similar to Step 3 of Lemma 3.4.

The desired edge-coloring of H has been given.

Now we are constructing the following coloring of M modulo 4p + 1. Using suitable

labels of the colors in Lemma 3.11, we assign the colors of edges incident to xi1 and xi2 such

that wi receives colors i+ {2, 4, . . . , 4p− 2, 4p} from xi1 and i+ {1, 3, 5, . . . , 4p− 3, 4p− 1}
from xi−12 . Then for each i ∈ Z4p+1, wi receives exactly 4p different colors. Finally, we color

zwi by i. Thus M is (4p+ 1)-edge-colorable, i.e., Class I.

By Lemmas 3.9 and 3.11, for any p ≥ 3, there is a (4p + 1)-regular 4p-edge-connected

and Class I graph M without circular (2 + 1
p)-flows. Combining Theorem 3.1 for the odd

case, Theorem 1.7 follows.

Remark: Note that the graphs constructed in Theorems 3.1 and 3.8 contain many parallel

edges. But we can easily modify them to obtain simple graphs by replacing each vertex

with a certain graph H. Here, for the graph J , H can be a (4p− 1)-regular (4p− 1)-edge-

connected Class I simple graph with one vertex deleted; for the graph M , H can be a

(4p+ 1)-regular (4p+ 1)-edge-connected Class I simple graph with one vertex deleted.

Although Conjecture 1.5 is false for t ≥ 12 and t ∈ {6, 8, 10}, it might be still possible

that Conjecture 1.5 is true for some small value t. The truth of the case t = 2 in Conjecture

1.5 is implied by Tutte’s 3-flow conjecture, and as learned from Yezhou Wu in 2017 (personal

communication with the first author), the following weaker problem is still open: Is it true

that φ(G) < 4 for every 5-regular Class I graph G?
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