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Abstract

Let G be a nontrivial edge-colored connected graph. An edge-cut R of G

is called a rainbow-cut if no two edges of it are colored the same. An edge-

colored graph G is rainbow disconnected if for every two vertices u and v of

G, there exists a u-v-rainbow-cut separating them. For a connected graph

G, the rainbow disconnection number of G, denoted by rd(G), is defined as

the smallest number of colors that are needed in order to make G rainbow

disconnected. In this paper, we first determine the maximum size of a connected

graph G of order n with rd(G) = k for any given integers k and n with 1 ≤
k ≤ n − 1, which solves a conjecture posed only for the case that n is odd in

[Chartrand et al., Rainbow disconnection in graphs, Discuss. Math. Graph

Theory 38(4)(2018), 1007–1021]. From this result and a result in their paper,

we obtain Erdős-Gallai-type results for rd(G). Secondly, we discuss bounds

on rd(G) for complete multipartite graphs, critical graphs with respect to the

chromatic number, minimal graphs with respect to the chromatic index, and

regular graphs, and we also give the values of rd(G) for several special graphs.

Thirdly, we get Nordhaus-Gaddum-type bounds for rd(G), and examples are

given to show that the upper and lower bounds are sharp. Finally, we show that

for a connected graph G, to compute rd(G) is NP-hard. In particular, we show

that it is already NP-complete to decide if rd(G) = 3 for a connected cubic

graph. Moreover, we show that for a given edge-colored (with an unbounded

number of colors) connected graph G it is NP-complete to decide whether G is

rainbow disconnected.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G =

(V (G), E(G)) be a nontrivial connected graph with vertex set V (G) and edge set

E(G). For v ∈ V (G), let dG(v) and NG(v) denote the degree and the neighborhood

of v in G (or simply d(v) and N(v) respectively, when the graph G is clear from the

context). We use δ(G) and ∆(G) to denote the minimum and maximum degree of

G, respectively. The notion G denotes the complement of G. For any notation or

terminology not defined here, we follow those used in [4].

Throughout this paper, we use Pn, Cn, Kn to denote the path, cycle and complete

graph of order n, respectively. Given two disjoint graphs G and H, the join of G

and H, denoted by G∨H, is obtained from the vertex-disjoint copies of G and H by

adding all edges between the vertices in V (G) and the vertices in V (H).

Throughout the paper, [k] denotes the set {1, 2, ..., k} of integers. Let G be a graph

with an edge-coloring c: E(G)→ [k], k ∈ N, where adjacent edges may be colored the

same. When adjacent edges of G receive different colors by c, the edge-coloring c is

called proper. The chromatic index of G, denoted by χ′(G), is the minimum number

of colors needed in a proper edge-coloring of G. By a famous theorem of Vizing [22],

one has that

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

for every nonempty graph G. If χ′(G) = ∆(G), then G is said to be in Class 1; if

χ′(G) = ∆(G) + 1, then G is said to be in Class 2.

A path is called rainbow if no two edges of the path are colored the same. An edge-

colored graph G is called rainbow connected if every two vertices of G are connected

by a rainbow path in G. An edge-coloring under which G is rainbow connected is

called a rainbow connection coloring. Clearly, if a graph is rainbow connected, it

must be connected. For a connected graph G, the rainbow connection number of

G, denoted by rc(G), is the smallest number of colors that are needed in order to

make G rainbow connected. The concept of rainbow connection was introduced by

Chartrand et al. [7] in 2008. For more details on rainbow connection, we refer the
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reader to a book [18] and two survey papers [17, 19].

In this paper, we investigate a new concept introduced by Chartrand et al. in [6]

that is somehow reverse to the rainbow connection.

An edge-cut of a connected graph G is a set F of edges such that G−F is discon-

nected. The minimum number of edges in an edge-cut of G is the edge-connectivity

of G, denoted by λ(G). We have the well-known inequality λ(G) ≤ δ(G). For two

vertices u and v of G, let λG(u, v) (or simply λ(u, v) when the graph G is clear from

the context), denote the minimum number of edges in an edge-cut F such that u and

v lie in different components of G− F . A u-v-path is a path with ends u and v. The

following proposition presents an alternate interpretation of λ(u, v) (see [12], [13]).

Proposition 1.1 For every two vertices u and v in a graph G, λ(u, v) is equal to

the maximum number of pairwise edge-disjoint u-v-paths in G.

An edge-cut R of an edge-colored connected graph G is called a rainbow-cut if

no two edges in R are colored the same. A rainbow-cut R of G is said to separate

two vertices u and v of G if u and v belong to different components of G− R. Such

a rainbow-cut is called a u-v-rainbow-cut. An edge-colored graph G is called rain-

bow disconnected if for every two vertices u and v of G, there exists a u-v-rainbow-cut

in G separating them. In this case, the edge-coloring is called a rainbow disconnection

coloring of G. For a connected graph G, we similarly define the rainbow disconnection

number (or rd-number for short) of G, denoted by rd(G), as the smallest number of

colors that are needed in order to make G rainbow disconnected. A rainbow discon-

nection coloring with rd(G) colors is called an rd-coloring of G.

One of the many interesting problems in extremal graph theory is Erdős-Gallai-

type problem which is used to determine the maximum or minimum size of a graph

with a given value of a graph parameter. We will obtain Erdős-Gallai-type results

for the graph parameter rd(G).

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum

or product of the values of a parameter for a graph and its complement. The name

“Nordhaus-Gaddum-type” is given because Nordhaus and Gaddum are the first to

establish [21] the following type of inequalities for the chromatic number in 1956.

They proved that if G and G are complementary graphs on n vertices whose chromatic

numbers are χ(G) and χ(G), respectively, then

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1,

n ≤ χ(G) · χ(G) ≤
(
n+ 1

2

)2

.
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For more results of Nordhaus-Gaddum-type, we refer to papers [8, 14, 15] and a

survey paper [2].

The remainder of this paper will be organized as follows. In Section 2, we deter-

mine the maximum size of a connected graph G of order n with rd(G) = k for given

integers k and n with 1 ≤ k ≤ n− 1. This solves a conjecture posed only for n odd

by Chartrand et al. in [6]. From this and a result in [6], we obtain Erdős-Gallai-type

results for rd(G). In Section 3, we discuss bounds on the rainbow disconnection num-

ber of graphs depending on some parameters, and we also give the values of rd(G)

for some well-known special graphs. In Section 4, we obtain Nordhaus-Gaddum-type

bounds for rd(G) and show that these bounds are sharp. In Section 5, we show that

to compute rd(G) for a connected graph G is NP-hard. In particular, we show that it

is already NP-complete to decide if rd(G) = 3 for a connected cubic graph G. More-

over, we show that for a given edge-colored (with an unbounded number of colors)

connected graph G, it is NP-complete to decide whether G is rainbow disconnected

under the given edge-coloring.

2 Erdős-Gallai-type results

In this section, we consider two kinds of Erdős-Gallai-type problems for rd(G).

Problem A. Given two positive integers n and k with 1 ≤ k ≤ n− 1, compute the

maximum integer g(n, k) such that for any graph G of order n, if |E(G)| ≤ g(n, k),

then rd(G) ≤ k.

Problem B. Given two positive integers n and k with 1 ≤ k ≤ n− 1, compute the

minimum integer f(n, k) such that for any graph G of order n, if |E(G)| ≥ f(n, k),

then rd(G) ≥ k.

It is worth mentioning that the two parameters f(n, k) and g(n, k) are equivalent

to the following two parameters. Let t(n, k) = min{|E(G)| : G is a connected graph

with |V (G)| = n and rd(G) ≥ k} and s(n, k) = max{|E(G)| : G is a connected graph

with |V (G)| = n and rd(G) ≤ k}. It is easy to see that g(n, k) = t(n, k + 1) − 1 for

1 ≤ k ≤ n− 2 and f(n, k) = s(n, k − 1) + 1 for 2 ≤ k ≤ n− 1.

To solve Problems A and B, the following results will be used.

For given integers k and n with 1 ≤ k ≤ n− 1, the authors in [6] determined the

minimum size of a connected graph G of order n with rd(G) = k.

Lemma 2.1 [6] For integers k and n with 1 ≤ k ≤ n − 1, the minimum size of a

connected graph of order n with rd(G) = k is n+ k − 2.
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For the maximum size, they posed the following conjecture only for n odd.

Conjecture 2.2 Let k and n be integers with 1 ≤ k ≤ n− 1 and n ≥ 5 is odd. Then

the maximum size of a connected graph G of order n with rd(G) = k is (k+1)(n−1)
2

.

We will show the following result for the maximum size, regardless of whether n

is odd or even.

Theorem 2.3 Let k and n be integers with 1 ≤ k ≤ n− 1. Then the maximum size

of a connected graph G of order n with rd(G) = k is
⌊

(k+1)(n−1)
2

⌋
.

Before we give the proof of Theorem 2.3, some auxiliary lemmas are stated as

follows.

Lemma 2.4 [6] If G is a nontrivial connected graph, then

λ(G) ≤ λ+(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1,

where the upper edge-connectivity λ+(G) is defined by λ+(G) = max{λ(u, v) : u, v ∈
V (G)}.

Lemma 2.5 [6] Let G be a nontrivial connected graph. Then rd(G) = 1 if and only

if G is a tree.

Lemma 2.6 [6] If G is a cycle of order n ≥ 3, then rd(G) = 2.

Lemma 2.7 [6] For each integer n ≥ 2, rd(Kn) = n− 1.

Lemma 2.8 [6] Let G be a connected graph of order n ≥ 2. Then rd(G) = n− 1 if

and only if G contains at least two vertices of degree n− 1.

Lemma 2.9 [20] Let G be a graph of order n (n ≥ k + 2 ≥ 3). If |E(G)| > k+1
2

(n−
1)− 1

2
σk(G), where σk(G) =

∑
x ∈ V (G)

d(x) ≤ k

(k − d(x)), then λ+(G) ≥ k + 1.

We give an observation before the proof of Lemma 2.11.

Observation 2.10 Let G be a graph and u be a vertex of G. If G admits an edge-

coloring c with k colors such that the set Ex of edges incident with x is rainbow for

every vertex x in V (G− u), then rd(G) ≤ k.
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Lemma 2.11 For a graph G, the following results hold.

(i) For any vertex u of G, let H = G− u. Then rd(G) ≤ ∆(H) + 1.

(ii) If there exists a vertex u of G such that H = G−u is in Class 1 and dH(x) ≤
∆(H)− 1 for any x ∈ NG(u), then rd(G) ≤ ∆(H).

(iii) Let uυ be an edge of G and H = G − uυ. If χ′(H) = ∆(H) = ∆(G), then

rd(G) ≤ ∆(G).

Proof. (i) Let H = G−u. Then we obtain a proper edge-coloring c0 of H using colors

from the set [∆(H) + 1]. For each vertex x ∈ V (H), since dH(x) ≤ ∆(H), there is

an ax ∈ [∆(H) + 1] such that ax is not assigned to any edge incident with x in H.

Since E(G) = E(H) ∪ {ux | x ∈ NG(u)}, we now extend the edge-coloring c0 of H

to an edge-coloring c of G by assigning c(ux) = ax for any vertex x ∈ NG(u). Note

that the set Ex of edges incident with x is a rainbow set for each vertex x ∈ V (H).

Hence, rd(G) ≤ ∆(H) + 1 by Observation 2.10.

(ii) Since H is in Class 1, we have χ′(H) = ∆(H). Then we obtain a proper

edge-coloring c0 of H using colors from [∆(H)]. For each vertex x ∈ NG(u), since

dH(x) ≤ ∆(H)− 1, there is an ax ∈ [∆(H)] such that ax is not assigned to any edge

incident with x in H. Since E(G) = E(H) ∪ {ux | x ∈ NG(u)}, we now extend the

edge-coloring c0 of H to an edge-coloring c of G by assigning c(ux) = ax for any

vertex x ∈ NG(u). Note that the set Ex of edges incident with x is a rainbow set for

each vertex x ∈ V (H). Hence, rd(G) ≤ ∆(H) by Observation 2.10.

(iii) Since χ′(H) = ∆(H) = ∆(G), we obtain a proper edge-coloring c0 of H using

colors from [∆(G)]. Since ∆(H) = ∆(G), we have dH(u) < ∆(G), and thus there is

an au ∈ [∆(G)] such that au is not assigned to any edge incident with u in H. Now

we extend c0 to an edge-coloring c of G by defining c(uυ) = au. Note that the set Ex

of edges incident with x in G is a rainbow set for each vertex x ∈ V (G) \ υ. Hence,

rd(G) ≤ ∆(G) by Observation 2.10. �

Proof of Theorem 2.3. If k = n − 1, the maximum size of a connected graph

G of order n with rd(G) = n − 1 is n(n−1)
2

since rd(Kn) = n − 1 by Lemma 2.7,

and thus the result is true. Now we consider k with 1 ≤ k ≤ n − 2. Suppose that

|E(G)| > (k+1)(n−1)
2

− 1
2
σk(G). Then rd(G) ≥ λ+(G) ≥ k+ 1 by Lemmas 2.4 and 2.9.

Therefore, if rd(G) = k, then |E(G)| ≤ (k+1)(n−1)
2

− 1
2
σk(G) ≤ (k+1)(n−1)

2
since σk(G)

is nonnegative.

It remains to show that for each pair of integers k and n with 1 ≤ k ≤ n−2, there

exists a connected graph Gk with order n and size
⌊

(k+1)(n−1)
2

⌋
such that rd(Gk) = k.

We distinguish the following two cases.
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Case 1. n is odd.

For n = 3, it is easy to verify that the result is true for Gk = P3. For n ≥ 5, the

construction of the graph Gk was already given in [6], where the inequality rd(Gk) ≤ k

was proved. Here we restate it as follows. Set Gk = Hk ∨K1, where Hk is a (k − 1)-

regular graph of order n−1 and K1 = {u}. Since n−1 is even, such graphs Hk exist.

Then Gk is a connected graph of order n having one vertex u of degree n − 1 and

n− 1 vertices of degree k, and the size of Gk is (k+1)(n−1)
2

.

Since ∆(Hk) = k− 1, we obtain that rd(Gk) ≤ ∆(Hk) + 1 = k by Lemma 2.11(i).

Note that |E(Gk)| = (k+1)(n−1)
2

> k(n−1)
2
≥ k(n−1)

2
− 1

2
σk−1(Gk) since σk−1(Gk) is

nonnegative. Thus, λ+(Gk) ≥ k by Lemma 2.9. Combining with Lemma 2.4, we

have rd(Gk) ≥ k. Therefore, the maximum size of a connected graph G of order n

with rd(G) = k is
⌊

(k+1)(n−1)
2

⌋
when 1 ≤ k ≤ n− 2 and n is odd.

Case 2. n is even.

For n = 2t ≥ 4, we construct a graph Gk as follows. Let G = K2t and

V (G) = {u, υ0, υ1, · · · , υ2t−2}. Arrange υ0, υ1, · · · , υ2t−2 in the order on the vertices

of a regular (2t − 1) polygon, and let u be the center of the regular (2t − 1) poly-

gon. Figure 1 shows the vertex order of a regular (2t− 1) polygon with t = 15. For

0 ≤ i ≤ 2t− 2, let Ei = {uυi}∪ {e|e is perpendicular to the line containing uυi, e ∈
E(K2t)}. In Figure 1, the edges of the sets E0 and E2 are drawn for t = 15. Obvi-

ously, each G[Ei] forms a 1-factor of K2t, and E0, E1, · · · , E2t−2 are edge-disjoint.

Let Hk−1 = G[E1 ∪ E2 ∪ · · · ∪ Ek−1] where 2 ≤ k ≤ 2t − 1. In particular, H0 is an

empty graph. It follows that Hk−1 is (k − 1)-regular and Hk−1 is 1-factorable, that

is, χ′(Hk−1) = k − 1.

v8

u

v0 v2v1
v4v3

v6v5
v7

v9

v28v27
v25

v23
v26

v24

v10

v21 v22

Figure 1: Graph for the proof of Theorem 2.3.
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By the previous constructions, E(Hk−1), {uυ0},
2t−2
∪
i=k
{uυi}, and the edge set {υ1υ2,

υ3υ4, · · · , υ2b k−1
2 c−1υ2b k−1

2 c} are edge-disjoint. Let Gk = Hk−1 + {uυ0}+
2t−2
∪
i=k
{uυi}+

{υ1υ2, υ3υ4, · · · , υ2b k−1
2 c−1υ2b k−1

2 c}. Then Gk is a graph of order n with |E(Gk)| =

(k−1)n
2

+ 1 + (n − k − 1) +
⌊
k−1

2

⌋
=
⌊

(k+1)(n−1)
2

⌋
. Since χ′(Hk−1) = k − 1, we obtain

a proper edge-coloring c0 of Hk−1 using colors from [k − 1]. We can extend c0 to an

edge-coloring c of Gk by assigning a new color k to all newly added edges in Hk−1.

Note that the set Ex of edges incident with x in Gk is a rainbow set for each vertex

x ∈ V (Gk) \ u. Therefore, rd(Gk) ≤ k by Observation 2.10. On the other hand,

E(Gk) =
⌊

(k+1)(n−1)
2

⌋
> k(n−1)

2
since n ≥ 4. It follows from Lemmas 2.4 and 2.9 that

rd(Gk) ≥ k. Therefore, the maximum size of a connected graph G of order n with

rd(G) = k is
⌊

(k+1)(n−1)
2

⌋
when 1 ≤ k ≤ n− 2 and n is even. �

We are now in the position to solve Problem A by giving the exact value of g(n, k),

using Lemma 2.1.

Theorem 2.12 For integers k and n with 1 ≤ k ≤ n− 1,

g(n, k) =


n(n−1)

2
, if k = n− 1,

n+ k − 2, if 1 ≤ k ≤ n− 2.

Proof. First, since rd(Kn) = n− 1, we get g(n, n− 1) = n(n−1)
2

. Next, it follows from

Lemma 2.1 that t(n, k) = n+k−2 for 1 ≤ k ≤ n−1. Thus, g(n, k) = t(n, k+1)−1 =

n+ k − 2 for 1 ≤ k ≤ n− 2. �

Now we solve Problem B by giving the exact value of f(n, k).

Theorem 2.13 For integers k and n with 1 ≤ k ≤ n− 1,

f(n, k) =

n− 1, if k = 1,⌊
k(n−1)

2

⌋
+ 1, if 2 ≤ k ≤ n− 1.

Proof. First, let T be a nontrivial tree of order n. Since rd(T ) = 1 by Lemma 2.5, we

get f(n, 1) = n − 1. Next, it follows from Theorem 2.3 that s(n, k) = (k+1)(n−1)
2

for

1 ≤ k ≤ n− 1. Thus, f(n, k) = s(n, k − 1) + 1 =
⌊
k(n−1)

2

⌋
+ 1 for 2 ≤ k ≤ n− 1. �

3 The rd-numbers of some classes of graphs

In this section, we investigate the rainbow disconnection numbers of complete

multipartite graphs, critical graphs with respect to the chromatic number, minimal
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graphs with respect to the chromatic index, and regular graphs.

At first, we give the rainbow disconnection numbers of complete multipartite

graphs.

Theorem 3.1 If G = Kn1,n2,...,nk
is a complete k-partite graph with order n where

k ≥ 2 and n1 ≤ n2 ≤ · · · ≤ nk, then

rd(Kn1,n2,...,nk
) =

n− n2, if n1 = 1,

n− n1, if n1 ≥ 2.

To prove Theorem 3.1 we need a lemma below. Let G∆ denote the core of G, that

is, the subgraph of G induced by the vertices of maximum degree ∆(G).

Lemma 3.2 [1] Let G be a connected graph. If every connected component of G∆ is

a unicyclic graph or a tree, and G∆ is not a disjoint union of cycles, then G is in

Class 1.

Proof of Theorem 3.1. Let V1, V2, . . . Vk be the k-partition of the vertices of G

with Vi = {vi,1, vi,2, . . . , vi,ni
} for every i, 1 ≤ i ≤ k. We distinguish the following two

cases.

Case 1. n1 = 1.

First, we have V1 = {v1,1} and d(v1,1) = n − 1. Let H = G − {v1,1}. Then

∆(H) = n− n2 − 1. By Lemma 2.11(i), we obtain rd(G) ≤ ∆(H) + 1 = n− n2.

If n2 = 1, then rd(G) = n−1 by Lemma 2.8, and thus the result is true. Otherwise,

for any two vertices u and v of V2, since they are adjacent with all the vertices of

V (G) \ V2, we get λ(u, v) ≥ n− n2. It follows from Lemma 2.4 that rd(G) ≥ n− n2.

Hence, rd(G) = n− n2.

Case 2. n1 ≥ 2.

Pick a vertex u of V1 and let F = G− u. Then ∆(F ) = n− n1 since n1 ≥ 2 and

F∆ = G[V1 − u]. It follows from Lemma 3.2 that F is in Class 1. For each vertex

x ∈ NG(u), since dF (x) ≤ ∆(F )− 1 = n−n1− 1, we have rd(G) ≤ n−n1 by Lemma

2.11(ii).

For any two vertices of V1, since all vertices of V (G) \ V1 are their common

neighbors, we get λ+(G) ≥ n− n1. It follows from Lemma 2.4 that rd(G) ≥ n− n1.

Hence, rd(G) = n− n1. �

A graph G is said to be color-critical if χ(H) < χ(G) for every proper subgraph

H of G. The study of critical k-chromatic graphs was initiated by Dirac ([10], [11]).
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Here, for simplicity, we abbreviate the term “color-critical” to “critical”. A k-critical

graph is one that is k-chromatic and critical. We get a lower bound of the rainbow

disconnection number for (k + 1)-critical graphs.

Theorem 3.3 If G is a connected (k + 1)-critical graph, then rd(G) ≥ k.

Our proof will follow from the next two lemmas. First, we give a lower bound on

the rainbow disconnection number of a graph depending on its average degree.

Lemma 3.4 If G is a connected graph of order n with average degree d, then rd(G) ≥
bdc.

Proof. If G is a tree, then 1 ≤ d < 2 since d = 2(n−1)
n

. By Lemma 2.5 we have

rd(G) = 1. Obviously rd(G) = 1 ≥ bdc and the result is true. If G is not a tree, then

d ≥ 2 since 2|E(G)|
n
≥ 2n

n
= 2. We have |E(G)| = 1

2
dn ≥ 1

2
bdcn > 1

2
bdc (n − 1). So

λ+(G) ≥ bdc by Lemma 2.9. Therefore, rd(G) ≥ bdc by Lemma 2.4. �

Lemma 3.5 [10] If G is a connected (k + 1)-critical graph, then δ(G) ≥ k.

Proof of Theorem 3.3: Let G be a (k+1)-critical graph with average degree d. We

know that δ(G) ≥ k by Lemma 3.5. Obviously, d ≥ δ(G) ≥ k. Therefore, it follows

from Lemma 3.4 that rd(G) ≥ bdc ≥ k since k is an integer. �

A graph G with at least two edges is called minimal with respect to the chromatic

index if χ′(G − e) < χ′(G) for any edge e of G, i.e., χ′(G − e) = χ′(G) − 1 for any

edge e of G. We show that the rainbow disconnection number of a connected minimal

graph G with respect to the chromatic index is no more than the maximum degree

of G.

Theorem 3.6 If G is a connected minimal graph with respect to the chromatic index,

then rd(G) ≤ ∆(G).

In order to prove Theorem 3.6, we need the next two lemmas.

Lemma 3.7 [22] Let G be a connected graph of Class 2 that is minimal with respect

to the chromatic index. Then every vertex of G is adjacent to at least two vertices of

degree ∆(G). In particular, G contains at least three vertices of degree ∆(G).
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Lemma 3.8 [3] Let G be a connected graph with ∆(G) ≥ 2. Then G is minimal with

respect to the chromatic index if and only if either

(i) G is in Class 1 and G = K1,∆(G), or

(ii) G is in Class 2 and G− e is in Class 1 for every edge e of G.

Proof. Here we restate the proof. Assume first that G = K1,∆(G). Then χ′(G) =

∆(G) ≥ 2 and χ′(G − e) = ∆(G) − 1 for every edge e of G. Since G is in Class 1,

χ′(G − e) = χ′(G) − 1. Next suppose that G is in Class 2 and G − e is in Class 1

for every edge e of G. Then for any edge e of G, we have χ′(G − e) = ∆(G − e) <
∆(G) + 1 = χ′(G). Therefore, χ′(G− e) = χ′(G)− 1.

Conversely, assume that χ′(G − e) < χ′(G) for every edge e of G. If G is in

Class 1, then ∆(G) ≤ ∆(G − e) + 1 ≤ χ′(G − e) + 1 = χ′(G) = ∆(G). Therefore,

∆(G− e) = ∆(G)− 1 for every edge e of G, which implies that G = K1,∆(G). If G is

in Class 2, then χ′(G− e) + 1 = χ′(G) = ∆(G) + 1, i.e., χ′(G− e) = ∆(G) for every

edge e of G. Suppose that G contains an edge e1 such that G− e1 is in Class 2. Then

χ′(G− e1) = ∆(G− e1) + 1. Thus, ∆(G) = ∆(G− e1) + 1, which implies that G has

at most two vertices of degree ∆(G), which contradicts Lemma 3.7. �

Proof of Theorem 3.6. Let G be a minimal connected graph with respect to the

chromatic index. We distinguish the following two cases according to Lemma 3.8.

Case 1. G is in Class 1 and G = K1,d with d ≥ 2. It follows that rd(G) = 1 from

Lemma 2.5. Obviously, rd(G) < d = ∆(G).

Case 2. G is in Class 2 and for any edge e ∈ E(G), χ′(G − e) = ∆(G − e).

We pick a vertex v ∈ V (G) such that dG(v) = ∆(G). Let H = G − uv for some

vertex u ∈ NG(v). Then χ′(H) = ∆(H) and χ′(H) = χ′(G) − 1 = ∆(G) since G is

minimal with respect to the chromatic index and G is in Class 2. Thus, it implies

that χ′(H) = ∆(H) = ∆(G). Therefore, we have rd(G) ≤ ∆(G) by Lemma 2.11(iii).

�

For regular graphs, we know that not all k-regular graph have rd(G) = k. For

example, we know from [6] that the Petersen graph P is a 3-regular graph but rd(P ) =

4. The following results give some regular graphs with rd(G) = k.

Theorem 3.9 If G is a connected k-regular graph of even order satisfying k ≥
6
7
|V (G)|, then rd(G) = k.

Theorem 3.10 If G is a connected k-regular bipartite graph, then rd(G) = k.

Theorem 3.11 If G is a connected (n−k)-regular graph of order n, where 1 ≤ k ≤ 4,

then rd(G) = n− k.
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To prove these results, we need the following lemmas.

Lemma 3.12 [9] Let G be a regular graph of even order n and degree d(G) equal to

n− 3, n− 4, or n− 5. Let d(G) ≥ 2
⌊

1
2
(n

2
+ 1)

⌋
− 1. Then G is in Class 1.

Lemma 3.13 [9] Let G be a regular graph of even order n whose degree d(G) satisfies

d(G) ≥ 6
7
n. Then G is in Class 1.

For regular graphs, we can easily get the following result.

Lemma 3.14 If G is a connected k-regular graph, then k ≤ rd(G) ≤ k + 1.

Proof. Since the average degree of a k-regular graph G is k, it follows from Lemma

3.4 that rd(G) ≥ k. On the other hand, it follows from Lemma 2.4 that rd(G) ≤
χ′(G) ≤ ∆ + 1 = k + 1. �

Proof of Theorem 3.9: Let G be a connected k-regular graph of even order n

satisfying k ≥ 6
7
n. We have that G is in Class 1 by Lemma 3.13. Thus χ′(G) = k.

The result then follows from Lemmas 2.4 and 3.14. �

Proof of Theorem 3.10: Since G is a bipartite graph, χ′(G) = ∆(G) = k (see [4]).

The result then follows from Lemmas 2.4 and 3.14. �

Proof of Theorem 3.11. We distinguish the following three cases.

Case 1. k = 1. We have G = Kn. Hence, the result is true by Lemma 2.7.

Case 2. k = 2 or 3. Let u ∈ V (G) and consider the graph H = G − u. Then

∆(H) = n − k and the number of vertices of H with maximum degree is 1 or 2. So

each component of H∆ is a tree. Therefore, it follows from Lemma 3.2 that H is in

Class 1 and for each vertex x ∈ NG(u), dH(x) ≤ ∆(H)− 1 = n− k − 1. By Lemma

2.11(ii), rd(G) ≤ n − k. On the other hand, by Lemma 3.14, rd(G) ≥ n − k. Thus,

rd(G) = n− k.

Case 3. k = 4. Let G be an (n− 4)-regular graph of order n, where n ≥ 5. Then

we know that n must be even since 2|E(G)| = n(n−4). First, we consider n ≥ 8. It is

easy to verify that d(G) = n−4 ≥ 2
⌊

1
2
(n

2
+ 1)

⌋
−1. It follows from Lemma 3.12 that

G is in Class 1. So, χ′(G) = n− 4. Furthermore, we get rd(G) = n− 4 by Lemmas

2.4 and 3.14. Secondly, it remains to consider the case n = 6. In this case, we have

G = C6. By Lemma 2.6, we obtain rd(G) = 2 = n− 4. �
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4 Nordhaus-Gaddum-type results

In this section, we consider Nordhaus-Gaddum-type results for the rainbow dis-

connection number of graphs. We know that if G is a connected graph with n vertices,

then the number of edges in G is at least n− 1. Since 2(n− 1) ≤ |E(G)|+ |E(G)| =
|E(Kn)| = n(n−1)

2
, if both G and G are connected, then n is at least 4.

In the rest of this section, we always assume that all graphs have at least four

vertices, and that both G and G are connected. For any vertex u ∈ V (G), let ū denote

the vertex in G corresponding to the vertex u. Now we give a Nordhaus-Gaddum-type

result for the rainbow disconnection number.

Theorem 4.1 If G is a connected graph such that G is also connected, then n− 2 ≤
rd(G) + rd(G) ≤ 2n − 5 and n − 3 ≤ rd(G) · rd(G) ≤ (n − 2)(n − 3). Furthermore,

these bounds are sharp.

For the proof of Theorem 4.1, we need the following four lemmas.

Lemma 4.2 [6] If H is a connected subgraph of a graph G, then rd(H) ≤ rd(G).

Lemma 4.3 [6] Let G be a connected graph, and let B be a block of G such that

rd(B) is maximum among all blocks of G. Then rd(G) = rd(B).

Lemma 4.4 Let G be a connected graph of order n ≥ 4. If G has at least two vertices

of degree 1, then rd(G) ≤ n− 3.

Proof. Let B be a block of G such that rd(B) is maximum among all blocks of

G. Then |V (B)| ≤ n − 2 since G has at least two vertices of degree 1. It follows

from Lemmas 2.7 and 4.2 that rd(B) ≤ rd(Kn−2) = n − 3. On the other hand,

rd(G) =rd(B) ≤ n− 3 by Lemma 4.3. �

Lemma 4.5 If G is a connected graph of order n which contains at most one vertex

of degree at least n− 2, then rd(G) ≤ n− 3.

Proof. We distinguish the following three cases.

Case 1. There exists exactly one vertex, say u, of degree n− 1.

Let F = G−u. We have ∆(F ) ≤ n−4 since dG(u) = n−1 and dG(v) ≤ n−3 for

any vertex v ∈ V (G) \ u. Therefore, rd(G) ≤ ∆(F ) + 1 ≤ n− 3 by Lemma 2.11(i).

Case 2. There exists exactly one vertex, say u, of degree n− 2.
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Let F = G − u. If ∆(F ) ≤ n − 4, as discussed in Case 1, we obtain rd(G) ≤
∆(F ) + 1 ≤ n− 3. Otherwise, if ∆(F ) = n− 3, then there exists exactly one vertex,

say v, with degree n− 3 in F . Then F is in Class 1 by Lemma 3.2. Since v /∈ NG(u),

for each vertex x ∈ NG(u), dF (x) ≤ ∆(F )− 1 = n− 4, and so rd(G) ≤ ∆(F ) = n− 3

by Lemma 2.11(ii).

Case 3. ∆(G) ≤ n− 3.

If ∆(G) ≤ n − 4, then rd(G) ≤ χ′(G) ≤ n − 3 by Lemma 2.4. Thus, we may

assume that ∆(G) = n − 3. Let d(u) = n − 3 and F = G − u. If ∆(F ) ≤ n − 4,

then rd(G) ≤ ∆(F ) + 1 ≤ n− 3 by Lemma 2.11(i). If ∆(F ) = n− 3, then there exist

at most two vertices of degree n − 3 in F . So, each component of F∆ is a tree. It

follows from Lemma 3.2 that F is in Class 1. Since ∆(G) ≤ n − 3, for each vertex

x ∈ NG(u), we have dF (x) ≤ ∆(F )−1 = n−4. It follows that rd(G) ≤ ∆(F ) = n−3

from Lemma 2.11(ii). �

By the above Lemma 4.5, we can immediately get the following result.

Corollary 4.6 Let G be a connected graph with order n. If rd(G) ≥ n − 2, then

there are at least two vertices of degree at least n− 2.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let d and d̄ be the average degree ofG andG, respectively.

Then rd(G) ≥ bdc and rd(G) ≥
⌊
d̄
⌋

by Lemma 3.4. Thus,

rd(G) + rd(G) ≥ bdc+
⌊
d̄
⌋

≥
⌊
d+ d̄

⌋
− 1

=

⌊
2|E(G)|

n
+

2|E(G)|
n

⌋
− 1

=

⌊
2

n
· n(n− 1)

2

⌋
− 1

= n− 2.

One can see that the minimum value n − 2 of rd(G) + rd(G) can be reached if

rd(G) = 1 and rd(G) = n − 3, or rd(G) = 1 and rd(G) = n − 3. Furthermore,

Since both G and G are connected, it follows that both ∆(G) and ∆(G) are at most

n − 2. Thus, both rd(G) and rd(G) are at most n − 2 by Lemma 2.8. Therefore,

n− 2 ≤ rd(G) + rd(G) ≤ 2n− 4 and n− 3 ≤ rd(G) · rd(G) ≤ (n− 2)2. Now we claim

that for a graph G we cannot have both rd(G) = n− 2 and rd(G) = n− 2. Assume

that rd(G) = rd(G) = n − 2. Then G has at least two vertices of degree n − 2 by

Corollary 4.6, which implies that G has at least two vertices of degree 1. It follows
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from Lemma 4.4 that rd(G) ≤ n− 3, which contradicts that rd(G) = n− 2. Finally,

we get that n−2 ≤ rd(G)+rd(G) ≤ 2n−5 and n−3 ≤ rd(G) ·rd(G) ≤ (n−2)(n−3).

Next we will show that the four bounds are sharp. First, for the lower bound, let

G = P4. We then have G = P4. Since rd(P4) = 1, we get rd(G) + rd(G) = 2 = n− 2,

and rd(G) · rd(G) = 1 = n − 3. Second, for the upper bound, we construct a graph

G of order n, where n ≥ 6, satisfying rd(G)+rd(G) = 2n − 5 and rd(G)· rd(G) =

(n − 2)(n − 3) as follows. Let G be a graph of order n ≥ 6 constructed as follows.

Let u, v, w, x ∈ V (G). We then set E(G) = {uv, wx}∪{uy, vy|y ∈ V (G) \ {u, v, w}}.
Obviously, G and G are both connected. Now we claim that rd(G)+rd(G) = 2n− 5

and rd(G)·rd(G) = (n − 2)(n − 3). We only need to show that rd(G) + rd(G) ≥
2n − 5 and rd(G)·rd(G) ≥ (n − 2)(n − 3). First, we have λ(u, v) = n − 2 by the

construction of G, and so rd(G) ≥ n − 2 by Lemma 2.4. Next, for any two vertices

p, q ∈ V (G) \ {ū, v̄, w̄, x̄}, we have λ(p, q) = n− 3 since y is a common neighbor of p

and q for each vertex y ∈ V (G)\{ū, v̄, p, q} and pq is an edge in G. So, rd(G) ≥ n−3

by Lemma 2.4. Hence, rd(G)+rd(G) ≥ 2n − 5 and rd(G)·rd(G) ≥ (n − 2)(n − 3).

�

5 Hardness results

The following result is due to Holyer [16].

Theorem 5.1 [16] It is NP-complete to determine whether the chromatic index of a

cubic graph is 3 or 4.

At first we show that our problem is in NP for any fixed integer k.

Lemma 5.2 For a fixed positive integer k, given a k-edge-colored graph G, deciding

whether G is rainbow disconnected under this coloring is in P .

Proof. Let n and m be the number of vertices and edges of G, respectively. Let s and

t be two vertices of G. Since G is k-edge-colored, any rainbow-cut S contains at most

k edges, and so, we have no more than
(
m
k

)
choices for S. Given a set S of edges,

it is polynomial-time checkable to decide whether s and t lie in different components

of G \ S. There are at most
(
n
2

)
pairs of vertices in G. Then, we can deduce that

deciding whether G is rainbow disconnected can be checked in polynomial-time. �

Let G be a graph and let X be a proper subset of V . To shrink X is to delete all

the edges between the vertices of X and then identify the vertices of X into a single
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vertex. We denote the resulting graph by G/X. The next lemma is crucial for the

proof of our result.

Lemma 5.3 Let G be a 3-edge-connected cubic graph. Then χ′(G) = 3 if and only

if rd(G) = 3.

Proof. Assume that χ′(G) = 3, and let us show that rd(G) = 3. Noticing that G is

3-edge-connected, we have rd(G) ≥ 3. Since rd(G) ≤ χ′(G) by Lemma 2.4, we then

have rd(G) = 3.

Assume that rd(G) = 3 with an associated rainbow disconnection coloring f . We

say that a graph G has Property 1, if G has a rainbow 3-edge-cut S such that G \ S
has two non-trivial components C1 and C2, i.e., no component is a singleton. We do

an operation, introduced in the following, on G when graph G has Property 1. If

the three edges of S share a common vertex, then one of C1 and C2 is a singleton,

a contradiction. If two edges of S are adjacent, say e1, e2, let e3 be the third edge

adjacent to e1, e2, then S∪{e3}\{e1, e2} is a 2-edge-cut of G, a contradiction. Hence,

we have that none of the edges in S are adjacent. Then we shrink the vertices of

component C1 to a vertex x1. If there exists a 2-edge-cut of G/V (C1), then it is also

a 2-edge-cut of G, a contradiction. So, we have that G/V (C1) is a 3-edge connected

cubic graph.

Claim 1. f maintains a rainbow disconnection coloring on G/V (C1).

Proof of Claim 1: Let S ′ be a rainbow 3-edge-cut of G between two vertices

s, t ∈ V (C2). Since C2 is 2-edge connected, then at least two edges of S ′ are in

E(C2). Suppose that the third edge e of S ′ is in E(C1). As C1 is 2-edge connected,

the graph F induced by edge set E(C1)∪S\{e} is connected. Then F is a subgraph of

one component of G \S ′. As a result, the two end points of e lie in one component of

G\S ′. So, S ′\e is a 2-edge-cut of G, a contradiction. Hence, we have S ′ ⊆ E(C2)∪S.

Then, S ′ is also a rainbow 3-edge-cut of G/V (C1) between s and t. As S is a rainbow

3-edge-cut, the three edges adjacent to x1 are properly colored. Thus, the coloring

f maintains a rainbow disconnection coloring on G/V (C1), and similar thing is true

for G/V (C2).

After this shrinking operation, we get two graphs G/V (C1) and G/V (C2). Since

the choice of the rainbow 3-edge-cut S is arbitrary, then we can give an order to the

edges of graph G to fix the choice of S. Let p be a positive integer, and each Gi

(i ∈ [p]) be a 3-edge connected cubic graph with an associated rainbow disconnection
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coloring. Then we define the operation functions o and O as follows:

o({G}) =

{G/V (C1), G/V (C2)}, if a graph G has Property 1,

{G}, otherwise.

O({G1, G2, · · · , Gp}) = ∪pi=1o({Gi}).

Since the graph is split into two pieces when we do the operation, then the oper-

ation cannot last endlessly. Hence, there exists a integer r such that Or({G}) =

Or+1({G}). Finally, we get a finite sequence of edge-colored cubic graphs Or({G}) =

{H1, H2, · · · , Hq}, where q is a positive integer. We say that a vertex is proper, if the

three edges incident with this vertex is properly colored.

Claim 2. Every vertex of Hj is proper, for j ∈ [q].

Proof of Claim 2: Suppose that there exists two vertices of Hj which are not

proper, for a j ∈ [q]. Since there exists a rainbow 3-edge-cut between these two

vertices by Claim 1, then the rainbow 3-edge-cut separates a non-trivial component

and a singleton by the definition of Hj. Therfore, one of these two vertices is proper,

a contradiction. Then we deduce that every vertex of Hj is proper except for one,

say s0. Let H12 be the subgraph of Hj induced by the set of edges with color 1 or

2. Then we have that the degree of vertex v ∈ V (H12) equals 2 except for s0. Let

ki denote the number of edges incident with s0 with color i. Since the degree sum of

H12 is an even number, then we have k1 + k2 + 2(n(H12) − 1) ≡ 0 (mod 2), which

gives k1 ≡ k2 (mod 2). Similarly, k2 ≡ k3 (mod 2). As k1 +k2 +k3 = 3, we have that

k1 = k2 = k3 = 1. Then s0 is also proper. As a result, every vertex of Hj is proper,

for j ∈ [q].

Let u be a vertex of the graph G. Then u is also a vertex of some Hj, which gives

that u is proper in Hj, for j ∈ [q]. Since the operation maintains the coloring, then

u is also proper in G. Thus, the coloring f is a proper edge-coloring of G. Hence, we

have χ′(G) = 3. �

Corollary 5.4 It is NP-complete to determine whether the rainbow disconnection

number of a cubic graph is 3 or 4.

Proof. The problem is in NP by Lemma 5.2. Notice that the graph Gφ in [16] is

3-edge connected. Then the result is a direct corollary from Theorem 5.1 and Lemma

5.3. �

Lemma 5.2 tells us that deciding whether a given k-edge-colored graph G is rain-

bow disconnected for a fixed integer k is in P. However, it is NP-complete to decide
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whether a given edge-colored (with an unbounded number of colors) graph is rainbow

disconnected. The proof of the following result uses a technique similar to the one

used in [5].

Theorem 5.5 Given an edge-colored graph G and two vertices s, t of G, deciding

whether there is a rainbow-cut between s and t is NP-complete.

Proof. Clearly, the problem is in NP, since checking whether a given edge set is a

rainbow edge-cut can be done in polynomial-time. We now show that the problem is

NP-complete by giving a polynomial reduction from 3-SAT to our problem. Given

a 3CNF formula φ = ∧mi=1ci over n variables x1, x2, · · · , xn, we construct a graph Gφ

with two special vertices s, t and an edge-coloring f such that there is a rainbow-cut

between s and t in Gφ if and only if φ is satisfiable.

We define Gφ as follows:

V (Gφ) = {c0
i , c

1
i , c

2
i , c

3
i : i ∈ [m]} ∪ {x0

j , x
1
j : j ∈ [n]} ∪ {s, t}

E(Gφ) =
{
x0
jc

0
i , x

1
jc
k
i : If variable xj is positive in the k-th literature of clause ci,

i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}
}

∪
{
x1
jc

0
i , x

0
jc
k
i : If variable xj is negative in the k-th literature of clause ci,

i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}
}

∪
{
cki c

0
i : i ∈ [m], k ∈ {1, 2, 3}

}
∪ {sx0

j , sx
1
j : j ∈ [n]}

∪ {tc0
i : i ∈ [m]}

∪ {st}

The edge-coloring f is defined as follows (see Figure 2):

• the edges {st, tc0
i : i ∈ [m]} are colored with a special color r0

0;

• the edges {sx0
j , sx

1
j : j ∈ [n]} are colored with a special color r0

j , j ∈ [n];

• the edge x0
jc

0
i or x1

jc
0
i is colored with a special color rki , i ∈ [m], j ∈ [n], k ∈

{1, 2, 3};

• the edge cki x
0
j or cki x

1
j is colored with a special color r4

i , i ∈ [m], j ∈ [n], k ∈
{1, 2, 3};

• the edge cki c
0
i is colored with a special color r5

i , i ∈ [m], k ∈ {1, 2, 3}.
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Figure 2: Variable xj is negative in the first literature of clause ci.

We now claim that there is a rainbow-cut between s and t in Gφ if and only if φ

is satisfiable.

Assume that there is a rainbow edge-cut S between s and t in Gφ under f , and

let us show that φ is satisfiable. First, we consider the color r0
0. Since s and t are

adjacent in Gφ, then the edge st is in S. Next, the color r0
j appears twice in Gφ. If

sx0
j ∈ S, then we set xj = 0. If sx1

j ∈ S, then we set xj = 1. Finally, the color r4
i (r5

i )

appears three times in Gφ. If the literature associated with xj in clause ci is false,

then at least one edge colored with r4
i or r5

i is in S. Suppose that the three literatures

of ci are false. Then there are three edges colored with r4
i or r5

i in S. So, S cannot

be a rainbow edge-cut, a contradiction. Hence, φ is satisfiable.

Assume that φ is satisfiable, and let us construct a rainbow edge-cut S between

s and t in Gφ under f . Clearly, edge st is in S. Suppose xj = 0. The edge sx0
j is

in S for j ∈ [n]. If the vertex x0
j is adjacent to c0

i , then one edge of cki x
1
j , c

k
i c

0
i is in

S for i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. If the vertex x0
j is adjacent to cki , then the edge

x1
jc

0
i is in S for i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. Suppose xj = 1. The edge sx1

j is in S

for j ∈ [n]. If the vertex x1
j is adjacent to c0

i , then one edge of cki x
0
j , c

k
i c

0
i is in S for

i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. If the vertex x1
j is adjacent to cki , then the edge x0

jc
0
i

is in S for i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. Now we verify that S is indeed a rainbow

edge-cut. In fact, if a literature of ci is false, then one edge colored with r4
i or r5

i is

in S. Since the three literatures of ci cannot be false at the same time, then we can

find a rainbow edge-cut S between s and t in Gφ under f .

The proof is thus complete. �
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