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Abstract

The Turán inequality, the Laguerre inequality and their m-rd generalizations
have been proved to be closely relative with the Laguerre-Pólya class and Rie-
mann hypothesis. Since these two inequalities are equivalent to log-concavity
of the discrete sequences, we consider whether their generalizations hold for
discrete sequences. Recently, Chen, Jia and Wang proved that the partition
function satisfies the Turán inequality of order 2 and thus the 3-rd Jensen
polynomials associated with the partition function have only real zeros. Grif-
fin, Ono, Rolen and Zagier proved an exciting result, that is, the n-th Jensen
polynomials associated with the Maclaurin coefficients of the function in the
Laguerre-Pólya class and the partition function have only real zeros except
finite terms. In this paper, we show the Laguerre inequality of order 2 is true
for the partition function, the overpartition function, the Bernoulli number-
s, the derangement numbers, the Motzkin numbers, the Fine numbers, the
Franel numbers and the Domb numbers.
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1. Introduction

The main objective of this paper is to prove some celebrated sequences
satisfy the Laguerre inequality of order 2.
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The Laguerre inequality [28] arises in the study of the real polynomials
with only real zeros and the Laguerre-Pólya class consisting of real entire
functions. Recall that a real entire function

ψ(x) =
∞∑
k=0

γk
xk

k!
(1.1)

is said to be in the Laguerre-Pólya class, denoted ψ(x) ∈ LP , if it can be
represented in the form

ψ(x) = cxme−αx
2+βx

∞∏
k=1

(1 + x/xk) e
−x/xk , (1.2)

where c, β, xk are real numbers, α ≥ 0, m is a nonnegative integer and∑
x−2
k < ∞. For more background on the theory of the LP class, we refer

to [31] and [37].

One of the celebrated inequalities found in the literature of Laguerre-
Pólya class is Turán inequality

a2
k ≥ ak−1ak+1.

Note that a sequence {ak}k≥0 satisfying the Turán inequality is also called
log-concave sequence. Pólya and Schur [36] proved that the Maclaurin coef-
ficients of ψ(x) in the LP class satisfy the Turán inequality

γ2
k − γk−1γk+1 ≥ 0 (1.3)

for k ≥ 1. Given a sequence {an}n≥0, for n ≥ 1, let

T1(n) = a2
n − an−1an+1,

and for k ≥ 2 and n ≥ k, let

Tk(n) = Tk−1(n)2 − Tk−1(n− 1)Tk−1(n+ 1).

A sequence {an}n≥0 is said to satisfy the double Turán inequality if T1(n) ≥ 0
for n ≥ 1 and T2(n) ≥ 0 for n ≥ 2. In general, {an}n≥0 is said to satisfy
the lth order iterated Turán inequality if, for 1 ≤ k ≤ l and n ≥ k, we
have Tk(n) ≥ 0. Csordas [11] proved that the Maclaurin coefficients of ψ(x)
in the LP class satisfy the double Turán inequality. Note that the Turán
inequality and the double Turán inequality are consistent with log-concavity
and 2-log-concavity in combinatorics, see [1, 2].

Dimitrov [17] studied that for a real entire function ψ(x) in the LP class,
the Maclaurin coefficients satisfy the m-rd Turán inequality

4(γ2
k − γk−1γk+1)(γ2

k+1 − γkγk+2)− (γkγk+1 − γk−1γk+2)2 ≥ 0 (1.4)
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for k ≥ 1. Note that this inequality was first observed by Pólya and Schur
[36]. It is well known that the Riemann hypothesis holds if and only if the
Riemann ξ-function belongs to the LP class. Hence, if the Riemann hypoth-
esis is true, then the Maclaurin coefficients of the Riemann ξ-function satisfy
both the Turán inequality and the Turán inequality of order 2. Csordas, Nor-
folk and Varga [12] proved that the coefficients of the Riemann ξ-function
satisfy the Turán inequalities. And Dimitrov and Lucas [18] showed that the
coefficients of the Riemann ξ-function satisfy the Turán inequalities of order
2 without the Riemann hypothesis.

Recall that if a polynomial f(x) satisfies

f ′(x)
2 − f(x)f ′′(x) ≥ 0, (1.5)

then it is called to satisfy Laguerre inequality. Laguerre [28] stated that
if f(x) is a polynomial with only real zeros, then the Laguerre inequality
holds for f(x). Gasper [22] used it as an important tool to deal with the
positivity of special function. Laguerre stated that the Laguerre inequality
is intimately relative with Riemann hypothesis. Actually, one can see that
the Turán inequality of γk is equivalent to the Laguerre inequality of ψ(x).

In 1913, Jensen [27] found am-rd generalization of the Laguerre inequality

Ln(f(x)): =
1

2

2n∑
k=0

(−1)n+k

(
2n

k

)
fk(x)f 2n−k(x) ≥ 0. (1.6)

where fk(x) denotes the kth derivative of f(x)It yields the classical Laguerre
inequality for n = 1. Patrick [35, 34] used (1.6) to obtain Turán-type in-
equalities, which hold for some fixed values of x and have essentially the
same form

2n∑
k=0

(−1)n+k

(2n)!

(
2n

k

)
uk(x)u2n−k(x) ≥ 0, (1.7)

for which the sequences of functions un = un(x) arise as Taylor coefficients
of a function in the Laguerre-Pólya class, that is,

∞∑
n=0

un
zn

n!
= ψ(z), (1.8)

where ψ(z) is of the form (1.2).

For k = 1, (1.7) is the interesting and much studied Turán inequality

(un+1(x))2 − un(x)un+2(x) ≥ 0, n ≥ 0.

Skovgaard [38] showed that for such sequences {un}n≥0 the Turán inequality
is a consequence of the Laguerre inequality. Csordas and Escassut [11] in-
vestigated the inequalities Ln(f(x)) ≥ 0 and related Laguerre-type inequal-
ities. Some further generalizations and allied inequalities can be found in
[3, 9, 10, 16, 21].
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Let the sequence {γ(n)} defined by

(−1 + 4z2)Λ

(
1

2
+ z

)
=
∞∑
n=0

γ(n)

n!
z2n, (1.9)

where Λ(s) = π−s/2Γ(s/2)ζ(s) = Λ(1−s). We say that a polynomial with real
coefficients is hyperbolic if all of its zeros are real, and where the Jensen poly-
nomial of degree d and shift n of an arbitrary sequence {α(0), α(1), α(2), . . .}
of real numbers is the polynomial

Jd,nα :=
d∑
j=0

(
d

j

)
α(n+ j)Xj.

Building on work of Jensen [27], Pólya and Schur [36] showed that the
Riemann hypothesis is equivalent to the function (−1 + 4z2)Λ

(
1
2

+ z
)

being
in the Laguerre-Pólya class, is equivalent to γ(n) satisfying all of the higher
Turán inequalities and is equivalent to all of the associated Jensen polynomi-
als having all real roots. Apart from this, Csordas and Varga [13] showed that
the Riemann hypothesis is equivalent to the function (−1+4z2)Λ

(
1
2

+ z
)

sat-
isfying all of the higher Laguerre inequalities. More properties of the Jensen
polynomials can be found in [9, 12, 13].

Motivated by these results, we consider whether these inequalities hold for
discrete sequences. Let us first consider the partition function. Recall that a
partition of a positive integer n is a nonincreasing sequence (λ1, λ2, . . . , λr)
of positive integers such that λ1 + λ2 + · · · + λr = n. Let p(n) denote the
number of partitions of n. Nicolas [33], DeSalvo and Pak [15] independently
showed that p(n) is log-concave for n ≥ 25. DeSalvo and Pak also proved
the following two conjectures proposed by Chen [4],

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
for n ≥ 2, (1.10)

and

p(n)2 − p(n−m)p(n+m) > 0 for n > m > 1. (1.11)

They also conjectured that for n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
. (1.12)

Chen, Wang and Xie [8] showed the positivity of this conjecture and further
gave the upper and lower bound for m-rd difference of log p(n).
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Chen [5] proposed a bundle of conjectures on partition function p(n) and
the Andrews smallest parts function spt(n). Soon after, Dawsey and Masri
[14] proved these conjecturesby establishing an asymptotic formula with an
effective bound on the error term for spt(n). Further, Dawsey and Masri
proved that for every ε > 0 there was an effectively computable constant
N(ε) > 0 such that for all n ≥ N(ε), we have

√
6

π

√
np(n) < spt(n) <

(√
6

π
+ ε

)
√
np(n).

The Turán inequality of order 2 of p(n) is one of the most important
conjecture. Recently, Chen, Jia and Wang [7] showed that for n ≥ 95, p(n)
possess the Turán inequality of order 2, i.e.,

4(p(n)2−p(n−1)p(n+1))(p(n+1)2−p(n)p(n+2))−(p(n)p(n+1)−p(n−1)p(n+2))2 ≥ 0.

As a corollary, the cubic polynomial

p(n− 1) + 3p(n)x+ 3p(n+ 1)x2 + p(n+ 2)x3

has three distinct real zeros for n ≥ 95. Chen, Jia and Wang also proposed a
conjecture that for any positive integer m ≥ 4, there exists a positive integer
N(m) such that for any n ≥ N(m), the polynomial

m∑
k=0

(
m

k

)
p(n+ k)xk

has only real zeros. Griffin, Ono, Rolen and Zagier [23] proved this conjec-
ture by establishing the relation between the Jensen polynomials associated
with p(n) and Hermite polynomials. In fact, they gave the following more
generalized theorem.

Theorem 1.1 (Griffin, Ono, Rolen and Zagier). Let {α(n)}, {A(n)}, and
{δ(n)} be three sequences of positive real numbers with δ(n) tending to zero
and satisfying

log

(
α(n+ j)

α(n)

)
= A(n)j − δ(n)2j2 + o(δ(n)d) as n→∞,

for some interger d ≥ 1 and all 0 ≤ j ≤ d. Then, we have

lim
n→∞

(
δ(n)−d

α(n)
Jd,nα

(
δ(n)X − 1

exp(A(n))

))
= Hd(X),

uniformly for X in any compact subset of R, where

Jd,nα :=
d∑
j=0

(
d

j

)
α(n+ j)Xj,
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and Hermite polynomials Hd(X) be defined by the generating function

∞∑
d=0

Hd(X)
td

d!
= e−t

2+Xt = 1 +Xt+
(
X2 − 2

) t2
2!

+
(
X3 − 6X

) t3
3!

+ · · · .

Griffin, Ono, Rolen and Zagier [23] verified both the p(n) and the Maclau-
rin coefficients of the Riemann ξ-function have this form. As consequences,
the above conjecture holds and the Jensen polynomials associated with the
Riemann ξ-function have only real zeros as sufficiently large n. Based on the
above work [23], Griffin, Ono, Rolen, Thorner, Tripp, and Wagner [24] made
this approach effective for the Riemann ξ-function. For more log-behavior of
p(n), see [25, 26, 29].

Moreover, some other discrete sequences, such as the Motzkin numbers,
the Fine numbers, the Franel numbers of order 3 and the Domb numbers, are
log-convex, not log-concave. Thus they definitely do not satisfy the Turán
inequality of order 2. Despite all this, Wang [39] proved that Turán inequality
of order 2 holds for the sequences {an/n! }n≥0, where an are the Motzkin
numbers, the Fine numbers, the Franel numbers of order 3 and the Domb
numbers.

In this paper, we concern with whether the discrete sequences have the
similar results with Laguerre inequality of order m. We first define a sequence
{an}n≥0 satisfies Laguerre inequality of order m if

Lm(an): =
1

2

2m∑
k=0

(−1)k+m

(
2m

k

)
an+ka2m−k+n ≥ 0, (1.13)

For m = 1, the above inequality reduces to

a2
n − an−1an+1 > 0,

i.e., the log-concavity of {an}n≥0. In the remaining of this paper, we will
concern with the case m = 2 and show that the partition function, the
overpartition function, the Bernoulli numbers, the derangement numbers,
the Motzkin numbers, the Fine numbers, the Franel numbers and the Domb
numbers possess Laguerre inequality of order 2.

Remarks. Wagner [41] recently proved that p(n) satisfies all of the higher
Laguerre inequalities as n→∞ and proposed a conjecture on the thresholds
of the m-rd Laguerre ineequalities of p(n) for m ≤ 10. He did not mention
the Laguerre inequality of order m for overpartition. Dou and Wang [19]
gave an explicit bound N(m) such that for n > N(m) p(n) satisfies the m-rd
Laguerre inequalities for 3 ≤ m ≤ 10. As consequences, the case m = 3 and
4 of Wagner’s conjecture have been proved.
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2. Partition function

In this section, we begin with partition function p(n). We will show the
Laguerre inequality of order 2 is true for p(n).

Theorem 2.1. Let p(n) denote the partition function. For n ≥ 184, we have

3p(n+ 2)2 − 4p(n+ 1)p(n+ 3) + p(n)p(n+ 4) > 0. (2.1)

Proof. In order to prove the above theorem, let

un =
p(n− 1)p(n+ 1)

p(n)2
, (2.2)

one can easily deduce that Theorem 2.1 is equivalent to that for n > 183 ,

3− 4un+2 + un+1un+3u
2
n+2 > 0. (2.3)

For convenience, denote
s(n) = un+1un+3, (2.4)

and (2.1) can be restated as

s(n)u2
n+2 − 4un+2 + 3 > 0. (2.5)

Let
F (t) = s(n)t2 − 4t+ 3. (2.6)

To prove (2.5), we need to show that

F (un+2) > 0. (2.7)

Since the equation F (t) = 0 has two solutions

t1 =
2−

√
4− 3s(n)

s(n)
and t2 =

2 +
√

4− 3s(n)

s(n)
.

From the definition of s(n), it is easily seen that 0 < s(n) < 1 for n > 25.
Thus, F (t) is positive when t < t1 or t > t2.

To verify (2.7), we aim to show that for n ≥ 1207,

un+2 < t1 =
2−

√
4− 3s(n)

s(n)
. (2.8)

For this aim, we need find a function g(n) satisfying

un+2 < g(n+ 2) < t1. (2.9)
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Lehmer [30] constructed the following notation to provide an error term for
the partition function, and Chen, Jia and Wang [7] adopted it to state sharper
bounds for un.

µ(n) =
π
√

24n− 1

6
.

Let r = µ(n+ 3), j = µ(n+ 4) and quote the equation as used in [7]:

x = µ(n− 1), y = µ(n), z = µ(n+ 1), w = µ(n+ 2), (2.10)

and

f(n) = ex−2y+z β(x)y24β(z)

x12α(y)2z12
, (2.11)

g(n) = ex−2y+zα(x)y24α(z)

x12β(y)2z12
. (2.12)

where
α(t) = t10 − t9 + 1, β(t) = t10 − t9 − 1. (2.13)

Notice that employing Rademacher’s convergent series and Lehmer’s error
bound, Chen, Jia and Wang [7] proved the following inequality.

Theorem 2.2 (Chen, Jia and Wang, [7]). For n ≥ 1207,

f(n) < un < g(n). (2.14)

This theorem stated that

un+2 < g(n+ 2),

i.e., the first inequality of (2.9) holds. Thus, in the remaining of this section,
we will focus on the second inequality of (2.9), which can be rewritten as

s(n)g(n+ 2)2 − 4g(n+ 2) + 3 > 0. (2.15)

To verify it, we first need to give a lower bound for s(n), which plays an
important role in (2.5) and the proof of Theorem 2.1

Setting
s1(n) = f(n+ 1)f(n+ 3), (2.16)

from Theorem 2.2, we get the following lower bound for s(n).

Corollary 2.3. For n ≥ 1207, we have

s1(n) < s(n). (2.17)

8



To prove (2.15), it suffices to show that for n ≥ 1207,

s1(n)g(n+ 2)2 − 4g(n+ 2) + 3 > 0. (2.18)

From the definition (2.16) of s1(n), we can rewrite the above inequality as

f(n+ 1)f(n+ 3)g(n+ 2)2 − 4g(n+ 2) + 3 > 0. (2.19)

Substituting (2.10) and (2.13) into (2.11) and (2.12), we have

f(n+ 1) = ey−2z+wβ(y)β(w)z24

y12w12α(z)2
,

f(n+ 3) = ew−2r+j β(w)β(j)r24

w12j12α(r)2
,

g(n+ 2) = ez−2w+rα(z)α(r)w24

z12r12β(w)2
.

Simplifying the left-hand side of the inequality (2.19) leads to

s1(n)g(n+ 2)2 − 4g(n+ 2) + 3 =
h1e

y−2w+j − 4h2e
z−2w+r + 3h3

h3

, (2.20)

where

h1 = β(y)β(j)w24z12r12, (2.21)

h2 = α(z)α(r)w24y12j12, (2.22)

h3 = β(w)2y12z12r12j12. (2.23)

Now we proceed to prove the numerator of (2.20) is positive for n ≥ 2.
Since h3 is positive for all n ≥ 1, we only need to prove

h1e
y−2w+j − 4h2e

z−2w+r + 3h3 > 0. (2.24)

For this aim, we need to estimate h1, h2, h3, e
y−2w+j and ez−2w+r. We

prefer to give the estimates of y, z, r and j by the following equalities. For
n ≥ 2,

y =

√
w2 − 4π2

3
, z =

√
w2 − 2π2

3
, r =

√
w2 +

2π2

3
, j =

√
w2 +

4π2

3
. (2.25)

We can obtain the following expansions easily,

y = w − 2π2

3w
− 2π4

9w3
− 4π6

27w5
− 10π8

81w7
− 28π10

243w9
+O

(
1

w10

)
,
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z = w − π2

3w
− π4

18w3
− π6

54w5
− 5π8

648w7
− 7π10

1944w9
+O

(
1

w10

)
,

r = w +
π2

3w
− π4

18w3
+

π6

54w5
− 5π8

648w7
+

7π10

1944w9
+O

(
1

w10

)
,

j = w +
2π2

3w
− 2π4

9w3
+

4π6

27w5
− 10π8

81w7
+

28π10

243w9
+O

(
1

w10

)
.

It can be checked that for n ≥ 17,

y1 < y < y2, (2.26)

z1 < z < z2, (2.27)

r1 < r < r2, (2.28)

j1 < j < j2, (2.29)

where

y1 = w − 2π2

3w
− 2π4

9w3
− 4π6

27w5
− 10π8

81w7
− 29π10

243w9
,

y2 = w − 2π2

3w
− 2π4

9w3
− 4π6

27w5
− 10π8

81w7
− 28π10

243w9
,

z1 = w − π2

3w
− π4

18w3
− π6

54w5
− 5π8

648w7
− 8π10

1944w9
,

z2 = w − π2

3w
− π4

18w3
− π6

54w5
− 5π8

648w7
− 7π10

1944w9
,

r1 = w +
π2

3w
− π4

18w3
+

π6

54w5
− 5π8

648w7
,

r2 = w +
π2

3w
− π4

18w3
+

π6

54w5
− 5π8

648w7
+

7π10

1944w9
,

j1 = w +
2π2

3w
− 2π4

9w3
+

4π6

27w5
− 10π8

81w7
,

j2 = w +
2π2

3w
− 2π4

9w3
+

4π6

27w5
− 10π8

81w7
+

28π10

243w9
.

Applying (2.26), (2.27), (2.28) and (2.29) to the definition (2.13) of α(t)
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and β(t), we obtain that for n ≥ 17,

z10 − z2z
8 + 1 < α(z) < z10 − z1z

8 + 1,

r10 − r2r
8 + 1 < α(r) < r10 − r1r

8 + 1,

y10 − y2y
8 − 1 < β(y) < y10 − y1y

8 − 1,

j10 − j2j
8 − 1 < β(j) < j10 − j1j

8 − 1.

(2.30)

It follows that

h1 >
(
y10 − y2y

8 − 1
) (
j10 − j2j

8 − 1
)
w24z12r12, (2.31)

h2 <
(
z10 − z1z

8 + 1
) (
r10 − r1r

8 + 1
)
w24y12j12. (2.32)

Next we turn to estimate ey−2w+j and ez−2w+r. By (2.26), (2.27), (2.28)
and (2.29), we can see that for n ≥ 17,

y1 − 2w + j1 < y − 2w + j < y2 − 2w + j2, (2.33)

z1 − 2w + r1 < z − 2w + r < z2 − 2w + r2, (2.34)

which implies that

ey1−2w+j1 < ey−2w+j < ey2−2w+j2 , (2.35)

ez1−2w+r1 < ez−2w+r < ez2−2w+r2 . (2.36)

In order to give a feasible bound for ey−2w+j and ez−2w+r, we define

Φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
, (2.37)

φ(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
. (2.38)

It can be checked that for t < 0,

φ(t) < et < Φ(t). (2.39)

To apply this result to (2.35) and (2.36), we have to show that both
y2 − 2w + j2 and z2 − 2w + r2 are negative. By straightforward calculation,
one can get that

y2 − 2w + j2 = −4π4 (5π4 + 9w4)

81w7
,
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z2 − 2w + r2 = −π
4 (5π4 + 36w4)

324w7
.

Obviously, for n ≥ 2, both y2 − 2w + j2 and z2 − 2w + r2 are negative.
Thus, applying (2.39) to (2.35) and (2.36), we obtain that for n ≥ 17,

φ(y1 − 2w + j1) < ey−2w+j < Φ(y2 − 2w + j2), (2.40)

φ(z1 − 2w + r1) < ez−2w+r < Φ(z2 − 2w + r2). (2.41)

Now, we proceed to prove (2.24). For convenience, let

A(w) = h1e
y−2w+j − 4h2e

z−2w+r + 3h3, (2.42)

we need to show the positivity of A(w). Making use of (2.31), (2.32), (2.40)
and (2.41), we obtain that for n ≥ 17,

A(w) >
(
y10 − y2y

8 − 1
) (
j10 − j2j

8 − 1
)
w24z12r12φ(y1 − 2w + j1)

− 4
(
z10 − z1z

8 + 1
) (
r10 − r1r

8 + 1
)
w24y12j12Φ(z2 − 2w + r2)

+ 3β(w)2y12z12r12j12.

Substituting y, z, r and j with
√
w2 − 4π2

3
,
√
w2 − 2π2

3
,
√
w2 + 4π2

3
and√

w2 + 2π2

3
, respectively, we can rewrite the right-hand side of the above

inequality as ∑91
k=0 akw

k

2153515w29
, (2.43)

where ak are known real numbers, and the values of a91, a90, a89 are given
below,

a91 = 2163485π8, a90 = −21534853π8, a89 = 21834952π8.

Thus, for n ≥ 17, we have

A(w) >

∑91
k=0 akw

k

2153515w29
. (2.44)

As w is positive for n ≥ 1, we have that

91∑
k=0

akw
k >

90∑
k=0

−|ak|wk + a91w
91. (2.45)
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Thus, to get (2.44), we only need to show that for n ≥ 1207,

90∑
k=0

−|ak|wk + a91w
91 > 0. (2.46)

For 0 ≤ k ≤ 89, we find that

− |ak|wk > −a89w
89 (2.47)

holds for w >
3

√
3625π12 − 6π10 + 5832

1620π8
≈ 6.02. It follows that for w ≥ 7,

91∑
k=0

akw
k >

90∑
k=0

−|ak|wk + a91w
91

> (−90a89 + a90w + a91w
2)w89.

(2.48)

Combing (2.44) and (2.48), A(w) is positive provided

− 90a89 + a90w + a91w
2 > 0, (2.49)

which is true if w > 80, or equivalently, if n ≥ 971. Thus, we arrive at
that (2.24) is true for n ≥ 1207, which implies (2.18). Combining (2.18) and
(2.17), we obtain that for n ≥ 1207,

s(n)g(n+ 2)2 − 4g(n+ 2) + 3 > 0. (2.50)

This proves the second inequality of (2.9).

On the other hand, it can be checked that (2.1) is also true for 184 ≤ n ≤
1206. Thus the proof of Theorem 2.1 is completed.

3. Overpartition function

In this section, we turn to consider a generalization of partition, namely,
the overpartition. Recall that an overpartition of n is a ordinary partition
of n with the added condition that the first occurrence of any part may be
overlined or not. For example, there are eight overpartitions of 3:

3, 3̄, 2 + 1, 2̄ + 1, 2̄ + 1̄, 1 + 1 + 1, 1̄ + 1 + 1

Engle [20] proved that for n ≥ 2, overpartition functition p̄(n) satisfied
the Turán inequalities, that is, −∆2 log p̄(n) ≥ 0 for n ≥ 2. Wang, Xie
and Zhang [40] proved the positivity of finite differences of the overpartition
function and gave an upper bound for ∆rp̄(n) and ∆r log p̄(n). Liu and Zhang
[32] showed that the Turán inequality of order 2 is true for p̄(n).

Now we will prove the overpartition function satisfies the Laguerre in-
equality of order 2.
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Theorem 3.1. Let p̄(n) denote the overpartition function. For n ≥ 7, we
have

3p̄(n+ 2)2 − 4p̄(n+ 1)p̄(n+ 3) + p̄(n)p̄(n+ 4) > 0. (3.1)

Proof. In order to prove the above theorem, let

ūn =
p̄(n− 1)p̄(n+ 1)

p̄(n)2
, (3.2)

one can easily deduce that Theorem 3.1 is equivalent to that for n ≥ 7 ,

3− 4ūn+2 + ūn+1ūn+3ū
2
n+2 > 0. (3.3)

For convenience, we denote

s̄(n) = ūn+1ūn+3, (3.4)

and hence (3.1) can be rewritten as

s̄(n)ū2
n+2 − 4ūn+2 + 3 > 0. (3.5)

Let

Q(x) = s̄(n)x2 − 4x+ 3. (3.6)

To prove (3.5), we need to show that

Q(ūn+2) > 0. (3.7)

Since the equation Q(x) = 0 has two solutions

x1 =
2−

√
4− 3s̄(n)

s̄(n)
and x2 =

2 +
√

4− 3s̄(n)

s̄(n)
.

From the definition of s̄(n), it is easily seen that 0 < s̄(n) < 1 for n ≥ 2.
Thus, Q(x) is positive when x < x1 or x > x2.

To verify (3.7), we aim to show that for n ≥ 55,

ūn+2 < x1 =
2−

√
4− 3s̄(n)

s̄(n)
. (3.8)

Similar to the proof of Theorem 2.1, we need to find a function ḡ(n) satisfying

ūn+2 < ḡ(n+ 2) < x1. (3.9)
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To this aim, we adopt the following notation which constructed by Engle
[20] to provide an error term for the overpartition function

µ̄(n) = π
√
n.

Let r̄ = µ̄(n+ 3), j̄ = µ̄(n+ 4) and adopt the following notation as used
in [32]:

x̄ = µ̄(n− 1), ȳ = µ̄(n), z̄ = µ̄(n+ 1), w̄ = µ̄(n+ 2), (3.10)

and

f̄(n) = ex̄−2ȳ+z̄ ȳ
14β̄(x)β̄(z)

x̄7z̄7ᾱ(y)2
, (3.11)

ḡ(n) = ex̄−2ȳ+z̄ ȳ
14ᾱ(x)ᾱ(z)

x̄7z̄7β̄(y)2
. (3.12)

where

ᾱ(t) = t5 − t4 + 1, β̄(t) = t5 − t4 − 1. (3.13)

Liu and Zhang [32] proved the following inequality.

Theorem 3.2 (Liu and Zhang [32]). For n ≥ 55,

f̄(n) < ūn < ḡ(n). (3.14)

Thus the first inequality of (3.9) holds. Then we shall prove the second
inequality of (3.9), which can be rewritten as

s̄(n)ḡ(n+ 2)2 − 4ḡ(n+ 2) + 3 > 0. (3.15)

To prove it, we need to give a lower bound for s̄(n). Denote

s̄1(n) = f̄(n+ 1)f̄(n+ 3), (3.16)

from Theorem 3.2, we get the following lower bound for s̄(n).

Corollary 3.3. For n ≥ 55, we have

s̄1(n) < s̄(n). (3.17)
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To prove (3.15), it suffices to show that for n ≥ 55,

s̄1(n)ḡ(n+ 2)2 − 4ḡ(n+ 2) + 3 > 0. (3.18)

From the definition (3.16) of s̄1(n), we can rewrite the above inequality as

f̄(n+ 1)f̄(n+ 3)ḡ(n+ 2)2 − 4ḡ(n+ 2) + 3 > 0. (3.19)

Substituting (3.10) and (3.13) into (3.11) and (3.12), we have

f̄(n+ 1) = eȳ−2z̄+w̄ z̄
14β̄(ȳ)β̄(w̄)

ȳ7w̄7ᾱ(z̄)2
,

f̄(n+ 3) = ew̄−2r̄+j̄ r̄
14β̄(w̄)β̄(j̄)

w̄7j̄7ᾱ(r̄)2
,

ḡ(n+ 2) = ez̄−2w̄+r̄ w̄
14ᾱ(z̄)ᾱ(r̄)

z̄7r̄7β̄(w̄)2
.

The left-hand side of the inequality (3.19) can be rewritten as

s̄1(n)ḡ(n+ 2)2 − 4ḡ(n+ 2) + 3 =
h̄1e

ȳ−2w̄+j̄ − 4h̄2e
z̄−2w̄+r̄ + 3h̄3

h̄3

, (3.20)

where

h̄1 = β̄(ȳ)β̄(j̄)w̄14z̄7r̄7, (3.21)

h̄2 = ᾱ(z̄)α(r̄)w̄14ȳ7j̄7, (3.22)

h̄3 = β̄(w̄)2ȳ7z̄7r̄7j̄7. (3.23)

Since h̄3 is positive for all n ≥ 1, to prove (3.19) we have to prove

h̄1e
ȳ−2w̄+j̄ − 4h̄2e

z̄−2w̄+r̄ + 3h̄3 > 0. (3.24)

For this aim, we need to estimate h̄1, h̄2, h̄3, e
ȳ−2w̄+j̄ and ez̄−2w̄+r̄. We

prefer to give the estimates of ȳ, z̄, r̄ and j̄ by the following equalities. For
n ≥ 2,

ȳ =
√
w̄2 − 2π2, z̄ =

√
w̄2 − π2, r̄ =

√
w̄2 + π2, j̄ =

√
w̄2 + 2π2. (3.25)

Expanding them leads to

ȳ = w̄ − π2

w̄
− π4

2w̄3
− π6

2w̄5
− 5π8

8w̄7
− 7π10

8w̄9
+O

(
1

w̄10

)
,
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z̄ = w̄ − π2

2w̄
− π4

8w̄3
− π6

16w̄5
− 5π8

128w̄7
− 7π10

256w̄9
+O

(
1

w̄10

)
,

r̄ = w̄ +
π2

2w̄
− π4

8w̄3
+

π6

16w̄5
− 5π8

128w̄7
+

7π10

256w̄9
+O

(
1

w̄10

)
,

j̄ = w̄ +
π2

w̄
− π4

2w̄3
+

π6

2w̄5
− 5π8

8w̄7
+

7π10

8w̄9
+O

(
1

w̄10

)
.

It is easily seen that for n ≥ 11,

ȳ1 < ȳ < ȳ2, (3.26)

z̄1 < z̄ < z̄2, (3.27)

r̄1 < r̄ < r̄2, (3.28)

j̄1 < j̄ < j̄2, (3.29)

where

ȳ1 = w̄ − π2

w̄
− π4

2w̄3
− π6

2w̄5
− 5π8

8w̄7
− π10

w̄9
,

ȳ2 = w̄ − π2

w̄
− π4

2w̄3
− π6

2w̄5
− 5π8

8w̄7
− 7π10

8w̄9
,

z̄1 = w̄ − π2

2w̄
− π4

8w̄3
− π6

16w̄5
− 5π8

128w̄7
− 5π10

128w̄9
,

z̄2 = w̄ − π2

2w̄
− π4

8w̄3
− π6

16w̄5
− 5π8

128w̄7
− 7π10

256w̄9
,

r̄1 = w̄ +
π2

2w̄
− π4

8w̄3
+

π6

16w̄5
− 5π8

128w̄7
,

r̄2 = w̄ +
π2

2w̄
− π4

8w̄3
+

π6

16w̄5
− 5π8

128w̄7
+

7π10

256w̄9
,

j̄1 = w̄ +
π2

w̄
− π4

2w̄3
+

π6

2w̄5
− 5π8

8w̄7
,

j̄2 = w̄ +
π2

w̄
− π4

2w̄3
+

π6

2w̄5
− 5π8

8w̄7
+

7π10

8w̄9
.

Applying (3.26), (3.27), (3.28) and (3.29) to the definition (3.13) of ᾱ(t) and
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β̄(t), we obtain that for n ≥ 11,

z̄1z̄
4 − z̄4 + 1 < ᾱ(z̄) < z̄2z̄

4 − z̄4 + 1,

r̄1r̄
4 − r̄4 + 1 < ᾱ(r̄) < r̄2r̄

4 − r̄4 + 1,

ȳ1ȳ
4 − ȳ4 − 1 < β̄(ȳ) < ȳ2ȳ

4 − ȳ4 − 1,

j̄1j̄
4 − j̄4 − 1 < β̄(j̄) < j̄2j̄

4 − j̄4 − 1,

(3.30)

which implies that

h̄1 >
(
ȳ1ȳ

4 − ȳ4 − 1
) (
j̄1j̄

4 − j̄4 − 1
)
w̄14z̄1z̄

6r̄1r̄
6, (3.31)

h̄2 <
(
z̄2z̄

4 − z̄4 + 1
) (
r̄2r̄

4 − r̄4 + 1
)
w̄14ȳ2ȳ

6j̄2j̄
6, (3.32)

h̄3 > ȳ1ȳ
6z̄1z̄

6r̄1r̄
6j̄1j̄

6β̄(w̄)2. (3.33)

We proceed to estimate eȳ−2w̄+j̄ and ez̄−2w̄+r̄. Combining (3.26), (3.27),
(3.28) and (3.29), we can see that for n ≥ 11,

ȳ1 − 2w̄ + j̄1 < ȳ − 2w̄ + j̄ < ȳ2 − 2w̄ + j̄2, (3.34)

z̄1 − 2w̄ + r̄1 < z̄ − 2w̄ + r̄ < z̄2 − 2w̄ + r̄2, (3.35)

which implies that

eȳ1−2w̄+j̄1 < eȳ−2w̄+j̄ < eȳ2−2w̄+j̄2 , (3.36)

ez̄1−2w̄+r̄1 < ez̄−2w̄+r̄ < ez̄2−2w̄+r̄2 . (3.37)

In order to give a feasible bound for eȳ−2w̄+j̄ and ez̄−2w̄+r̄, we define

Φ̄(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
, (3.38)

φ̄(t) = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
. (3.39)

It can be checked that for t < 0,

φ̄(t) < et < Φ̄(t). (3.40)

To apply this result to (3.36) and (3.37), it suffices to prove that both ȳ2 −
2w̄ + j̄2 and z̄2 − 2w̄ + r̄2 are negative. Straightforward calculation suggests

ȳ2 − 2w̄ + j̄2 = −π
2 (5π6 + 4π2w̄4 − 8w̄6)

4w̄7
,
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z̄2 − 2w̄ + r̄2 = −π
4 (5π4 + 16w̄4)

64w̄7
.

Obviously, for n ≥ 2, both ȳ2− 2w̄+ j̄2 and z̄2− 2w̄+ r̄2 are negative. Thus,
applying (3.40) to (3.36) and (3.37), we get that for n ≥ 11,

φ̄(ȳ1 − 2w̄ + j̄1) < eȳ−2w̄+j̄ < Φ̄(ȳ2 − 2w̄ + j̄2), (3.41)

φ(z̄1 − 2w̄ + r̄1) < ez̄−2w̄+r̄ < Φ(z̄2 − 2w̄ + r̄2). (3.42)

Now, we are in the position to prove (3.24). For convenience, let

Ā(w̄) = h̄1e
ȳ−2w̄+j̄ − 4h̄2e

z̄−2w̄+r̄ + 3h̄3, (3.43)

we need to show the positivity of Ā(w̄). Making use of (3.31), (3.32), (3.33),
(3.41) and (3.42), we obtain that for n ≥ 11,

Ā(w̄) >
(
ȳ1ȳ

4 − ȳ4 − 1
) (
j̄1j̄

4 − j̄4 − 1
)
w̄14z̄1z̄

6r̄1r̄
6φ̄(ȳ1 − 2w̄ + j̄1)

− 4
(
z̄2z̄

4 − z̄4 + 1
) (
r̄2r̄

4 − r̄4 + 1
)
w̄14ȳ2ȳ

6j̄2j̄
6Φ(z̄2 − 2w̄ + r̄2)

+ 3ȳ1ȳ
6z̄1z̄

6r̄1r̄
6j̄1j̄

6β̄(w̄)2.

Substituting ȳ, z̄, r̄ and j̄ with ȳ =
√
w̄2 − 2π2, z̄ =

√
w̄2 − π2, r̄ =

√
w̄2 + π2,

and j̄ =
√
w̄2 + 2π2, respectively, we can rewrite the right-hand side of the

above inequality as ∑90
k=0 akw̄

k

2473151w̄53
, (3.44)

where ak are known real numbers, and the values of a90, a89, a88 are given
below,

a90 = 2473π2, a89 = 24815
(
π2 − 2

)
, a88 = 2485π2

(
2π4 − 6π2 + 3

)
.

Thus, for n ≥ 11, we have

Ā(w̄) >

∑90
k=0 akw̄

k

2473151w̄53
. (3.45)

As w̄ is positive for n ≥ 1, we have that

90∑
k=0

akw̄
k >

89∑
k=0

−|ak|w̄k + a90w̄
90. (3.46)
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Thus, to obtain (3.45), we only need to show that for n ≥ 55,

89∑
k=0

−|ak|w̄k + a90w̄
90 > 0. (3.47)

For 0 ≤ k ≤ 88, it can be seen that

−|ak|w̄k > −a88w̄
88 (3.48)

holds for w̄ > 3

√
224π10 + 2635π8 − 5520π6 + 480π2 − 1920

80π2 (2π4 − 6π2 + 3)
≈ 7.19. It fol-

lows that for w̄ ≥ 7,

90∑
k=0

akw̄
k >

89∑
k=0

−|ak|w̄k + a90w̄
90

> (−89a88 + a89w̄ + a90w̄
2)w88.

(3.49)

Combing (3.45) and (3.49), Ā(w̄) is positive provided

−89a88 + a89w̄ + a90w̄
2 > 0, (3.50)

which is true for w̄ ≥ 60.4, or equivalently, for n ≥ 367. Thus, we arrive at
that (3.24) is true for n ≥ 367, which implies (3.18). Combining (3.18) and
(3.17), we obtain that for n ≥ 367,

s̄(n)ḡ(n+ 2)2 − 4ḡ(n+ 2) + 3 > 0. (3.51)

This proves the right hand side of (3.9).

On the other hand, it can be checked that (3.1) is also true for 7 ≤ n ≤
366. Hence the proof of Theorem 3.1 is completed.

4. Log-monotonicity and Laguerre inequality

In this section, we will concern with some other combinatorial sequences.
Wang [39] proved that for the Motzkin numbers, the Fine numbers, the
Franel numbers of order 3 and the Domb numbers, the sequences {an/n! }n≥0

satisfy Turán inequality of order 2 even though the sequences {an}n≥0 are not
log-concave. These results encourage us to consider whether the Laguerre
inequality of order m holds for these sequences. In fact, we find that the
Laguerre inequality of order 2 is closely related to the Log-monotonic of
order 3 raised in a previous paper [6] of the first author.
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In [6] an operator R on a sequence {an}n≥0 is defined by

R{an}n≥0 = {bn}n≥0,

where bn = an+1/an, and then, we say that the sequence {an}n≥0 is log-
monotonic of order k if for r odd and not greater than k − 1, the sequence
Rr{an}n≥0 is log-concave and for r even and not greater than k − 1, the
sequence Rr{an}n≥0 is log-convex. Now we are in a position to prove the
following theorem.

Theorem 4.1. If a sequence {an}n≥0 is log-monotonic of order 3, then for
n ≥ 0, the Laguerre inequality of order 2 holds for the sequence {an}n≥0, i.e.,

3a2
n+2 − 4an+1an+3 + anan+4 > 0. (4.1)

Proof. To verify (4.1), we aim to show that

3− 4vn+2 + vn+1v
2
n+2vn+3 > 0. (4.2)

Since {an}n≥0 is log-monotonic of order 3, we have vn+1 = anan+2

a2n+1
is log-

convex, i.e.,
v2
n+2 < vn+1vn+3 (4.3)

Thus, to prove (4.2), it suffices to show that

3− 4vn+2 + v4
n+2 > 0. (4.4)

Since

3− 4vn+2 + v4
n+2 = (vn+2 − 1)2(v2

n+2 + 2vn+2 + 3), (4.5)

which is apparently positive for vn+2 6= 1, we arrive at (4.4).

Chen, Guo and Wang [6] showed that the Bernoulli numbers are infinite-
ly log-monotonic. Zhu [42] proved that the sequences of the derangement
numbers, the Motzkin numbers, the Fine numbers, Franel numbers and the
Domb numbers are log-monotonic of order 3. Thus, by Theorem 4.1 we
immediately deduce the following corollary.

Corollary 4.2. The sequences of the Bernoulli numbers, the derangement
numbers, the Motzkin numbers , the Fine numbers, the Franel numbers and
the Domb numbers satisfy the Laguerre inequality of order 2.
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