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Abstract

Let G be a graph of order n with an edge-coloring c, and let δc(G) denote the

minimum color-degree of G. A subgraph F of G is called rainbow if all edges of F

have pairwise distinct colors. There have been a lot of results on rainbow cycles of

edge-colored graphs. In this paper, we show that (i) if δc(G) > 2n−1
3 , then every

vertex of G is contained in a rainbow triangle; (ii) if δc(G) > 2n−1
3 and n ≥ 13, then

every vertex of G is contained in a rainbow C4; (iii) if G is complete, n ≥ 7k − 17

and δc(G) > n−1
2 + k, then G contains a rainbow cycle of length at least k, where

k ≥ 5.

Keywords: edge-coloring; edge-colored graph; rainbow cycle; color-degree condi-

tion

AMS Classification 2020: 05C15, 05C38.

1 Introduction

We consider finite simple undirected graphs. An edge-coloring of a graph G is a

mapping c : E(G) → N, where N is the set of natural numbers. A graph G is called

an edge-colored graph if G is assigned an edge-coloring. The color of an edge e of G

and the set of colors assigned to E(G) are denoted by c(e) and C(G), respectively. For

V1, V2 ⊂ V (G) and V1 ∩ V2 = ∅, we set E(V1, V2) = {xy ∈ E(G), x ∈ V1, y ∈ V2}, and

when V1 = {u}, we write E(u, V2) for E({u}, V2). The set of colors appearing on the

edges between V1 and V2 in G is denoted by C(V1, V2). When V1 = {v}, we use C(v, V2)

∗Supported by NSFC No.12131013, 11871034 and 12161141006.
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instead of C({v}, V2). For a subgraph T of G, the set of colors appearing on E(T ) is

denoted by C(T ), and we use TC to denote G − T . A subset F of edges of G is called

rainbow if no distinct edges in F receive the same color, and a graph is called rainbow if

its edge-set is rainbow. Specially, a path P is rainbow if no distinct edges in E(P ) are

assigned the same color. The length of a path P = u1u2 · · ·up is the number of edges in

E(P ), denoted by `(P ). We use uiPuj to denote the segment between ui and uj on P .

If i < j, then uiPuj = uiui+1 · · ·uj; if i > j, then uiPuj = uiui−1 · · ·uj. For a vertex

v ∈ V (G), the color-degree of v in G is the number of distinct colors assigned to the edges

incident to v, denoted by dcG(v). We use δc(G) = min{dcG(v) : v ∈ V (G)} to denote the

minimum color-degree of G. The set of neighbors of a vertex v in a graph G is denoted

by NG(v). Let N c(v) be a subset of NG(v) such that |N c(v)| = dcG(v) and each color in

C(v,NG(v)) appears in E(v,N c(v)) exactly once. For each vertex v ∈ V (G) and a color

subset C ′ = {c1, c2, · · · , ck} of C(G), let NC′(v) = {u | u ∈ N c(v), c(uv) ∈ C ′}. For a

subset S of V , we denote NC′(v) ∩ S by NC′(v, S). When S = V (P ), we use NC′(v, P )

instead of NC′(v, V (P )). For other notation and terminology not defined here, we refer

to [1].

The existence of rainbow substructures in edge-colored graphs has been widely studied

in literature. We mention here only those known results that are related to our paper.

For short rainbow cycles, a minimum color-degree condition for the existence of a rainbow

triangle was given by Li [5] in 2013.

Theorem 1.1 ([5]). Let G be an edge-colored graph of order n ≥ 3. If δc(G) > n
2
, then

G has a rainbow triangle.

In 2014, Li et al. [7] improved Theorem 1.2 and got the following result.

Theorem 1.2 ([7]). Let G be an edge-colored graph of order n ≥ 3 satisfying one of the

following conditions:

(1)
∑

u∈V (G) d
c(u) ≥ n(n+1)

2
,

(2) δc(G) ≥ n
2

and G /∈ {Kn
2
,n
2
, K4, K4 − e}.

Then G contains a rainbow triangle.

There is also a result about the rainbow triangles in an edge-colored complete graph

which was proved by Fujita and Magnant in 2011.

Theorem 1.3 ([8]). Let G be an edge-colored complete graph of order n ≥ 3. If δc(G) ≥
n+1
2

, then each vertex of G is contained in a rainbow triangle.

In this paper, we get the the following result.
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Theorem 1.4. Let G be an edge-colored graph of order n ≥ 3. If δc(G) > 2n−1
3

, then

each vertex of G is contained in a rainbow triangle and the bound is sharp.

Next, for the rainbow C4, Čada et al. in [2] obtained the following result.

Theorem 1.5 ([2]). Let G be an edge-colored graph of order n. If G is triangle-free and

δc(G) > n
3

+ 1, then G contains a rainbow C4.

In this paper, we also get a result as follows.

Theorem 1.6. Let G be an edge-colored graph of order n ≥ 13. If δc(v) > 2n−1
3

, then

each vertex of G is contained in a rainbow C4.

Remark 1.7. We think that the lower bound in Theorem 1.4 is sharp and that in Theorem

1.6 is not sharp, since in the end of the proof of Theorem 1.4, (in Section 2), we construct

an edge-colored graph G with δc(G) = 2n−1
3

in which there exists a vertex such that no

rainbow triangle contains it, while each vertex is contained in a rainbow C4.

Finally, for long rainbow cycles, Li and Wang in [6] got the following result.

Theorem 1.8 ([6]). Let G be an edge-colored graph of order n ≥ 8. If for each vertex v

of G, dc(v) ≥ d ≥ 3n
4

+ 1, then G has a rainbow cycle of length at least d− 3n
4

+ 2.

In 2016, Čada et al. in [2] obtained a result on rainbow cycles of length at least four.

Theorem 1.9 ([2]). Let G be an edge-colored graph of order n. If for each vertex v of G,

dc(v) > n
2

+ 2, then G contains a rainbow cycle of length at least four.

At the end of their paper [2], they raised the following conjecture.

Conjecture 1.10 ([2]). Let G be an edge-colored graph of order n and k be a positive

integer. If for each vertex v of G, dc(v) > n+k
2

, then G contains a rainbow cycle of length

at least k.

Inspired by Theorem 1.9, Tangjai in [9] proved the following result.

Theorem 1.11 ([9]). Let G be an edge-colored graph of order n and k be a positive integer.

If G has no rainbow cycle of length 4 and δc(G) ≥ n+3k−2
2

, then G contains a rainbow

cycle of length at least k, where k ≥ 5.

Recently, the authors in [4] proved that G has a rainbow cycle of length ` when the

order of G is large enough, depending on `.
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Theorem 1.12 ([4]). For every integer ` ≥ 3, every edge-colored graph G of order n ≥
n0(`) with δc(G) ≥ n+1

2
admits a rainbow `-cycle C`, where n0(`) ≤ 432`.

We will show the following result.

Theorem 1.13. Let G be an edge-colored complete graph of order n and k be a positive

integer at least 5. If n ≥ 7k − 17 and δc(G) > n−1
2

+ k, then G contains a rainbow cycle

of length at least k.

In order to prove our main result, we need the following result of Chen and Li in [3]

on the existence of long rainbow paths.

Theorem 1.14 ([3]). Let G be an edge-colored graph, where δc(G) ≥ t ≥ 7. Then the

maximum length of rainbow paths in G is at least d2t
3
e+ 1.

In the following sections, we will give the proofs of our three results, Theorems 1.4,

1.6 and 1.13.

2 Proofs of Theorems 1.4 and 1.6

To present the proof of Theorems 1.4 and 1.6, we need some auxiliary lemmas. Let

G be an edge-colored graph and v be a vertex of G. A subset A of NG(v) is said to have

the dependence property with respect to a vertex v /∈ A, denoted by DPv, if c(aa′) ∈
{c(va), c(va′)} for all aa′ ∈ E(G[A]).

Lemma 2.1. If a subset A of vertices in an edge-colored graph G has the DPv, then there

exists a vertex x0 ∈ A such that the number of colors different from c(vx0) on the edges

incident with x0 in G[A] is at most |A|−1
2

.

Proof. We prove this lemma by constructing an oriented graph. Orient the edges in

E(G[A]) by applying the following rule: for an edge xy, if c(xy) = c(vx), then the

orientation of xy is from y to x; otherwise, the orientation of xy is from x to y. Thus,

we get an oriented graph D(A). Evidently, the arcs with colors different from c(vx)

are out-arcs from x. Let x0 be a vertex in D(A) with minimum out-degree. Clearly,

d+D(A)(x0) ≤
|A|−1

2
. Thus, the number of colors different from c(vx0) on the edges incident

with x0 in G[A] is at most |A|−1
2

.

Proof of Theorem 1.4: Let G be a graph satisfying the assumptions of Theorem

1.4 and suppose, to the contrary, that there exists a vertex v such that no rainbow
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triangle contains it. For any edge e = xy ∈ E(G[N c(v)]), since c(vx) 6= c(vy), we

have c(xy) ∈ {c(vx), c(vy)}; otherwise vxyv is a rainbow triangle. Thus, N c(v) has

the dependence property with respect to v. According to Lemma 2.1, there is a vertex

x0 ∈ N c(v) such that the number of colors different from c(vx0) on the edges incident with

x0 in G[N c(v)] is at most |N
c(v)|−1
2

. Then, we have |N c(x0)∩ (N c(v)∪ {v})| ≤ dc(v)−1
2

+ 1.

Thus, |N c(x0) ∩ (V (G) \ (N c(v) ∪ {v}))| ≥ δc(G)− (d
c(v)−1

2
+ 1). So, we have

n ≥ |N c(v)|+ |V (G) \ (N c(v) ∪ {v})|+ |{v}|
≥ dc(v) + |N c(x0) ∩ (V (G) \ (N c(v) ∪ {v}))|+ 1

≥ dc(v) + δc(G)− (d
c(v)−1

2
+ 1) + 1

≥ 3
2
δc(G) + 1

2
.

Hence, we have δc(G) ≤ 2n−1
3

, a contraction.

ui ∈ V1

c(uiuj) uj ∈ V2
u2n+2 u2n+3 · · · u3n u3n+1

u1 cn+2 cn+3 · · · c2n c2n+1

u2 cn+3 cn+4 · · · c2n+1 c1
...

...
...

...
...

...

un c2n+1 c1 · · · cn−2 cn−1

un+1 c1 c2 · · · cn−1 cn

un+2 c2 c3 · · · cn cn+1

un+3 c3 c4 · · · cn+1 cn+2

...
...

...
...

...
...

u2n+1 cn+1 cn+2 · · · c2n−1 c2n

Table 1: An edge-coloring of E[V1, V2]

Now we show that the bound on δc(G) is tight. Consider an edge-colored graph G of

order 3n + 2 with C(G) = {c1, c2, · · · , c2n+1}. Let v be a vertex of G and the vertex-set

of G is {v} ∪ V1 ∪ V2 satisfying that |V1| = 2n + 1 and |V2| = n. We label the vertices in

V1 by {u1, u2, · · · , u2n+1} and those in V2 by {u2n+2, u2n+3, · · · , u3n+1}. Let G[{v} ∪ V1]
be a complete graph and G[{ui}, V2] be a complete bipartite graph for all ui ∈ V1. The

edge-set of G is E(G) =
⋃

1≤i≤2n+1E[{ui}, V2]) ∪ E(G[{v} ∪ V1]).
The edge-coloring of E(G) satisfies the following three conditions:

(1) c(vui) = ci for 1 ≤ i ≤ 2n+ 1;

(2) for any two vertices ui and uj in V1 (w.l.o.g., i ≥ j):
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c(uiuj) =

ci, if i− j ≤ n,

cj, if i− j ≥ n+ 1;

(3) for any two vertices ui ∈ V1 and uj ∈ V2, the color of uiuj follows Table 1.

It is easy to verify that dc(uk) = 2n + 1 for uk ∈ {v} ∪ V2. We then discuss the

color-degrees of the vertices uk in V1. By (2) we know that if k ≤ n+ 1, then

c(ukui) =

ck, if i ∈ [1, k − 1] ∪ [n+ k + 1, 2n+ 1]

ci, if i ∈ [k + 1, n+ k]

and C(uk, V1) = {ck, ck+1, · · · , cn+k}. If k ≥ n+ 2, then

c(ukui) =

ck, if i ∈ [k − n, k − 1]

ci, if i ∈ [1, k − (n+ 1)] ∪ [k + 1, 2n+ 1]

and C(uk, V1) = {c1, c2, · · · , ck−(n+1), ck, ck+1, · · · , c2n+1}. Thus, dc(uk) = 2n + 1 for

uk ∈ V1. Note that v is not contained in any rainbow triangle in G. Therefore, the

bound of δc(G) in Theorem 1.4 is sharp.

Proof of Theorem 1.6: Let G be a graph satisfying the assumptions of Theorem 1.6 and

suppose, to the contrary, that there exists a vertex x such that no rainbow C4 contains

it. If x is not contained in a rainbow triangle either, then by Theorem 1.4, we have

δc(G) ≤ 2n−1
3

, a contradiction. Thus, we assume that x is contained in a rainbow triangle

T = xyzx in G. Let N c(x) be a rainbow neighbor-set of x containing y and z. At first,

we use the following algorithm to output a family F of q disjoint subsets S0, S1, · · · , Sq

of N c(x) which will be useful for our proof.
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Algorithm 1
Input: G.

Output: A family F of disjoint subsets.

1: Set S0 = {z}.
2: Let Sz = {y}.
3: Set S1 = Sz.

4: Let Sy = {u ∈ NC(G)\C(T )(x) ∩NG(y) : c(yu) /∈ {c(xy), c(zy)}}.
5: Set S2 = Sy.

6: Set F = {S0, S1, S2}.
7: Set i = 2.

8: for Si 6= ∅ do
9: for v ∈ Si, use v− to denote one of the predecessors of v such that v ∈ Sv− ,

10: and let Sv = {u ∈ N c(x) ∩NG(v) \
⋃i

k=0 Sk : c(uv) /∈ {c(xv), c(vv−)}}.
11: Set Si+1 =

⋃
v∈Si

Sv.

12: Set i = i+ 1.

13: Set F = F
⋃
{Si}.

14: if Si = ∅ then
15: Set q = i and return F .

The following claim states that steps 9 and 10 in Algorithm 1 can be executed.

Claim 1. (1) If u ∈ Sv for v ∈ ∪q−1i=1Si, then c(uv) ∈ {c(xu), c(xv−)}.
(2) For u ∈ Si and i ≥ 3, if there exist two distinct vertices v, w ∈ Si−1 such that

u ∈ Sv ∩ Sw, then c(uv) = c(uw), that is, |C(u, S−u )| = 1 where S−u = {v ∈ Si−1|u ∈ Sv}.

Proof. (1) Suppose v ∈ Si and 1 ≤ i ≤ q − 1. Since u ∈ Sv, we have c(uv) /∈
{c(xv), c(vv−)}. We prove this claim by induction on i. When i = 1, we have v = y

and v− = y− = z. Since u ∈ NC(G)\C(T )(x) ∩NG(y), we know that c(xu), c(xz), c(zy) are

three distinct colors. Since xzyux is not a rainbow C4, we have c(yu) ∈ {c(xz), c(xu)} =

{c(xy−), c(xu)}. When i ≥ 2, by the induction hypothesis, we have c(vv−) ∈ {c(xv), c(xv−−)}.
Then c(xu), c(vv−), c(xv−) are three distinct colors. Since xv−vux is not a rainbow C4,

we have c(uv) ∈ {c(xu), c(xv−)}. The result thus follows.

(2) According to (1), we have c(uv) ∈ {c(xu), c(xv−)} and c(uw) ∈ {c(xu), c(xw−)}.
Since v, w ∈ Si−1, we have v− 6= w and w− 6= v. Thus, {c(uv), c(uw)}∩{c(xv), c(xw)} = ∅.
Hence, c(uv) = c(uw); otherwise, xvuwx is a rainbow C4, a contradiction.

Since N c(x) is a finite set, Algorithm 1 can return {S0, S1, · · · , Sq} within finite steps.
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Apparently, {S0, S1, · · · , Sq} is a family of disjoint subsets of N c(x). Let S =
⋃q

i=2 Si.

Then we get the following Claims 2 through 5, which are crucial steps for completing the

proof of Theorem 1.6.

Claim 2. If vu ∈ E(G[S]) with v ∈ Si and u ∈ Sj (w.l.o.g., assume that 2 ≤ i ≤ j ≤
q), then c(vu) ∈ {c(xv), c(xu), c(xv−), c(xv−−)}. Furthermore, we can get the following

specific results:

(1) If c(vu) = c(xv), then

v 6= u−, c(vv−) = c(xv), if i < j

c(vv−) = c(xv), if i = j.

(2) If c(vu) = c(xu), then

v = u−, if i < j

c(uu−) = c(xu), if i = j.

(3) If c(vu) = c(xv−), then u− =

v, if i < j

v−, if i = j.

(4) If c(vu) = c(xv−−), thenu−− = v, c(vv−) = c(xv−−), c(uu−) = c(xv), c(vu−) = c(xu−), if i < j

u−− = v−−, c(vv−) = c(uu−) = c(xu−−) = c(xv−−), if i = j.

Then, if i < j, we have c(vu) ∈ {c(xv), c(xu), c(xu−−), c(xu−−−−)} as well.

Proof. According to (1) of Claim 1, we know c(vv−) ∈ {c(xv), c(xv−−)}. Since xv−vux is

not a rainbow C4, we have c(vu) ∈ {c(xv−), c(vv−), c(xu)} ⊆ {c(xv), c(xu), c(xv−),

c(xv−−)}.
We distinguish the following two cases.

Case 1. i < j.

If v = u−, then from (1) of Claim 1 we have c(vu) ∈ {c(xu), c(xv−)}. Thus we assume

v 6= u−. Then we have c(vu) ∈ {c(xv), c(vv−)} by steps 4 and 10 of Algorithm 1. Note

that {c(xv), c(vv−)} ∩ {c(xu), c(xv−)} = ∅.
If c(vu) = c(xv), then since xv−vux is not a rainbow C4, we have c(vv−) = c(vu).

Since c(vv−) ∈ {c(xv), c(xv−−)} by (1) of Claim 1, we have c(vv−) = c(vu) = c(xv), and

so the “if i < j” case of (1) follows.

If c(vu) = c(vv−), then since c(vu) ∈ {c(xv), c(xv−−)} by (1) of Claim 1, we assume

c(vu) = c(xv−−), which means that c(vu) = c(vv−) = c(xv−−). Note that v−− ∈ Si−1.

Then v−− 6= u−. Therefore, c(xv), c(xu−), c(vu) are three distinct colors. Since xvuu−x

is not a rainbow C4, by (1) of Claim 1 we have c(uu−) ∈ {c(xv), c(xu−), c(xv−−)} ∩
{c(xu−−), c(xu)}. Hence, c(uu−) = c(xu−−) = c(xv), which implies that u−− = v. Then,
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u− ∈ Sv. Hence, c(vu−) 6= c(vv−) = c(vu) by steps 4 and 10 of Algorithm 1. Since

xu−vux is not a rainbow C4, we have c(vu−) ∈ {c(xu), c(xu−), c(vu)} ∩ {c(xu−), c(xv−)}
by (1) of Claim 1. Apparently c(vu−) = c(xu−), i.e., the “if i < j” case of (4) follows.

Combining with the first sentence of this case, the “if i < j” cases of (2) and (3) follow.

Case 2. i = j.

Then by Claim 1 we have that c(vv−) /∈ {c(xu), c(xv−)} and c(uu−) /∈ {c(xv), c(xu−)}.
Since neither xu−uvx nor xv−vux is rainbow, we have

c(vu) ∈ {c(xv), c(xu−), c(uu−)} ∩ {c(xu), c(xv−), c(vv−)}.

By (1) of Claim 1 again, we have

c(vu) ∈ {c(xv), c(xu), c(xu−), c(xu−−)} ∩ {c(xu), c(xv), c(xv−), c(xv−−)}.

If c(vu) = c(xv), then since c(xv) /∈ {c(xu), c(xv−), c(xv−−)}, we have c(vv−) = c(xv).

If c(vu) = c(xu), then c(uu−) = c(xu) similarly. If c(vu) = c(xv−), then since c(xv−) /∈
{c(xu), c(xv), c(xu−−)}, we have c(xu−) = c(xv−), which implies v− = u−. If c(vu) =

c(xv−−), then since c(xv−−) /∈ {c(xu), c(xv), c(xu−)}, we have c(vu) = c(vv−) = c(uu−) =

c(xu−−) = c(xv−−), which implies v−− = u−−. Then the “if i = j” cases of (1)-(4)

follow.

Claim 3. For each vertex v ∈ Si with 2 ≤ i ≤ q, if c(xv) or c(xv−) is incident with v in

G[S], then c(xv−−−−) is not incident with v in G[S].

Proof. Suppose to the contrary that there exists a vertex u ∈ S such that c(uv) =

c(xv−−−−). By Claim 2, we can get that i > j, and then c(uv) ∈ {c(xv), c(xu), c(xu−), c(xu−−)}.
If c(uv) = c(xu−), then by (3) of Claim 2, we have v− = u, which gives c(vu) = c(xv−−),

a contradiction. Hence from (4) of Claim 2, we have c(uv) = c(xu−−) and u = v−−. Thus

u ∈ Si−2.

(i) if there exists a vertex w ∈ S such that c(wv) = c(xv−), then by (3) of Claim 2,

we have v = w− or v− = w−, which implies that w ∈ Si ∪ Si+1. It is easy to verify that

xuvwx is a rainbow C4, a contradiction.

(ii) if there exists a vertex w ∈ S such that c(wv) = c(xv), then w 6= v−−−− clearly.

It is easy to verify that xuvwx is a rainbow C4, a contradiction.

Now we define a directed graph D on S =
⋃q

k=2 Sk. For any two distinct vertices u, v

in S, if uv ∈ E(G), we define the arcs joint them as follows:
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(a) If u, v are in the same set of Sk for 2 ≤ k ≤ q, then by Claim 2, c(uv) ∈
{c(xv), c(xu), c(xv−), c(xv−−)}. Hence, −→uv exists if c(uv) ∈ {c(xv), c(xv−), c(xv−−)}; oth-

erwise ←−uv exists.

(b) If u, v are in distinct sets of Sk for 2 ≤ k ≤ q, say v ∈ Si and u ∈ Sj, then −→uv
exists if v ∈ Su and −→vu exists if u ∈ Sv; otherwise, −→uv exists if i < j and −→vu exists if i > j.

Note that u− = v− if c(uv) = c(xv−), and u−− = v−− if c(uv) = c(xv−−), when i = j

by (3) and (4) of Claim 2. Hence, both −→uv and ←−uv exist if c(uv) ∈ {c(xv−), c(xv−−)} in

(a). We obtain A(D) by deleting one in each pair of oppositely oriented arcs with the

same ends. Hence, we get an oriented graph D = D(S,A(D)). According to Algorithm 1

and Claims 1 and 2, it is easy to verify that for each vertex v ∈ S,

each in-arc −→uv from v in D satisfies c(uv) ∈ {c(xv), c(xv−), c(xv−−)}. (∗1)

We analyze the color of each out-arc ←−uv from v in D depending on the way of orien-

tation:

(c) uv is oriented by the method (a) above, then c(uv) ∈ {c(xu), c(xu−), c(xu−−)} =

{c(xu), c(xv−), c(xv−−)};
(d) uv is oriented by the method (b) above, then if u ∈ Sv, then c(uv) ∈ {c(xu), c(xv−)}

by (1) of Claim 1; if u /∈ Sv, then j < i and c(uv) ∈ {c(xu), c(uu−)} by steps 4 and 10 of

Algorithm 1. Note that c(uu−) ∈ {c(xu), c(xu−−)}. If c(uv) = c(xu−−), then by the “if

i < j” case of (4) in Claim 2, we have v−− = u. Hence, c(uv) = c(xv−−−−).

Thus, by Claim 3 we have

each out-arc ←−uv from v in D satisfies c(uv) ∈ {c(xu), c(xv−), c(xv−−)} (∗2)

or c(uv) ∈ {c(xu), c(xv−−), c(xv−−−−)}.

According to Algorithm 1, for v ∈ S we have

C(v,N c(x) \ (S ∪ {y, z})) ⊆ {c(xv), c(vv−)} ⊆ C(v, S ∪ {x, y, z}).

Hence,

C(v,N c(x) ∪ {x}) = C(v,N+
D (v)) ∪ C(v,N−D (v)) ∪ C(v, {x, y, z}),

and then

dcG[Nc(x)∪{x}](v) ≤ d+D(v) + |C(v,N−D (v) ∪ {x, y, z})|.

Claim 4. For v ∈ S with c(xv) 6= c(zy), we have

(i) |C(v,N−D (v) ∪ {x, y, z})| ≤ 3, and the equality holds if and only if C(v,N−D (v) ∪
{x, y, z}) = {c(xv), c(xv−), c(xv−−)};

(ii) if the color c(xv) is on an edge incident with v in G[S], then |C(v,N−D (v) ∪
{x, y, z})| ≤ 2, and the equality holds if and only if C(v,N−D (v)∪{x, y, z}) = {c(xv), c(xv−)}.
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Proof. Since neither xzvv−x nor xyzvx is a rainbow C4 (note that y = v− if v ∈ S2), we

have

c(vz) ∈ {c(xz), c(xv−), c(vv−)} ∩ {c(xv), c(xy), c(zy)} if vz exists.

Since c(xz) /∈ {c(xv), c(xy), c(zy)}, we have

c(vz) ∈ {c(xv−), c(vv−)} ∩ {c(xv), c(xy), c(zy)} if vz exists. (∗4)

If v /∈ S2, since neither xzyvx nor xyvv−x is a rainbow C4 and c(vy) ∈ {c(xy), c(zy)}
by step 4 of Algorithm 1, we have

c(vy) ∈ {c(xv), c(xz), c(zy)} ∩ {c(xy), c(xv−), c(vv−)} ∩ {c(xy), c(zy)} if vy exists.

Since c(xy) /∈ {c(xv), c(xz), c(zy)} and c(zy) /∈ {c(xy), c(xz), c(xv)}, we have

c(vy) ∈ {c(xv−), c(vv−)} ∩ {c(zy)} if vy exists. (∗5)

If v ∈ S2, by (1) of Claim 1, we have

c(vy) ∈ {c(xv), c(xv−−)}. (∗6)

Above all, by (∗1) and (1) of Claim 1 we have

C(v,N−D (v) ∪ {x, y, z}) ⊆ {c(xv), c(xv−), c(xv−−)}.

Moreover, if the color c(xv) is on an edge incident with v in G[S], by (1) and (2) of

Claim 2 we have c(vv−) = c(xv).

According to (∗4)-(∗6), if c(xv−−) ∈ {c(vy), c(vz)}, then c(vv−) = c(xv−−), a contra-

diction. Hence, C(v, {x, y, z}) ⊆ {c(xv), c(xv−)}.
Suppose there exists an arc −→wv ∈ A(D) with c(wv) = c(xv−−). By the definition of D,

we have w 6= v−−; otherwise, the direction of wv is from v to w depending on (b). Then

xv−vwx is rainbow C4, a contradiction. Hence, there exists no in-arc from v assigned

c(xv−−).

Therefore, c(xv−−) /∈ C(v,N−D (v) ∪ {x, y, z}). The proof is thus complete.

Claim 5. If S 6= ∅, then there exists a vertex v0 in N c(x) such that dcG[Nc(x)∪{x}](v0) ≤
dc(x)+1

2
.

Proof. Suppose to the contrary that D contains no such vertex. Since n ≥ 13, one

has dc(x) ≥ 9. Since S 6= ∅, we assume that dc(x)−4
2
≤ |S2| ≤ dc(x) − 2. Otherwise,
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dcG[Nc(x)∪{x}](y) ≤ |S2| + 3 ≤ dc(x)+1
2

, and thus the result follows. Since D is an oriented

graph, we have δ+(D) ≤ |S|−1
2

. We distinguish the following cases.

Case 1. δ+(D) = |S|−1
2

.

In this case, each vertex in D has an out-degree |S|−1
2

. At first we assert that for

any vertex v ∈ S with c(xv) 6= c(zy), we have that c(xv) is not incident with it in

G[S], since otherwise, by (2) of Claim 4 we have dcG[Nc(x)∪{x}](v) ≤ |S|−1
2

+ 2 ≤ dc(x)+1
2

, a

contradiction. If it exists, let a0 be such a vertex in S that c(xa0) = c(zy). Hence, for

any edge uv ∈ E[S \ {a0}], c(uv) /∈ {c(xu), c(xv)}.
Since |S2| ≥ 2, by Claim 2 we have C(v, S\{a0}) ∈ {c(xv−), c(xv−−)} for v ∈ S2\{a0}.

Thus, by Claim 4 we have C(v,N c(x) ∪ {x}) ⊆ {c(xv), c(xa0), c(xv
−), c(xv−−)}. Hence,

dcG[Nc(x)∪{x}](v) ≤ 4 ≤ dc(x)+1
2

, a contradiction.

Case 2. δ+(D) ≤ |S|−2
2

.

Set A = {a ∈ S | d+D(a) ≤ |S|−1
2
}. We first assert that |A| ≥ |S|

2
− 1. By Claim 4, we

have that for any vertex a ∈ A with c(xa) 6= c(zy), d+D(a) ≥ |S|−2
2

, and for a ∈ A with

c(xa) = c(zy), d+D(a) ≥ |S|−6
2

by (∗1). If d+D(S) ≤ |S|−3
2

, then |S| ≤ 3 and the assertion

follows. If d+D(S) ≤ |S|−1
2

, then there are at most |S|
2

+ 1 vertices with out-degree more

than |S|−1
2

.

If it exists, let a0 be such a vertex in S that c(xa0) = c(zy). By the same argument

as in Case 1, we have that for a ∈ A with c(xa) 6= c(zy), c(xa) is not incident with a in

G[S]. Let B = S \ (A ∪ {a0}). W.l.o.g., assume that B 6= ∅, and |B| ≤ |S|
2

+ 1.

Subcase 2.1. δ+(D[B]) = |B|−1
2

.

In this case, each vertex in B has an out-degree |B|−1
2

. There exists a vertex b ∈ B with

c(ba0) 6= c(xa0); otherwise, by Claims 2 and 3, C(a0, N
c(x)∪{x}) ⊆ {c(xa0), c(xa−0 ), c(xa−−0 ),

c(za0), c(ya0)}, a contradiction. If c(xb) is incident with b in G[S], then by Claim 3,

c(xb−−−−) is not incident with b in G[S]. Hence from (∗2),

C(b,N+
D (b) ∩ (A ∪ {a0})) ⊆ {c(xb−), c(xb−−)}.

Thus,

C(b,N c(x) ∪ {x}) ⊆ C(b,N+
D (b) ∩B) ∪ C(b,N+

D (b) ∩ (A ∪ {a0})) ∪ C(b,N−D (b) ∪ {x, y, z})
⊆ C(b,N+

D[B](b)) ∪ {c(xb), c(xb−), c(xb−−)}.
Therefore,

dcG[Nc(x)∪{x}](b) ≤ d+D[B](b) + 3

≤ b |B|−1
2
c+ 3

≤ dc(x)+1
2

,

a contradiction.
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Let B1 = {b ∈ B | c(ba0) 6= c(xa0)} and B2 = {b ∈ B | c(ba0) = c(xa0)}. Then for

each b ∈ B1, c(xb) is not incident with b in G[S]. For any b ∈ B2, by (∗2) we have

C(b,N+
D (b) ∩ (A ∪B1 ∪ {a0}) ⊆ {c(xa0), c(xb−), c(xb−−)}

or ⊆ {c(xa0), c(xb−−), c(xb−−−−)}.

If c(xb−−−−) ∈ C(b,N+
D (b)), then by Claim 3, c(xb−) /∈ C(b, S). If we suppose c(xb−) ∈

C(b, {x, y, z}), then by (∗4)-(∗6), we have c(zy) = c(xb−) or c(xy) = c(xb−). Note that

c(zy) = c(xa0) and if c(xy) = c(xb−), the vertex b−−−− does not exist. Thus,

C(b,N+
D (b0) ∩ (A ∪B1 ∪ {a0})) ∪ C(b0, N

−
D (b0) ∪ {x, y, z})

⊆ {c(xa0), c(xb), c(xb−), c(xb−−)}
or

⊆ {c(xa0), c(xb), c(xb−−), c(xb−−−−)}.

Since D[B2] is an oriented graph, there is a vertex b0 ∈ B2 with d+D[B2]
(b0) ≤ |B2|−1

2
. Note

that B1 6= ∅. Hence,

dcG[Nc(x)∪{x}](b0) ≤ |C(b,N+
D (b) ∩B2)|

+|C(b0, N
−
D (b0) ∪ {x, y, z}) ∪ C(b,N+

D (b0) ∩ (A ∪B1 ∪ {a0}))|
≤ b |B|−2

2
c+ 4

≤ dc(x)+1
2

.

Subcase 2.2. δ+(D[B]) ≤ |B|−2
2

.

Let b0 be a vertex in B such that d+D[B](b0) ≤
|B|−2

2
. By the same argument as for B2

in Subcase 2.1, we can easily get

|C(b0, N
−
D (b0) ∪ {x, y, z}) ∪ C(b,N+

D (b0) ∩ (A ∪ {a0}))| ≤ 4.

Then, dcG[Nc(x)∪{x}](b0) ≤
dc(x)+1

2
. The claim is thus proved.

Now it is time to give the proof of Theorem 1.6. We distinguish two cases.

Case I. S = ∅.
Since S = ∅ implies that

NC(G)\C(T )(x) ∩NC(G)\{c(xy),c(zy)}(y) = ∅,

we have NC(G)\{c(xy),c(zy)}(y) ⊆ V (G) \NC(G)\C(T )(x). Hence,

n ≥ |N c(x) \ {u | c(xu) = c(zy)}|+ |NC(G)\{c(xy),c(zy)}(y)|+ |{x}|
≥ 2δc(G)− 3 + 1.
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Then, δc(G) ≤ n+2
2
≤ 2n−1

3
, a contradiction.

Case II. S 6= ∅.
According to Claim 5, there exists a vertex v0 with |N c(v0)∩(V (G)\(N c(x)∪{x}))| ≥

δc(G)− dc(x)+1
2

+ 1. So, we have

n ≥ |N c(x)|+ |V (G) \ (N c(x) ∪ {x})|+ |{x}|
≥ |N c(x)|+ |N c(v0) ∩ (V (G) \ (N c(x) ∪ {x}))|+ 1

≥ dc(x) + δc(G)− (d
c(x)+1

2
) + 1

≥ 3
2
δc(G) + 1

2
.

Hence, we have δc(G) ≤ 2n−1
3

, a contraction.

3 Proof of Theorem 1.13

To present the proof of Theorem 1.13, we need some auxiliary theorems and lemmas.

Lemmas 3.1 and 3.3 are used to prove Theorem 1.9. We will use them to prove our

theorem.

Lemma 3.1 ([2]). Let G be an edge-colored graph of order n and P = u1u2 · · ·up be a

rainbow path in G. If G contains no rainbow cycle of length at least k, where k ≤ p, then

for any color a ∈ C(u1, ukPup) and vertex ui ∈ V (ukPup), where c(u1ui) = a, there is an

edge e ∈ E(u1Pui) such that c(e) = a.

Similarly, we have the following lemmas.

Lemma 3.2. Let G be an edge-colored graph of order n and P = u1u2 · · ·up be a rainbow

path in G. If G contains no rainbow cycle of length at least k, where k ≤ p, then for any

positive integers s, t with t ≥ s+ (k − 1), we have usut /∈ E(G) or c(usut) ∈ C(usPut).

Lemma 3.3 (Lemma 4 in [2]). Let G be an edge-colored graph of order n and P =

u1u2 · · ·up be a longest rainbow path in G. If G contains no rainbow cycle of length at

least k, where k ≤ p, then for any positive integers s, t such that s + t = k, we have

|C(u1, ukPup−(t−1)) ∩ C(up, usPup−(k−1))| ≤ 1.

Lemma 3.4. Let G be an edge-colored complete graph of order n and P = u1u2 · · ·up be

a longest rainbow path in G. If G contains no rainbow cycle of length at least k, where

2k − 1 ≤ p, then one of the following statements holds:

(1) C(u1, ukPup−(k−2)) = {c(u1up)};
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(2) C(up, uk−1Pup−(k−1)) = {c(u1up)};
(3) There exists an edge uquq+1 ∈ E(ukPup−(k−1)) with c(uquq+1) = c(u1up) such that

C(u1, uq+1Pup−(k−2)) = {c(u1up)} and C(up, uk−1Puq) = {c(u1up)}.

Proof. From Lemma 3.1, we have c(u1uk) ∈ C(u1Puk) and c(upup−(k−1)) ∈ C(up−(k−1)Pup).

Then we have

c(u1up) = c(u1uk) or c(u1up) ∈ C(ukPup);

otherwise, u1ukPupu1 is a rainbow cycle of length at least k. Similarly, we have

c(u1up) = c(upup−(k−1)) or c(u1up) ∈ C(u1Pup−(k−1)).

Since p ≥ 2k− 1, we have c(u1uk) 6= c(upup−(k−1)). Thus, one of the following statements

holds:

c(u1up) = c(u1uk) ∈ C(u1Puk), (1)

c(u1up) = c(upup−(k−1)) ∈ C(up−(k−1)Pup). (2)

or

c(u1up) ∈ C(ukPup−(k−1)). (3)

If (1) holds, then for any vertex ui ∈ V (ukPup−(k−2)), we have c(u1ui) = c(u1up); other-

wise, u1uiPupu1 is a rainbow cycle of length at least k. By the symmetry, if (2) holds,

then we have c(upui) = c(u1up) for ui ∈ V (uk−1Pup−(k−1)).

If (3) holds, suppose c(u1up) = c(uquq+1). By Lemma 3.1, we know that c(u1ui) ∈
C(u1Pui) for i ∈ [q + 1, p − (k − 2)]. Hence, C(u1, uq+1Pup−(k−2)) = {c(u1up)}, since

otherwise, u1uiPupu1 is a requested rainbow cycle. Similarly, C(up, uk−1Puq) = {c(u1up)}
holds.

Proof of Theorem 1.13: Let G be a graph satisfying the assumptions of Theorem

1.13. Suppose to the contrary that G contains no rainbow cycle of length at least k. Let

P = u1u2 · · ·up be a longest rainbow path in G. Since n ≥ 7k− 17, from Theorem 1.14 it

follows that p ≥ 3k− 5. From Lemma 3.4, by symmetry we assume that (1) or (3) holds.

For convenience, we label some sets of colors as follows:

A1 = C(u1, ukPup−1), A2 = C(u1, u2Puk−1),

B1 = C(up, uk−1Pup−(k−1)), B2 = C(up, u2Puk−2), B3 = C(up, up−(k−2)Pup−1),
and

C0 = (C(u1, P
C) \ C(u1, P )) ∩ (C(up, P

C) \ C(up, P )),

C1 = C(u1, P
C) \ (C0 ∪ C(u1, P )), C2 = C(up, P

C) \ (C0 ∪ C(up, P )).

At first, we give some useful claims.
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Claim 1. Let us, ut ∈ V (P ) with s < t and `(usPut) ≥ 2k − 3. Then for any pair of

vertices ua and ub with s < a < b < t, if k − 1 ≤ `(uaPub) ≤ `(usPut) − (k − 2) and

c(usut) ∈ C(uaPub), then we have c(uaub) = c(usut).

Proof. Since `(uaPub) ≥ k−1, from Lemma 3.2 we have c(uaub) ∈ C(uaPub). If c(uaub) 6=
c(usut), then usPuaubPutus is a rainbow cycle of length at least k, a contradiction.

From Lemma 3.3, setting t = 2 and s = k − 2, we can get the following claim.

Claim 2. |A1 ∩B1| ≤ 1.

Claim 3. |A1 ∩ (B2 \ (B1 ∪ {c(u1up)}))| ≤ 1.

Proof. Suppose to the contrary that there are at least two distinct colors m and m′ in

A1 ∩ (B2 \ (B1 ∪ {c(u1up)})). Assume that there exist two vertices us and ut where

s ∈ [2, k − 2] and t ∈ [k, p− 1], such that

c(u1ut) = c(upus) = m ∈ A1 ∩ (B2 \ (B1 ∪ {c(u1up)})).

Case 1. (1) of Lemma 3.4 holds.

Since C(u1, ukPup−(k−2)) = {c(u1up)} and p ≥ 3k − 5, we have t ∈ [p − (k −
3), p − 1]. Note that c(upus+(k−2)) ∈ B1 and c(u1ut−(k−2)) = c(u1up). We have m /∈
{c(upus+(k−2)), c(u1ut−(k−2))}. By Lemma 3.1, c(upus+(k−2)) ∈ C(upPus+(k−2)) and c(u1ut−(k−2))

∈ C(u1Put−(k−2)). To avoid usPus+(k−2)upus and u1ut−(k−2)Putu1 being rainbow cy-

cles of length k, we have m ∈ C(usPus+(k−2)) ∩ C(ut−(k−2)Put), which guarantees that

k − 2 ≤ t− (k − 2) < s+ (k − 2) ≤ p− (k − 2), and

m ∈ C(ut−(k−2)Pus+k−2) ⊆ C(uk−2Pup−(k−2)).

Since p ≥ 3k − 5, `(uk−2Pup−(k−2)) ≥ k − 1 and `(u1Put) ≥ 2k − 3. Hence, from Lemma

3.2 and Claim 1, we have c(uk−2up−(k−2)) = c(u1ut) = m; see Figure 1. Then by a same

argument, we can get that c(uk−2up−(k−2)) = m′, a contradiction.

u1 upus utuk−2 up−(k−2)

m

Figure 1: For the proof of Claim 3

Case 2. (3) of Lemma 3.4 holds.

By Lemma 3.1 we have m ∈ C(usPut). If m ∈ C(uq+1Pup−1) ∩ C(usPut), then

u1utPupuqPu1 is a required cycle, a contradiction. If m ∈ C(usPuq) ∩ C(usPut), then

u1uq+1Pupusu1 is a required cycle, a contradiction. Hence, A1∩(B2\(B1∪{c(u1up)})) = ∅,
a contradiction.

16



Claim 4. Let D = {x ∈ V (PC) : x ∈ NC1∪C0(u1, P
C) ∩ NC2∪C0(up, P

C) and c(u1x) 6=
c(upx)}. Then |D| ≤ 2.

Proof. Suppose to the contrary that |D| ≥ 3. Since the colors in C(u1, D) are distinct,

there exists a vertex x ∈ D such that

c(u1x) /∈ {c(upuk−1), c(upup−(k−1))}. (4)

Then, c(upuk−1) /∈ {c(u1x), c(upx)}. By Lemma 3.1, c(upuk−1) ∈ C(uk−1Pup). Thus,

c(u1x) ∈ C(u2Puk−1) or c(upx) ∈ c(u1Puk−1). (5)

Otherwise, u1Puk−1upxu1 is a rainbow cycle of length at least k; see (a) in Figure 2,

a contradiction. According to Lemma 3.4, we have c(u1up−(k−2)) = c(u1up), and then

c(u1up−(k−2)) /∈ C(u1, D) ∪ C(up, D). Thus,

c(u1x) ∈ C(up−(k−2)Pup) or c(upx) ∈ C(up−(k−2)Pup−1). (6)

Otherwise, u1up−(k−2)Pupxu1 is a rainbow cycle of length at least k; see (b) in Figure 2,

a contradiction.

u1 uk−1 up

x

(a)

u1 up

x

up−(k−2)

(b)

Figure 2: Two rainbow cycles of length at least k in Claim 4

Since P is a rainbow path, combining (5) and (6), we have

c(u1x) ∈ C(u2Puk−1) and c(upx) ∈ C(up−(k−2)Pup−1), (7)

or

c(u1x) ∈ C(up−(k−2)Pup) and c(upx) ∈ C(u1Puk−1). (8)

W.l.o.g., assume that (7) holds. By Lemma 3.1, we have c(u1uk) ∈ C(u1Puk) and

u1 uk up−(k−1) up

x

Figure 3: A rainbow cycle u1ukPup−(k−1)upx0u1

c(upup−(k−1)) ∈ C(up−(k−1)Pup). From these together with (4), we get that u1ukPup−(k−1)upxu1

is a rainbow cycle of length at least k; see Figure 3, a contradiction.
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By Lemma 3.1, we can get that B1 ∪ B2 ⊆ C(u2Pup) and A1 ⊆ C(u1Pup−1). Thus,

c(u1u2) /∈ B1 ∪ B2 and c(upup−1) /∈ A1. However, possibly we have c(u1u2) ∈ A1 or

c(upup−1) ∈ B1 ∪B2. Thus, we set

ε1 =

1, if c(u1u2) /∈ A1

0, if c(u1u2) ∈ A1,

ε2 =

1, if c(upup−1) /∈ B1 ∪B2

0, if c(upup−1) ∈ B1 ∪B2.

By Lemma 3.4, we know c(u1up) ∈ A1, and then by Lemma 3.1 we have c(u1up) ∈
C(u1Puk). Thus, we set

ε3 =

1, if c(u1up) /∈ B1

0, if c(u1up) ∈ B1.

Then,

dc(u1) ≤ |C(u1, P ) ∪ C0 ∪ C1|
≤ ε1 + |A2 \ {c(u1u2)})|+ |A1|+ |C0|+ |C1|,

dc(up) ≤ |C(up, P ) ∪ C0 ∪ C2|
≤ ε2 + ε3 + |B1|+ |B2 \ (B1 ∪ {c(u1up)})|

+|B3 \ {c(upup−1)})|+ |C0|+ |C2|.

Since |A2 \ {c(u1u2)})| ≤ k − 3 and |B3 \ {c(upup−1)})| ≤ k − 3, we have

|A1|+ |C0|+ |C1|+ ε1 ≥ δc(G)− (k − 3), (9)

|B1|+ |B2 \ (B1 ∪ {c(u1up)})|+ |C0|+ |C2|+ ε2 + ε3 ≥ δc(G)− (k − 3). (10)

Since c(u1x) 6= c(upx) for each x ∈ NC1(u1, P
C) ∩ NC2(up, P

C), we have x ∈ D. By

Claim 4, we can get that |NC1(u1, P
C) ∩NC2(up, P

C)| ≤ 2. Note that C0 = (C(u1, P
C) \

C(u1, P )) ∩ (C(up, P
C) \ C(up, P )). If there is a vertex x ∈ NC2(up, P

C) with c(u1x) =

c0 ∈ C0, then x ∈ D and there is another distinct vertex y such that c(upy) = c0. If

c(u1y) ∈ C1, then y is also contained in D. Since |D| ≤ 2, for all z ∈ NC0\{c0}(u1, P
C), we

have z /∈ NC2(up, P
C), which implies that |NC0(u1, P

C) ∪ NC0(up, P
C) \ (NC1(u1, P

C) ∪
NC2(up, P

C))| ≥ |C0| − 1. Therefore,

|V (PC)| ≥ |NC1(u1, P
C) ∪NC2(up, P

C)|+
|NC0(u1, P

C) ∪NC0(up, P
C) \ (NC1(u1, P

C) ∪NC2(up, P
C))|

≥ |C1|+ |C2| − |D|+ |C0| − 1

≥ |C1|+ |C2|+ |C0| − 3.

(11)

18



Note that for any color a ∈ C0, there is an edge in P whose color is a, since otherwise,

P is not a longest rainbow path. Then together with Claims 2 and 3, we have

|V (P )| = |E(P )|+ 1

≥ |e ∈ E(P ), c(e) ∈ A1 ∪B1 ∪B2|+ |e ∈ E(P ), c(e) ∈ C0|
+ε1 + ε2 + 1

≥ |A1|+ |B1|+ |B2 \ (B1 ∪ c(u1up))|+ |C0|+ ε1 + ε2 − 1.

(12)

By Inequalities (11) and (12), we have

n ≥ |V (P )|+ |V (PC)|
≥ (|A1|+ |C0|+ |C1|+ ε1) + (|B1|+ |B2 \ (B1 ∪ c(u1up))|+ |C0|+ |C2|+ ε2)− 4,

(13)

Combining with Inequalities (9) and (10), we get that

n ≥ 2(δc(G)− (k − 3))− ε3 − 4

≥ 2δc(G)− 2k + 1.
(14)

Then, δc(G) ≤ n−1
2

+ k, a contradiction. The proof is thus complete.

Acknowledgement. The authors are very grateful to the reviewers and the editor for

their very useful suggestions and comments, which helped to improving the presentation

of the paper greatly.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer (2008).
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