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Abstract

Let G be a graph of order n with an edge-coloring ¢, and let §¢(G) denote the
minimum color-degree of G. A subgraph F' of G is called rainbow if all edges of F’
have pairwise distinct colors. There have been a lot of results on rainbow cycles of

edge-colored graphs. In this paper, we show that (i) if §°(G) > 2"3_ L then every

vertex of G is contained in a rainbow triangle; (ii) if 6°(G) > 221 and n > 13, then
every vertex of G is contained in a rainbow Cly; (iii) if G is complete, n > 7k — 17
and 0¢(G) > "T_l + k, then G contains a rainbow cycle of length at least k, where
k> 5.
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tion
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1 Introduction

We consider finite simple undirected graphs. An edge-coloring of a graph G is a
mapping ¢ : F(G) — N, where N is the set of natural numbers. A graph G is called
an edge-colored graph if G is assigned an edge-coloring. The color of an edge e of G
and the set of colors assigned to E(G) are denoted by c(e) and C(G), respectively. For
Vi,Vo C V(G) and Vi NVy = 0, we set E(V1,Vs) = {ay € E(G),z € V1,y € Va}, and
when V) = {u}, we write E(u,V3) for E({u},V5). The set of colors appearing on the
edges between Vi and V; in G is denoted by C(Vi, V3). When V) = {v}, we use C(v, V3)

*Supported by NSFC No.12131013, 11871034 and 12161141006.



instead of C'({v},V2). For a subgraph T of G, the set of colors appearing on E(T) is
denoted by C(T), and we use T to denote G — T. A subset F of edges of G is called
rainbow if no distinct edges in F' receive the same color, and a graph is called rainbow if
its edge-set is rainbow. Specially, a path P is rainbow if no distinct edges in E(P) are
assigned the same color. The length of a path P = ujus - - - u, is the number of edges in
E(P), denoted by ¢(P). We use u;Pu; to denote the segment between u; and u; on P.
If i« < j, then w;Pu; = wujqqr---uy; it © > g, then u;Pu; = uu;—1---uj. For a vertex
v € V(G), the color-degree of v in G is the number of distinct colors assigned to the edges
incident to v, denoted by dZ(v). We use 0°(G) = min{d(v) : v € V(G)} to denote the
minimum color-degree of G. The set of neighbors of a vertex v in a graph G is denoted
by Ng(v). Let N¢(v) be a subset of Ng(v) such that [N¢(v)| = d(v) and each color in
C(v, Ng(v)) appears in E(v, N°(v)) exactly once. For each vertex v € V(G) and a color
subset C" = {¢y,¢9,-+ ,cx} of C(G), let Nev(v) = {u | w € N°(v),c(uv) € C'}. For a
subset S of V| we denote Nev(v) NS by Nev(v,S). When S = V(P), we use Nev(v, P)
instead of N¢v(v, V(P)). For other notation and terminology not defined here, we refer
to [1J.

The existence of rainbow substructures in edge-colored graphs has been widely studied
in literature. We mention here only those known results that are related to our paper.
For short rainbow cycles, a minimum color-degree condition for the existence of a rainbow

triangle was given by Li [5] in 2013.

Theorem 1.1 ([5]). Let G be an edge-colored graph of order n > 3. If 0°(G) > %, then

G has a rainbow triangle.
In 2014, Li et al. [7] improved Theorem and got the following result.

Theorem 1.2 ([7]). Let G be an edge-colored graph of order n > 3 satisfying one of the
following conditions:

(1) Yuev(c) d°(u) 2 nintd,

(2) 6°(G) > 5 and G ¢ {Kn n, Ky, Ky — e}
Then G contains a rainbow triangle.

There is also a result about the rainbow triangles in an edge-colored complete graph

which was proved by Fujita and Magnant in 2011.

Theorem 1.3 ([]]). Let G be an edge-colored complete graph of order n > 3. If 6¢(G) >

n+1

5, then each vertex of G is contained in a rainbow triangle.

In this paper, we get the the following result.
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Theorem 1.4. Let G be an edge-colored graph of order n > 3. If 6¢(G) > %, then

each vertexr of G is contained in a rainbow triangle and the bound is sharp.
Next, for the rainbow Cy, Cada et al. in [2] obtained the following result.

Theorem 1.5 ([2]). Let G be an edge-colored graph of order n. If G is triangle-free and
0°(G) > 3+ 1, then G contains a rainbow Cy.

In this paper, we also get a result as follows.

Theorem 1.6. Let G be an edge-colored graph of order n > 13. If §°(v) > 221, then

each verter of G is contained in a rainbow Cy.

Remark 1.7. We think that the lower bound in Theorem [I.4]is sharp and that in Theorem
is not sharp, since in the end of the proof of Theorem , (in Section 2), we construct

an edge-colored graph G with §°(G) = % in which there exists a vertex such that no

rainbow triangle contains it, while each vertex is contained in a rainbow C}.
Finally, for long rainbow cycles, Li and Wang in [6] got the following result.

Theorem 1.8 ([0]). Let G be an edge-colored graph of order n > 8. If for each vertex v
of G, d°(v) > d > %" + 1, then G has a rainbow cycle of length at least d — %" + 2.

In 2016, Cada et al. in [2] obtained a result on rainbow cycles of length at least four.

Theorem 1.9 ([2]). Let G be an edge-colored graph of order n. If for each vertex v of G,
d°(v) > 5§ +2, then G contains a rainbow cycle of length at least four.

At the end of their paper [2], they raised the following conjecture.

Conjecture 1.10 ([2]). Let G be an edge-colored graph of order n and k be a positive
integer. If for each vertexr v of G, d°(v) > ”T”“, then G contains a rainbow cycle of length
at least k.

Inspired by Theorem |1.9] Tangjai in [9] proved the following result.

Theorem 1.11 ([9]). Let G be an edge-colored graph of order n and k be a positive integer.
If G has no rainbow cycle of length 4 and §°(G) > %’H, then G contains a rainbow

cycle of length at least k, where k > 5.

Recently, the authors in [4] proved that G has a rainbow cycle of length ¢ when the

order of GG is large enough, depending on /.



Theorem 1.12 ([]). For every integer £ > 3, every edge-colored graph G of order n >

no(€) with 6°(G) > ™ admits a rainbow (-cycle Cy, where no(l) < 432¢.

We will show the following result.

Theorem 1.13. Let G be an edge-colored complete graph of order n and k be a positive
integer at least 5. If n > 7k — 17 and 6°(G) > "7_1 + k, then G contains a rainbow cycle
of length at least k.

In order to prove our main result, we need the following result of Chen and Li in [3]

on the existence of long rainbow paths.

Theorem 1.14 ([3]). Let G be an edge-colored graph, where 6°(G) >t > 7. Then the

mazimum length of rainbow paths in G is at least [3] + 1.

In the following sections, we will give the proofs of our three results, Theorems [1.4]

.6l and .13

2 Proofs of Theorems [1.4] and 1.6

To present the proof of Theorems [1.4] and we need some auxiliary lemmas. Let
G be an edge-colored graph and v be a vertex of G. A subset A of Ng(v) is said to have
the dependence property with respect to a vertex v ¢ A, denoted by DP,, if c(ad’) €
{c(va), c(va’)} for all aa’ € E(G[A]).

Lemma 2.1. If a subset A of vertices in an edge-colored graph G has the DP,, then there
exists a verter xy € A such that the number of colors different from c(vxg) on the edges

incident with xy in G[A] is at most W%.

Proof. We prove this lemma by constructing an oriented graph. Orient the edges in
E(G[A]) by applying the following rule: for an edge zy, if c¢(zy) = c(vz), then the
orientation of xy is from y to x; otherwise, the orientation of xy is from = to y. Thus,
we get an oriented graph D(A). Evidently, the arcs with colors different from c(vx)
are out-arcs from z. Let xy be a vertex in D(A) with minimum out-degree. Clearly,
dzg( (@) < |A|2_1. Thus, the number of colors different from c¢(vzg) on the edges incident

with xy in G[A] is at most WT_l. O

Proof of Theorem [1.4f Let G be a graph satisfying the assumptions of Theorem
and suppose, to the contrary, that there exists a vertex v such that no rainbow



triangle contains it. For any edge e = zy € E(G[N¢(v)]), since c(vz) # c(vy), we
have c(zy) € {c(vx),c(vy)}; otherwise vryv is a rainbow triangle. Thus, N¢(v) has
the dependence property with respect to v. According to Lemma [2.1], there is a vertex
xo € N°(v) such that the number of colors different from c(vxg) on the edges incident with
xo in G[N¢(v)] is at most W Then, we have ]Nc(xo) (Ne¢(v)U{v})| < % +1.
Thus, | N°(z0) N (V(G) \ (N°(v) U {v}))] > 6°(G) — (E9=L 1+ 1). So, we have

n = [N“(0)] + [V(G) \ (N(v) U{v})[ + {v}]
> d°(v) + [N“(zo) N (V(G) \ (N(v) U{v}))[ +1
> d°(v) + 69(G) — (F9=L 1+ 1) 1
> 50°(G)

Hence, we have §°(G)

c(uu; ) u; € Vs
Ugn42 | U2n43 | * " Uzp | Up+1
u; € Vi
Uy Cn+2 Cnt3 | " Con Con+t1
U2 Cn+3 Cnta | " | Cont1 C1
U, Con41 C1 | Cp—2 Cn—1
Un+1 C1 & | Cn—1 Cn
Un+2 Ca C3 e Cn Cn+1
Up+3 Cs Cq ] Cap Cn+2
U2n41 Cn+1 Cny2 |~ | Con—1 Con,

Table 1: An edge-coloring of E[Vi, V5]

Now we show that the bound on 6°(G) is tight. Consider an edge-colored graph G of
order 3n + 2 with C(G) = {c1,¢2, -+ ,cans1}. Let v be a vertex of G and the vertex-set
of G is {v} U Vi UV, satistying that |Vi| = 2n + 1 and |V2| = n. We label the vertices in
Vi by {uy,us, -+ ,us,41} and those in Vo by {ugnio, Usnis, - ,Usns1}. Let G[{v} U V]
be a complete graph and G[{u;}, V2] be a complete bipartite graph for all u; € V;. The
edge-set of G is E(G) = U <;cons1 E{ui}, Vo]) U E(G[{v} U VI]).

The edge-coloring of F (é;satisﬁes the following three conditions:

(1) c(vuy) = ¢ for 1 <i<2n+1;

(2) for any two vertices u; and u; in V; (w.Lo.g., i > j):
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Ci, if ¢ — ] S n,
c(uuj) =
cj, iti—j>n+1;
(3) for any two vertices u; € V4 and u; € V5, the color of uw;u; follows Table .
It is easy to verify that d°(ux) = 2n + 1 for uy € {v} U V5. We then discuss the

color-degrees of the vertices uy in Vi. By (2) we know that if £ < n + 1, then

g, fie[lk—1Un+k+1,2n+1]
c(upu;) =
¢, ifiefk+1,n+ k|

and C(ug, V1) = {ck, ka1, ,Coar} k> n+2 then

ck, ifielk—nk—1]

clupu;) =
¢, ifie[l,k—Mn+D]Uk+1,2n+1]

and C(ug, Vi) = {c1,¢2, , Ch—(nt1)s Chs Chp 1, -+ 5 Conga }- - Thus, d°(ux) = 2n + 1 for
ur € V. Note that v is not contained in any rainbow triangle in GG. Therefore, the
bound of §°(G) in Theorem [1.4]is sharp. O

Proof of Theorem [1.6} Let G be a graph satisfying the assumptions of Theorem [I.6]and
suppose, to the contrary, that there exists a vertex x such that no rainbow C} contains
it. If x is not contained in a rainbow triangle either, then by Theorem we have

(G) < 2”3’ 1 a contradiction. Thus, we assume that z is contained in a rainbow triangle

T = xyzx in G. Let N¢(z) be a rainbow neighbor-set of x containing y and z. At first,
we use the following algorithm to output a family F of ¢ disjoint subsets Sy, S1,--- , 5,

of N¢(x) which will be useful for our proof.



Algorithm 1
Input: G.
Output: A family F of disjoint subsets.
Set Sy = {z}.
Let S, = {y}.
Set S| = 6S..
Let S, = {u € Nepom) (@) N Ne(y) : clyu) ¢ {c(zy), c(zy)}}-
Set Sy = 5,.
Set F = {5, 51, 52}
Set 1 = 2.
for S; # () do
for v € S;, use v~ to denote one of the predecessors of v such that v € S,-,
and let S, = {u € N°(x) N Ne(v) \ ULy Sk : c(uwv) ¢ {c(zv), c(vv™)}}.
Set S; 1 = UvESZ' S,.
Set i =1+ 1.
Set F = FJ{S:}
. if S; = () then
Set ¢ = i and return F.

[ S S S Y
AR - vl

—_ =
v

The following claim states that steps 9 and 10 in Algorithm 1 can be executed.

Claim 1. (1) Ifu € S, for v € U'Z}'S;, then c(uv) € {c(zu), c(zv™)}.
(2) For u € S; and ¢ > 3, if there exist two distinct vertices v, w € S;_; such that
u € S, N Sy, then c(uv) = c(uw), that is, |C(u, S, )| = 1 where S, = {v € S;_1]u € S, }.

Proof. (1) Suppose v € S; and 1 < i < ¢ — 1. Since u € S,, we have c(uv) ¢
{c(zv), c(vv™)}. We prove this claim by induction on i. When ¢ = 1, we have v = y
and v~ =y~ = z. Since u € Ne@)no)(z) N Na(y), we know that c(zu), c(rz), c(zy) are
three distinct colors. Since zzyuz is not a rainbow Cjy, we have c(yu) € {c(zz), c(zu)} =
{c(zy™),c(zu)}. When i > 2, by the induction hypothesis, we have c(vv™) € {c(xv), c(zv™7)}.
Then c(xu), c(vv™), c(zv™) are three distinct colors. Since zv~vux is not a rainbow Cly,
we have c(uv) € {c(zu), c(zv™)}. The result thus follows.

(2) According to (1), we have c(uv) € {c(zu), c(zv™)} and c(uw) € {c(zu), c(zw™)
Since v, w € S;_1, we have v~ # w and w~ # v. Thus, {c(uwv), c(uw)}N{c(zv), c(zw)} =

Hence, c(uv) = c(uw); otherwise, zvuwz is a rainbow Cy, a contradiction. O

Since N¢(z) is a finite set, Algorithm 1 can return {Sy, S, - ,S,} within finite steps.



Apparently, {Sp, S1,---,S5,} is a family of disjoint subsets of N°(z). Let S = UL, S;.
Then we get the following Claims 2 through 5, which are crucial steps for completing the

proof of Theorem (1.6

Claim 2. If vu € E(G[S]) with v € S; and u € S; (w.l.o.g., assume that 2 < i < j <
q), then c(vu) € {c(av), c(zu), c(xv™),c(xv™")}. Furthermore, we can get the following
specific results:
vZ#Eu,clvv) =clzv), ifi<y
(1) If c(vu) = ¢(zv), then 7 (v07) = elav) J
c(vv™) = ¢(zv), if i = 7.

v=u", ifi<y

o

@) 1) = o) then §*
(3) If c(vu) = c¢(xv™), then v~ = {U’ ifti <y

(xu), ifi=1j.

if i = j.
(4) If e(vu) = c(xv~7), then

u " =wv,c(vv”) = clzv ), c(uu”) = c(xv),c(vu”) = c(zu™), ifi<j
u " =v ", clvvT) =cluu”) = c(zu") = c(zv™ ), if i = 7.
Then, if i < j, we have c¢(vu) € {c(2v), c(zu), c(zu"), c(xu"""7)} as well.

Proof. According to (1) of Claim 1, we know c¢(vv™) € {¢(av), c(zv™7)}. Since zv~ vux is
not a rainbow Cjy, we have c(vu) € {c(zv™),c(vv™), c(zu)} C {c(zv), c(zu), c(zv™),
c(zv™7)}.

We distinguish the following two cases.

Case 1. 1 < j.

If v =™, then from (1) of Claim 1 we have c¢(vu) € {c(zu), c(zv™)}. Thus we assume
v # u~. Then we have c(vu) € {c(xv),c(vv™)} by steps 4 and 10 of Algorithm 1. Note
that {c(zv), c(vv™)} N {e(zu), c(zv™)} = 0.

If c(vu) = c(zv), then since xv~ vux is not a rainbow Cjy, we have c(vv™) = c(vu).
Since c¢(vv™) € {c(zv),c(zv™7)} by (1) of Claim 1, we have c(vv™) = c¢(vu) = ¢(xv), and
so the “if i < 57 case of (1) follows.

If ¢(vu) = ¢(vv™), then since c(vu) € {c(zv),c(xv=7)} by (1) of Claim 1, we assume
c(vu) = c¢(xv~"), which means that c(vu) = c(vv™) = c¢(xv~"). Note that v~ € S;_;.
Then v=~ # u~. Therefore, c(xv), c(zxu™), c(vu) are three distinct colors. Since zvuu~z
is not a rainbow Cy, by (1) of Claim 1 we have c(uu™) € {c(av),c(zu™),c(zv=")} N

{c(xu=7), c(zu)}. Hence, c(uu™) = ¢(xu~") = ¢(xv), which implies that «~~ = v. Then,
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u~ € S,. Hence, c(vu™) # c(vv™) = c¢(vu) by steps 4 and 10 of Algorithm 1. Since
zu~vux is not a rainbow Cjy, we have c(vu™) € {c(zu), c(zu™), c(vu)} N {c(zu™), c(zv)}
by (1) of Claim 1. Apparently c(vu~) = c(zu™), i.e., the “if i < j” case of (4) follows.
Combining with the first sentence of this case, the “if i < 57 cases of (2) and (3) follow.
Case 2. 1 =].
Then by Claim 1 we have that c(vv™) ¢ {c(zu), c(xv™)} and c(uu™) ¢ {c(zv), c(zu™)}.

Since neither zu~uve nor xv~vux is rainbow, we have
c(vu) € {c(av), c(zxu™), c(uu™)} N{c(zu), c(xv™), c(vv™)}.
By (1) of Claim 1 again, we have
c(vu) € {c(av), c(zu), c(zu™), c(zu™ ")} N {c(zu), c(zv), c(xv™), c(zv ")}

If c(vu) = c(zv), then since c(zv) ¢ {c(xu),c(xv™),c(xv=")}, we have c(vv™) = ¢(av
If c(vu)

).
= ¢(zu), then c(uu~) = ¢(xu) similarly. If ¢(vu) = e(xv™), then since c(zv™) ¢
{c(zu), c(zv), c(xu=")}, we have c(xu~) = c(xv™), which implies v~ = u~. If c¢(vu) =

)
c(xv~7), then since c(xv™") ¢ {c(zu), c(xv), c(zu~)}, we have c(vu) = c(vv™) = c(uu™)

c(xu=") = ¢(xv~ "), which implies v~ ~. Then the “if i = j” cases of (1)-(

N

follow.

Claim 3. For each vertex v € S; with 2 <14 < g, if ¢(2v) or ¢(zv™) is incident with v in
GIS], then ¢(zv~""7) is not incident with v in G[S].

Proof. Suppose to the contrary that there exists a vertex u € S such that c(uv) =

c(zv~""7). By Claim 2, we can get that ¢ > j, and then c(uv) € {c(zv), c(zu), c(zu™), c(xu="

If ¢(uv) = c(zu™), then by (3) of Claim 2, we have v~ = u, which gives ¢(vu) = ¢(xv™7),
a contradiction. Hence from (4) of Claim 2, we have c(uv) = ¢(zu™") and uw = v~~. Thus
u € Si_a.

(i) if there exists a vertex w € S such that ¢c(wv) = ¢(xv™), then by (3) of Claim 2,

we have v = w™ or v~ = w™, which implies that w € S; U S;;1. It is easy to verify that
ruvwz is a rainbow Cjy, a contradiction.

(ii) if there exists a vertex w € S such that c(wv) = ¢(xv), then w # v~~~ clearly.
It is easy to verify that zuvwzx is a rainbow Cy, a contradiction. O]

Now we define a directed graph D on S = [Jj_, Si. For any two distinct vertices u, v

in S, if wv € E(G), we define the arcs joint them as follows:

)}



(a) If u,v are in the same set of Sy for 2 < k < ¢, then by Claim 2, c¢(uv) €
{c(xv), clzu), c(zv™), c(zv~")}. Hence, ud exists if c(uv) € {c(zv), c(zv™), e(zv™")}; oth-
erwise w exists.

(b) If u,v are in distinct sets of Sy for 2 < k < ¢, say v € S; and u € §;, then e
exists if v € S, and v exists if u € S,; otherwise, w0 exists if i < j and 0@ exists if i > j.

Note that u= = v~ if e¢(uv) = ¢(zv™), and u=~ = v~ if ¢(uv) = ¢(xv™ "), when i = j
by (3) and (4) of Claim 2. Hence, both @b and fw exist if ¢(uv) € {c(xv™), c(zv~")} in
(a). We obtain A(D) by deleting one in each pair of oppositely oriented arcs with the
same ends. Hence, we get an oriented graph D = D(S, A(D)). According to Algorithm 1
and Claims 1 and 2, it is easy to verify that for each vertex v € .S,

each in-arc @0 from v in D satisfies c(uv) € {c(zv), e(zv™), e(zv™ ")} (x1)

We analyze the color of each out-arc $iv from v in D depending on the way of orien-
tation:
(¢c) uwv is oriented by the method (a) above, then c(uv) € {c(zu), c(zu™), c(zu=")} =
{c(zu), c(zv™), c(av™) k5
(d) ww is oriented by the method (b) above, then if u € S,, then c(uv) € {c(zu), c(xv™)}
by (1) of Claim 1; if u ¢ S, then j < ¢ and c(uv) € {c(zu), c(uu)} by steps 4 and 10 of
Algorithm 1. Note that c(uu™) € {c(zu),c(zu=")}. If c(uv) = c(zu~"), then by the “if
i < 77 case of (4) in Claim 2, we have v~ = u. Hence, c(uv) = c¢(zv™""7).
Thus, by Claim 3 we have
cach out-arc fw from v in D satisfies ¢(uv) € {c(zu), c(zv™), e(zv™ )} (x2)
or c(uv) € {c(zu), c(xv™ "), c(zv™""7)}.
According to Algorithm 1, for v € S we have
Clo, N°(2) \ (SU{y, 2})) € {c(zv), c(vv7)} € Clv, SU{x,y, 2}).
Hence,
Clv, N(z) U {r}) = C(v, N () U Clo, N () U Clv, {3, ),
and then
A ey (V) < dp(v) +|C(v, Ny (v) U{z,y, 2})].

Claim 4. For v € S with ¢(zv) # ¢(zy), we have

(i) |C(v,Np(v)U{z,y,2})| <3, and the equality holds if and only if C(v, N, (v) U
{z,y,2}) = {c(wv), c(xv™), e(zv™7)};

(ii) if the color ¢(zv) is on an edge incident with v in G[S], then |C(v, Ny (v) U
{z,y, 2})| <2, and the equality holds if and only if C'(v, N, (v)U{z,y, 2}) = {c(zv), c(zv™)}.
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Proof. Since neither zzvv™z nor zyzvx is a rainbow Cy (note that y = v~ if v € Sy), we
have
c(vz) € {c(zz),c(zv™), c(vv)} N{c(zv), c(zy), c(zy)} if vz exists.

Since c(zz) ¢ {c(zv), c(zy), c(zy)}, we have
c(vz) € {c(zv™), c(vv™)} N{c(zv), c(zy), c(zy) } if vz exists. (x4)

If v ¢ Sy, since neither xzyve nor zyvv~x is a rainbow Cy and c(vy) € {c(zy), c(zy)}

by step 4 of Algorithm 1, we have
c(vy) € {e(av), c(z2), c(zy)} N {c(@y), clazv™), c(vv™)} N {c(ay), c(zy)} if vy exists.
Since c(zy) ¢ {c(zv), c(x2), c(zy)} and c(zy) ¢ {c(zy), c(x2), c(xv)}, we have
c(vy) € {e(zv), clov™)} N {c(zy)} if vy exists. (+5)

If v € Sy, by (1) of Claim 1, we have
c(vy) € {c(zv), c(xzv™7)}. (x6)
Above all, by and (1) of Claim 1 we have
C(v, Ny (v) U{x,y, z}) C {c(zv), c(zv™), c(zv™7)}.

Moreover, if the color ¢(zv) is on an edge incident with v in G[S], by (1) and (2) of
Claim 2 we have c(vv™) = ¢(zv).

According to (4)-(x0), if c(zv™") € {c(vy), c(vz)}, then c(vv™) = c(zv™7), a contra-
diction. Hence, C(v,{x,y, z}) C {c(zv), c(xv™)}.

Suppose there exists an arc w6 € A(D) with ¢(wv) = ¢(zv~ ). By the definition of D,
we have w # v~ ; otherwise, the direction of wv is from v to w depending on (b). Then
rxv-vwx is rainbow Cy, a contradiction. Hence, there exists no in-arc from v assigned
clxzv=7).

Therefore, c(zv™") ¢ C(v, N, (v) U{z,y, z}). The proof is thus complete. O

Claim 5. If S # ), then there exists a vertex vy in N°(z) such that dye .,y (o) <
d°(z)+1
—5.

Proof. Suppose to the contrary that D contains no such vertex. Since n > 13, one
has d°(x) > 9. Since S # (), we assume that W < |Sy| < d°(x) — 2. Otherwise,

11



dGine@yogay (Y) < [S2f +3 < %, and thus the result follows. Since D is an oriented
graph, we have 67(D) < m%l We distinguish the following cases.

Case 1. 67(D) = \5771

In this case, each vertex in D has an out-degree % At first we assert that for
any vertex v € S with c¢(zv) # c(zy), we have that c¢(zv) is not incident with it in
G[S], since otherwise, by (2) of Claim 4 we have dfye (i (V) < |S| Lio< & (x”l a
contradiction. If it exists, let ap be such a vertex in S that c¢(zag) = c(zy). Hence, for
any edge uv € E[S \ {ao}], c(uv) ¢ {c(zu),c(zv)}.

Since |Ss| > 2, by Claim 2 we have C'(v, S\{ao}) € {c(zv™), c(xzv=)} for v € S\ {ap}.
Thus, by Claim 4 we have C(v, N°(x) U {z}) C {c(zv), c(zag), c(xv™),c(xv=")}. Hence,

dGine@yogay (V) <4 < (x)H , a contradiction.

Case 2. 07(D) < %

Set A={aeS|df(a) <= 1} We first assert that |A| > lSI — 1. By Claim 4, we
have that for any vertex a € A Wlth c(za) # c(zy), df(a) > ‘5‘2 2 and for a € A with
c(za) = c(2y), db(a) > B8 by (#1). 1f df5(S) < 2 then |S| < 3 and the assertion
follows. If df(9) < |S|T_1, then there are at most @ + 1 vertices with out-degree more
than lS' L

If 1t exists, let ag be such a vertex in S that c¢(xag) = ¢(zy). By the same argument
as in Case 1, we have that for a € A with c(za) # ¢(zy), c(xza) is not incident with a in

G[S]. Let B= S\ (AU {ag}). W.Lo.g., assume that B # (), and |B| < @ +1.
Subcase 2.1. 67(D[B]) = _‘B\—l

In this case, each vertex in B has an out-degree L ‘ . There exists a vertex b € B with
c(bag) # c(zayp); otherwise, by Claims 2 and 3, C'(ay, NC( YU{z}) C {c(zap), c(zay ), c(xay ),
c(zap), c(yao)}, a contradiction. If c¢(xb) is incident with b in G[S], then by Claim 3,
c(xzb~~"7) is not incident with b in G[S]. Hence from (2)),

C(b, Nj(b) N (AU {ao})) € {e(ab™), c(xb™)}.

Thus,

Cb, Ne(x) U{x}) C C(b, Nj(b) N B) U C(b, NE(B) N (AU {ao})) UC(b, N5(b) U {z, g, 2})
€ €, Ny (1)) U felat) ) (=),
Therefore,
Aeine@upy (@) < dpp(0) +3
< B2 43
< d@e

2

a contradiction.

12



Let By = {b € B | c(bag) # c¢(xag)} and By = {b € B | ¢(bag) = c(zag)}. Then for
each b € By, ¢(zb) is not incident with b in G[S]. For any b € Bs, by we have

C(b, N5 (b) N (AU By U{ao}) C {c(zag), c(zb™), c(zb™ ")}
or C {c(zag),c(xb™ "), c(zb™""7)}.

If c(xb=="7) € C(b, N} (b)), then by Claim 3, ¢(xb™) ¢ C(b, S). If we suppose c(zb~) €

C(b,{z,y, z}), then by (x4)-(x6), we have c(zy) = c(xb~) or c(zy) = c(xb~). Note that
c(zy) = c(zap) and if c(zy) = c(xb™), the vertex b=~~~ does not exist. Thus,

C(b, NS (bo) N (AU By U{ap})) UC(by, Ny (bo) U{x,y,2})
C {e(zag), c(xb), c(zb™), c(xb=")}

C Ac(zag),c(xb), c(zb=7),c(zb=""7)}.

Since D[Bs] is an oriented graph, there is a vertex by € By with di’;[BQ](bO) < \1322|—1, Note

that By # (). Hence,

IN

|C(b, Nj5(b) N By)]
+|C'(bo, N (bo) U{z,y,2}) UC(b, N (bo) N (AU By U{ag}))|
B2 +4

AGNe @)uial] (bo)

IAINA
%
=
F
—

Subcase 2.2. §+(D[B]) < B2,

2
Let by be a vertex in B such that dE[B}(b(]) < ‘B‘;Q. By the same argument as for B,

in Subcase 2.1, we can easily get

|C(bo, N (bo) U{,y, 2}) U C(b, Ny (bo) N (AU {ao}))| < 4.

Then, dye(zyugay (bo) < dc(?“. The claim is thus proved. O
Now it is time to give the proof of Theorem [1.6] We distinguish two cases.

CaseI. S = 0.
Since S = () implies that

Ne@nem) (@) N Ne@pfewy) ey (¥) =0,
we have NC(G)\{c(xy),c(zy)}(y) g V(G) \ NC(G)\C(T) (JZ) Hence,

n = [Nx)\ {u| c(zu) = c(zy)} + [Ne@nfetwy).czy (W) + {2}
> 26%(G) — 3+ 1.
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Then, §°(G) < i < -l 5 contradiction.

Case II. S # 0.
According to Claim 5, there exists a vertex vy with [ N¢(vo) N (V(G)\ (N¢(x)U{z}))| >
(G) — % + 1. So, we have

n 2 IN(2)] + [V(G)\ (N(z) U {z})| + {z}]

> [N¢(z)| +[N*(vo) N (V ( )\(NC()U{-?«"}))Hl
> d°(z) + 9 () (F5H) +

> 509(G) +

Hence, we have §°(G) < 221 a contraction. O

3 Proof of Theorem [1.13

To present the proof of Theorem [1.13] we need some auxiliary theorems and lemmas.
Lemmas and are used to prove Theorem [I.9, We will use them to prove our

theorem.

Lemma 3.1 ([2]). Let G be an edge-colored graph of order n and P = ujuy---u, be a
rainbow path in G. If G contains no rainbow cycle of length at least k, where k < p, then
for any color a € C(uy, uxPuy,) and vertex u; € V(upPuy), where c(uyu;) = a, there is an
edge e € E(uyPu;) such that c(e) = a.

Similarly, we have the following lemmas.

Lemma 3.2. Let G be an edge-colored graph of order n and P = ujus - - - u, be a rainbow
path in G. If G contains no rainbow cycle of length at least k, where k < p, then for any
positive integers s,t with t > s+ (k — 1), we have usuy ¢ E(G) or c(usu;) € ClusPuy).

Lemma 3.3 (Lemma 4 in [2]). Let G be an edge-colored graph of order n and P =
Uug -+ - up, be a longest rainbow path in G. If G contains no rainbow cycle of length at
least k, where k < p, then for any positive integers s,t such that s +t = k, we have
|C(ur, upPuip—(1-1)) N C(up, s Pp_e—1y)| < 1.

Lemma 3.4. Let G be an edge-colored complete graph of order n and P = ujus - - -u, be
a longest rainbow path in G. If G contains no rainbow cycle of length at least k, where
2k — 1 < p, then one of the following statements holds:

(1) Clur, upPup-e-2)) = {c(uaup)};

14



(2) Cltp Pty 1) = {cluaiy)};
(3) There exists an edge ugugry € E(upPuy_(p—1)) with c(ugugr) = c(uyuy) such that
C(ur, Ugy1 Pup_o—2)) = {c(uruy)} and C(up, up—1Pug) = {c(uiup)}.

Proof. From Lemma[3.1} we have c(uyuy) € C(uy Puy) and c(uytiy—(k-1)) € C(tp—(r—1)Pup).
Then we have

c(uruy) = c(ugug) or c(uguy,) € ClukPuy);

otherwise, uuiPuyu; is a rainbow cycle of length at least k. Similarly, we have
c(urup) = c(uptp—(k—1y) or c(uiu,) € C(urPup_(p-1))-

Since p > 2k — 1, we have c(ujuy) # c(uptp—(x—1)). Thus, one of the following statements
holds:

c(uuy) = c(uguy) € C(ur Puy), (1)
c(urty) = c(uptip—(e-1)) € C(Up—(e—1)Puy). (2)
c(urup) € ClurPup-i-1y)- (3)

If holds, then for any vertex u; € V (urPuy_(k—2)), we have c(uiu;) = c(uiu,); other-
wise, uju; Puyu, is a rainbow cycle of length at least k. By the symmetry, if holds,
then we have c(u,u;) = c(uyuy) for u; € V(ug—1 Pup_k-1)).

If holds, suppose c(uju,) = c(uqtgr). By Lemma B.1] we know that c(uju;) €
C(uPu;) for i € [¢ +1,p — (k — 2)]. Hence, C(u1, ugs1Pup——2)) = {c(uup)}, since
otherwise, uju; Puyu, is a requested rainbow cycle. Similarly, C(u,, ug—1 Pu,) = {c(uiu,)}
holds. ]

Proof of Theorem [1.13} Let G be a graph satisfying the assumptions of Theorem
[1.13] Suppose to the contrary that G contains no rainbow cycle of length at least k. Let
P = wjuy - - - u, be a longest rainbow path in G. Since n > 7k — 17, from Theorem it
follows that p > 3k — 5. From Lemma by symmetry we assume that (1) or (3) holds.
For convenience, we label some sets of colors as follows:

Ay = C(uy, upPuy_q), Ay = C(uy, ug Pug_1),

By = C(up, ug—1Pup_(1—1y), Bo = C(up, ugPug_z), Bz = C(up, Up_(s—2)Pup_1),
and

Co = (Clur, PY)\ Clur, P)) N (Cluy, PY)\ C(uy, P)),

Cy = C(uy, P)\ (Co U C(uy, P)), Cy=C(uy,, P)\ (CyU C(u,, P)).

At first, we give some useful claims.
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Claim 1. Let ug,uy € V(P) with s < t and {(usPu;) > 2k — 3. Then for any pair of
vertices u, and u, with s < a < b < t, if k —1 < l(u,Pup) < l(usPu;) — (k —2) and
c(usut) € C(ugPuy), then we have c(ugup) = c(usuy).

Proof. Since l(u,Pup) > k—1, from Lemmawe have c(uqup) € C(ugPuy). If c(ugup) #

c(usuy), then us PuyupPugug is a rainbow cycle of length at least k, a contradiction. [

From Lemma [3.3] setting ¢ = 2 and s = k — 2, we can get the following claim.
Claim 2. |A1 N 31’ S 1.
Claim 3. |A1 N (B2 \ (Bl U {C(Uﬂt;;)}))’ S 1.

Proof. Suppose to the contrary that there are at least two distinct colors m and m’ in
Ay N (Bg \ (B U{c(uguy)})). Assume that there exist two vertices us and u; where
s €2,k —2] and t € [k,p— 1], such that

c(uuy) = c(upus) =m € Ay N (B2 \ (B U {c(uiuy)})).

Case 1. (1) of Lemma [3.4] holds.

Since C(uy, upPuy—(—2)) = {c(uwiu,)} and p > 3k — 5, we have t € [p — (k —
3),p — 1]. Note that c(upusi—2)) € B and c(uqu——2)) = c(uruy). We have m ¢
{c(uptisy(k—2)), c(Urtts—(r—2)) }. By Lemma3.1] c(uptiss(k-2)) € C(tpPusy(e—2)) and c(uitis—(x—2))
€ C(u1Pus—(r—2)). To avoid usPugi 2 upts and uiu_x—2yPusuy being rainbow cy-
cles of length k, we have m € C(usPugy(k—2)) N C(u—(k—2)Pus), which guarantees that
k—2<t—(k—2)<s+(k—2)<p—(k—2), and

m € C(up—(f—2)Pisir—2) € C(up—2Pup_(x—2)).
Since p > 3k — 5, {(up—2Pup_(x—2)) > k — 1 and £(uy Puy) > 2k — 3. Hence, from Lemma
and Claim (1}, we have c(up—2up—(k—2)) = c(uiu¢) = m; see Figure . Then by a same

argument, we can get that c(uy—oup_(x—2)) = m’, a contradiction.

—-——=m

Figure 1: For the proof of Claim 3

Case 2. (3) of Lemma [3.4] holds.

By Lemma we have m € C(usPu). If m € C(ugs1Puy—1) N C(usPuy), then
uyus PuyugPuy is a required cycle, a contradiction. If m € C(usPu,) N C(usPuy), then
utg+1 Puyusuy is a required cycle, a contradiction. Hence, A;N(Ba\ (BiU{c(uiu,)})) = 0,

a contradiction. O
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Claim 4. Let D = {z € V(P®) : z € Ng,uc, (u1, P€) N Neyoe, (up, PE) and c(uyz) #
c(upz)}. Then |D| < 2.

Proof. Suppose to the contrary that |D| > 3. Since the colors in C'(uy, D) are distinct,

there exists a vertex « € D such that
e(u12) ¢ {e(ugtin 1), clitpiy_ 1)} (1)
Then, c(upuy—1) ¢ {c(uiz), c(upz)}. By Lemma B.1] c(uyup—1) € C(ug—1Puy). Thus,
c(uz) € ClugPug_1) or c(uyx) € c(uyPug_1). (5)

Otherwise, uj Pug_ju,ru; is a rainbow cycle of length at least k; see (a) in Figure ,
a contradiction. According to Lemma we have c¢(ujup_(s—2)) = c(uuy), and then
c(ur1tp—(k—2)) & C(ur, D) U C(up, D). Thus,

c(urx) € C(up—(r—2)Puy) or c(upx) € C(Up—(k—2)Ptp_1). (6)

Otherwise, u1uy_(y—2)Pupru; is a rainbow cycle of length at least k; see (b) in Figure ,

a contradiction.

Figure 2: Two rainbow cycles of length at least k in Claim 4

Since P is a rainbow path, combining and @, we have
c(urx) € C(ugPug—1) and c(upr) € C(up—(k—2)Ptip—1), (7)

or

c(urz) € C(up—(k—2yPup) and c(upr) € C(u Puj—1). (8)
W.lo.g., assume that holds. By Lemma 3.1, we have c(ujug) € C(u;Puy) and

xr

up k Up—(k—1) Up

Figure 3: A rainbow cycle u1ug Pu,_(x—1)upToul

c(uptp—(k-1)) € C(up—(k—1)Puyp). From these together with , we get that uy g Py (—1)upTus

is a rainbow cycle of length at least k; see Figure |3 a contradiction. O
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By Lemma , we can get that By U By C C(usPuy,) and Ay C C(uy Puy—y). Thus,
c(uyug) ¢ By U By and c(upu,—1) ¢ A;. However, possibly we have c(ujuz) € A; or
c(upup—1) € By U By. Thus, we set

1, if c(uug) ¢ Ay
&1 =

0, if c(ujus) € Ay,

1, if c(upup_l) ¢ Bl U B2
€9 =

0, if c(upup—1) € By U Bs.

By Lemma [3.4] we know c(uju,) € A;, and then by Lemma we have c(uju,) €
C(uy Pug). Thus, we set

1, if e(uwyu,) ¢ By

g3 =
0, if c(uyu,) € By.
Then,
dc<u1) S |C(U1, P) U Co U Cl|
< e+ A\ {e(wug) )| + [As| + [Col + |Chl,
d°(uy) |C(up, P) U CyU Cs

<
< egy+ez+ |Bi| + B2\ (By U{c(uruy)})|
+[Bs \ {e(upup-1)})| + [Co| + |Cl.

Since Az \ {c(uiuz)})| <k —3 and |Bs \ {c(upup—1)})| < k — 3, we have
|Ai| +|Col + |Ci] + &1 = 69(G) — (k = 3), (9)

|Bi| + | B2 \ (B1 U {c(urup) })| + |Co| + |Ca| + &2 + &3 > 64(G) — (k — 3). (10)

Since c(uir) # c(upz) for each x € Ng, (uy, PY) N N, (up, PC), we have z € D. By
Claim , we can get that |Ng, (uy, P¢) N Ng,(up, PY)| < 2. Note that Cy = (C(uy, PY) \
C(uy, P)) N (C(uy, P€)\ C(uy, P)). If there is a vertex x € Ng,(u,, PY) with c(u;z) =
co € Cp, then x € D and there is another distinct vertex y such that c(u,y) = ¢p. If
c(uyy) € Ch, then y is also contained in D. Since |D| < 2, for all z € Neg (o) (u1, PC), we
have z ¢ Ng,(u,, P¢), which implies that |Ng, (u1, P¢) U N, (up, P€) \ (Ne, (ug, PY) U
Ne, (up,, P9))| > |Co| — 1. Therefore,

[V(PE)| > |Ney(ui, PY) U No, (uy, PO)|+
|NCO(U17PC) U Nco(upvpc) \ (Ncl(uhPC) U NC2(UP7PC)>| (11>
> |Ci] +|Co| = [D[ +[Co| — 1
> |Ch] + |Co] + |Col — 3.
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Note that for any color a € Cy, there is an edge in P whose color is a, since otherwise,

P is not a longest rainbow path. Then together with Claims 2 and 3, we have

V(P)l = [E(P)+1
> le€ E(P),cle) € Ay UByUBy| + |e € E(P),c(e) € Cy|
4+e1+e+1
> [Auf 4 Bl + [B2 \ (Br U c(urup))| + |Co| + 1+ €2 — 1.

By Inequalities and (12)), we have

> |V(P)|+ |V (PY)
> (A +|Co| + [Cr] +€1) + (| Bi| + | B2\ (B1 U c(uguy))| + |Co| + |Co| +e2) — 4,

(12)

n

(13)
Combining with Inequalities (9) and (10), we get that
n > 2(0°G)—(k—3)) —e3—4 (14)
> 20G) —2k+1.
Then, §%(G) < "> + k, a contradiction. The proof is thus complete. O
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