PENTAVALENT SEMISYMMETRIC GRAPHS OF SQUARE-FREE ORDER

GUANG LI AND ZAI PING LU

Abstract

A regular graph is semisymmetric if its automorphism group acts transitively on the edge set but not on the vertex set. In this paper, we give a complete list of connected semisymmetric graphs of square-free order and valency 5 . The list consists of a single graph, the incidence graph of a generalized hexagon of order (4,4), and an infinite family arising from some groups with cyclic Fitting subgroup.

KEYWORDS. Edge-transitive graph, vertex-transitive graph, semisymmetric graph, simple group.

1. INTRODUCTION

In this paper we consider only finite and simple graphs.
Let $\Gamma=(V, E)$ be a graph with vertex set V and edge set E. The size $|V|$ is called the order of Γ. Let Aut Γ be the automorphism group of Γ, that is, the group consisting of all permutations on V which preserve the adjacency of Γ. Then the action of Aut Γ on V induces a natural action on the edge set E by

$$
\{u, w\}^{g}=\left\{u^{g}, w^{g}\right\}, \forall\{u, w\} \in E, g \in \operatorname{Aut} \Gamma
$$

The graph Γ is said to be vertex-transitive or edge-transitive if Aut Γ acts transitively on V or E, respectively. If Γ is regular, edge-transitive but not vertex-transitive, then Γ is called a semisymmetric graph. It is well-known that a semisymmetric graph is bipartite with two parts being the orbits of its automorphism group on the vertices.

Folkman [9] started the study of semisymmetric graphs and posed eight open problems. Folkman's problems stimulated a wide interest in constructing or classifying semisymmetric graphs, see $[1,3,6,7,8,11,13,14,18,19,20,21]$ for example.

In this paper, we make an attempt towards Folkman's problems (4.1) and (4.8), which ask for which pairs (n, k) there are connected semisymmetric graphs of order $2 n$ and valency k. By giving a classification result on semisymmetric graphs, we prove that there are connected semisymmetric graphs of valency 5 and order $10 p_{1} p_{2} \cdots p_{r}$, where $r \geq 2$, and p_{i} are distinct primes with every $p_{i}-1$ divisible by 5 . The main result of this paper is stated as follows.

Theorem 1.1. Let Γ be a connected edge-transitive graph of valency 5 and square-free order. Then Γ is semisymmetric if and only if Γ is isomorphic to one of the following graphs: the incidence graph of the generalized hexagon associated with the simple group $\mathrm{G}_{2}(4)$, and the graphs given in Construction 3.2.

[^0]
2. Preliminaries

Let $\Gamma=(V, E)$ be a graph of valency $k \geq 3$, and $G \leq$ Aut Γ. For $v \in V$, set $G_{v}=\left\{g \in G \mid v^{g}=v\right\}$ and $\Gamma(v)=\{u \in V \mid\{u, v\} \in E\}$, called the stabilizer and the neighbourhood of v in G and in Γ, respectively. Then G_{α} induces a permutation group on $\Gamma(v)$, denoted by $G_{v}^{\Gamma(v)}$. Letting $G_{v}^{[1]}$ be the kernel of G_{v} acting on $\Gamma(v)$, we have $G_{v}^{\Gamma(v)} \cong G_{v} / G_{v}^{[1]}$.

Let p be a prime with $p \geq k$, and P a Sylow p-subgroup of $G_{v u}:=G_{v} \cap G_{u}$, where $\{v, u\} \in E$. Then P fixes both $\Gamma(v)$ and $\Gamma(u)$ point-wise. It follows that for every path from u to some vertex v^{\prime} of Γ, the subgroup P fixes every vertex on this path. Thus, if Γ is connected, then P fixes V point-wise, and so $P=1$. Then the next lemma follows.
Lemma 2.1. Assume that $\Gamma=(V, E)$ is a connected graph of valency k, and $v \in V$. If p is a divisor of $\left|G_{v}\right|$ with $p \geq k$, then $p=k, G_{v}$ is transitive on $\Gamma(v)$ and $\left|G_{v}\right|$ is not divisible by p^{2}.

Assume further that G acts transitively on the edge set E of Γ. It is well-known and easily shown that either G is transitive on V, or Γ is a bipartite graph two parts being the orbits of G on V. For the latter case, we call Γ a G-semisymmetric graph. Clearly, if Γ is G-semisymmetric then for an edge $\{u, w\}$ of Γ, the stabilizers G_{u} and G_{w} have the same order, and they are transitive on $\Gamma(u)$ and $\Gamma(w)$, respectively. Moreover, we have the following simple fact, refer to [8, Lemma 2.3].
Lemma 2.2. Assume that $\Gamma=(V, E)$ is a G-semisymmetric graph, and $\{u, w\} \in E$. Then Γ is connected if and only if $G=\left\langle G_{u}, G_{w}\right\rangle$. In particular, if Γ is connected, then G_{u} and G_{w} have no non-trivial normal subgroup in common.

Lemma 2.3. Assume that $\Gamma=(V, E)$ is a connected G-semisymmetric graph of valency k, and $\{u, w\} \in E$. If p is a divisor of $\left|G_{u}\right|$ then p is a divisor of $\left|G_{u}^{\Gamma(u)}\right|$ or $\left|G_{w}^{\Gamma(w)}\right|$.
Proof. Suppose that p is a divisor of $\left|G_{u}\right|$, and that both $G_{u}^{\Gamma(u)}$ and $G_{w}^{\Gamma(w)}$ are p^{\prime}-groups. Then every Sylow p-subgroup of G_{u} is contained in $G_{u}^{[1]}$, and every Sylow p-subgroup of G_{w} is contained in $G_{w}^{[1]}$. For $v \in\{u, w\}$, let K_{v} be the subgroup generated by all Sylow p-subgroups of G_{v}. Then K_{v} is normal in G_{v}. By the choice of p, we have $K_{v} \neq 1$.

Let P be an arbitray Sylow p-subgroup of G_{u}. Then $P \leq G_{u}^{[1]} \leq G_{u w} \leq G_{w}$. Since $\left|G_{u}\right|=\left|G_{w}\right|$, we know that P is also a Sylow p-subgroup of G_{w}, and then $P \leq K_{w}$. It follows that $K_{u} \leq K_{w}$. Similarly, $K_{w} \leq K_{u}$. Then $K_{u}=K_{w}$. Since Γ is connected, by Lemma 2.2, $K_{u}=K_{w}=1$, a contradiction. Thus this lemma follows.

Let $\Gamma=(V, E)$ be a connected G-semisymmetric graph of valency k with bipartition $V=U \cup W$. Suppose that G has a normal subgroup N which is intransitive on both U and W. For $v \in V$, we denote by \bar{v} the N-orbit containing v, and let $\bar{V}=\{\bar{v} \mid v \in V\}$, $\bar{U}=\{\bar{u} \mid u \in U\}$ and $\bar{W}=\{\bar{w} \mid w \in W\}$. Let \bar{G} be the permutation group induced by G on \bar{V}. Define a graph Γ_{N} on \bar{V} such that $\{\bar{u}, \bar{w}\}$ is an edge if and only if $\{u, w\} \in E$. Then Γ_{N} is well-defined, and \bar{G} acts transitively on the edge set of Γ_{N}.

In general, Γ_{N} is not necessarily a regular graph. For the case where Γ is G-locally primitive, that is, $G_{v}^{\Gamma(v)}$ is a primitive permutation group for each $v \in V$, one can easily prove that Γ_{N} is \bar{G}-locally primitive and of valency k, refer to [10]. In particular, we have the following fact.

Lemma 2.4. Let $\Gamma=(V, E)$ be a connected G-semisymmetric graph of prime valency k with bipartition $V=U \cup W$. Suppose that N is a normal subgroup of G such that N is intransitive on both U and W. Then N is semiregular on $V, \bar{G} \cong G / N$, and Γ_{N} is \bar{G}-semisymmetric and of valency k.

3. A family of Semisymmetric graphs

Let G be a finite group, and $H, K \leq G$ with $G=\langle H, K\rangle$. Assume that $H \cap K$ contains no normal subgroup of G other than 1 . Let $[G: H]$ and $[G: K]$ be the sets of right cosets of H and K in G, respectively. Then G acts faithfully on $[G: H] \cup[G: K]$ by

$$
g: H x \mapsto H x g, K y \mapsto K y g ; g, x, y \in G
$$

Define a bipartite graph $\mathrm{B}(G, H, K)$ with two parts $[G: H]$ and $[G: K]$ such that $\{H x, K y\}$ is an edge if and only if $y x^{-1} \in K H$. Then $\mathrm{B}(G, H, K)$ is well-defined and connected, and G acts transitively on its edge set. Thus $\mathrm{B}(G, H, K)$ is G-semisymmetric if and only if $|H|=|K|$.

Assume that $\Gamma=(V, E)$ is a connected G-semisymmetric graph, and let $\{u, w\} \in$ E. Then $u^{x} \mapsto G_{u} x, w^{y} \mapsto G_{w} y$ gives a bijection between V and the vertex set of $\mathrm{B}(G, H, K)$. It is easily shown that this bijection is in fact an isomorphism form Γ to $\mathrm{B}\left(G, G_{u}, G_{w}\right)$.

Lemma 3.1. Let $\Gamma=(V, E)$ be a connected G-semisymmetric graph and $\{u, w\} \in E$. Then $\Gamma \cong \mathrm{B}\left(G, G_{u}, G_{w}\right)$.

Construction 3.2. Take r distinct primes $p_{1}, p_{2}, \ldots, p_{r}$ with $r \geq 2$ and every $p_{i}-1$ divisible by 5 . Let $F=\mathbb{Z}_{p_{1}} \oplus \cdots \oplus \mathbb{Z}_{p_{r}}$, and identify $\operatorname{Aut}(F)$ with $\mathbb{Z}_{p_{1}}^{*} \times \cdots \times \mathbb{Z}_{p_{r}}^{*}$, where the action of $\operatorname{Aut}(F)$ on F is given by

$$
\left(a_{1}, a_{2}, \ldots, a_{r}\right)^{\left(l_{1}, l_{2}, \cdots, l_{r}\right)}=\left(l_{1} a_{1}, l_{2} a_{2}, \ldots, l_{r} a_{r}\right) .
$$

Fix two elements $\sigma=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ and $\tau=\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ of $\operatorname{Aut}(F)$ satisfying the following conditions:
(C1) $m_{i} \neq 1, n_{i} \neq 1, m_{i}^{5}=1=n_{i}^{5}$, where $1 \leq i \leq r$;
(C2) $\left(m_{1}^{l}, m_{2}^{l}, \ldots, m_{r}^{l}\right) \neq\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ for $1 \leq l \leq 4$.
Let $G=F:\langle\sigma, \tau\rangle$, the semi-direct product of groups F and $\langle\sigma, \tau\rangle$. Then

$$
G=\{x \delta \mid x \in F, \delta \in\langle\sigma, \tau\rangle\}
$$

with the product given by

$$
x_{1} \delta_{1} x_{2} \delta_{2}=\left(x_{1}+x_{2}^{\delta_{1}^{-1}}\right)\left(\delta_{1} \delta_{2}\right)
$$

Let $a=(1,1, \cdots, 1) \in F, H=\langle\sigma\rangle$ and $K=\left\langle\tau^{a}\right\rangle$. Define

$$
\Gamma\left(p_{1}, p_{2}, \cdots, p_{r} ; \sigma, \tau\right)=\mathrm{B}(G, H, K)
$$

Recall that an arc in a graph Γ is an ordered pair of adjacent vertices. A graph Γ is said to be symmetric (or arc-transitive) if Aut Γ is transitive on the vertex set and the set of arcs. It is easily shown that a connected G-semisymmetric graph Γ with bipartition
$U \cup W$ is symmetric if and only if there is some $\sigma \in$ Aut Γ such that $U^{\sigma}=W$. For an integer $n \geq 2$, denote by $\mathrm{D}_{2 n}$ the dihedral group of order $2 n$.

Lemma 3.3. Let $\Gamma=\Gamma\left(p_{1}, p_{2}, \cdots, p_{r} ; \sigma, \tau\right)$ be as in Construction 3.2. Then Γ is connected and semisymmetric.

Proof. By the choices of σ and τ, we have that $\mathbf{C}_{G}(F)=F$, and the only element in F fixed by σ or τ^{-1} is the zero of F. It follows that $F=\left\langle x^{\sigma}-x\right\rangle=\left\langle x^{\tau^{-1}}-x\right\rangle$ provided that $F=\langle x\rangle$. Note that $\tau^{a}=-a \tau a=-a\left(\tau a \tau^{-1}\right) \tau=\left(-a+a^{\tau^{-1}}\right) \tau$. Let $x=-a+a^{\tau^{-1}}$. Then $\langle x\rangle=F$, and so

$$
\langle H, K\rangle=\left\langle\sigma, \tau^{a}\right\rangle=\left\langle\sigma,\left(\tau^{a}\right)^{\sigma}\left(\tau^{a}\right)^{-1}, \tau^{a}\right\rangle=\left\langle\sigma, x^{\sigma}-x, \tau^{a}\right\rangle=F\langle\sigma, \tau\rangle=G .
$$

Thus Γ is connected. By the construction of Γ, we know that Γ is G-semisymmetric.
Suppose that Γ is vertex-transitive. By [16], checking the symmetric graphs of squarefree order and valency 5 , we conclude that Aut $\Gamma \cong \mathrm{D}_{10 p_{1} p_{2} \cdots p_{r}}: \mathbb{Z}_{5}$, which has order $2|G|$. It follows that $G \cong \mathbb{Z}_{5 p_{1} p_{2} \cdots p_{r}}: \mathbb{Z}_{5}$. Thus $\left|\mathbf{C}_{G}(F)\right| \geq 5 p_{1} p_{2} \cdots p_{r}>|F|$, a contradiction. Then the lemma holds.

4. Graphs associated with soluble groups

Let $\Gamma=(V, E)$ be a connected G-semisymmetric graph of valency 5 with bipartition $V=U \cup W$. By Lemma 2.1, for $v \in V$, we have that

$$
\begin{equation*}
\left|G_{v}\right|=2^{s} \cdot 3^{t} \cdot 5, \quad|G|=2^{s} \cdot 3^{t} \cdot 5|U| \tag{4.a}
\end{equation*}
$$

for some integers $s, t \geq 0$. Since $G_{v}^{\Gamma(v)}$ is a transitive permutation group of degree 5 , we have

$$
\begin{equation*}
G_{v}^{\Gamma(v)} \cong \mathbb{Z}_{5}, \mathbb{Z}_{5}: \mathbb{Z}_{2}, \mathbb{Z}_{5}: \mathbb{Z}_{4}, \mathrm{~A}_{5}, \text { or } \mathrm{S}_{5} \tag{4.b}
\end{equation*}
$$

If G acts unfaithfully on one of U and W, then it is easily shown that Γ is the complete bipartite graph $\mathrm{K}_{5,5}$. Thus we assume next that G is faithful on both U and W. Then $\Gamma \not \not \mathrm{K}_{5,5}$; otherwise G has a subgroup isomorphic to \mathbb{Z}_{5}^{2} which is neither faithful on U nor faithful on W, a contradiction. In particular,

$$
|U|=|W|>5
$$

Lemma 4.1. Assume that $|V|$ is square-free, and G is faithful on both U and W. Let N be a normal subgroup of G which is intransitive on both U and W. Suppose that $\Gamma_{N} \cong \mathrm{~K}_{5,5}$. Then 5 is the smallest prime divisor of $|U|, N$ is a Hall subgroup of G, and G is soluble.

Proof. We continue the notation at the end of Section 2. Note that $\bar{G} \leq \mathrm{S}_{5} \times \mathrm{S}_{5}$ and Γ_{N} is \bar{G}-semisymmetric. Then \bar{G} contains a subgroup isomorphic to \mathbb{Z}_{5}^{2}, which is transitive on the edge set of Γ_{N}. Let $X \leq G$ with $N \leq X$ and $X / N \cong \mathbb{Z}_{5}^{2}$. Then Γ is X-semisymmetric, and X is soluble and contains a normal subgroup R which is regular on both U and W.

Let p is the smallest prime divisor of $|U|$. Since $|R|=|U|$ is square-free, R has a unique p^{\prime}-Hall subgroup L. Then L is characteristic in H, and hence L is normal in X. Clearly, L is intransitive on both U and W. Applying Lemma 2.4 to the pair (X, L),
we have $p \geq 5$, and thus $p=5$. Since $|U|=5|N|$ is square-free and $|G / N|$ has no prime divisor greater than $5, N$ is a Hall subgroup of G.

Noting that N is a normal Hall subgroup of G, there is a subgroup H of G with $G=N H$ and $N \cap H=1$. Then $H \cong G / N \cong \bar{G} \leq \mathrm{S}_{5} \times \mathrm{S}_{5}$. Since $|U|=|W|$ has prime divisor greater than 5 , we know that the actions of H on U and W are not transitive. Denote by $\mathbf{C}_{H}(N)$ the centralizer of N in H. Then $\mathbf{C}_{H}(N)$ is normal in G. Applying Lemma 2.4 to the pair $\left(G, \mathbf{C}_{H}(N)\right)$, we have that $\mathbf{C}_{H}(N)$ is semiregular on U, and so $\left|\mathbf{C}_{H}(N)\right|$ is square-free. In particular, $\mathbf{C}_{H}(N)$ is soluble. Considering the conjugation of H on N, we conclude that H induces a subgroup of $\operatorname{Aut}(N)$ with kernel $\mathbf{C}_{H}(N)$. Since N has square-free order, $\operatorname{Aut}(N)$ is soluble. Thus $H / \mathbf{C}_{H}(N)$ is soluble, and so H is soluble. It follows that G is soluble.

Theorem 4.2. Assume that $|V|$ is square-free, and that G is soluble and faithful on both U and W. Then Γ is either a symmetric graph, or semisymmetric and isomorphic to a graph given by Construction 3.2.

Proof. Let F be the Fitting subgroup, the maximal nilpotent normal subgroup, of G. Let $\mathbf{C}_{G}(F)$ be the centralizer of F in G. Then $\mathbf{C}_{G}(F)$ is normal in G and, since G is soluble, we have $\mathbf{C}_{G}(F) \leq F$. Consider the conjugation of G on F. Then G induces a subgroup of the automorphism group $\operatorname{Aut}(F)$ with kernel $\mathbf{C}_{G}(F)$. Thus $G / \mathbf{C}_{G}(F)$ is isomorphic to a subgroup of $\operatorname{Aut}(F)$.

Case 1. Assume that F is transitive on one of U and W, without loss of generality, say U. Note that every Sylow subgroup Q of F and every maximal subgroup of Q are normal in F. Since $|U|$ is an odd square-free number and F is faithful on U, it follows that $|F|=|U|$, and then F is regular on U. In particular, F is cyclic, and so $\mathbf{C}_{X}(F)=F$ and $\operatorname{Aut}(F)$ is abelian. Note that every subgroup of F is normal in G, and thus has orbits of the same size on W. Since G is faithful on W, we conclude that F is transitive and hence regular on W.

Let $\{u, w\} \in E$. Write $U=\left\{u^{x} \mid x \in F\right\}, W=\left\{w^{y} \mid y \in F\right\}$ and $D=\left\{z \in F \mid w^{z} \in\right.$ $\Gamma(u)\}$. Then $\left\{u^{x}, w^{y}\right\} \in E$ if and only if $y x^{-1} \in D$. Define θ by

$$
\theta: V \rightarrow V ; u^{x} \mapsto w^{x^{-1}}, w^{y} \mapsto u^{y^{-1}}, x, y \in F
$$

Since F is abelian, it is easy to check that θ is an automorphism of Γ, which interchanges U and W. Thus Γ is vertex-transitive, and so Γ is symmetric.

Case 2. Assume that F is intransitive on both U and W. Then F is semiregular on V by Lemma 2.4, Thus F has square-free order, and F is cyclic, and then $\mathbf{C}_{G}(F)=F$ and $\operatorname{Aut}(F)$ is abelian. Then G / F is abelian. By Lemma 2.4, Γ_{F} admits an abelian group acting transitively on the edge set but not on the vertex set. The only possibility is that $\Gamma_{F} \cong \mathrm{~K}_{5,5}$ and $G / F \cong \mathbb{Z}_{5}^{2}$. By Lemma 4.1, F is a normal Hall subgroup of G, and each prime divisor of $|F|$ is greater than 5 .

Let P be a Sylow 5 -subgroup of G. Then $P \cong \mathbb{Z}_{5}^{2}$ and $G=F: P$. By the choice of F, we may identify P with a subgroup of $\operatorname{Aut}(F)$. Then $G=\{a x \mid a \in F, x \in \operatorname{Aut}(F)\}$ with the product given by

$$
a x b y=a b^{x^{-1}}(x y)
$$

We write F as the additive abelian group $\mathbb{Z}_{p_{1}} \oplus \cdots \oplus \mathbb{Z}_{p_{r}}$, and identify $\operatorname{Aut}(F)$ with $\mathbb{Z}_{p_{1}}^{*} \times \cdots \times \mathbb{Z}_{p_{r}}^{*}$, where the action of $\operatorname{Aut}(F)$ on F is given by

$$
\left(a_{1}, a_{2}, \ldots, a_{r}\right)^{\left(l_{1}, l_{2}, \cdots, l_{r}\right)}=\left(l_{1} a_{1}, l_{2} a_{2}, \ldots, l_{r} a_{r}\right)
$$

Fix an edge $\{u, w\} \in E$ with $u \in U$ and $w \in W$. Then $|U|\left|G_{u}\right|=|G|=|W|\left|G_{w}\right|$, yielding $\left|G_{u}\right|=\left|G_{w}\right|=5$. Set $G_{u}=\langle\sigma\rangle$ and $G_{w}=\langle\delta\rangle$. Since Γ is connected, $G=\langle\sigma, \delta\rangle$ by Lemma 2.2. Without loss of generality, we let $\sigma \in P$. Take a Sylow 5 -subgroup Q of G with $\delta \in Q$. Then $P \neq Q$, and thus there is $1 \neq a \in F$ such that $P^{a}=Q$. Choose $\tau \in P$ with $\tau^{a}=\delta$. Then $G=\left\langle\sigma, \tau^{a}\right\rangle \leq\langle\sigma, \tau, a\rangle=\langle a\rangle:\langle\sigma, \tau\rangle \leq F P$, yielding $F=\langle a\rangle$ and $P=\langle\sigma, \tau\rangle$. It is easily shown that any two generators of F are conjugate under the action of $\operatorname{Aut}(F)$. Replacing P by a suitable conjugation under $\operatorname{Aut}(F)$, we may choose $a=(1,1, \ldots, 1) \in F$.

Note that every subgroup of F is a normal Hall subgroup of F. Then $F=\mathbf{C}_{F}(\tau): F_{1}$ for some $F_{1} \leq F$. Thus $a=c b$ for $b \in F_{1}$ and $c \in \mathbf{C}_{F}(\tau)$. We have $G=\left\langle\sigma, \tau^{a}\right\rangle=$ $\left\langle\sigma, \tau^{b}\right\rangle \leq\langle\sigma, \tau, b\rangle \leq F_{1}: P$, yielding $F=F_{1}=\langle b\rangle$. It follows that $\mathbf{C}_{F}(\tau)=1$. Thus $F:\langle\tau\rangle$ is a Frobinus group with Frobenius kernel F. In particular, 5 is a divisor of $p_{i}-1$ for each p_{i}. Noting that $F=\langle-a\rangle$ and $G=\left\langle\sigma, \tau^{a}\right\rangle=\left\langle\sigma^{-a}, \tau\right\rangle \leq\langle\sigma, \tau,-a\rangle \leq F P$, a similar argument leads to $\mathbf{C}_{F}(\sigma)=1$. Recalling that $\mathbf{C}_{G}(F)=F$, it follows that $\sigma=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ and $\tau=\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ satisfy the conditions (C1) and (C2) listed in Construction 3.2. Then this theorem follows from Lemmas 3.1 and 3.3.

5. Graphs arising from almsot simple groups

In this section, we assume that G is an almost simple group with socle $\operatorname{soc}(G)=T$, and $\Gamma=(V, E)$ is a connected G-semisymmetric graph of square-free order and valency 5 with bipartition $V=U \cup W$. Clearly, T fixes both U and W set-wise.

Note that $|U|=|W|$ is odd and square-free. Since $|T|$ has even order, T is not semiregular on V. By Lemma 2.4, T is transitive on at least one of U and W. It is easily shown that $\operatorname{Aut}\left(\mathrm{K}_{5,5}\right)$ contains no almost simple subgroup which acts transitively on the edge set. Thus we have $|U|=|W|>5$. By [10, Lemma 5.5], the following lemma holds.
Lemma 5.1. One of the following holds.
(1) Γ is T-semisymmetric, and T_{v} is transitive on $\Gamma(v)$ for every $v \in V$;
(2) T is transitive on one of U and W and has 5 orbits on the other one; in particular, $|G: T|$ is divisible by 5 , and T_{v} is transitive on $\Gamma(v)$ for some $v \in V$.
By Lemmas 2.1 and 5.1, we have the following observation, which is useful for us to determine T.

$$
\begin{equation*}
5\left||T|, 5^{3} \nmid\right| T\left|, r^{2} \nmid\right| T \mid, \tag{5.a}
\end{equation*}
$$

where r is a prime not less than 7 .
By Lemma 5.1, there exists $v \in V$ such that T_{v} is transitive on $\Gamma(v)$. Take a subgroup M of T with $T_{v} \leq M$. Noting that $\left|T: T_{v}\right|$ is a divisor of $|U|$,

$$
\begin{equation*}
5\left|\left|T_{v}\right|, 5\right||M|,|T: M| \text { and }\left|M: T_{v}\right| \text { are odd, square-free and coprime. } \tag{5.b}
\end{equation*}
$$

Lemma 5.2. Let N be a normal $\{2,3\}$-subgroup of M. Then one of the following holds.
(1) M is a $\{2,3,5\}$-group and M / N has a subgroup of index 5 ;
(2) M / N has a maximal subgroup with order divisible by 5 and index odd, square-free and coprime to $|T: M|$.
Proof. Noting that $N T_{v} / N \cong T_{v} /\left(N \cap T_{v}\right)$, it follows that $N T_{v} / N$ has order divisible by 5 . Since T_{v} is a transitive on $\Gamma(v)$, we know that T_{v} has a subgroup of index 5 , and thus $N T_{v} / N$ has a subgroup of index 5 . If $M=N T_{v}$ then $M / N=N T_{v} / N$, and part (1) of the lemma follows. Assume that $M \neq N T_{v}$. Then $N T_{v} / N$ is a proper subgroup of M / N. Since $\left|M / N:\left(N T_{v} / N\right)\right|=\left|M:\left(N T_{v}\right)\right|$ and $\left|T: T_{v}\right|=|T: M|\left|M: T_{v}\right|$, we know that $\left|M / N:\left(N T_{v} / N\right)\right|$ is odd, square-free and coprime to $|T: M|$. Considering the maximal subgroups of M / N which contain $N T_{v} / N$, we get part (2) of this lemma.

In the following, we always choose $v \in V$ and $T_{v} \leq M<T$ such that T_{v} is transitive on $\Gamma(v)$ and M is maximal in T. Using (5.a), (5.b) and Lemma 5.2, we shall read out the pair (T, M) from [17, Tables 1-4], and then determine all possible candidates for T_{v}.
5.1. In this subsection, we deal with the alternating groups and sporadic simple groups.

Lemma 5.3. $T \not \approx \mathrm{~A}_{n}$ for all $n \geq 5$.
Proof. Suppose that $T \cong \mathrm{~A}_{n}$ for some $n \geq 5$. Then $5 \leq n \leq 13$ as $|T|$ is indivisible by 7^{2}. Choose $v \in V$ such that T_{v} is transitive on $\Gamma(v)$, and take a maximal subgroup of T with $T_{v} \leq M$. Then $|T: M|$ is odd and square-free, and $|M|$ is divisible by 5 . Checking [17, Table 1], we conclude that M is the stabilizer of some k-subset under the natural action of A_{n} on $\Omega=\{1,2,3, \ldots, n\}$, where (k, n) is one of $(1,7),(2,7),(1,11),(2,11)$, $(3,11),(1,13)$ and $(4,13)$. Let N be the normal subgroup of M with $N \cong \mathrm{~A}_{k}$, where $\mathrm{A}_{k}=1$ for $k \in\{1,2\}$. Then $M / N \cong \mathrm{~A}_{n-k}$ or S_{n-k}. Clearly, $n-k \geq 5$.

Assume that $n-k>5$. By Lemma 5.2, either A_{n-k} or S_{n-k} has a maximal subgroup with odd square-free index and order divisible by 5 . It follows from [17, Table 1] that $n-k \in\{7,11,13\}$, which is impossible.

Assume that $n-k=5$. Then $n=7$ and $k=2$. Clearly, $|G: T| \leq 2$. By Lemma 5.1, Γ is T-semisymmetric. In particular, $|U|=|W|=|T: M|\left|M: T_{v}\right|=21\left|M: T_{v}\right|$. Since $|U|$ is an odd square-free number and $\left|T_{v}\right|$ is divisible by 5 , we conclude that $T_{v}=M$. Thus the actions of T on U and W are equivalent to the action of T on the 2 -subsets of $\Omega=\{1,2,3,4,5,6,7\}$. Then two vertices $u \in U$ and $w \in W$ are adjacent if and only if, as 2-subsets of Ω, the intersection $u \cap w$ is empty, or if and only if $|u \cap w|=1$. It follows that Γ has valency 10, a contradiction.

Lemma 5.4. T is not a sporadic simple group.
Proof. Suppose that T is one of the 26 sporadic simple groups. Choose $v \in V$ such that T_{v} is transitive on $\Gamma(v)$, and take a maximal subgroup M of T with $T_{v} \leq M$. Then $|M|$ is divisible by 5 , and $|T: M|$ is odd and square-free. By [17, Table 2], up to isomorphism, T and M are listed as follows:

T	M_{11}	M_{22}	M_{22}	M_{23}	M_{23}	M_{23}	M_{23}	M_{24}	M_{24}	$\mathrm{~J}_{1}$
M	M_{10}	$2^{4}: \mathrm{A}_{6}$	$2^{4}: \mathrm{S}_{5}$	M_{22}	$\mathrm{PSL}(3,4): 2$	$2^{4}: \mathrm{A}_{7}$	$2^{4}:\left(3 \times \mathrm{A}_{5}\right): 2$	$2^{6}: \mathrm{A}_{8}$	$2^{6}: 3 . \mathrm{S}_{6}$	$2 \times \mathrm{A}_{5}$
$\|T: M\|$	11	$7 \cdot 11$	$3 \cdot 7 \cdot 11$	23	$11 \cdot 23$	$11 \cdot 23$	$7 \cdot 11 \cdot 23$	$3 \cdot 11 \cdot 23$	$7 \cdot 11 \cdot 23$	$7 \cdot 11 \cdot 19$

Noting that $|G: T| \leq 2$ for each T listed above, by Lemma 5.1, Γ is T-semisymmetric.
By the Atlas [4], $\mathrm{A}_{6}, \mathrm{M}_{10}, \mathrm{~S}_{6}$ and A_{8} have no maximal subgroup of odd square-free index and order divisible by 5 . Thus the pairs $\left(\mathrm{M}_{11}, \mathrm{M}_{10}\right),\left(\mathrm{M}_{22}, 2^{4}: \mathrm{A}_{6}\right),\left(\mathrm{M}_{24}, 2^{6}: \mathrm{A}_{8}\right)$ and $\left(\mathrm{M}_{24}, 2^{6}: 3 . \mathrm{S}_{6}\right)$ are excluded by Lemma 5.2 .

Case 1. Suppose that (T, M) is one of $\left(\mathrm{M}_{22}, 2^{4}: \mathrm{S}_{5}\right)$ and $\left(\mathrm{J}_{1}, 2 \times \mathrm{A}_{5}\right)$. Recall that the indices $|T: M|$ and $\left|M: T_{v}\right|$ are odd, square-free and coprime. Checking the subgroups of M of square-free index, we get $T_{v}=M$; in particular, T is primitive on both U and W. By the information given in the Atlas [4], all subgroups isomorphic to M are conjugate in T. Then there are $u \in U$ and $w \in W$ with $T_{u}=T_{w}$. Thus $\Gamma(u)$ is a T_{w}-orbit on W of length 5, which is impossible. (Confirmed by GAP [23], see also the Web-version of [4]).

Case 2. Suppose that (T, M) is one of $\left(\mathrm{M}_{23}, 2^{4}:\left(3 \times \mathrm{A}_{5}\right): 2\right),\left(\mathrm{M}_{23}, \operatorname{PSL}(3,4) .2\right)$, $\left(\mathrm{M}_{23}, 2^{4}: \mathrm{A}_{7}\right)$ and $\left(\mathrm{M}_{23}, \mathrm{M}_{22}\right)$. If $T_{v}=M$ then $(T, M)=\left(\mathrm{M}_{23}, 2^{4}:\left(3 \times \mathrm{A}_{5}\right): 2\right)$, and then a similar argument as in Case 1 gives a contradiction. Next let $T_{v} \neq M$.

Recall that $T=\mathrm{M}_{23}$ is the automorphism group of the unique $S(4,7,23)$ Steiner system. Let Ω and \mathcal{B} be the point set and block set of the $S(4,7,23)$ Steiner system.

Check the subgroups of M which have odd and square-free index and order divisible by 5 . For $M \cong 2^{4}:\left(3 \times \mathrm{A}_{5}\right): 2$, we have that $T_{v} \cong 2^{4}: S_{5}, M$ is the stabilizer of a 3 subset $\{\alpha, \beta, \delta\}$ of Ω, and T_{v} is one of the point-stabilizers of M acting on $\{\alpha, \beta, \delta\}$. For $M \cong \operatorname{PSL}(3,4) .2$, we have that $T_{v} \cong 2^{4}: \mathrm{S}_{5}, M$ is the stabilizer of a 2 -subset $\{\alpha, \beta\}$ of Ω, and T_{v} is the stabilizer of a block containing $\{\alpha, \beta\}$. For $M \cong 2^{4}: \mathrm{A}_{7}$, we have that $T_{v} \cong 2^{4}: S_{5}, M$ is the stabilizer of a block $B \in \mathcal{B}$, and T_{v} is one of the point-stabilizers of M acting on B. For $M \cong \mathrm{M}_{22}$, we have that $T_{v} \cong 2^{4}: \mathrm{S}_{5}, M$ is the stabilizer of some $\alpha \in \Omega$, and T_{v} is the stabilizer of some 2-subset $\{\beta, \delta\}$ of $\Omega \backslash\{\alpha\}$. All in all, $T_{v} \cong 2^{4}: S_{5}$, and one of the following cases occurs:
(i) $T_{v}=T_{\{\alpha, \beta\}} \cap T_{B}$ for some $B \in \mathcal{B}$ and some 2-subset $\{\alpha, \beta\} \subset \Omega$;
(ii) $T_{v}=T_{\{\alpha, \beta\}} \cap T_{\{\alpha, \beta, \delta\}}$ for some 2-subset $\{\alpha, \beta\} \subset \Omega$ and $\delta \in \Omega \backslash\{\alpha, \beta\}$.

Fix an edge $\{u, w\}$ of Γ. Next we deduce the contradiction in three cases.
(1). Suppose that both T_{u} and T_{w} satisfy (i), say $T_{u}=T_{\{\alpha, \beta\}} \cap T_{B}$ and $T_{w}=T_{\left\{\alpha^{\prime}, \beta^{\prime}\right\}} \cap$ $T_{B^{\prime}}$. Since Γ is connected, $\left\langle T_{u}, T_{w}\right\rangle=T$ by Lemma 2.2. Then $\{\alpha, \beta\} \neq\left\{\alpha^{\prime}, \beta^{\prime}\right\}$ and $B \neq B^{\prime}$. Considering the action of T on \mathcal{B}, we know that T_{B} has 2 orbits on $\mathcal{B} \backslash\{B\}$, which have sizes 112 and 140 , refer to the Web-version of the Atlas [4]. This implies that $\left|T_{B} \cap T_{B^{\prime}}\right|=360$ or 288, respectively. Noting that $T_{u} \cap T_{w} \leq T_{B} \cap T_{B^{\prime}}$ and $|\Gamma(u)|=\left|T_{u}:\left(T_{u} \cap T_{w}\right)\right|$, we have $5=|\Gamma(u)| \geq \frac{\left|T_{u}\right|}{360}>5$, a contradiction.
(2). Suppose that both T_{u} and T_{w} satisfy (ii), say $T_{u}=T_{\{\alpha, \beta\}} \cap T_{\{\alpha, \beta, \delta\}}$ and $T_{w}=$ $T_{\left\{\alpha^{\prime}, \beta^{\prime}\right\}} \cap T_{\left\{\alpha^{\prime}, \beta^{\prime}, \delta^{\prime}\right\}}$. Then $\{\alpha, \beta\} \neq\left\{\alpha^{\prime}, \beta^{\prime}\right\}$ and $\{\alpha, \beta, \delta\} \neq\left\{\alpha^{\prime}, \beta^{\prime}, \delta^{\prime}\right\}$ as $\left\langle T_{u}, T_{w}\right\rangle=G$. Considering the action of T on the 3 -subsets of Ω, we conclude that $T_{\{\alpha, \beta, \delta\}}$ has 7 orbits with length not equal to 1 , and the minimum length is 20 , refer to the Webversion of the Atlas [4]. Thus $\left|T_{u} \cap T_{w}\right| \leq\left|T_{\{\alpha, \beta, \delta\}} \cap T_{\left\{\alpha^{\prime}, \beta^{\prime}, \delta^{\prime}\right\}}\right| \leq \frac{\left|T_{\{\alpha, \beta, \delta\}}\right|}{20}=288$. Then $5=|\Gamma(u)|=\left|T_{u}:\left(T_{u} \cap T_{w}\right)\right| \geq \frac{\left|T_{u}\right|}{288}>5$, a contradiction.
(3). Finally, let $T_{u}=T_{\{\alpha, \beta\}} \cap T_{B}$ and $T_{w}=T_{\left\{\alpha^{\prime}, \beta^{\prime}\right\}} \cap T_{\left\{\alpha^{\prime}, \beta^{\prime}, \delta^{\prime}\right\}}$ be as in (i) and (ii), respectively. Then $\{\alpha, \beta\} \neq\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. Note that $T_{\{\alpha, \beta\}}$ has three orbits on the 2subsets of Ω, say $\{\{\alpha, \beta\}\},\{\{\alpha, \delta\} \mid \delta \in \Omega \backslash\{\alpha, \beta\}\} \cup\{\{\beta, \delta\} \mid \delta \in \Omega \backslash\{\alpha, \beta\}\}$ and $\{\{\delta, \eta\} \mid\{\delta, \eta\} \cap\{\alpha, \beta\}=\emptyset\}$. If $\left\{\alpha^{\prime}, \beta^{\prime}\right\} \cap\{\alpha, \beta\}=\emptyset$. Then $\left|T_{u} \cap T_{w}\right| \leq\left|T_{\{\alpha, \beta\}} \cap T_{\left\{\alpha^{\prime}, \beta^{\prime}\right\}}\right|=$ $\frac{\left|T_{\{\alpha, \beta\}}\right|}{210}=192$, and hence $5=|\Gamma(u)|=\left|T_{u}:\left(T_{u} \cap T_{w}\right)\right| \geq \frac{\left|T_{u}\right|}{192}=10$, a contradiction. Thus we may assume that $\beta^{\prime}=\beta$. Then $T_{u} \cap T_{w} \leq T_{\{\alpha, \beta\}} \cap T_{\left\{\alpha^{\prime}, \beta\right\}}=T_{\alpha \beta \alpha^{\prime}} \cong 2^{4}: \mathrm{A}_{5}$; in particular, $\left|T_{u} \cap T_{w}\right|$ is not divisible by 2^{7}. Since $T_{u} \cong 2^{4}: S_{5}$ has order divisible by 2^{7}, we have that $|\Gamma(u)|=\left|T_{u}:\left(T_{u} \cap T_{w}\right)\right|$ is even, again a contradiction.
5.2. Now we deal with the simple groups of Lie type. For a power $q=p^{f}$ of some prime p, we denote by \mathbb{F}_{q} the finite field of order q.

Let $t \geq 2$ be an integer. A prime r is a primitive divisor of $p^{t}-1$ if r is a divisor of $p^{t}-1$ but not a divisor of $p^{s}-1$ for any $1 \leq s<t$. If r is a primitive divisor of $p^{t}-1$, then p has order t modulo r, and thus t is a divisor of $r-1$; in particular, $r \geq t+1$.
Lemma 5.5. Let p be a prime and t be a positive integer.
(1) If $p^{t}-1$ has no prime divisor greater than 5 then $t \leq 4$.
(2) If $p^{t}+1$ has no prime divisor greater than 5 then either $t \leq 2$ or $p^{t}=8$.

Proof. Suppose that $t>4$ and $p^{t}-1$ has no prime divisor greater than 5 . Then $p^{t}-1$ has no primitive prime divisor. By Zsigmondy's Theorem (see [24]), $t=6$ and $p=2$, and then $p^{t}-1$ is divisible by 7 , a contradiction. Thus part (1) of this lemma holds.

Assume that $p^{t}+1$ has no prime divisor greater than 5 . If $p^{2 t}-1$ has a primitive prime divisor r then $r \geq 2 t+1$ and r is a divisor of $p^{t}+1$, and so $t \leq 2$. Suppose that $p^{2 t}-1$ has no primitive prime divisor. By Zsigmondy's Theorem, either $2 t=2$ or $(2 t, p)=(6,2)$. Then part (2) of this lemma follows.

Lemma 5.6. If T is a exceptional simple group of Lie type, then $T=\mathrm{G}_{2}(4)$, Aut $\Gamma=$ $\mathrm{G}_{2}(4) .2, \Gamma$ is semsymmetric and isomorphic to the incidence graph of the generalized hexagon associated with $\mathrm{G}_{2}(4)$.

Proof. Assume that T is a exceptional simple group defined over \mathbb{F}_{q}, where $q=p^{f}$ for a prime p. Choose $v \in V$ such that T_{v} is transitive on $\Gamma(v)$, and take a maximal subgroup M of T with $T_{v} \leq M$. Then $|T: M|$ is odd and square-free, and $|M|$ is divisible by 5 .

It follows from [17, Table 4] that q is even and T is one of ${ }^{2} \mathrm{~B}_{2}(q), \mathrm{G}_{2}(q),{ }^{3} \mathrm{D}_{4}(q), \mathrm{F}_{4}(q)$, ${ }^{2} \mathrm{E}_{6}(q)$ and $\mathrm{E}_{7}(q)$. Suppose that $T={ }^{2} \mathrm{~B}_{2}(q)$. Then $|M|=q^{2}(q-1)$. In this case, q is an odd power of 2 , and then $q \equiv \pm 2(\bmod 5)$. It follows that $|M|$ is indivisible by 5 , a contradiction. Thus $T \neq{ }^{2} \mathrm{~B}_{2}(q)$, and then $|T|$ has a divisor $\left(q^{2}-1\right)^{2}$. Recall that $|T|$ has no divisor r^{2} for any prime $r>5$, see the observation (5.a). Then $q^{2}-1$ has no prime divisor greater than 5 . By Lemma 5.5, since q is even, we have $q \in\{2,4\}$. If T is one of ${ }^{3} \mathrm{D}_{4}(q), \mathrm{F}_{4}(q),{ }^{2} \mathrm{E}_{6}(q)$ and $\mathrm{E}_{7}(q)$, then calculation shows that $|T|$ has a divisor 7^{2}, a contradiction. Thus we have $T=\mathrm{G}_{2}(4)$.

Clearly, $|G: T| \leq 2$. By Lemma 5.1, Γ is T-semisymmetric. In particular, $|U|=$ $|W|=\left|T: T_{v}\right|=|T: M|\left|M: T_{v}\right|$. Checking the maximal subgroups of T in the Atlas [4], we conclude that $M \cong 2^{2+8}:\left(3 \times \mathrm{A}_{5}\right)$ or $2^{4+6}:\left(3 \times \mathrm{A}_{5}\right)$, and $|T: M|=3 \cdot 5 \cdot 7 \cdot 13$. It follows that $T_{v}=M$. If there are $u \in U$ and $w \in W$ with $T_{u}=T_{w}$, then $\Gamma(u)$ is a T_{w}-orbit on W of size 5 , which is impossible, see the Web-version of [4]. Thus the actions of T on U and W are not equivalent. Then the lemma follows from the information for $\mathrm{G}_{2}(4)$ given in the Atlas [4].

Lemma 5.7. Assume that T is a classical simple group. Then Γ is T-semisymmetric, and T is isomorphic to one of $\operatorname{PSL}(2, p), \operatorname{PSL}(2,25), \operatorname{PSL}(3,4), \operatorname{PSL}(3,16), \operatorname{PSL}(4,4)$, $\operatorname{PSL}(5,4), \operatorname{PSU}(3,4)$ and $\operatorname{PSp}(4,4)$, where p is a prime.
Proof. Assume that T is an n-dimensional classical simple group defined over \mathbb{F}_{q}, where $q=p^{f}$ for a prime p. Then either $T=\operatorname{PSL}(2, q)$ or $|T|$ has a divisor q^{3}. Recall that $|T|$ has no divisor 5^{3} or r^{2}, where r is a prime not less than 7 . If $p \geq 5$ then $T=\operatorname{PSL}(2, q)$, yielding $T=\operatorname{PSL}(2, p)$ or $\operatorname{PSL}(2,25)$. Thus we assume that $p \in\{2,3\}$ in the following.

Choose $v \in V$ such that T_{v} is transitive on $\Gamma(v)$, and take a maximal subgroup M of T with $T_{v} \leq M$. Then $|T: M|$ is odd and square-free, and $|M|$ is divisible by 5 .

Assume that $T=\operatorname{PSL}(2, q)$. It follows from [17, Table 3] that $|T: M|=p^{f}+1$ and $M \cong \mathbb{Z}_{p}^{f}: \mathbb{Z}_{\frac{q-1}{(2, q-1)}}$; in particular, $p=2$. Since $\left|M: T_{v}\right|$ is odd (see (5.b)) and T_{v} is transitive on $\Gamma(v)$, we have $T_{v} \cong \mathbb{Z}_{2}^{f}: \mathbb{Z}_{l}$ and $T_{v}^{\Gamma(v)} \cong \mathbb{Z}_{5}$, where l is a divisor of $2^{f}-1$ and divisible by 5 . Let P be the unique Sylow 2-subgroup of T_{v}. Then $P \leq T_{v}^{[1]} \leq G_{v}^{[1]}$, and P is normal in G_{v} as T_{v} is normal in G_{v}. Let $w \in \Gamma(v)$. Then $P \leq T_{w}$, and so P is a Sylow 2-subgroup of T_{w}. Check the subgroups of T, refer to [12, II.8.27]. Noting that $\left|T: T_{w}\right|$ is odd, we conclude that P is normal in T_{w}, and so P is characteristic in T_{w}. Then P is normal in G_{w} as T_{w} is normal in G_{w}. Thus P is normal in both G_{v} and G_{w}, which contradicts Lemma 2.2.

Assume that $T=\operatorname{PSL}(3, q)$. Then $|T|$ has a divisor $\left(p^{f}-1\right)^{2}$ or $\frac{\left(p^{f}-1\right)^{2}}{3}$, and so $p^{f}-1$ has no prime divisor greater than 5. By Lemma 5.5, $f \leq 4$. Recalling that $p \in\{2,3\}$, we know that $p^{3}-1$ has a divisor 7 or 13 , and so $f \neq 3$. Thus $q=p^{f} \in\left\{2,3,2^{2}, 3^{2}, 2^{4}, 3^{4}\right\}$. Since $|T|$ has a divisor 5 , we have $q \notin\{2,3\}$. Suppose that $q=3^{2}$ or 3^{4}. By [17, Table 3], $|T: M|=q^{2}+q+1$ and $M=N: X$, where N is a 3 -group and $X \cong \mathrm{GL}(2,9)$ or $\mathrm{GL}(2,81)$. It is easily shown that $\mathrm{GL}(2,9)$ has neither subgroup of index 5 nor maximal subgroup with odd and square-free index and order divisible by 5 . Then, by Lemma 5.2, we conclude that $q=3^{4}$ and $X \cong \mathrm{GL}(2,81)$. Noting $N T_{v}=N T_{v} \cap M=N\left(T_{v} \cap X\right)$, we have $\left|M:\left(N T_{v}\right)\right|=\left|X:\left(T_{v} \cap X\right)\right|$. Since $\left|M: T_{v}\right|=\left|M:\left(N T_{v}\right)\right|\left|N T_{v}: T_{v}\right|$ and $\left|M: T_{v}\right|$ is odd and square-free, $\left|X:\left(T_{v} \cap X\right)\right|$ is odd and square-free. Then $\left(T_{v} \cap X\right) Z / Z$ is a subgroup of X / Z with odd and square-free index, where Z is the center of X. By [17, Table 3], PGL $(2,81)$ has no maximal subgroup with odd and square-free index. It follows that $\left(T_{v} \cap X\right) Z / Z=X / Z \cong \operatorname{PGL}(2,81)$. Then $\left|T_{v}\right|$ has a divisor 41, which contradicts Lemma 2.1. Thus $q \in\{4,16\}$, and so $T=\operatorname{PSL}(3,4)$ or $\operatorname{PSL}(3,16)$.

Assume that $T=\operatorname{PSU}(3, q)$. Then $|T|$ has a divisor $\left(p^{f}+1\right)^{2}$ or $\frac{\left(p^{f}+1\right)^{2}}{3}$, and so $p^{f}+1$ has no prime divisor greater than 5 . Recalling $p \in\{2,3\}$, by Lemma 5.5, we have $q \in\{2,3,4,8,9\}$. By [17, Table 3], $|T: M|=q^{3}+1$. Since $|T: M|$ is odd and square-free, we have $q=4$, and thus $T=\operatorname{PSU}(3,4)$.

Assume next that $n \geq 4$. Then $|T|$ has a divisor $\left(q^{2}-1\right)^{2}=\left(p^{2 f}-1\right)^{2}$. Then $p^{2 f}-1$ has no prime divisor greater than 5. By Lemma 5.5, $2 f \leq 4$, and then $q \in\{2,3,4,9\}$.

Suppose that $T=\operatorname{PSL}(n, q)$. Then $n \leq 5$; otherwise, $|T|$ has a divisor $\left(q^{3}-1\right)^{2}$, and so $|T|$ is divisible by 7^{2} or 13^{2}, a contradiction. By [17, Table 3], $|T: M|=$ $\frac{\prod_{i=0}^{k-1}\left(q^{n-i}-1\right)}{\prod_{i=1}^{k}\left(q^{i}-1\right)}$ for some $1 \leq k<n$. Since $|T: M|$ is odd and square-free, calculation shows that $(n, q)=(4,2),(4,4),(5,2)$ or $(5,4)$. Noting $\operatorname{PSL}(4,2) \cong \mathrm{A}_{8}$, by Lemma 5.3, we have $(n, q) \neq(4,2)$. Assume that $T=\operatorname{PSL}(5,2)$. Then $M \cong 2^{4}: \operatorname{PSL}(4,2)$ or $2^{6}:\left(\mathrm{S}_{3} \times \operatorname{PSL}(3,2)\right)$. Since $|M|$ is divisible by 5 , we have $M \cong 2^{4}: \operatorname{PSL}(4,2)$. By Lemma 5.2, $\operatorname{PSL}(4,2)$ has a maximal subgroup with odd and square-free index and order divisible by 5 , which is impossible. Then we get $T=\operatorname{PSL}(4,4)$ or $\operatorname{PSL}(5,4)$.

Suppose that $T=\operatorname{PSU}(n, q)$. By [17, Table 3], $|T: M|=\frac{\left(q^{n}-(-1)^{n}\right)\left(q^{n-1}-(-1)^{n-1}\right)}{q^{2}-1}$. In particular, $|T: M|$ is divisible by $q-1$ or $q+1$. Since $|T: M|$ is odd, q is even, and so $q=2$ or 4 . If $n \geq 10$ then $|T|$ has a divisor $\left(q^{5}+1\right)^{2}$, and so $|T|$ has a divisor 11^{2} or 41^{2}, a contradiction. If $q=4$ and $n \geq 6$ then $|T|$ has a divisor $\left(q^{3}+1\right)^{2}$, and so $|T|$ has a divisor 13^{2}, a contradiction. Thus $4 \leq n \leq 9$ for $q=2$, and $4 \leq n \leq 5$
for $q=4$. Then $(n, q)=(4,4),(5,2)$ or $(8,2)$. Assume that $(n, q)=(8,2)$. Then $M \cong 3^{1+12}: \mathrm{SU}(6,2): 3$, which is the stabilizer of some totally isotropic 1-subspace. By Lemma 5.2, PGU $(6,2)$ has a maximal subgroup of odd and square-free index say m. By [17, Table 3], $m=\frac{\left(2^{6}-1\right)\left(2^{5}+1\right)}{2^{2}-1}=3^{2} \cdot 7 \cdot 11$, a contradiction. If $(n, q)=(4,4)$ or $(5,2)$ then either $|T|$ is divisible by 5^{3} or M is a $\{2,3\}$-group, which contradicts (5.a) or (5.b).

Suppose that T is one of $\operatorname{PSp}(n, q)$ (with n even and $(n, q) \neq(4,2)$), $\operatorname{PSp}(4,2)^{\prime}$ or $\Omega(n, q)$ (with $n q$ odd). Since $\operatorname{PSp}(4,2)^{\prime} \cong \mathrm{A}_{6}$, we have $T \neq \operatorname{PSp}(4,2)^{\prime}$ by Lemma 5.3. By [17, Table 3], $|T: M|$ has a divisor $q+1$. Since $|T: M|$ is odd, q is even, and hence $q=2$ or 4 . Then $T=\operatorname{PSp}(n, q)$. If $n f \geq 12$ then $|T|$ has a divisor $\left(2^{6}-1\right)^{2}$, and so $|T|$ has a divisor 7^{2}, a contradiction. It follows that either $q=2$ and $n \in\{6,8,10\}$ or $(n, q)=(4,4)$. By [17, Table 3], $|T: M|=\frac{q^{n}-1}{q-1}$ or $\frac{\left(q^{n}-1\right)\left(q^{n-2}-1\right)}{\left(q^{2}-1\right)(q-1)}$, and M is the stabilizer of some totally isotropic 1-subspace or 2-subspace, respectively. For $(n, q)=(6,2)$, we have $|T: M|=3^{2} \cdot 7$ or $3^{2} \cdot 5 \cdot 7$, which is not square-free. Assume that $(n, q)=(8,2)$. Then $|T: M|=3 \cdot 5 \cdot 17$ and $M \cong 2^{1+6}: \operatorname{PSp}(6,2)$. By Lemma 5.2, $\operatorname{PSp}(6,2)$ has a maximal subgroup of odd and square-free index, which is impossible. Assume that $(n, q)=(10,2)$. Then $M \cong 2^{9}: \operatorname{PSp}(8,2)$ or $2^{3+12}:\left(\mathrm{S}_{3} \times \operatorname{PSp}(6,2)\right)$. Again by Lemma 5.2, $\operatorname{PSp}(8,2)$ or $\operatorname{PSp}(6,2)$ has a maximal subgroup of odd and square-free index, which is impossible. Thus we have $T=\operatorname{PSp}(4,4)$.

Suppose that $T=\mathrm{P} \Omega^{ \pm}(2 m, q)$, where $n=2 m \geq 8$. By [17, Table 3], $|T: M|$ has a divisor $q^{m-i}+1$, where $i \in\{0,1,2,3\}$. Since $|T: M|$ is odd, q is even, and hence $q=2$ or 4. If $m \geq 5$ then $|T|$ has a divisor $\left(q^{4}-1\right)^{2}$, and so $q=2$; otherwise, $|T|$ is divisible by 17^{2}, a contradiction. If $q=2$ and $m>6$ then $|T|$ is divisible by $\left(q^{6}-1\right)^{2}=3^{4} \cdot 7^{2}$, a contradiction. It follows that (m, q) is one of $(4,4),(4,2),(5,2)$ and $(6,2)$. Calculation shows that $\mathrm{P} \Omega^{ \pm}(8,4)$ and $\mathrm{P} \Omega^{-}(12,2)$ have order divisible by 5^{3}, and $\mathrm{P} \Omega^{+}(12,2)$ has order divisible by 7^{2}. By the observation (5.a), we conclude that T is one of $\mathrm{P} \Omega^{ \pm}(8,2)$ and $\mathrm{P} \Omega^{ \pm}(10,2)$. Checking the maximal subgroups of T in the Atlas [4], since $|T: M|$ is odd and square-free, one of the following occurs: $T=\mathrm{P} \Omega^{-}(8,2)$ and $M \cong 2^{6}: \operatorname{PSU}(4,2)$, $T=\mathrm{P} \Omega^{-}(10,2)$ and $M \cong 2^{1+12}:\left(\mathrm{S}_{3} \times \operatorname{PSU}(4,2)\right), T=\mathrm{P} \Omega^{+}(10,2)$ and $M \cong 2^{8}: \mathrm{P} \Omega^{+}(8,2)$. Then, by Lemma 5.2, we conclude that either $\operatorname{PSU}(4,2)$ or $\mathrm{P}^{+}(8,2)$ has a maximal subgroup of odd and square-free index, which is impossible.

By the above argument, all possible candidates for T are desired as in this lemma. In particular, $|G: T|$ is indivisible by 5 . By Lemma $5.1, \Gamma$ is T-semisymmetric, and the lemma follows.

Lemma 5.8. Let $T=\operatorname{PSL}(2, p)$ for a prime p. Then Γ is symmetric, $11 \leq p \equiv$ $\pm 3(\bmod 8)$ and $p \equiv \pm 1(\bmod 5)$, and $T_{v} \cong \mathrm{D}_{20}$ or A_{5}.

Proof. By Lemma 5.3, $T \not \not \mathrm{~A}_{5}$. Since $|T|$ is divisible by 5 , we have $p \geq 11$ and $p \equiv \pm 1(\bmod 5)$. For $v \in V$, since $\left|T: T_{v}\right|$ is odd, $\left|T_{v}\right|$ is divisible by 20 . Check the subgroups of $\operatorname{PSL}(2, p)$, refer to $\left[12\right.$, II.8.27]. We conclude that either $T_{v} \cong \mathrm{~A}_{5}$, and so $p \equiv \pm 3(\bmod 8)$, or T_{v} is contained in a maximal subgroup isomorphic to $\mathrm{D}_{p+\varepsilon}$, where $\varepsilon= \pm 1$ such that $p+\varepsilon$ is divisible by 10 . Let $\{u, w\}$ be an edge of Γ.

Assume that one of T_{u} and T_{w}, say T_{u}, is soluble. Then T_{u} is a dihedral group. Suppose that $T_{w} \cong \mathrm{~A}_{5}$. Since Γ is T-semisymmetric, $T_{u w}=T_{u} \cap T_{w}$ has index 5 in both T_{u} and T_{w}. It follows that $T_{u} \cap T_{w} \cong \mathrm{~A}_{4}$; however T_{u} has no subgroup isomorphic to A_{4}, a contradiction. Thus T_{w} is also soluble. Take a positive integer t such that $p+\varepsilon$ is divisible
by 2^{t} but not by 2^{t+1}. Then $t \geq 2$ and, by Lemma 2.3 and (4.b), $T_{u} \cong T_{w} \cong \mathrm{D}_{2^{t .5}}$. Thus $T_{u w}$ is a Sylow 2-subgroup of both T_{u} and T_{w}, which is isomorphic to $\mathrm{D}_{2^{t}}$. If $t \geq 3$ then T_{u}, T_{w} and $T_{u w}$ have the same center isomorphic to \mathbb{Z}_{2}, which contradicts Lemma 2.2. Thus $t=2$, and then $p \equiv \pm 3(\bmod 8)$. In particular, a Sylow 2 -subgroup of T has order 4. Enumerating the Sylow 2-subgroups of T, we conclude a Sylow 2-subgroup of T is exactly contained in three distinct subgroups isomorphic to D_{20}, say T_{u}, T_{w} and H. Let $N=\mathbf{N}_{\mathrm{PGL}(2, p)}\left(T_{u w}\right)$. Then N has an action on $\left\{T_{u}, T_{w}, H\right\}$ by conjugation, where the kernel say K contains $T_{u w}$. Noting that $N \cong \mathrm{~S}_{4}$ and T_{u} is self-normalized in T, it follows that $K=T_{u w}$. Then, noting that $\mathbf{N}_{T}\left(T_{u w}\right) \cong \mathrm{A}_{4}$, we may choose an involution $\sigma \in N \backslash T$ such that $T_{u}^{\sigma}=T_{w}$. Define

$$
\theta: V \rightarrow V, u^{x} \mapsto w^{x^{\sigma}}, w^{x} \mapsto u^{x^{\sigma}} .
$$

It is easily shown that θ is an automorphism of Γ, and θ interchanges U and W. Then Γ is vertex-transitive (see also [8, Lemma 2.6]), and so Γ is symmetric.

Assume that $T_{u} \cong T_{w} \cong \mathrm{~A}_{5}$. Then $T_{u w} \cong \mathrm{~A}_{4}$. Note that all subgroups isomorphic to A_{4} are conjugate in T. (In fact, each A_{4} is the normalizer of some Sylow 2-subgroup of T.) Enumerating the subgroups isomorphic to A_{4}, we conclude two conjugations of A_{5} under T can not intersect at a subgroup of order 12 , and each subgroup A_{4} is exactly contained in two subgroups A_{5}. It follows that T_{u} and T_{w} are not conjugate in T. Noting that $\mathbf{N}_{\mathrm{PGL}(2, p)}\left(T_{u w}\right) \cong \mathrm{S}_{4}$, we conclude that $T_{u}^{\sigma}=T_{w}$ for some involution $\sigma \in \mathbf{N}_{\mathrm{PGL}(2, p)}\left(T_{u w}\right) \backslash T$. Similarly as above, there is an automorphism of Γ interchanging U and W. Thus Γ is symmetric, and the lemma follows.

Lemma 5.9. $T \neq \operatorname{PSL}(2,25)$.
Proof. Suppose that $T=\operatorname{PSL}(2,25)$. Let $\{u, w\}$ be an edge of Γ. Since Γ is T semisymmetric, $\left|T_{u}\right|=\left|T_{w}\right|$. Checking the subgroups of $\operatorname{PSL}(2,25)$, since $\left|T: T_{u}\right|$ is odd, we conclude that $T_{u} \cong T_{w} \cong S_{5}$, and then $T_{u} \cap T_{w} \cong S_{4}$. In $\operatorname{PSL}(2,25)$, there are two conjugacy classes of subgroups isomorphic to S_{5} and two conjugacy classes of subgroups isomorphic to S_{4}. It follows that two distinct subgroups S_{5} can not intersect at a subgroup S_{4}, a contradiction.

Lemma 5.10. $T \neq \operatorname{PSU}(3,4)$ or $\operatorname{PSL}(3,16)$.
Proof. Let $v \in V$, and take a maximal subgroup M of T with $T_{v} \leq M$.
Suppose that $T=\operatorname{PSU}(3,4)$. Checking the maximal subgroups of T in the Atlas [4], since $|T: M|$ is odd and square-free, we have $M \cong 2^{2+4}: \mathbb{Z}_{15}$ and $|T: M|=65$. It follows that T_{v} has a unique Sylow 2 -subgroup. Since Γ is T-semisymmetric, for an edge $\{u, w\}$ of Γ, we have $5=\left|T_{u}: T_{u w}\right|=\left|T_{w}: T_{u w}\right|$. Thus $T_{u w}$ contains the unique Sylow 2-subgroup of T_{u} and the unique Sylow 2-subgroup of T_{w}. Then T_{u} and T_{w} have a nontrivial normal subgroup in common, which contradicts Lemma 2.2.

Suppose that $T=\operatorname{PSL}(3,16)$. Then $|T|=2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17$, and hence $\mid T$: $T_{v} \mid=3 \cdot 5 \cdot 7 \cdot 13 \cdot 17$ or $5 \cdot 7 \cdot 13 \cdot 17$. By [17, Table 3], we have $|T: M|=3 \cdot 7 \cdot 13$ and $M \cong 2^{8}:(5 \times \operatorname{PSL}(2,16))$. It follows that $\left|T: T_{v}\right|=3 \cdot 5 \cdot 7 \cdot 13 \cdot 17$, and T_{v} has index 85 in M. Then $T_{v} \cong 2^{8}:\left(5 \times 2^{4}: 3\right)$ or $2^{8}:\left(2^{4}: 15\right)$. In particular, T_{v} has a unique Sylow 2 -subgroup. Then we have a similar contradiction as above.

Let \mathbb{F}_{q}^{n} be the vector space over \mathbb{F}_{q} with dimension n. An (l, m)-flag in \mathbb{F}_{q} is an ordered pair (\mathbf{u}, \mathbf{v}) of subspaces with $1 \leq l=\operatorname{dim}(\mathbf{u})<\operatorname{dim}(\mathbf{w})=m<n$ and $\mathbf{u} \subset \mathbf{v}$.

Lemma 5.11. $T \neq \operatorname{PSL}(4,4)$ or $\operatorname{PSL}(5,4)$.
Proof. Let $T=\operatorname{PSL}(n, q)$ with $q=4$ and $n \in\{4,5\}$. Let $v \in V$. Since $\left|T: T_{v}\right|$ is odd and square-free, considering the maximal subgroups of T which contain T_{v}, it follows from [17, Table 3] that T_{v} is contained in the stabilizer of some subspace of \mathbb{F}_{q}^{n}. Thus, for convenience, we use boldface \mathbf{v} to denote a subspace of \mathbb{F}_{q}^{n} with $T_{v} \leq T_{\mathbf{v}}$.

Case 1. Suppose that $T=\operatorname{PSL}(4,4)$. Then $|T|=2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17$, and so $\left|T: T_{v}\right|=3 \cdot 5 \cdot 7 \cdot 17$ or $5 \cdot 7 \cdot 17$. By [17, Table 3] and [2, Table 8.8], we have $\operatorname{dim}(\mathbf{v}) \in\{1,2,3\}$, and $T_{\mathbf{v}} \cong 2^{6}: \mathrm{GL}(3,4)$ or $2^{8}:(\mathrm{SL}(2,4) \times \operatorname{SL}(2,4)): 3$.

Assume that $\operatorname{dim}(\mathbf{v})=1$ or 3 . Consider the action of $T_{\mathbf{v}}$ on the quotient space $\mathbb{F}_{4}^{4} / \mathbf{v}$ or \mathbf{v}, respectively. Then we have a surjective homomorphism $\phi: T_{\mathbf{v}} \rightarrow \mathrm{GL}_{3}(4)$, and $\operatorname{ker} \phi \cong \mathbb{Z}_{2}^{6}$. Since T_{v} is a $\{2,3,5\}$-group and $\left|T_{\mathbf{v}}: T_{v}\right|$ is odd and square-free, $\phi\left(T_{v}\right)$ is a $\{2,3,5\}$-subgroup of $\mathrm{GL}_{3}(4)$ with odd and square-free index. Computation using GAP shows that $\phi\left(T_{v}\right) \lesssim 3 \times 2^{4}: \mathrm{GL}(2,4)$, that is, $\phi\left(T_{v}\right)$ is contained in the stabilizer in $\mathrm{GL}(3,4)$ of some 1 or 2 -dimensional subspace. It follows that T_{v} is contained in the stabilizer in T of some $(1,2),(1,3)$ or $(2,3)$-flag. It is easily shown that the numbers of $(1,2),(1,3)$ and $(2,3)$-flags are all equal to $3 \cdot 5 \cdot 7 \cdot 17$. Thus $\left|T: T_{v}\right|$ is divisible by $3 \cdot 5 \cdot 7 \cdot 17$, yielding $\left|T: T_{v}\right|=3 \cdot 5 \cdot 7 \cdot 17$. Then the action of T on the T-orbit containing v is equivalent to the action of T on the set of $(1,2),(1,3)$ or $(2,3)$-flags.

Assume that $\operatorname{dim}(\mathbf{v})=2$. Then $T_{\mathbf{v}} \cong 2^{8}:\left(\mathrm{SL}(2,4) \times \mathrm{SL}_{2}(4)\right): 3$. Note that $\left|T_{v}\right|$ is indivisible by 5^{2}, in particular, $T_{\mathbf{v}} \neq T_{v}$. Considering the action of $T_{\mathbf{v}}$ on $\mathbb{F}_{4}^{4} / \mathbf{v}$ or \mathbf{v}, we conclude that T_{v} is contained in the stabilizer in T of some $(1,2)$ or $(2,3)$-flag. It follows that $\left|T: T_{v}\right|=3 \cdot 5 \cdot 7 \cdot 17$, and the action of T on the T-orbit containing v is equivalent to the action of T on the set of $(1,2)$ or $(2,3)$-flags.

By the above argument, we may let U the set of (i, j)-flags and W be the set of $\left(i^{\prime}, j^{\prime}\right)$-flags, where $1 \leq i<j<4$ and $1 \leq i^{\prime}<j^{\prime}<4$. Let $u \in U$ and $w \in W$ with $\{u, w\} \in E$. Suppose that $i=i^{\prime}=1$. Then we may choose 1 -dimensional subspaces \mathbf{u} and \mathbf{w} of \mathbb{F}_{4}^{4} with $T_{u} \leq T_{\mathbf{u}}$ and $T_{w} \leq T_{\mathbf{w}}$. Then $T_{u w} \leq T_{\mathbf{u}} \cap T_{\mathbf{w}}$ and, since $T=\left\langle T_{u}, T_{w}\right\rangle$, we have $\mathbf{u} \neq \mathbf{w}$. Noting T acts 2-transitively on the set of 1-dimensional subspaces, we have $\left|T_{\mathbf{u}}:\left(T_{\mathbf{u}} \cap T_{\mathbf{w}}\right)\right|=\frac{q^{n}-1}{q-1}-1=84$. It follows that $\left|T_{\mathbf{u}}: T_{u w}\right|$ is even. Noting that $\left|T_{\mathbf{u}}: T_{u w}\right|=\left|T_{\mathbf{u}}: T_{u}\right|\left|T_{u}: T_{u w}\right|=5\left|T_{\mathbf{u}}: T_{u}\right|$, we know that $\left|T_{\mathbf{u}}: T_{u}\right|$ is even, a contradiction. For $j=j^{\prime}=3$, we get a similar contradiction. Thus, without of generality, we let u be a (1,2)-flag and w be a (2,3)-flag. Then we may choose 2 dimensional subspaces \mathbf{u} and \mathbf{w} of \mathbb{F}_{4}^{4} with $T_{u} \leq T_{\mathbf{u}}$ and $T_{w} \leq T_{\mathbf{w}}$. It is easily shown that $T_{\mathbf{u}}$ has 3-orbits on the set of 2-dimensional subspaces, which have length 1,100 and 256. Note that $\mathbf{u} \neq \mathbf{w}$, for otherwise, $T=\left\langle T_{u}, T_{w}\right\rangle \leq T_{\mathbf{u}}<T$. It follows that $\left|T_{\mathbf{u}}:\left(T_{\mathbf{u}} \cap T_{\mathbf{w}}\right)\right|$ is even, which yields a similar contradiction as above.

Case 2. Suppose that $T=\operatorname{PSL}(5,4)$. By [17, Table 3] and [2, Table 8.18], we have $\operatorname{dim}(\mathbf{v}) \in\{1,2,3,4\}$, and $T_{\mathbf{v}} \cong 2^{8}: \mathrm{GL}(4,4)$ or $2^{12}:(\mathrm{SL}(2,4) \times \mathrm{SL}(3,4)): 3$. Let N be a normal subgroup of $T_{\mathbf{v}}$ with $N \cong 2^{8}: \mathrm{SL}(4,4)$ or $2^{12}:(\operatorname{SL}(2,4) \times \operatorname{SL}(3,4))$, respectively. Then $\left|\left(N T_{v}\right): T_{v}\right|$ is a divisor of $\left|T_{\mathbf{v}}: T_{v}\right|$. Noting that $|N|\left|T_{v}\right|=\left|N T_{v}\right|\left|N \cap T_{v}\right|$, we have $\left|N:\left(N \cap T_{v}\right)\right|=\left|\left(N T_{v}\right): T_{v}\right|$, and so $\left|N:\left(N \cap T_{v}\right)\right|$ is a divisor of $\left|T_{\mathbf{v}}: T_{v}\right|$. In particular, $\left|N:\left(N \cap T_{v}\right)\right|$ is odd and square-free. Note that every Sylow 5 -subgroup of $T_{\mathbf{v}}$ is contained in N, and each Sylow 5 -subgroup of T_{v} is contained in some Sylow

5-subgroup of $T_{\mathbf{v}}$. It follows that $\left|N \cap T_{v}\right|$ is divisible by 5 . Clearly, $\left|N \cap T_{v}\right|$ is indivisible by 5^{2}, see Lemma 2.1.

Let K be the maximal soluble normal subgroup of N. Then $\left(N \cap T_{v}\right) K / K$ is a subgroup of N / K with odd and square-free index. Considering the order of N / K, we have $\left|\left(N \cap T_{v}\right) K / K\right|=2^{l} \cdot 3^{m} \cdot 5$ for some positive integers l and m. Assume that $N / K \cong \operatorname{PSL}(4,4)$. Then, by the argument in Case $1,\left(N \cap T_{v}\right) K / K$ is isomorphic to the stabilizer in $\operatorname{PSL}(4,4)$ of some $(1,2),(1,3)$ or $(2,3)$-flag. In particular, in this case, $\left(N \cap T_{v}\right) K / K$ has a composition factor A_{5}. Assume that $N / K \cong \operatorname{PSL}(2,4) \times \operatorname{PSL}(3,4)$. Using GAP program, we search the subgroups of $\operatorname{PSL}(2,4) \times \operatorname{PSL}(3,4)$ with odd and square-free index. It follows that $\left(N \cap T_{v}\right) K / K$ has a composition factor A_{5}.

Noting that $N \cap T_{v}$ is normal in T_{v}, by the above argument, T_{v} has a composition factor A_{5}. Recall that Γ is T-semisymmetric. By Lemma 2.1, $T_{v}^{[1]}$ is a $\{2,3\}$-group, and then $T_{v}^{\Gamma(v)}$ has a composition factor A_{5}. Thus $T_{v}^{\Gamma(v)} \cong \mathrm{A}_{5}$ or S_{5}. Let P is a Sylow 2-subgroup of T_{v}. It follows from [22, Theorem 2] that either $|P| \leq 2^{18}$ or $|P| \geq 2^{24}$, which is impossible as $|P|=2^{20}$. This completes the proof.

Theorem 5.12. Let $\Gamma=(V, E)$ be a connected G-semisymmetric graph of square-free order and valency 5. Assume that G is an almost simple group with socle $\operatorname{soc}(G)=T$. Then Γ is T-semisymmetric, and one of the following holds.
(1) Γ is the incidence graph of the generalized hexagon associated with $\mathrm{G}_{2}(4)$;
(2) Γ is symmetric and isomorphic to the incidence graph of the projective plane $\mathrm{PG}(2,4)$ over \mathbb{F}_{4};
(3) Γ is symmetric and isomorphic the incidence graph of the generalized quadrangule associated with $\operatorname{PSp}(4,4)$;
(4) $T=\operatorname{PSL}(2, p)$ and Γ is symmetric, where p is a prime with $11 \leq p \equiv \pm 3(\bmod 8)$ and $p \equiv \pm 1(\bmod 5)$.

Proof. By Lemmas 5.3 to $5.11, \Gamma$ is T-semisymmetric, and either one of (1) and (4) of this theorem holds or T is one of $\operatorname{PSL}(3,4)$ and $\operatorname{PSp}(4,4)$. Let $v \in V$, and take a maximal subgroup M of T with $T_{v} \leq M$.

Let $T=\operatorname{PSL}(3,4)$. Checking the maximal subgroups of PSL $(3,4)$ in the Atlas [4], we have $M \cong 2^{4}: \mathrm{A}_{5}$, which is the stabilizer of a point or a line of the projective plane $\mathrm{PG}(2,4)$. It is easily shown that M has no subgroup with odd index and order divisible by 5 , and then $T_{v}=M$. Since Γ has valency 5 , it is the incidence graph of $\mathrm{PG}(2,4)$. The inverse transpose automorphism of $\operatorname{PSL}(3,4)$ induces an automorphism of Γ which interchanges U and W, and so Γ is symmetric. Then part (2) follows.

Let $T=\operatorname{PSp}(4,4)$. Then, by the Atlas $[4], M \cong 2^{6}:\left(3 \times \mathrm{A}_{5}\right)$, which is the stabilizer of a point or a line of the self-dual generalized quadrangle GQ(4). Noting that $|G: M|=85$, it follows from (5.b) that $T_{v}=M$ or $T_{v} \cong 2^{6}: \mathrm{A}_{5}$. Confirmed by GAP, in the group $\operatorname{PSp}(4,4)$, any two subgroups isomorphic to $2^{6}: \mathrm{A}_{5}$ do not intersect at a subgroup of index 5 , and any two conjugate subgroups isomorphic to $2^{6}:\left(3 \times \mathrm{A}_{5}\right)$ do not intersect at a subgroup of index 5 . Therefore, $T_{v}=M$, and then Γ is the incidence graph of GQ(4). Moreover, the duality automorphism of $\operatorname{PSp}(4,4)$ induces an automorphism of Γ which interchanges U and W. Thus part (3) of this theorem follows.

6. The proof of Theorem 1.1

Let $\Gamma=(V, E)$ be a connected semisymmetric graph of square-free order and valency 5 with bipartition $V=U \cup W$. Noting that $\mathrm{K}_{5,5}$ is symmetric, we have $\Gamma \not \approx \mathrm{K}_{5,5}$. Thus $G:=\operatorname{Aut} \Gamma$ is faithful on both U and W. If G is soluble then, by Theorem 4.2, Γ is a graph described as in Construction 3.2.

Assume that G is insoluble. Let N be a normal subgroup of G, which is maximal among the normal subgroups of G intransitive on both U and W. We consider the quotient Γ_{N}, and use the notation given at the end of Section 2. By [10, Theorem 1.1], N is semiregular on $V, \bar{G} \cong G / N, \Gamma_{N}$ is \bar{G}-semisymmetric and of valency 5 , and either
(i) $\Gamma_{N} \cong \mathrm{~K}_{5,5}$, and $|U|=5|N|>5$; or
(ii) $|\bar{U}|=|\bar{W}|>5, \bar{G}$ is faithful on both \bar{U} and \bar{W}, and \bar{G} is quasiprimitive on at least one of \bar{U} and \bar{W}.

Since G is insoluble, by Lemma 4.1, only (ii) occurs.
Without loss of generality, we let \bar{G} be quasiprimitive on \bar{U}, that is, every non-trivial normal subgroup of \bar{G} is transitive on \bar{U}. Take a maximal \bar{G}-invariant partition \mathcal{B} of \bar{U}. Then $|\mathcal{B}|$ is square-free, and \bar{G} acts faithfully and primitively on \mathcal{B}. It follows from [17] that \bar{G} is an almost simple group. If $N=1$ then our theorem follows from Lemma 5.6 and Theorem 5.12. Thus, to complete the proof, we next show $N=1$.

By Theorem 5.12, Γ_{N} is $\operatorname{soc}(\bar{G})$-semisymmetric, and $\operatorname{soc}(\bar{G}) \cong \mathrm{G}_{2}(4), \operatorname{PSL}(3,4)$, $\operatorname{PSp}(4,4)$ or $\operatorname{PSL}(2, p)$, where p is a prime with $11 \leq p \equiv \pm 3(\bmod 8)$ and $p \equiv \pm 1(\bmod 5)$. Let $N \leq X \leq G$ with $X / N \cong \operatorname{soc}(\bar{G})$. Then Γ is X-semisymmetric, and $X=N \times T$ by [15, Theorem 30], where T is a simple subgroup of X. In particular, $T \cong \operatorname{soc}(\bar{G})$. For $v \in V$, noting that $X_{\bar{v}}=N T \cap X_{\bar{v}}=N T_{\bar{v}}$, we have $\operatorname{soc}(\bar{G})_{\bar{v}} \cong X_{\bar{v}} / N=N T_{\bar{v}} / N \cong T_{\bar{v}}$.

Since X is normal in G and T is characteristic in X, we know that T is normal in G. Since T has even order, T is not semiregular on V. By Lemma 2.4, T is transitive on one of U and W, say on U without loss of generality. Let $u \in U$. Then $T_{\bar{u}}$ is transitive on the N-orbit \bar{u} on U. Since N centralizes $T_{\bar{u}}$, it implies that $T_{\bar{u}}$ has a normal subgroup of index $|N|$, refer to [5, Theorem 4.2A]. Since N is semiregular on U, the order of N is odd and square-free. If $T \cong \operatorname{PSL}(2, p)$ then $T_{\bar{u}} \cong \mathrm{~A}_{5}$ or D_{20} by Lemma 5.8, and so $T_{\bar{u}}$ has no proper normal subgroup of odd index, yielding $N=1$, as desired.

Assume next that $T \cong \operatorname{soc}(\bar{G}) \cong \mathrm{G}_{2}(4), \operatorname{PSL}(3,4)$ or $\operatorname{PSp}(4,4)$. Applying Lemma 5.6 and Theorem 5.12 to the pair $\left(\operatorname{soc}(\bar{G}), \Gamma_{N}\right)$, one of the following cases occurs:
(1) $T \cong \mathrm{G}_{2}(4)$ and $T_{\bar{u}} \cong 2^{2+8}:\left(3 \times \mathrm{A}_{5}\right)$ or $2^{4+6}:\left(3 \times \mathrm{A}_{5}\right)$;
(2) $T \cong \operatorname{PSL}(3,4)$ and $T_{\bar{u}} \cong 2^{4}: \mathrm{A}_{5}$;
(3) $T \cong \operatorname{PSp}(4,4)$ and $T_{\bar{u}} \cong 2^{6}:\left(3 \times \mathrm{A}_{5}\right)$.

For each of these cases, we have $|N|=1$ or 3 . Then T has at most three orbits on W as T is transitive on \bar{W}. Thus T is transitive on W by [10, Lemma 5.5], and so Γ is T-semisymmetric. Applying Lemma 5.6 and Theorem 5.12 to the pair (T, Γ), we conclude that $T_{u} \cong T_{\bar{u}}$. Noting that $\left|T: T_{u}\right|=|U|=|N|\left|T: T_{\bar{u}}\right|$, we have $N=1$, as desired. This completes the proof of Theorem 1.1.

References

[1] I. Z. Bouwer, On edge but not vertex transitive graphs, J. Combin Theory Ser. B 12 (1972), 32-40.
[2] J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge University Press, New York, 2013.
[3] M. Conder, A. Malnič, D. Marušič and P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices. J. Algebr. Comb. 23 (2006), 255-294.
[4] J. H. Conway, R. T. Curtis, S. P. Noton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985. (http://brauer.maths.qmul.ac.uk/Atlas/v3/).
[5] J. D. Dixon and B. Mortimer, Permutation groups, Springer, New York, 1996.
[6] S. F. Du and D. Marušič, Biprimitive graphs of smallest order, J. Algebraic Combin. 9 (1999), 151-156.
[7] S. F. Du and D. Marušič, An infinite family of biprimitive semisymmetric graphs, J. Graph Theory 32 (1999), 217-228.
[8] S. F. Du and M. Y. Xu, A classification of semisymmetric graphs of order 2pq, Comm. Algebra 28 (2000), 2685-2714.
[9] J. Folkman, Regular line-symmetric graphs, J. Combin. Theory Ser. B 3 (1967), 215-232.
[10] M. Giudici, C. H. Li and C. E. Praeger, Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 356 (2004), 291-317.
[11] H. Han and Z. P. Lu, Semisymmetric graphs of order $6 p^{2}$ and prime valency, Sci. China Math. 55 (2012), 2579-2592.
[12] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.
[13] M. E. Iofinova and A. A. Ivanov, Biprimitive cubic graphs (Russian), Investigation in Algebraic Theory of Combinatorial Objects (Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1985), 123-134.
[14] A. V. Ivanov, On edge but not vertex transitive regular graphs, Ann. Discrete Math. 34 (1987), 273-286.
[15] C. H. Li, Z. P. Lu and G. X. Wang, On edge-transitive graphs of square-free order, The Electronic J. Combin. 22 (2015), \#P3.25.
[16] C. H. Li, Z. P. Lu and G. X. Wang, Arc-transitive graphs of square-free order and small valency, Discrete Math. 339 (2016), 2907-2918.
[17] C. H. Li and Ákos Seress, The primitive permutation groups of square free degree, Bull. London Math. Soc. 35 (2003), 635-644.
[18] G. X. Liu and Z. P. Lu, On edge-transitive cubic graphs of square-free order, European J. Combin. 45 (2015), 41-46.
[19] S. Lipschutz and M. Y. Xu, Note on infinite families of trivalent semisymmetric graphs, European J. Combin. 23 (6) (2002), 707-711.
[20] A. Malnič, D. Marušič, P. Potočnik and C. Q. Wang, An infinite family of cubic edge-transitive but not vertex-transitive graphs, Discrete Math. 280 (2004), 133-148.
[21] C. W. Parker, Semisymmetric cubic graphs of twice odd order, European J. Combin. 28 (2007), 572-591.
[22] B. Stellmacher, On graphs with edge-transitive automorphism groups, Illinois J. Math. 28 (1984), 211-266.
[23] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.8.6, 2017. http://www.gap-system.org
[24] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsch. Math. Phys. 3 (1892), 265-284.
G. Li, School of Mathematics and Statistics, Shandong University of Technology, Zibo 255091, P. R. China

E-mail address: lig@sdut.edu.cn
Z. P. Lu, Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

E-mail address: lu@nankai.edu.cn

[^0]: 2000 Mathematics Subject Classification. 05C25, 20B25.
 This work was partially supported by the National Natural Science Foundation of China (11971248, 11731002) and the Fundamental Research Funds for the Central Universities.

