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Abstract. A regular graph is semisymmetric if its automorphism group acts transi-
tively on the edge set but not on the vertex set. In this paper, we give a complete list of
connected semisymmetric graphs of square-free order and valency 5. The list consists
of a single graph, the incidence graph of a generalized hexagon of order (4, 4), and an
infinite family arising from some groups with cyclic Fitting subgroup.

Keywords. Edge-transitive graph, vertex-transitive graph, semisymmetric graph,
simple group.

1. introduction

In this paper we consider only finite and simple graphs.
Let Γ = (V,E) be a graph with vertex set V and edge set E. The size |V | is called

the order of Γ . Let AutΓ be the automorphism group of Γ , that is, the group consisting
of all permutations on V which preserve the adjacency of Γ . Then the action of AutΓ
on V induces a natural action on the edge set E by

{u,w}g = {ug, wg}, ∀{u,w} ∈ E, g ∈ AutΓ .

The graph Γ is said to be vertex-transitive or edge-transitive if AutΓ acts transitively on
V or E, respectively. If Γ is regular, edge-transitive but not vertex-transitive, then Γ is
called a semisymmetric graph. It is well-known that a semisymmetric graph is bipartite
with two parts being the orbits of its automorphism group on the vertices.

Folkman [9] started the study of semisymmetric graphs and posed eight open problems.
Folkman’s problems stimulated a wide interest in constructing or classifying semisym-
metric graphs, see [1, 3, 6, 7, 8, 11, 13, 14, 18, 19, 20, 21] for example.

In this paper, we make an attempt towards Folkman’s problems (4.1) and (4.8), which
ask for which pairs (n, k) there are connected semisymmetric graphs of order 2n and
valency k. By giving a classification result on semisymmetric graphs, we prove that
there are connected semisymmetric graphs of valency 5 and order 10p1p2 · · · pr, where
r ≥ 2, and pi are distinct primes with every pi − 1 divisible by 5. The main result of
this paper is stated as follows.

Theorem 1.1. Let Γ be a connected edge-transitive graph of valency 5 and square-free
order. Then Γ is semisymmetric if and only if Γ is isomorphic to one of the following
graphs: the incidence graph of the generalized hexagon associated with the simple group
G2(4), and the graphs given in Construction 3.2.
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2. Preliminaries

Let Γ = (V,E) be a graph of valency k ≥ 3, and G ≤ AutΓ . For v ∈ V , set
Gv = {g ∈ G | vg = v} and Γ (v) = {u ∈ V | {u, v} ∈ E}, called the stabilizer and the
neighbourhood of v in G and in Γ , respectively. Then Gα induces a permutation group

on Γ (v), denoted by G
Γ (v)
v . Letting G

[1]
v be the kernel of Gv acting on Γ (v), we have

G
Γ (v)
v
∼= Gv/G

[1]
v .

Let p be a prime with p ≥ k, and P a Sylow p-subgroup of Gvu := Gv ∩ Gu, where
{v, u} ∈ E. Then P fixes both Γ (v) and Γ (u) point-wise. It follows that for every path
from u to some vertex v′ of Γ , the subgroup P fixes every vertex on this path. Thus, if
Γ is connected, then P fixes V point-wise, and so P = 1. Then the next lemma follows.

Lemma 2.1. Assume that Γ = (V,E) is a connected graph of valency k, and v ∈ V . If
p is a divisor of |Gv| with p ≥ k, then p = k, Gv is transitive on Γ (v) and |Gv| is not
divisible by p2.

Assume further that G acts transitively on the edge set E of Γ . It is well-known and
easily shown that either G is transitive on V , or Γ is a bipartite graph two parts being
the orbits of G on V . For the latter case, we call Γ a G-semisymmetric graph. Clearly,
if Γ is G-semisymmetric then for an edge {u,w} of Γ , the stabilizers Gu and Gw have
the same order, and they are transitive on Γ (u) and Γ (w), respectively. Moreover, we
have the following simple fact, refer to [8, Lemma 2.3].

Lemma 2.2. Assume that Γ = (V,E) is a G-semisymmetric graph, and {u,w} ∈ E.
Then Γ is connected if and only if G = 〈Gu, Gw〉. In particular, if Γ is connected, then
Gu and Gw have no non-trivial normal subgroup in common.

Lemma 2.3. Assume that Γ = (V,E) is a connected G-semisymmetric graph of valency

k, and {u,w} ∈ E. If p is a divisor of |Gu| then p is a divisor of |GΓ (u)
u | or |GΓ (w)

w |.

Proof. Suppose that p is a divisor of |Gu|, and that both G
Γ (u)
u and G

Γ (w)
w are p′-groups.

Then every Sylow p-subgroup of Gu is contained in G
[1]
u , and every Sylow p-subgroup of

Gw is contained in G
[1]
w . For v ∈ {u,w}, let Kv be the subgroup generated by all Sylow

p-subgroups of Gv. Then Kv is normal in Gv. By the choice of p, we have Kv 6= 1.

Let P be an arbitray Sylow p-subgroup of Gu. Then P ≤ G
[1]
u ≤ Guw ≤ Gw. Since

|Gu| = |Gw|, we know that P is also a Sylow p-subgroup of Gw, and then P ≤ Kw. It
follows that Ku ≤ Kw. Similarly, Kw ≤ Ku. Then Ku = Kw. Since Γ is connected, by
Lemma 2.2, Ku = Kw = 1, a contradiction. Thus this lemma follows. �

Let Γ = (V,E) be a connected G-semisymmetric graph of valency k with bipartition
V = U ∪W . Suppose that G has a normal subgroup N which is intransitive on both U
and W . For v ∈ V , we denote by v̄ the N -orbit containing v, and let V = {v̄ | v ∈ V },
U = {ū | u ∈ U} and W = {w̄ | w ∈ W}. Let G be the permutation group induced by
G on V . Define a graph ΓN on V such that {ū, w̄} is an edge if and only if {u,w} ∈ E.
Then ΓN is well-defined, and G acts transitively on the edge set of ΓN .

In general, ΓN is not necessarily a regular graph. For the case where Γ is G-locally

primitive, that is, G
Γ (v)
v is a primitive permutation group for each v ∈ V , one can easily

prove that ΓN is G-locally primitive and of valency k, refer to [10]. In particular, we
have the following fact.
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Lemma 2.4. Let Γ = (V,E) be a connected G-semisymmetric graph of prime valency
k with bipartition V = U ∪W . Suppose that N is a normal subgroup of G such that N
is intransitive on both U and W . Then N is semiregular on V , G ∼= G/N , and ΓN is
G-semisymmetric and of valency k.

3. A family of semisymmetric graphs

Let G be a finite group, and H, K ≤ G with G = 〈H,K〉. Assume that H ∩ K
contains no normal subgroup of G other than 1. Let [G : H] and [G : K] be the sets of
right cosets of H and K in G, respectively. Then G acts faithfully on [G : H] ∪ [G : K]
by

g : Hx 7→ Hxg, Ky 7→ Kyg; g, x, y ∈ G.
Define a bipartite graph B(G,H,K) with two parts [G : H] and [G : K] such that
{Hx,Ky} is an edge if and only if yx−1 ∈ KH. Then B(G,H,K) is well-defined and
connected, and G acts transitively on its edge set. Thus B(G,H,K) is G-semisymmetric
if and only if |H| = |K|.

Assume that Γ = (V,E) is a connected G-semisymmetric graph, and let {u,w} ∈
E. Then ux 7→ Gux, w

y 7→ Gwy gives a bijection between V and the vertex set of
B(G,H,K). It is easily shown that this bijection is in fact an isomorphism form Γ to
B(G,Gu, Gw).

Lemma 3.1. Let Γ = (V,E) be a connected G-semisymmetric graph and {u,w} ∈ E.
Then Γ ∼= B(G,Gu, Gw).

Construction 3.2. Take r distinct primes p1, p2, . . . , pr with r ≥ 2 and every pi − 1
divisible by 5. Let F = Zp1 ⊕ · · · ⊕Zpr , and identify Aut(F ) with Z∗p1 × · · · ×Z∗pr , where
the action of Aut(F ) on F is given by

(a1, a2, . . . , ar)
(l1,l2,··· ,lr) = (l1a1, l2a2, . . . , lrar).

Fix two elements σ = (m1,m2, . . . ,mr) and τ = (n1, n2, . . . , nr) of Aut(F ) satisfying the
following conditions:

(C1) mi 6= 1, ni 6= 1, m5
i = 1 = n5

i , where 1 ≤ i ≤ r;
(C2) (ml

1,m
l
2, . . . ,m

l
r) 6= (n1, n2, . . . , nr) for 1 ≤ l ≤ 4.

Let G = F :〈σ, τ〉, the semi-direct product of groups F and 〈σ, τ〉. Then

G = {xδ | x ∈ F, δ ∈ 〈σ, τ〉}
with the product given by

x1δ1x2δ2 = (x1 + x
δ−1
1

2 )(δ1δ2).

Let a = (1, 1, · · · , 1) ∈ F , H = 〈σ〉 and K = 〈τa〉. Define

Γ (p1, p2, · · · , pr;σ, τ) = B(G,H,K).

�

Recall that an arc in a graph Γ is an ordered pair of adjacent vertices. A graph Γ is
said to be symmetric (or arc-transitive) if AutΓ is transitive on the vertex set and the set
of arcs. It is easily shown that a connected G-semisymmetric graph Γ with bipartition
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U ∪W is symmetric if and only if there is some σ ∈ AutΓ such that Uσ = W . For an
integer n ≥ 2, denote by D2n the dihedral group of order 2n.

Lemma 3.3. Let Γ = Γ (p1, p2, · · · , pr;σ, τ) be as in Construction 3.2. Then Γ is
connected and semisymmetric.

Proof. By the choices of σ and τ , we have that CG(F ) = F , and the only element in F

fixed by σ or τ−1 is the zero of F . It follows that F = 〈xσ − x〉 = 〈xτ−1 − x〉 provided

that F = 〈x〉. Note that τa = −aτa = −a(τaτ−1)τ = (−a+ aτ
−1

)τ . Let x = −a+ aτ
−1

.
Then 〈x〉 = F , and so

〈H,K〉 = 〈σ, τa〉 = 〈σ, (τa)σ(τa)−1, τa〉 = 〈σ, xσ − x, τa〉 = F 〈σ, τ〉 = G.

Thus Γ is connected. By the construction of Γ , we know that Γ is G-semisymmetric.
Suppose that Γ is vertex-transitive. By [16], checking the symmetric graphs of square-

free order and valency 5, we conclude that AutΓ ∼= D10p1p2···pr :Z5, which has order 2|G|.
It follows that G ∼= Z5p1p2···pr :Z5. Thus |CG(F )| ≥ 5p1p2 · · · pr > |F |, a contradiction.
Then the lemma holds. �

4. Graphs associated with soluble groups

Let Γ = (V,E) be a connected G-semisymmetric graph of valency 5 with bipartition
V = U ∪W . By Lemma 2.1, for v ∈ V , we have that

(4.a) |Gv| = 2s · 3t · 5, |G| = 2s · 3t · 5|U |

for some integers s, t ≥ 0. Since G
Γ (v)
v is a transitive permutation group of degree 5, we

have

(4.b) GΓ (v)
v
∼= Z5, Z5:Z2, Z5:Z4,A5, or S5.

If G acts unfaithfully on one of U and W , then it is easily shown that Γ is the complete
bipartite graph K5,5. Thus we assume next that G is faithful on both U and W . Then
Γ 6∼= K5,5; otherwise G has a subgroup isomorphic to Z2

5 which is neither faithful on U
nor faithful on W , a contradiction. In particular,

|U | = |W | > 5.

Lemma 4.1. Assume that |V | is square-free, and G is faithful on both U and W . Let
N be a normal subgroup of G which is intransitive on both U and W . Suppose that
ΓN ∼= K5,5. Then 5 is the smallest prime divisor of |U |, N is a Hall subgroup of G, and
G is soluble.

Proof. We continue the notation at the end of Section 2. Note that G ≤ S5 × S5

and ΓN is G-semisymmetric. Then G contains a subgroup isomorphic to Z2
5, which is

transitive on the edge set of ΓN . Let X ≤ G with N ≤ X and X/N ∼= Z2
5. Then Γ is

X-semisymmetric, and X is soluble and contains a normal subgroup R which is regular
on both U and W .

Let p is the smallest prime divisor of |U |. Since |R| = |U | is square-free, R has a
unique p′-Hall subgroup L. Then L is characteristic in H, and hence L is normal in X.
Clearly, L is intransitive on both U and W . Applying Lemma 2.4 to the pair (X,L),
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we have p ≥ 5, and thus p = 5. Since |U | = 5|N | is square-free and |G/N | has no prime
divisor greater than 5, N is a Hall subgroup of G.

Noting that N is a normal Hall subgroup of G, there is a subgroup H of G with
G = NH and N ∩H = 1. Then H ∼= G/N ∼= G ≤ S5 × S5. Since |U | = |W | has prime
divisor greater than 5, we know that the actions of H on U and W are not transitive.
Denote by CH(N) the centralizer of N in H. Then CH(N) is normal in G. Applying
Lemma 2.4 to the pair (G,CH(N)), we have that CH(N) is semiregular on U , and so
|CH(N)| is square-free. In particular, CH(N) is soluble. Considering the conjugation of
H on N , we conclude that H induces a subgroup of Aut(N) with kernel CH(N). Since
N has square-free order, Aut(N) is soluble. Thus H/CH(N) is soluble, and so H is
soluble. It follows that G is soluble. �

Theorem 4.2. Assume that |V | is square-free, and that G is soluble and faithful on both
U and W . Then Γ is either a symmetric graph, or semisymmetric and isomorphic to a
graph given by Construction 3.2.

Proof. Let F be the Fitting subgroup, the maximal nilpotent normal subgroup, of G.
Let CG(F ) be the centralizer of F in G. Then CG(F ) is normal in G and, since G is
soluble, we have CG(F ) ≤ F . Consider the conjugation of G on F . Then G induces
a subgroup of the automorphism group Aut(F ) with kernel CG(F ). Thus G/CG(F ) is
isomorphic to a subgroup of Aut(F ).
Case 1. Assume that F is transitive on one of U and W , without loss of generality,

say U . Note that every Sylow subgroup Q of F and every maximal subgroup of Q are
normal in F . Since |U | is an odd square-free number and F is faithful on U , it follows
that |F | = |U |, and then F is regular on U . In particular, F is cyclic, and so CX(F ) = F
and Aut(F ) is abelian. Note that every subgroup of F is normal in G, and thus has
orbits of the same size on W . Since G is faithful on W , we conclude that F is transitive
and hence regular on W .

Let {u,w} ∈ E. Write U = {ux | x ∈ F}, W = {wy | y ∈ F} and D = {z ∈ F | wz ∈
Γ (u)}. Then {ux, wy} ∈ E if and only if yx−1 ∈ D. Define θ by

θ : V → V ; ux 7→ wx
−1

, wy 7→ uy
−1

, x, y ∈ F.

Since F is abelian, it is easy to check that θ is an automorphism of Γ , which interchanges
U and W . Thus Γ is vertex-transitive, and so Γ is symmetric.
Case 2. Assume that F is intransitive on both U and W . Then F is semiregular on

V by Lemma 2.4, Thus F has square-free order, and F is cyclic, and then CG(F ) = F
and Aut(F ) is abelian. Then G/F is abelian. By Lemma 2.4, ΓF admits an abelian
group acting transitively on the edge set but not on the vertex set. The only possibility
is that ΓF ∼= K5,5 and G/F ∼= Z2

5. By Lemma 4.1, F is a normal Hall subgroup of G,
and each prime divisor of |F | is greater than 5.

Let P be a Sylow 5-subgroup of G. Then P ∼= Z2
5 and G = F :P . By the choice of

F , we may identify P with a subgroup of Aut(F ). Then G = {ax | a ∈ F, x ∈ Aut(F )}
with the product given by

axby = abx
−1

(xy).
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We write F as the additive abelian group Zp1 ⊕ · · · ⊕ Zpr , and identify Aut(F ) with
Z∗p1 × · · · × Z∗pr , where the action of Aut(F ) on F is given by

(a1, a2, . . . , ar)
(l1,l2,··· ,lr) = (l1a1, l2a2, . . . , lrar).

Fix an edge {u,w} ∈ E with u ∈ U and w ∈ W . Then |U ||Gu| = |G| = |W ||Gw|,
yielding |Gu| = |Gw| = 5. Set Gu = 〈σ〉 and Gw = 〈δ〉. Since Γ is connected, G = 〈σ, δ〉
by Lemma 2.2. Without loss of generality, we let σ ∈ P . Take a Sylow 5-subgroup Q of
G with δ ∈ Q. Then P 6= Q, and thus there is 1 6= a ∈ F such that P a = Q. Choose
τ ∈ P with τa = δ. Then G = 〈σ, τa〉 ≤ 〈σ, τ, a〉 = 〈a〉:〈σ, τ〉 ≤ FP , yielding F = 〈a〉
and P = 〈σ, τ〉. It is easily shown that any two generators of F are conjugate under the
action of Aut(F ). Replacing P by a suitable conjugation under Aut(F ), we may choose
a = (1, 1, . . . , 1) ∈ F .

Note that every subgroup of F is a normal Hall subgroup of F . Then F = CF (τ):F1

for some F1 ≤ F . Thus a = cb for b ∈ F1 and c ∈ CF (τ). We have G = 〈σ, τa〉 =
〈σ, τ b〉 ≤ 〈σ, τ, b〉 ≤ F1:P , yielding F = F1 = 〈b〉. It follows that CF (τ) = 1. Thus
F :〈τ〉 is a Frobinus group with Frobenius kernel F . In particular, 5 is a divisor of pi− 1
for each pi. Noting that F = 〈−a〉 and G = 〈σ, τa〉 = 〈σ−a, τ〉 ≤ 〈σ, τ,−a〉 ≤ FP ,
a similar argument leads to CF (σ) = 1. Recalling that CG(F ) = F , it follows that
σ = (m1,m2, . . . ,mr) and τ = (n1, n2, . . . , nr) satisfy the conditions (C1) and (C2)
listed in Construction 3.2. Then this theorem follows from Lemmas 3.1 and 3.3. �

5. Graphs arising from almsot simple groups

In this section, we assume that G is an almost simple group with socle soc(G) = T ,
and Γ = (V,E) is a connected G-semisymmetric graph of square-free order and valency
5 with bipartition V = U ∪W . Clearly, T fixes both U and W set-wise.

Note that |U | = |W | is odd and square-free. Since |T | has even order, T is not
semiregular on V . By Lemma 2.4, T is transitive on at least one of U and W . It is easily
shown that Aut(K5,5) contains no almost simple subgroup which acts transitively on the
edge set. Thus we have |U | = |W | > 5. By [10, Lemma 5.5], the following lemma holds.

Lemma 5.1. One of the following holds.

(1) Γ is T -semisymmetric, and Tv is transitive on Γ (v) for every v ∈ V ;
(2) T is transitive on one of U and W and has 5 orbits on the other one; in particular,
|G : T | is divisible by 5, and Tv is transitive on Γ (v) for some v ∈ V .

By Lemmas 2.1 and 5.1, we have the following observation, which is useful for us to
determine T .

(5.a) 5
∣∣ |T |, 53 6

∣∣ |T |, r2 6
∣∣ |T |,

where r is a prime not less than 7.

By Lemma 5.1, there exists v ∈ V such that Tv is transitive on Γ (v). Take a subgroup
M of T with Tv ≤M . Noting that |T : Tv| is a divisor of |U |,
(5.b) 5

∣∣ |Tv|, 5
∣∣ |M |, |T : M | and |M : Tv| are odd, square-free and coprime.

Lemma 5.2. Let N be a normal {2, 3}-subgroup of M . Then one of the following holds.

(1) M is a {2, 3, 5}-group and M/N has a subgroup of index 5;
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(2) M/N has a maximal subgroup with order divisible by 5 and index odd, square-free
and coprime to |T : M |.

Proof. Noting that NTv/N ∼= Tv/(N ∩ Tv), it follows that NTv/N has order divisible
by 5. Since Tv is a transitive on Γ (v), we know that Tv has a subgroup of index 5, and
thus NTv/N has a subgroup of index 5. If M = NTv then M/N = NTv/N , and part
(1) of the lemma follows. Assume that M 6= NTv. Then NTv/N is a proper subgroup of
M/N . Since |M/N : (NTv/N)| = |M : (NTv)| and |T : Tv| = |T : M ||M : Tv|, we know
that |M/N : (NTv/N)| is odd, square-free and coprime to |T : M |. Considering the
maximal subgroups of M/N which contain NTv/N , we get part (2) of this lemma. �

In the following, we always choose v ∈ V and Tv ≤ M < T such that Tv is transitive
on Γ (v) and M is maximal in T . Using (5.a), (5.b) and Lemma 5.2, we shall read out
the pair (T,M) from [17, Tables 1-4], and then determine all possible candidates for Tv.

5.1. In this subsection, we deal with the alternating groups and sporadic simple groups.

Lemma 5.3. T 6∼= An for all n ≥ 5.

Proof. Suppose that T ∼= An for some n ≥ 5. Then 5 ≤ n ≤ 13 as |T | is indivisible by
72. Choose v ∈ V such that Tv is transitive on Γ (v), and take a maximal subgroup of T
with Tv ≤M . Then |T : M | is odd and square-free, and |M | is divisible by 5. Checking
[17, Table 1], we conclude that M is the stabilizer of some k-subset under the natural
action of An on Ω = {1, 2, 3, . . . , n}, where (k, n) is one of (1, 7), (2, 7), (1, 11), (2, 11),
(3, 11), (1, 13) and (4, 13). Let N be the normal subgroup of M with N ∼= Ak, where
Ak = 1 for k ∈ {1, 2}. Then M/N ∼= An−k or Sn−k. Clearly, n− k ≥ 5.

Assume that n− k > 5. By Lemma 5.2, either An−k or Sn−k has a maximal subgroup
with odd square-free index and order divisible by 5. It follows from [17, Table 1] that
n− k ∈ {7, 11, 13}, which is impossible.

Assume that n− k = 5. Then n = 7 and k = 2. Clearly, |G : T | ≤ 2. By Lemma 5.1,
Γ is T -semisymmetric. In particular, |U | = |W | = |T : M ||M : Tv| = 21|M : Tv|. Since
|U | is an odd square-free number and |Tv| is divisible by 5, we conclude that Tv = M .
Thus the actions of T on U and W are equivalent to the action of T on the 2-subsets of
Ω = {1, 2, 3, 4, 5, 6, 7}. Then two vertices u ∈ U and w ∈ W are adjacent if and only if,
as 2-subsets of Ω, the intersection u∩w is empty, or if and only if |u∩w| = 1. It follows
that Γ has valency 10, a contradiction. �

Lemma 5.4. T is not a sporadic simple group.

Proof. Suppose that T is one of the 26 sporadic simple groups. Choose v ∈ V such
that Tv is transitive on Γ (v), and take a maximal subgroup M of T with Tv ≤ M .
Then |M | is divisible by 5, and |T : M | is odd and square-free. By [17, Table 2], up to
isomorphism, T and M are listed as follows:

T M11 M22 M22 M23 M23 M23 M23 M24 M24 J1

M M10 24:A6 24:S5 M22 PSL(3, 4):2 24:A7 24:(3×A5):2 26:A8 26:3.S6 2×A5

|T : M | 11 7 · 11 3 · 7 · 11 23 11 · 23 11 · 23 7 · 11 · 23 3 · 11 · 23 7 · 11 · 23 7 · 11 · 19

Noting that |G : T | ≤ 2 for each T listed above, by Lemma 5.1, Γ is T -semisymmetric.
By the Atlas [4], A6, M10, S6 and A8 have no maximal subgroup of odd square-free

index and order divisible by 5. Thus the pairs (M11,M10), (M22, 2
4:A6), (M24, 2

6:A8) and
(M24, 2

6:3.S6) are excluded by Lemma 5.2.
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Case 1. Suppose that (T,M) is one of (M22, 2
4:S5) and (J1, 2× A5). Recall that the

indices |T : M | and |M : Tv| are odd, square-free and coprime. Checking the subgroups
of M of square-free index, we get Tv = M ; in particular, T is primitive on both U and W .
By the information given in the Atlas [4], all subgroups isomorphic to M are conjugate
in T . Then there are u ∈ U and w ∈ W with Tu = Tw. Thus Γ (u) is a Tw-orbit on W of
length 5, which is impossible. (Confirmed by GAP [23], see also the Web-version of [4]).

Case 2. Suppose that (T,M) is one of (M23, 2
4:(3 × A5):2), (M23,PSL(3, 4).2),

(M23, 2
4:A7) and (M23,M22). If Tv = M then (T,M) = (M23, 2

4:(3× A5):2), and then a
similar argument as in Case 1 gives a contradiction. Next let Tv 6= M .

Recall that T = M23 is the automorphism group of the unique S(4, 7, 23) Steiner
system. Let Ω and B be the point set and block set of the S(4, 7, 23) Steiner system.

Check the subgroups of M which have odd and square-free index and order divisible
by 5. For M ∼= 24:(3 × A5):2, we have that Tv ∼= 24:S5, M is the stabilizer of a 3-
subset {α, β, δ} of Ω, and Tv is one of the point-stabilizers of M acting on {α, β, δ}. For
M ∼= PSL(3, 4).2, we have that Tv ∼= 24:S5, M is the stabilizer of a 2-subset {α, β} of
Ω, and Tv is the stabilizer of a block containing {α, β}. For M ∼= 24:A7, we have that
Tv ∼= 24:S5, M is the stabilizer of a block B ∈ B, and Tv is one of the point-stabilizers
of M acting on B. For M ∼= M22, we have that Tv ∼= 24:S5, M is the stabilizer of some
α ∈ Ω, and Tv is the stabilizer of some 2-subset {β, δ} of Ω \ {α}. All in all, Tv ∼= 24:S5,
and one of the following cases occurs:

(i) Tv = T{α,β} ∩ TB for some B ∈ B and some 2-subset {α, β} ⊂ Ω;
(ii) Tv = T{α,β} ∩ T{α,β,δ} for some 2-subset {α, β} ⊂ Ω and δ ∈ Ω \ {α, β}.

Fix an edge {u,w} of Γ . Next we deduce the contradiction in three cases.
(1). Suppose that both Tu and Tw satisfy (i), say Tu = T{α,β} ∩TB and Tw = T{α′,β′} ∩

TB′ . Since Γ is connected, 〈Tu, Tw〉 = T by Lemma 2.2. Then {α, β} 6= {α′, β′} and
B 6= B′. Considering the action of T on B, we know that TB has 2 orbits on B \ {B},
which have sizes 112 and 140, refer to the Web-version of the Atlas [4]. This implies
that |TB ∩ TB′| = 360 or 288, respectively. Noting that Tu ∩ Tw ≤ TB ∩ TB′ and

|Γ (u)| = |Tu : (Tu ∩ Tw)|, we have 5 = |Γ (u)| ≥ |Tu|
360

> 5, a contradiction.
(2). Suppose that both Tu and Tw satisfy (ii), say Tu = T{α,β} ∩ T{α,β,δ} and Tw =

T{α′,β′} ∩ T{α′,β′,δ′}. Then {α, β} 6= {α′, β′} and {α, β, δ} 6= {α′, β′, δ′} as 〈Tu, Tw〉 = G.
Considering the action of T on the 3-subsets of Ω, we conclude that T{α,β,δ} has 7
orbits with length not equal to 1, and the minimum length is 20, refer to the Web-

version of the Atlas [4]. Thus |Tu ∩ Tw| ≤ |T{α,β,δ} ∩ T{α′,β′,δ′}| ≤
|T{α,β,δ}|

20
= 288. Then

5 = |Γ (u)| = |Tu : (Tu ∩ Tw)| ≥ |Tu|
288

> 5, a contradiction.
(3). Finally, let Tu = T{α,β} ∩ TB and Tw = T{α′,β′} ∩ T{α′,β′,δ′} be as in (i) and

(ii), respectively. Then {α, β} 6= {α′, β′}. Note that T{α,β} has three orbits on the 2-
subsets of Ω, say {{α, β}}, {{α, δ} | δ ∈ Ω \ {α, β}} ∪ {{β, δ} | δ ∈ Ω \ {α, β}} and
{{δ, η} | {δ, η}∩{α, β} = ∅}. If {α′, β′}∩{α, β} = ∅. Then |Tu∩Tw| ≤ |T{α,β}∩T{α′,β′}| =
|T{α,β}|

210
= 192, and hence 5 = |Γ (u)| = |Tu : (Tu ∩ Tw)| ≥ |Tu|

192
= 10, a contradiction.

Thus we may assume that β′ = β. Then Tu ∩ Tw ≤ T{α,β} ∩ T{α′,β} = Tαβα′ ∼= 24:A5; in
particular, |Tu ∩ Tw| is not divisible by 27. Since Tu ∼= 24:S5 has order divisible by 27,
we have that |Γ (u)| = |Tu : (Tu ∩ Tw)| is even, again a contradiction. �
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5.2. Now we deal with the simple groups of Lie type. For a power q = pf of some prime
p, we denote by Fq the finite field of order q.

Let t ≥ 2 be an integer. A prime r is a primitive divisor of pt − 1 if r is a divisor of
pt − 1 but not a divisor of ps − 1 for any 1 ≤ s < t. If r is a primitive divisor of pt − 1,
then p has order t modulo r, and thus t is a divisor of r − 1; in particular, r ≥ t+ 1.

Lemma 5.5. Let p be a prime and t be a positive integer.

(1) If pt − 1 has no prime divisor greater than 5 then t ≤ 4.
(2) If pt + 1 has no prime divisor greater than 5 then either t ≤ 2 or pt = 8.

Proof. Suppose that t > 4 and pt − 1 has no prime divisor greater than 5. Then pt − 1
has no primitive prime divisor. By Zsigmondy’s Theorem (see [24]), t = 6 and p = 2,
and then pt − 1 is divisible by 7, a contradiction. Thus part (1) of this lemma holds.

Assume that pt + 1 has no prime divisor greater than 5. If p2t − 1 has a primitive
prime divisor r then r ≥ 2t + 1 and r is a divisor of pt + 1, and so t ≤ 2. Suppose
that p2t − 1 has no primitive prime divisor. By Zsigmondy’s Theorem, either 2t = 2 or
(2t, p) = (6, 2). Then part (2) of this lemma follows. �

Lemma 5.6. If T is a exceptional simple group of Lie type, then T = G2(4), AutΓ =
G2(4).2, Γ is semsymmetric and isomorphic to the incidence graph of the generalized
hexagon associated with G2(4).

Proof. Assume that T is a exceptional simple group defined over Fq, where q = pf for a
prime p. Choose v ∈ V such that Tv is transitive on Γ (v), and take a maximal subgroup
M of T with Tv ≤M . Then |T : M | is odd and square-free, and |M | is divisible by 5.

It follows from [17, Table 4] that q is even and T is one of 2B2(q), G2(q), 3D4(q), F4(q),
2E6(q) and E7(q). Suppose that T = 2B2(q). Then |M | = q2(q − 1). In this case, q is
an odd power of 2, and then q ≡ ±2 (mod 5). It follows that |M | is indivisible by 5, a
contradiction. Thus T 6= 2B2(q), and then |T | has a divisor (q2 − 1)2. Recall that |T |
has no divisor r2 for any prime r > 5, see the observation (5.a). Then q2 − 1 has no
prime divisor greater than 5. By Lemma 5.5, since q is even, we have q ∈ {2, 4}. If T is
one of 3D4(q), F4(q), 2E6(q) and E7(q), then calculation shows that |T | has a divisor 72,
a contradiction. Thus we have T = G2(4).

Clearly, |G : T | ≤ 2. By Lemma 5.1, Γ is T -semisymmetric. In particular, |U | =
|W | = |T : Tv| = |T : M ||M : Tv|. Checking the maximal subgroups of T in the Atlas
[4], we conclude that M ∼= 22+8:(3 × A5) or 24+6:(3 × A5), and |T : M | = 3 · 5 · 7 · 13.
It follows that Tv = M . If there are u ∈ U and w ∈ W with Tu = Tw, then Γ (u) is a
Tw-orbit on W of size 5, which is impossible, see the Web-version of [4]. Thus the actions
of T on U and W are not equivalent. Then the lemma follows from the information for
G2(4) given in the Atlas [4]. �

Lemma 5.7. Assume that T is a classical simple group. Then Γ is T -semisymmetric,
and T is isomorphic to one of PSL(2, p), PSL(2, 25), PSL(3, 4), PSL(3, 16), PSL(4, 4),
PSL(5, 4), PSU(3, 4) and PSp(4, 4), where p is a prime.

Proof. Assume that T is an n-dimensional classical simple group defined over Fq, where
q = pf for a prime p. Then either T = PSL(2, q) or |T | has a divisor q3. Recall that |T |
has no divisor 53 or r2, where r is a prime not less than 7. If p ≥ 5 then T = PSL(2, q),
yielding T = PSL(2, p) or PSL(2, 25). Thus we assume that p ∈ {2, 3} in the following.
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Choose v ∈ V such that Tv is transitive on Γ (v), and take a maximal subgroup M of
T with Tv ≤M . Then |T : M | is odd and square-free, and |M | is divisible by 5.

Assume that T = PSL(2, q). It follows from [17, Table 3] that |T : M | = pf + 1
and M ∼= Zfp :Z q−1

(2,q−1)
; in particular, p = 2. Since |M : Tv| is odd (see (5.b)) and Tv is

transitive on Γ (v), we have Tv ∼= Zf2 :Zl and T
Γ (v)
v
∼= Z5, where l is a divisor of 2f − 1

and divisible by 5. Let P be the unique Sylow 2-subgroup of Tv. Then P ≤ T
[1]
v ≤ G

[1]
v ,

and P is normal in Gv as Tv is normal in Gv. Let w ∈ Γ (v). Then P ≤ Tw, and so P is
a Sylow 2-subgroup of Tw. Check the subgroups of T , refer to [12, II.8.27]. Noting that
|T : Tw| is odd, we conclude that P is normal in Tw, and so P is characteristic in Tw.
Then P is normal in Gw as Tw is normal in Gw. Thus P is normal in both Gv and Gw,
which contradicts Lemma 2.2.

Assume that T = PSL(3, q). Then |T | has a divisor (pf − 1)2 or (pf−1)2

3
, and so pf − 1

has no prime divisor greater than 5. By Lemma 5.5, f ≤ 4. Recalling that p ∈ {2, 3}, we
know that p3 − 1 has a divisor 7 or 13, and so f 6= 3. Thus q = pf ∈ {2, 3, 22, 32, 24, 34}.
Since |T | has a divisor 5, we have q 6∈ {2, 3}. Suppose that q = 32 or 34. By [17, Table
3], |T : M | = q2 + q + 1 and M = N :X, where N is a 3-group and X ∼= GL(2, 9) or
GL(2, 81). It is easily shown that GL(2, 9) has neither subgroup of index 5 nor maximal
subgroup with odd and square-free index and order divisible by 5. Then, by Lemma 5.2,
we conclude that q = 34 and X ∼= GL(2, 81). Noting NTv = NTv ∩M = N(Tv ∩ X),
we have |M : (NTv)| = |X : (Tv ∩ X)|. Since |M : Tv| = |M : (NTv)||NTv : Tv| and
|M : Tv| is odd and square-free, |X : (Tv∩X)| is odd and square-free. Then (Tv∩X)Z/Z
is a subgroup of X/Z with odd and square-free index, where Z is the center of X. By
[17, Table 3], PGL(2, 81) has no maximal subgroup with odd and square-free index. It
follows that (Tv ∩ X)Z/Z = X/Z ∼= PGL(2, 81). Then |Tv| has a divisor 41, which
contradicts Lemma 2.1. Thus q ∈ {4, 16}, and so T = PSL(3, 4) or PSL(3, 16).

Assume that T = PSU(3, q). Then |T | has a divisor (pf + 1)2 or (pf+1)2

3
, and so

pf + 1 has no prime divisor greater than 5. Recalling p ∈ {2, 3}, by Lemma 5.5, we
have q ∈ {2, 3, 4, 8, 9}. By [17, Table 3], |T : M | = q3 + 1. Since |T : M | is odd and
square-free, we have q = 4, and thus T = PSU(3, 4).

Assume next that n ≥ 4. Then |T | has a divisor (q2 − 1)2 = (p2f − 1)2. Then p2f − 1
has no prime divisor greater than 5. By Lemma 5.5, 2f ≤ 4, and then q ∈ {2, 3, 4, 9}.

Suppose that T = PSL(n, q). Then n ≤ 5; otherwise, |T | has a divisor (q3 − 1)2,
and so |T | is divisible by 72 or 132, a contradiction. By [17, Table 3], |T : M | =∏k−1
i=0 (qn−i−1)∏k
i=1(qi−1)

for some 1 ≤ k < n. Since |T : M | is odd and square-free, calculation

shows that (n, q) = (4, 2), (4, 4), (5, 2) or (5, 4). Noting PSL(4, 2) ∼= A8, by Lemma
5.3, we have (n, q) 6= (4, 2). Assume that T = PSL(5, 2). Then M ∼= 24:PSL(4, 2) or
26:(S3 × PSL(3, 2)). Since |M | is divisible by 5, we have M ∼= 24:PSL(4, 2). By Lemma
5.2, PSL(4, 2) has a maximal subgroup with odd and square-free index and order divisible
by 5, which is impossible. Then we get T = PSL(4, 4) or PSL(5, 4).

Suppose that T = PSU(n, q). By [17, Table 3], |T : M | = (qn−(−1)n)(qn−1−(−1)n−1)
q2−1

.

In particular, |T : M | is divisible by q − 1 or q + 1. Since |T : M | is odd, q is even,
and so q = 2 or 4. If n ≥ 10 then |T | has a divisor (q5 + 1)2, and so |T | has a divisor
112 or 412, a contradiction. If q = 4 and n ≥ 6 then |T | has a divisor (q3 + 1)2, and
so |T | has a divisor 132, a contradiction. Thus 4 ≤ n ≤ 9 for q = 2, and 4 ≤ n ≤ 5



SEMISYMMETRIC GRAPHS 11

for q = 4. Then (n, q) = (4, 4), (5, 2) or (8, 2). Assume that (n, q) = (8, 2). Then
M ∼= 31+12:SU(6, 2):3, which is the stabilizer of some totally isotropic 1-subspace. By
Lemma 5.2, PGU(6, 2) has a maximal subgroup of odd and square-free index say m. By

[17, Table 3], m = (26−1)(25+1)
22−1

= 32 · 7 · 11, a contradiction. If (n, q) = (4, 4) or (5, 2)

then either |T | is divisible by 53 or M is a {2, 3}-group, which contradicts (5.a) or (5.b).
Suppose that T is one of PSp(n, q) (with n even and (n, q) 6= (4, 2)), PSp(4, 2)′ or

Ω(n, q) (with nq odd). Since PSp(4, 2)′ ∼= A6, we have T 6= PSp(4, 2)′ by Lemma 5.3.
By [17, Table 3], |T : M | has a divisor q + 1. Since |T : M | is odd, q is even, and hence
q = 2 or 4. Then T = PSp(n, q). If nf ≥ 12 then |T | has a divisor (26 − 1)2, and so
|T | has a divisor 72, a contradiction. It follows that either q = 2 and n ∈ {6, 8, 10} or

(n, q) = (4, 4). By [17, Table 3], |T : M | = qn−1
q−1

or (qn−1)(qn−2−1)
(q2−1)(q−1)

, and M is the stabilizer

of some totally isotropic 1-subspace or 2-subspace, respectively. For (n, q) = (6, 2), we
have |T : M | = 32 · 7 or 32 · 5 · 7, which is not square-free. Assume that (n, q) = (8, 2).
Then |T : M | = 3 · 5 · 17 and M ∼= 21+6:PSp(6, 2). By Lemma 5.2, PSp(6, 2) has
a maximal subgroup of odd and square-free index, which is impossible. Assume that
(n, q) = (10, 2). Then M ∼= 29:PSp(8, 2) or 23+12:(S3×PSp(6, 2)). Again by Lemma 5.2,
PSp(8, 2) or PSp(6, 2) has a maximal subgroup of odd and square-free index, which is
impossible. Thus we have T = PSp(4, 4).

Suppose that T = PΩ±(2m, q), where n = 2m ≥ 8. By [17, Table 3], |T : M | has a
divisor qm−i + 1, where i ∈ {0, 1, 2, 3}. Since |T : M | is odd, q is even, and hence q = 2
or 4. If m ≥ 5 then |T | has a divisor (q4 − 1)2, and so q = 2; otherwise, |T | is divisible
by 172, a contradiction. If q = 2 and m > 6 then |T | is divisible by (q6 − 1)2 = 34 · 72, a
contradiction. It follows that (m, q) is one of (4, 4), (4, 2), (5, 2) and (6, 2). Calculation
shows that PΩ±(8, 4) and PΩ−(12, 2) have order divisible by 53, and PΩ+(12, 2) has
order divisible by 72. By the observation (5.a), we conclude that T is one of PΩ±(8, 2)
and PΩ±(10, 2). Checking the maximal subgroups of T in the Atlas [4], since |T : M | is
odd and square-free, one of the following occurs: T = PΩ−(8, 2) and M ∼= 26:PSU(4, 2),
T = PΩ−(10, 2) and M ∼= 21+12:(S3×PSU(4, 2)), T = PΩ+(10, 2) and M ∼= 28:PΩ+(8, 2).
Then, by Lemma 5.2, we conclude that either PSU(4, 2) or PΩ+(8, 2) has a maximal
subgroup of odd and square-free index, which is impossible.

By the above argument, all possible candidates for T are desired as in this lemma. In
particular, |G : T | is indivisible by 5. By Lemma 5.1, Γ is T -semisymmetric, and the
lemma follows. �

Lemma 5.8. Let T = PSL(2, p) for a prime p. Then Γ is symmetric, 11 ≤ p ≡
±3 (mod 8) and p ≡ ±1 (mod 5), and Tv ∼= D20 or A5.

Proof. By Lemma 5.3, T 6∼= A5. Since |T | is divisible by 5, we have p ≥ 11 and
p ≡ ±1 (mod 5). For v ∈ V , since |T : Tv| is odd, |Tv| is divisible by 20. Check the
subgroups of PSL(2, p), refer to [12, II.8.27]. We conclude that either Tv ∼= A5, and so
p ≡ ±3 (mod 8), or Tv is contained in a maximal subgroup isomorphic to Dp+ε, where
ε = ±1 such that p+ ε is divisible by 10. Let {u,w} be an edge of Γ .

Assume that one of Tu and Tw, say Tu, is soluble. Then Tu is a dihedral group.
Suppose that Tw ∼= A5. Since Γ is T -semisymmetric, Tuw = Tu ∩ Tw has index 5 in both
Tu and Tw. It follows that Tu∩Tw ∼= A4; however Tu has no subgroup isomorphic to A4, a
contradiction. Thus Tw is also soluble. Take a positive integer t such that p+ε is divisible
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by 2t but not by 2t+1. Then t ≥ 2 and, by Lemma 2.3 and (4.b), Tu ∼= Tw ∼= D2t·5. Thus
Tuw is a Sylow 2-subgroup of both Tu and Tw, which is isomorphic to D2t . If t ≥ 3
then Tu, Tw and Tuw have the same center isomorphic to Z2, which contradicts Lemma
2.2. Thus t = 2, and then p ≡ ±3 (mod 8). In particular, a Sylow 2-subgroup of T has
order 4. Enumerating the Sylow 2-subgroups of T , we conclude a Sylow 2-subgroup of
T is exactly contained in three distinct subgroups isomorphic to D20, say Tu, Tw and H.
Let N = NPGL(2,p)(Tuw). Then N has an action on {Tu, Tw, H} by conjugation, where
the kernel say K contains Tuw. Noting that N ∼= S4 and Tu is self-normalized in T , it
follows that K = Tuw. Then, noting that NT (Tuw) ∼= A4, we may choose an involution
σ ∈ N \ T such that T σu = Tw. Define

θ : V → V, ux 7→ wx
σ

, wx 7→ ux
σ

.

It is easily shown that θ is an automorphism of Γ , and θ interchanges U and W . Then
Γ is vertex-transitive (see also [8, Lemma 2.6]), and so Γ is symmetric.

Assume that Tu ∼= Tw ∼= A5. Then Tuw ∼= A4. Note that all subgroups isomorphic
to A4 are conjugate in T . (In fact, each A4 is the normalizer of some Sylow 2-subgroup
of T .) Enumerating the subgroups isomorphic to A4, we conclude two conjugations
of A5 under T can not intersect at a subgroup of order 12, and each subgroup A4 is
exactly contained in two subgroups A5. It follows that Tu and Tw are not conjugate in
T . Noting that NPGL(2,p)(Tuw) ∼= S4, we conclude that T σu = Tw for some involution
σ ∈ NPGL(2,p)(Tuw)\T . Similarly as above, there is an automorphism of Γ interchanging
U and W . Thus Γ is symmetric, and the lemma follows. �

Lemma 5.9. T 6= PSL(2, 25).

Proof. Suppose that T = PSL(2, 25). Let {u,w} be an edge of Γ . Since Γ is T -
semisymmetric, |Tu| = |Tw|. Checking the subgroups of PSL(2, 25), since |T : Tu| is
odd, we conclude that Tu ∼= Tw ∼= S5, and then Tu ∩ Tw ∼= S4. In PSL(2, 25), there
are two conjugacy classes of subgroups isomorphic to S5 and two conjugacy classes of
subgroups isomorphic to S4. It follows that two distinct subgroups S5 can not intersect
at a subgroup S4, a contradiction. �

Lemma 5.10. T 6= PSU(3, 4) or PSL(3, 16).

Proof. Let v ∈ V , and take a maximal subgroup M of T with Tv ≤M .
Suppose that T = PSU(3, 4). Checking the maximal subgroups of T in the Atlas

[4], since |T : M | is odd and square-free, we have M ∼= 22+4:Z15 and |T : M | = 65.
It follows that Tv has a unique Sylow 2-subgroup. Since Γ is T -semisymmetric, for an
edge {u,w} of Γ , we have 5 = |Tu : Tuw| = |Tw : Tuw|. Thus Tuw contains the unique
Sylow 2-subgroup of Tu and the unique Sylow 2-subgroup of Tw. Then Tu and Tw have
a nontrivial normal subgroup in common, which contradicts Lemma 2.2.

Suppose that T = PSL(3, 16). Then |T | = 212 · 32 · 52 · 7 · 13 · 17, and hence |T :
Tv| = 3 · 5 · 7 · 13 · 17 or 5 · 7 · 13 · 17. By [17, Table 3], we have |T : M | = 3 · 7 · 13 and
M ∼= 28:(5 × PSL(2, 16)). It follows that |T : Tv| = 3 · 5 · 7 · 13 · 17, and Tv has index
85 in M . Then Tv ∼= 28:(5 × 24:3) or 28:(24:15). In particular, Tv has a unique Sylow
2-subgroup. Then we have a similar contradiction as above. �
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Let Fnq be the vector space over Fq with dimension n. An (l,m)-flag in Fq is an ordered
pair (u,v) of subspaces with 1 ≤ l = dim(u) < dim(w) = m < n and u ⊂ v.

Lemma 5.11. T 6= PSL(4, 4) or PSL(5, 4).

Proof. Let T = PSL(n, q) with q = 4 and n ∈ {4, 5}. Let v ∈ V . Since |T : Tv| is odd
and square-free, considering the maximal subgroups of T which contain Tv, it follows
from [17, Table 3] that Tv is contained in the stabilizer of some subspace of Fnq . Thus,
for convenience, we use boldface v to denote a subspace of Fnq with Tv ≤ Tv.

Case 1. Suppose that T = PSL(4, 4). Then |T | = 212 · 34 · 52 · 7 · 17, and so
|T : Tv| = 3 · 5 · 7 · 17 or 5 · 7 · 17. By [17, Table 3] and [2, Table 8.8], we have
dim(v) ∈ {1, 2, 3}, and Tv ∼= 26:GL(3, 4) or 28:(SL(2, 4)× SL(2, 4)):3.

Assume that dim(v) = 1 or 3. Consider the action of Tv on the quotient space F4
4/v

or v, respectively. Then we have a surjective homomorphism φ : Tv → GL3(4), and
kerφ ∼= Z6

2. Since Tv is a {2, 3, 5}-group and |Tv : Tv| is odd and square-free, φ(Tv)
is a {2, 3, 5}-subgroup of GL3(4) with odd and square-free index. Computation using
GAP shows that φ(Tv) . 3 × 24:GL(2, 4), that is, φ(Tv) is contained in the stabilizer
in GL(3, 4) of some 1 or 2-dimensional subspace. It follows that Tv is contained in the
stabilizer in T of some (1, 2), (1, 3) or (2, 3)-flag. It is easily shown that the numbers
of (1, 2), (1, 3) and (2, 3)-flags are all equal to 3 · 5 · 7 · 17. Thus |T : Tv| is divisible by
3 ·5 ·7 ·17, yielding |T : Tv| = 3 ·5 ·7 ·17. Then the action of T on the T -orbit containing
v is equivalent to the action of T on the set of (1, 2), (1, 3) or (2, 3)-flags.

Assume that dim(v) = 2. Then Tv ∼= 28:(SL(2, 4) × SL2(4)):3. Note that |Tv| is
indivisible by 52, in particular, Tv 6= Tv. Considering the action of Tv on F4

4/v or v, we
conclude that Tv is contained in the stabilizer in T of some (1, 2) or (2, 3)-flag. It follows
that |T : Tv| = 3 · 5 · 7 · 17, and the action of T on the T -orbit containing v is equivalent
to the action of T on the set of (1, 2) or (2, 3)-flags.

By the above argument, we may let U the set of (i, j)-flags and W be the set of
(i′, j′)-flags, where 1 ≤ i < j < 4 and 1 ≤ i′ < j′ < 4. Let u ∈ U and w ∈ W with
{u,w} ∈ E. Suppose that i = i′ = 1. Then we may choose 1-dimensional subspaces u
and w of F4

4 with Tu ≤ Tu and Tw ≤ Tw. Then Tuw ≤ Tu ∩ Tw and, since T = 〈Tu, Tw〉,
we have u 6= w. Noting T acts 2-transitively on the set of 1-dimensional subspaces,
we have |Tu : (Tu ∩ Tw)| = qn−1

q−1
− 1 = 84. It follows that |Tu : Tuw| is even. Noting

that |Tu : Tuw| = |Tu : Tu||Tu : Tuw| = 5|Tu : Tu|, we know that |Tu : Tu| is even,
a contradiction. For j = j′ = 3, we get a similar contradiction. Thus, without of
generality, we let u be a (1, 2)-flag and w be a (2, 3)-flag. Then we may choose 2-
dimensional subspaces u and w of F4

4 with Tu ≤ Tu and Tw ≤ Tw. It is easily shown
that Tu has 3-orbits on the set of 2-dimensional subspaces, which have length 1, 100
and 256. Note that u 6= w, for otherwise, T = 〈Tu, Tw〉 ≤ Tu < T . It follows that
|Tu : (Tu ∩ Tw)| is even, which yields a similar contradiction as above.

Case 2. Suppose that T = PSL(5, 4). By [17, Table 3] and [2, Table 8.18], we have
dim(v) ∈ {1, 2, 3, 4}, and Tv ∼= 28:GL(4, 4) or 212:(SL(2, 4) × SL(3, 4)):3. Let N be a
normal subgroup of Tv with N ∼= 28:SL(4, 4) or 212:(SL(2, 4) × SL(3, 4)), respectively.
Then |(NTv) : Tv| is a divisor of |Tv : Tv|. Noting that |N ||Tv| = |NTv||N ∩ Tv|, we
have |N : (N ∩ Tv)| = |(NTv) : Tv|, and so |N : (N ∩ Tv)| is a divisor of |Tv : Tv|. In
particular, |N : (N ∩ Tv)| is odd and square-free. Note that every Sylow 5-subgroup
of Tv is contained in N , and each Sylow 5-subgroup of Tv is contained in some Sylow
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5-subgroup of Tv. It follows that |N ∩Tv| is divisible by 5. Clearly, |N ∩Tv| is indivisible
by 52, see Lemma 2.1.

Let K be the maximal soluble normal subgroup of N . Then (N ∩ Tv)K/K is a
subgroup of N/K with odd and square-free index. Considering the order of N/K, we
have |(N ∩ Tv)K/K| = 2l · 3m · 5 for some positive integers l and m. Assume that
N/K ∼= PSL(4, 4). Then, by the argument in Case 1, (N ∩ Tv)K/K is isomorphic to
the stabilizer in PSL(4, 4) of some (1, 2), (1, 3) or (2, 3)-flag. In particular, in this case,
(N ∩Tv)K/K has a composition factor A5. Assume that N/K ∼= PSL(2, 4)×PSL(3, 4).
Using GAP program, we search the subgroups of PSL(2, 4) × PSL(3, 4) with odd and
square-free index. It follows that (N ∩ Tv)K/K has a composition factor A5.

Noting that N ∩ Tv is normal in Tv, by the above argument, Tv has a composition

factor A5. Recall that Γ is T -semisymmetric. By Lemma 2.1, T
[1]
v is a {2, 3}-group,

and then T
Γ (v)
v has a composition factor A5. Thus T

Γ (v)
v
∼= A5 or S5. Let P is a Sylow

2-subgroup of Tv. It follows from [22, Theorem 2] that either |P | ≤ 218 or |P | ≥ 224,
which is impossible as |P | = 220. This completes the proof. �

Theorem 5.12. Let Γ = (V,E) be a connected G-semisymmetric graph of square-free
order and valency 5. Assume that G is an almost simple group with socle soc(G) = T .
Then Γ is T -semisymmetric, and one of the following holds.

(1) Γ is the incidence graph of the generalized hexagon associated with G2(4);
(2) Γ is symmetric and isomorphic to the incidence graph of the projective plane

PG(2, 4) over F4;
(3) Γ is symmetric and isomorphic the incidence graph of the generalized quadrangule

associated with PSp(4, 4);
(4) T = PSL(2, p) and Γ is symmetric, where p is a prime with 11 ≤ p ≡ ±3 (mod 8)

and p ≡ ±1 (mod 5).

Proof. By Lemmas 5.3 to 5.11, Γ is T -semisymmetric, and either one of (1) and (4)
of this theorem holds or T is one of PSL(3, 4) and PSp(4, 4). Let v ∈ V , and take a
maximal subgroup M of T with Tv ≤M .

Let T = PSL(3, 4). Checking the maximal subgroups of PSL(3, 4) in the Atlas [4],
we have M ∼= 24:A5, which is the stabilizer of a point or a line of the projective plane
PG(2, 4). It is easily shown that M has no subgroup with odd index and order divisible
by 5, and then Tv = M . Since Γ has valency 5, it is the incidence graph of PG(2, 4).
The inverse transpose automorphism of PSL(3, 4) induces an automorphism of Γ which
interchanges U and W , and so Γ is symmetric. Then part (2) follows.

Let T = PSp(4, 4). Then, by the Atlas [4], M ∼= 26:(3×A5), which is the stabilizer of a
point or a line of the self-dual generalized quadrangle GQ(4). Noting that |G : M | = 85,
it follows from (5.b) that Tv = M or Tv ∼= 26:A5. Confirmed by GAP, in the group
PSp(4, 4), any two subgroups isomorphic to 26:A5 do not intersect at a subgroup of
index 5, and any two conjugate subgroups isomorphic to 26:(3×A5) do not intersect at
a subgroup of index 5. Therefore, Tv = M , and then Γ is the incidence graph of GQ(4).
Moreover, the duality automorphism of PSp(4, 4) induces an automorphism of Γ which
interchanges U and W . Thus part (3) of this theorem follows. �
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6. The proof of Theorem 1.1

Let Γ = (V,E) be a connected semisymmetric graph of square-free order and valency
5 with bipartition V = U ∪W . Noting that K5,5 is symmetric, we have Γ 6∼= K5,5. Thus
G := AutΓ is faithful on both U and W . If G is soluble then, by Theorem 4.2, Γ is a
graph described as in Construction 3.2.

Assume that G is insoluble. Let N be a normal subgroup of G, which is maximal
among the normal subgroups of G intransitive on both U and W . We consider the
quotient ΓN , and use the notation given at the end of Section 2. By [10, Theorem 1.1],
N is semiregular on V , G ∼= G/N , ΓN is G-semisymmetric and of valency 5, and either

(i) ΓN ∼= K5,5, and |U | = 5|N | > 5; or
(ii) |U | = |W | > 5, G is faithful on both U and W , and G is quasiprimitive on at

least one of U and W .

Since G is insoluble, by Lemma 4.1, only (ii) occurs.
Without loss of generality, we let G be quasiprimitive on U , that is, every non-trivial

normal subgroup of G is transitive on U . Take a maximal G-invariant partition B of U .
Then |B| is square-free, and G acts faithfully and primitively on B. It follows from [17]
that G is an almost simple group. If N = 1 then our theorem follows from Lemma 5.6
and Theorem 5.12. Thus, to complete the proof, we next show N = 1.

By Theorem 5.12, ΓN is soc(G)-semisymmetric, and soc(G) ∼= G2(4), PSL(3, 4),
PSp(4, 4) or PSL(2, p), where p is a prime with 11 ≤ p ≡ ±3 (mod 8) and p ≡ ±1 (mod 5).
Let N ≤ X ≤ G with X/N ∼= soc(G). Then Γ is X-semisymmetric, and X = N × T by
[15, Theorem 30], where T is a simple subgroup of X. In particular, T ∼= soc(G). For
v ∈ V , noting that Xv̄ = NT ∩Xv̄ = NTv̄, we have soc(G)v̄ ∼= Xv̄/N = NTv̄/N ∼= Tv̄.

Since X is normal in G and T is characteristic in X, we know that T is normal in G.
Since T has even order, T is not semiregular on V . By Lemma 2.4, T is transitive on
one of U and W , say on U without loss of generality. Let u ∈ U . Then Tū is transitive
on the N -orbit ū on U . Since N centralizes Tū, it implies that Tū has a normal subgroup
of index |N |, refer to [5, Theorem 4.2A]. Since N is semiregular on U , the order of N is
odd and square-free. If T ∼= PSL(2, p) then Tū ∼= A5 or D20 by Lemma 5.8, and so Tū
has no proper normal subgroup of odd index, yielding N = 1, as desired.

Assume next that T ∼= soc(G) ∼= G2(4), PSL(3, 4) or PSp(4, 4). Applying Lemma 5.6
and Theorem 5.12 to the pair (soc(G),ΓN), one of the following cases occurs:

(1) T ∼= G2(4) and Tū ∼= 22+8:(3× A5) or 24+6:(3× A5);
(2) T ∼= PSL(3, 4) and Tū ∼= 24:A5;
(3) T ∼= PSp(4, 4) and Tū ∼= 26:(3× A5).

For each of these cases, we have |N | = 1 or 3. Then T has at most three orbits on
W as T is transitive on W . Thus T is transitive on W by [10, Lemma 5.5], and so
Γ is T -semisymmetric. Applying Lemma 5.6 and Theorem 5.12 to the pair (T,Γ ), we
conclude that Tu ∼= Tū. Noting that |T : Tu| = |U | = |N ||T : Tū|, we have N = 1, as
desired. This completes the proof of Theorem 1.1.
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[7] S. F. Du and D. Marušič, An infinite family of biprimitive semisymmetric graphs, J. Graph Theory

32 (1999), 217–228.
[8] S. F. Du and M. Y. Xu, A classification of semisymmetric graphs of order 2pq, Comm. Algebra 28

(2000), 2685–2714.
[9] J. Folkman, Regular line-symmetric graphs, J. Combin. Theory Ser. B 3 (1967), 215–232.

[10] M. Giudici, C. H. Li and C. E. Praeger, Analysing finite locally s-arc transitive graphs, Trans.
Amer. Math. Soc. 356 (2004), 291–317.

[11] H. Han and Z. P. Lu, Semisymmetric graphs of order 6p2 and prime valency, Sci. China Math. 55
(2012), 2579–2592.

[12] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.
[13] M. E. Iofinova and A. A. Ivanov, Biprimitive cubic graphs (Russian), Investigation in Algebraic

Theory of Combinatorial Objects (Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1985),
123–134.

[14] A. V. Ivanov, On edge but not vertex transitive regular graphs, Ann. Discrete Math. 34 (1987),
273–286.

[15] C. H. Li, Z. P. Lu and G. X. Wang, On edge-transitive graphs of square-free order, The Electronic
J. Combin. 22 (2015), #P3.25.

[16] C. H. Li, Z. P. Lu and G. X. Wang, Arc-transitive graphs of square-free order and small valency,
Discrete Math. 339 (2016), 2907–2918.
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