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Abstract. For a simple graph G, the Laplacian ABC-matrix is defined by L̃(G) = D(G) −
Ã(G), where D(G) is the diagonal matrix of ABC-degrees and Ã(G) is the ABC-matrix of

G. The eigenvalues of the matrix L̃(G) are called the Laplacian ABC-eigenvalues of G. In

this paper, we solve the problem of characterization of connected graphs having exactly three

distinct Laplacian ABC-eigenvalues. We also introduce the concept of trace norm of the matrix

L̃(G) − tr(L̃(G))
n

I, called the Laplacian ABC-energy of G. We obtain some upper and lower

bounds for the Laplacian ABC-energy and characterize the extremal graphs which attain these

bounds.
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1 Introduction

In this paper, we consider only connected, simple and finite graphs. A graph G
(
V (G), E(G)

)
(or simply G) consists of a vertex set V (G) = {v1, v2, . . . , vn} and an edge set E(G). The

number of elements in V (G) is order n and the number of elements in E(G) is size m of G. If u

is adjacent to v, we denote it by v ∼ u. The neighbourhood of a vertex v, denoted by N(v), is

the set of vertices adjacent to v ∈ V (G). The degree of v ∈ V (G), denoted by dG(v) (or simply

dv), is the cardinality of N(v). A graph is r-regular, if dv = r, for each v ∈ V (G). The length of a

shortest path between two vertices is known as the distance and the maximum distance between
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any pair of vertices is the diameter of G. For other graph theoretic notations and definitions, we

follow [2].

The adjacency matrix of a graph G, denoted by A(G), is defined as

A(G) =

1 if vi ∼ vj

0 otherwise.

The adjacency matrix A(G) is real symmetric, so its eigenvalues are real, denoted by λ1(G) ≥
λ2(G) ≥ · · · ≥ λn(G) and are known as the adjacency spectrum (or spectrum) of G. The energy

of the adjacency matrix of G is defined by

E(G) =
n∑
i=1

|λi(G)|.

The spectral parameter E(G) is a widely studied parameter and has its origin in theoretical

chemistry, where it helps in approximating the π-electron energy of hydrocarbons. For more

about the energy E(G) of a graph G, we refer to [19, 21]. More literature about the adjacency

matrix A(G) can be found in [1, 7].

The ABC-matrix of a graph G is a square matrix of order n and is defined as

Ã(G) = (aij)n×n =


√
dvi + dvj − 2

dvidvj
if vi ∼ vj

0 otherwise.

This matrix was introduced in [9] and is related to the topological index: atom-bond connectivity

(ABC-index for short) of a graph G. The ABC-index is a degree based topological index [10]

and is defined to be the sum of weights

√
dvi + dvj − 2

dvidvj
over all edges vivj of a graph G, that is,

ABC(G) =
∑

vivj∈E(G)

√
dvi + dvj − 2

dvidvj
.

In [10], the ABC-index was shown to be correlated to the heat formation of alkanes. Gutman et

al. [16] proved that the ABC-index can reproduce the heat of formation with an accuracy com-

parable to that of high-level ab intio and DFT (MP2, B3LYP) quantum chemical calculations.

More mathematical literature about ABC-index can be found in [3, 8, 12, 15].

Let ϑ1 ≥ ϑ1 ≥ · · · ≥ ϑn be the ABC-eigenvalues of G, where ϑ1 is called the ABC-spectral

radius of G. Then the ABC-energy of G is defined by

EABC(G) =
n∑
i=1

|ϑi|.



On eigenvalues of Laplacian ABC-matrix of graphs 3

The ABC-spectral parameters like energy were studied in [4], ABC-spectral radius in [14], and

other spectral properties in [5, 6, 13,18,20].

For vi ∈ V (G), let dvi =
∑

vj∈N(vi)

√
dvi+dvj−2
dvidvj

be the ABC-degree of a vertex vi. From now

onwards, we simply write di instead of dvi . We observe that di is the same as the i-th row

sum of the ABC-matrix. The Laplacian ABC-matrix of G introduced in [22] is defined as

L̃(G) = D(G)− Ã(G), where D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of ABC-degrees

of G. Clearly, each row sum of L̃(G) is zero, so 0 is its one of the eigenvalue. Besides, L̃(G) is

a real symmetric positive semi-definite matrix, its eigenvalues are called the Laplacian ABC-

eigenvalues of G, denoted by ξ, i = 1, 2, . . . , n. Since each ξi is real so we can arrange them as

ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1 > ξn = 0, where ξ1 is called the Laplacian ABC-spectral radius. The

multiset of eigenvalues of L̃(G) is known as the Laplacian ABC-spectrum of G. If an eigenvalue

ξ of L̃(G) occurs with multiplicity l, then we represent it as ξ[l]. Yang, Deng and Li [22]

studied various properties of the matrix L̃(G), which includes characterization of graphs with

one and two distinct Laplacian ABC-eigenvalues of graphs, bounds for the largest Laplacian

ABC-eigenvalue and the smallest non-zero Laplacian ABC-eigenvalue. In this paper, we carry

forward the problem of characterizing graphs with three distinct Laplacian ABC-eigenvalues.

We denote the complete graph by Kn, the complete bipartite graph by Ka,b, the path graph

by Pn, the cycle graph by Cn, etc. For other undefined notation and terminology from spectral

graph theory, we refer to [7].

The rest of the paper is organized as follows. In Section 2, we characterize the graphs with

exactly three distinct Laplacian ABC-eigenvalues. In Section 3, we introduce the concept of

Laplacian ABC-energy of a graph. We obtain some upper and lower bounds for the Laplacian

ABC-energy and characterize the extremal graphs for these bounds.

2 Graphs with three distinct Laplacian ABC-eigenvalues

In this section, we first mention some known results about the Laplacian ABC-eigenvalues.

We obtain the Laplacian ABC-spectrum for some well-known families of graphs. Further, we

completely solve the problem of characterization of graphs with three distinct Laplacian ABC-

eigenvalues.

A natural problem in the spectral of theory of graph matrices is the following problem.

Problem 1 Let G be a connected graph of order n ≥ 2 and let M(G) be a graph matrix associated

to G. Let k, where 1 ≤ k ≤ n, be a positive integer. Characterize the graphs having exactly k
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distinct M(G)-eigenvalues.

This problem has been considered for the adjacency matrix, the Laplacian matrix, the signless

Laplacian matrix, the normalized Laplacian matrix, the distance matrix, etc, for small value of

k. In fact, various papers can be found in the literature regarding this problem for the mentioned

matrices when k ≤ 4. For the Laplacian ABC-matrix, this problem was considered by Yang,

Deng and Li in [22] for k = 1 and 2 and their result is given below.

Lemma 2.1 ( [22]) Let G be a connected graph of order n ≥ 2. Then the following holds.

(i) G has one distinct Laplacian ABC-eigenvalue if and only if G ∼= K2.

(ii) G has two distinct Laplacian ABC-eigenvalue if and only if G ∼= Kn.

In the rest of this section, we aim to solve Problem (1) for k = 3, and for which we need

some basic properties of the Laplacian ABC-eigenvalues.

Let M be a matrix partitioned into blocks and let Q be the matrix whose entries are the

average row sums (column sums) of the blocks of M . The matrix Q is known as the quotient

matrix and if the row sums (columns sums) of each block in M are some constants, then the

partition is regular (equitable) and we say Q is a regular (equitable) quotient matrix (see [1]).

In general, the eigenvalues of M interlace the eigenvalues of Q, however for regular partitions,

each eigenvalue (see [1, 7]) of Q is an eigenvalue of M.

Any column vector X = (x1, x2, . . . , xn)T ∈ Rn can be regarded as function defined on V (G)

which relates every vi to xi, that is X(vi) = xi for all i = 1, 2, . . . , n. Also, it is easy to see that

XT L̃(G)X =
∑

vj∈N(vi)

√
dvi + dvj − 2

dvidvj

(
xi − xj

)2
=

n∑
i=1

dix
2
i − 2

∑
vj∈N(vi)

√
dvi + dvj − 2

dvidvj
xixj,

where di = dvi =
∑

vj∈N(vi)

√
dvi+dvj−2
dvidvj

. A real number ξ is a Laplacian ABC-eigenvalue with its

associated eigenvector X if and only if X 6= 0 and for every vi ∈ V (G), we have

ξX(vi) =
∑

vj∈N(vi)

√
di + dj − 2

didj

(
X(vi)−X(vj)

)
, (2.1)

or equivalently

ξX(vi)− diX(vi) = −
∑

vj∈N(vi)

√
dvi + dvj − 2

dvidvj
X(vj), (2.2)

Equations (2.1) and (2.2) are the (ξ,X)-eigenequations for the Laplacian ABC-matrix.
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A subset S of the vertex set V (G) is said to be an independent set if no two vertices of S

are adjacent in G. It is said to be a clique if every two vertices of S are adjacent in G. The

cardinality of largest possible independent set in G is called independence number of G and the

cardinality of a largest possible clique in G is called clique number of G.

Next, we have a result which helps us in finding some Laplacian ABC-eigenvalues of G,

provided G has some special structure.

Theorem 2.2 Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} and let I =

{v1, v2, . . . , vp} be a subset of G such that N(vi) = N(vj), for all i, j ∈ {1, 2, . . . , p}. Then the

following statements hold.

(i) If I is an independent set of G, then the vertices of I have the same ABC-degree, say ξ

and ξ is a Laplacian ABC-eigenvalue of G with multiplicity at least p− 1.

(ii) If I is a clique of G, then the vertices of I have the same ABC-degree, say ξ and ξ−
√
2d∗−2
d∗

is a Laplacian ABC-eigenvalue of G with multiplicity at least p− 1, where d∗ is the degree

of vi ∈ I.

Proof. We first suppose that I is an independent set. Since, I = {v1, v2, . . . , vp} is an inde-

pendent set, where each vertex sharing the same neighbourhood, therefore we have d1 = d2 =

· · · = dp. This last equality gives us d1 = d2 = · · · = dp = ξ. We first index the vertices in the

independent set, so that the Laplacian ABC-matrix of G can be written as

L̃(G) =



ξ 0 . . . 0

0 ξ . . . 0 Bp×(n−p)
...

...
. . .

...

0 0 . . . ξ

(Bp×(n−p))
T C(n−p)×(n−p)


.

For i = 2, 3, . . . , p, let Xi−1 =
(
− 1, xi2, xi3, . . . , xip, 0, 0, 0, . . . , 0︸ ︷︷ ︸

n−p

)T
be the vector in Rn such

that xij = 1 if i = j and 0 otherwise. Suppose X1, X2, . . . , Xp−1 are linearly dependent vectors.

Then there exists scalers a1, a2, . . . , ap−1 not all zero, such that

a1X1 + a2X2 + · · ·+ ap−1Xp−l = 0.

This implies that (
−

p−1∑
i=1

ai, a1, a2, . . . , ap−1, 0, 0, . . . , 0

)
= 0,
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and it follows that a1 = a2 = · · · = ap−1 = 0. Therefore, the vectors X1, X2, . . . , Xp−1 cannot be

linearly dependent. Noting that the rows of B are identical, we see that

L̃(G)X1 =
(
−ξ, ξ, 0, . . . , 0, 0, . . . , , 0

)T
= ξX1.

Similarly, we see that X2, X3, . . . , Xp−1 are the eigenvectors of L̃(G) corresponding to eigenvector

ξ. This completes the proof of (i).

Next, suppose that I is a clique in G. Let us label the vertices of G in such a way that the

first p vertices are the vertices in I. Under this labelling the Laplacian ABC-matrix of G can

be written as

L̃(G) =



ξ −
√
2d∗−2
d∗

. . . −
√
2d∗−2
d∗

−
√
2d∗−2
d∗

ξ . . . −
√
2d∗−2
d∗

Bp×(n−p)
...

...
. . .

...

−
√
2d∗−2
d∗

−
√
2d∗−2
d∗

. . . ξ

(Bp×(n−p))
T C(n−p)×(n−p)


.

Proceeding as in (i) with the same set of eigenvectors, we can verify that ξ−
√
2d∗−2
d∗

is a Laplacian

ABC-eigenvalue of G. This completes the proof.

Theorem 2.2 helps us to obtain the Laplacian ABC-eigenvalues of some well-known families

of graphs. In the following result we mention some of these families.

Proposition 2.3 Let G be a connected graph of order n ≥ 4. Then the following statements

hold.

(i) The Laplacian ABC-spectrum of K1,n−1 is{
n

√
n− 2

n− 1
,

(√
n− 2

n− 1

)[n−2]

, 0

}
.

(ii) The Laplacian ABC-spectrum of Ka,b is{
(a+ b)

√
a+ b− 2

ab
,

(
b

√
a+ b− 2

ab

)[a−1]

,

(
a

√
a+ b− 2

ab

)[b−1]

, 0

}
.

(iii) The Laplacian ABC-spectrum of the complete split graph CSω,n−ω, with clique number ω

and independence number n− ω is{
2(n− ω)

√
n+ ω − 3

ω(n− 1)
,

(
ω

√
2n− 4

n− 1
+ (n− ω)

√
n+ ω − 3

ω(n− 1)

)[ω−1]

,
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(
(n− ω)

√
n+ ω − 3

ω(n− 1)

)[n−ω−1]

, 0

}
.

(iv) The Laplacian ABC-spectrum of Kn − e, where e is an edge, is{
(n− 2)

√
2n− 4

n− 1
+

√
2n− 5

(n− 1)(n− 2)
,

(
(n− 2)

√
2n− 5

(n− 1)(n− 2)

)[n−4]

,

(
(n− 2)

√
2n− 4

n− 1
+ 2

√
2n− 5

(n− 1)(n− 2)

)[n−4]

, 0

}
.

(v) The Laplacian ABC-spectrum of K1,n−1 + e is{
1

4

(
3
√

2 + (n− 2)

√
n− 2

n− 1
±

√√√√(3
√

2 + (n− 2)

√
n− 2

n− 1

)2

− 8n
√

2

√
n− 2

n− 1

)
,

(√
n− 2

n− 1

)[n−4]

,
3√
2
, 0

}
.

Proof. (i) is a special case of (ii), so we prove (ii). As Ka,b has a independent vertices sharing

the same neighbourhood with common ABC-degree b
√

a+b−2
ab

, so by Theorem 2.2, b
√

a+b−2
ab

is

a Laplacian ABC-eigenvalue of Ka,b with multiplicity a − 1. Likewise, b independent vertices

have the common neighbourhood with each vertex having same ABC-degree a
√

a+b−2
ab

. Thus,

by Theorem 2.2, a
√

a+b−2
ab

is a Laplacian ABC-eigenvalue of Ka,b with multiplicity b− 1. Also,

0 is a simple ABC-eigenvalue of Ka,b. Using the fact that ξ1 + ξ2 + · · · + ξn−1 =
n∑
i=1

d̃i, we get

(a+ b)
√

a+b−2
ab

, the remaining Laplacian ABC-eigenvalue of Ka,b.

(iv) is a special case of (iii), we proceed to prove (iii). As ω vertices of CSω,n−ω form the

clique and its each vertex shares the same neighbourhood with common ABC-degree (ω −
1)
√
2n−4
n−1 + (n − ω)

√
n+w−3
ω(n−1) . So, by Theorem 2.2, it follows that ω

√
2n−4
n−1 + (n − ω)

√
n+w−3
ω(n−1) is

a Laplacian ABC-eigenvalue of CSω,n−ω with multiplicity ω − 1. Again, the graph CSω,n−ω

has an independent set on n − ω vertices each sharing the same neighbourhood with common

ABC-degree (n− ω)
√

n+ω−3
ω(n−1) giving by Theorem 2.2 that (n− ω)

√
n+ω−3
ω(n−1) is a Laplacian ABC-

eigenvalue of CSω,n−ω with multiplicity n − ω − 1. The other two Laplacian ABC-eigenvalues

of CSω,n−ω are 0 and 2(n− ω)
√

n+ω−3
ω(n−1) .

(v). As above, we can verify that
√

n−2
n−1 with multiplicity n − 4 and 3√

2
are Laplacian ABC-

eigenvalues of K1,n−1 + e. The other three Laplacian ABC-eigenvalues of K1,n−1 + e are the
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eigenvalues of the following equitable quotient matrix
1√
2

− 1√
2

0

− 2√
2

2√
2

+ (n− 3)
√

n−2
n−1 −(n− 3)

√
n−2
n−1

0 −
√

n−2
n−1

√
n−2
n−1

 .

The eigenvalues of above matrix are0,
1

4

(
3
√

2 + (n− 2)

√
n− 2

n− 1
±

√√√√(3
√

2 + (n− 2)

√
n− 2

n− 1

)2

− 8n
√

2

√
n− 2

n− 1

) .

This completes the proof.

The following theorem gives the relation between the eigenvalues of a matrix with the eigen-

values of its principal submatrices, which can be found in [17].

Theorem 2.4 (Interlacing Theorem, [17]) Let M ∈Mn be a real symmetric matrix. Let A

be a principal submatrix of M of order m, (m ≤ n). Then the eigenvalues of M and A satisfy

the following inequalities

λi+n−m(M) ≤ λi(A) ≤ λi(M), with 1 ≤ i ≤ m.

The following is the main result of this section and gives the characterization of connected

graphs with exactly three Laplacian ABC-eigenvalues.

Theorem 2.5 Let G be a connected graph of order n ≥ 4. Then the following statements hold.

(i) If the diameter of G is at least 3, then there is no graph with three distinct Laplacian

ABC-eigenvalues.

(ii) If G is a bipartite graph of diameter at most 2, then G has three distinct Laplacian ABC-

eigenvalues if and only if G is the star graph or the complete bipartite graph with partite

sets of same cardinality.

(iii) If G is of diameter at most 2 and multipartite, then G has three distinct Laplacian ABC-

eigenvalues if and only if G is the complete t-partite graph Kp,p,...,p.

(iv) If G is unicyclic graph, then G has three distinct Laplacian ABC-eigenvalues if and only

if G is either C4 or C5.
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Proof. (i) If G is of diameter at least 3, then the path P4 is its induced subgraph. The principal

submatrix of L̃(G) corresponding to the vertices v1, v2, v3, v4 in P4 is

B1 =


d1 −a −b −c
−a d2 −d −e
−b −d d3 −f
−c −e −f d4

 ,

where for i = 1, 2, 3, 4, di, a, b, c, d, e and f are non-negative real numbers. The characteristic

polynomial of B1 is p1(x) = x4 − (d1 + d2 + d3 + d4)x
3 + x2t(−a2 − b2 − c2 − d2 + d1d2 + d1d3 +

d2d3 + d1d4 + d2d4 + d3d4 − e2 − f 2) + x(a2d3 + a2d4 + 2abd+ 2ace+ b2d2 + b2d4 + 2bcf + c2d2 +

c2d3 + d2d1 + d2d4 + d1e
2 + d3e

2 + 2def + d1f
2 + d2f

2 − d1d2d3 − d1d2d4 − d1d3d4 − d2d3d4) −
a2d3d4 +a2f 2−2abdd4−2abef−2acd3e−2acdf−b2d2d4 +b2e2−2bcde−2bcd2f+c2d2−c2d2d3−
d2d1d4−d1d3e2−2dd1ef −d1d2f 2 +d1d2d3d4. It can be easily verified that the polynomial p1(x)

has four distinct zeros. If x1 > x2 > x3 > x4 are the zeros of p1(x), then by Theorem 2.4, we get

that ξn−3 ≤ x1 ≤ ξ1, ξn−2 ≤ x2 ≤ ξ2, ξn−1 ≤ x3 ≤ ξ3 and ξn ≤ x4 ≤ ξ4. Using these inequalities

together with the fact that x1, x2, x3, x4 are distinct we conclude that G has at least four distinct

Laplacian ABC-eigenvalues.

(ii). If G is K1,n−1, then by Proposition 2.3, it is clear that G has exactly three distinct Laplacian

ABC-eigenvalues. If G ∼= Ka,a with n = 2a, then by (ii) of Proposition 2.3, the Laplacian ABC-

spectrum of G is

{
0, 2
√

2a− 2,
(√

2a− 2
)2a−2}

and the result holds in this case. Conversely,

assume that G is a bipartite graph of diameter at most 2 having three distinct Laplaian ABC-

eigenvalues. We claim that G is either Ka,a or K1,n−1. Clearly, Kn is the only connected graph

with diameter 1 and by Lemma 2.1, this graph has two distinct Laplacian ABC-eigenvalues.

It follows that G can not be of diameter 1. Therefore, G must be of diameter 2. Let G be a

bipartite graph of diameter 2. Suppose u and v are two non-adjacent vertices of G. If u has a

neighbour not adjacent to v, then this neighbour along with u and v induces the path P4, which

implies that diameter of G is greater than 2, and this cannot happen. Thus any two non-adjacent

vertices must share the same neighbour, so it follows that G is the complete multipartite graph.

For the complete bipartite graph case, if G is either Ka,a or K1,n−1, then there is nothing to

prove, else G can be Ka,n−a, a 6= 1, n 6= 2a and by Proposition 2.3, it is clear that this graph has

more than three distinct Laplacian ABC-eigenvalues. This completes the proof in this case.

For the complete t-partite graph with t ≥ 3, first we assume that G ∼= Kp,p,...,p. Then

there are p independent subsets sharing the same neighbourhood such that each vertex has the

same ABC-degree
√

2p(t− 1)− 2. So, by Theorem 2.2, we get a Laplacian ABC-eigenvalue
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√
2p(t− 1)− 2 with multiplicity pt− t. The other t Laplacian ABC-eigenvalues of Kp,p,...,p are

the eigenvalues of the following equitable quotient matrix

√
2p(t− 1)− 2

−
√

2p(t−1)−2
t−1 . . .

−
√

2p(t−1)−2
t−1

−
√

2p(t−1)−2
t−1

√
2p(t− 1)− 2 . . .

−
√

2p(t−1)−2
t−1

...
...

. . .
...

−
√

2p(t−1)−2
t−1

−
√

2p(t−1)−2
t−1 . . .

√
2p(t− 1)− 2

 . (2.3)

Now, it is easy to show that
t
√

2p(t−1)−2
t−1 is an eigenvalue of (2.3) with multiplicity t− 1 and 0 is

always a Laplacian ABC-eigenvalue of Kp,p,...,p. This shows that Kp,p,...,p is the candidate graph

with three distinct Laplacian ABC-eigenvalues. Next, we show that Kp1,p2,...,pt have more than

three distinct Laplacian ABC-eigenvalues. For that it is enough to prove that Kp,p,...,p,q, p 6= q

has more than three distinct Laplacian ABC-eigenvalues. As above, it is easy to see that p(t−
2)

√
2(p(t−1)+q)−2
p(t−1)+q + q

√
p(2t−3)+q−2

p(t−1)(p(t−2)+q) and p(t− 1)
√

p(2t−3)+q−2
p(t−1)(p(t−2)+q) are Laplacian ABC-eigenvalues

of Kp,p,...,p,q with multiplicities (t − 1)(p − 1) and q − 1, respectively. The other t Laplacian

ABC-eigenvalues of Kp,p,...,p,q are the eigenvalues of the following equitable quotient matrix

d . . . −p
√

2(p(t−2)+q)−2
p(t−2)+q −q

√
p(2t−3)+q−2

p(t−1)(p(t−2)+q)

−p
√

2(p(t−2)+q)−2
p(t−2)+q . . . −p

√
2(p(t−2)+q)−2
p(t−2)+q −q

√
p(2t−3)+q−2

p(t−1)(p(t−2)+q)
...

. . .
...

...

−p
√

2(p(t−2)+q)−2
p(t−2)+q . . . d −q

√
p(2t−3)+q−2

p(t−1)(p(t−2)+q)

−p
√

p(2t−3)+q−2
p(t−1)(p(t−2)+q) . . . −p

√
p(2t−3)+q−2

p(t−1)(p(t−2)+q) p(t− 1)
√

p(2t−3)+q−2
p(t−1)(p(t−2)+q)


, (2.4)

where d = p(t−2)

√
2(p(t−1)+q)−2
p(t−1)+q +q

√
p(2t−3)+q−2

p(t−1)(p(t−2)+q) . Consider Xi−1 = (−1, xi2, xi3, . . . , xi(t−1), 0),

where xij =

1 if i = j

0 otherwise,
for i = 2, 3, . . . , t− 1. Now, we can easily verify that X1, . . . , Xt−2

are the eigenvectors corresponding to the Laplacian ABC-eigenvalue p(t − 1)

√
2(p(t−1)+q)−2
p(t−1)+q +

q
√

p(2t−3)+q−2
p(t−1)(p(t−2)+q) . The other two eigenvalues of (2.3) with the given blocks are the eigenvalues

of the following equitable quotient matrix q
√

p(2t−3)+q−2
p(t−1)(p(t−2)+q) −q

√
p(2t−3)+q−2

p(t−1)(p(t−2)+q)

−(t− 1)
√

p(2t−3)+q−2
p(t−1)(p(t−2)+q) (t− 1)

√
p(2t−3)+q−2

p(t−1)(p(t−2)+q)

 ,

and its eigenvalues are 0 and (p(t − 1) + q)
√

p(2t−3)+q−2
p(t−1)(p(t−2)+q) . Therefore it follows that Kp,p,...,p,q

has more than three distinct Laplacian ABC-eigenvalues.
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Lastly, If G is a unicyclic graph, then as above the diameter of G is exactly 2. So, G must be one

of the following graphs: C4, C5, K1,n−1 + e. By Proposition 2.3, the graph K1,n−1 + e has more

than three distinct Laplacian ABC-eigenvalues. Also, the graph C4 is bipartite and follows by

part (ii). Further, for the graph C5, the Laplacian ABC-spectrum of C5 is{
(2.55834)[2], (0.977198)[2], 0

}
,

and so the result follows in this case.

Parts (iii) and (iv) of Theorem 2.5 give an insight that there can be more non-bipartite

graphs with diameter 2 having three distinct Laplacian ABC-eigenvalues. Therefore, we leave

the following problem.

Problem 2 Characterize completely the non-bipartite graphs with diameter 2 and three distinct

Laplacian ABC-eigenvalues.

3 Laplacian ABC-energy

In this section, we introduce the concept of Laplacian ABC-energy of a graph G. We establish

some tight bounds for this quantity.

For the matrix M ∈Mm×n(R), the positive square roots of the eigenvalues of MMT are the

singular values of M, denoted by σi(M), (or simply by σi), i = 1, 2, . . . , n. Let σ1 ≥ σ2 ≥ · · · ≥ σn

be the singular values of M. The sum of the first k largest singular values ‖M‖k =
k∑
i=1

σi, 1 ≤

k ≤ n is the k-norm of M . For k = 1, ‖M‖1 = σ1 is the spectral norm, for 2 ≤ k ≤ n − 1,

‖M‖k =
k∑
i=1

σi is known as the Kay Fan k-norm and for k = n, the norm ‖M‖n =
n∑
i=1

σi is called

the trace norm of M . In case of normal matrices and in particular for symmetric matrices,

singular values are the absolute values of their eigenvalues. So for symmetric matrices, the trace

norm is the sum of absolute values of the eigenvalues. Nikiforov [21], defined the energy of a

symmetric matrix M as the absolute sum of values of its eigenvalues. Motivated by this, we

introduce a new operator L = L̃(G) − ξIn, where ξ =
n−1∑
i=1

ξi is the average of the Laplacian

ABC-eigenvalues. Also, we observe that ξ =
n∑
i=1

di = 2ABC(G)
n

. Clearly, L is the real symmetric

matrix and its eigenvalues are real, denoted by θi, i = 1, 2, . . . , n. Therefore, the Laplacian

ABC-energy is defined by

n∑
i=1

|θi| =
n∑
i=1

∣∣ξi − ξ∣∣ =
n∑
i=1

∣∣∣∣ξi − 2ABC(G)

n

∣∣∣∣ =
n∑
i=1

σi(L). (3.5)
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Let σ be the largest positive integer such that ξσ ≥ 2ABC(G)
n

. That is, σ is the positive integer

with ξσ ≥ 2ABC(G)
n

and ξσ+1 <
2ABC(G)

n
. It is clear that σ gives the number of Laplacian ABC-

eigenvalues of G which lie in
[
0, 2ABC(G)

n

]
and the eigenvalues which lie in

[
2ABC(G)

n
, n
)

. It is an

interesting and hard problem in Linear Algebra to find the distribution of the eigenvalues of a

given matrix. The problem of distribution of eigenvalues of a given matrix has been considered

for many graph matrices and various interesting results are obtained. Like other graph matrices,

the following problem can be of interest for the Laplacian ABC-matrix.

Problem 3 Among all connected graphs G of order n with a given parameter α, like the number

of edges, the independence number, the matching number, the chromatic number, the vertex

covering number, the ABC(G)-index, etc, determine the number of Laplacian ABC-eigenvalues

in the interval [0, α].

The next result shows that we can express the Laplacian ABC-energy in terms of Ky Fan

k-norm of the Laplacian ABC-matrix.

Theorem 3.1 Let G be a connected graph of order n ≥ 3 having atom-bond connectivity index

ABC(G). Then, the Laplacian ABC-energy of G satisfies the following relation

E(L̃(G)) = 2

(
σ∑
i=1

ξi −
2σABC(G)

n

)
= 2 max

1≤k≤n

(
k∑
i=1

ξi −
2kABC(G)

n

)
,

where
k∑
i=1

ξi is the sum of the first k largest Laplaian ABC-eigenvalues (Ky Fan k-norm) of G

and σ is the number of Laplacian ABC-eigenvalues in
[
0, 2ABC(G)

n

]
.

Proof. Let σ be the largest positive integer such that ξσ ≥ 2ABC(G)
n

. Then by the definition of

Laplacian ABC-energy E(L̃(G)) and the fact 2ABC(G) =
n∑
i=1

ξi, we have

E(L̃(G)) =
n∑
i=1

∣∣∣∣ξi − 2ABC(G)

n

∣∣∣∣ =
σ∑
i=1

(
ξi −

2ABC(G)

n

)
+

n∑
i=σ+1

(
2ABC(G)

n
− ξi

)

=
σ∑
i=1

ξi −
4σABC(G)

n
+ 2ABC(G)−

n∑
i=σ+1

ξi = 2

(
σ∑
i=1

ξi −
2σABC(G)

n

)
.

Next, we shall prove that 2

(
σ∑
i=1

ξi − 2σABC(G)
n

)
= 2 max

1≤k≤n

(
k∑
i=1

ξi −
2kABC(G)

n

)
. For k > σ,

we have

k∑
i=1

ξi −
2kABC(G)

n
=

σ∑
i=1

ξi +
k∑

i=σ+1

ξi −
2kABC(G)

n
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<

σ∑
i=1

ξi + (k − σ)
2ABC(G)

n
− k2ABC(G)

n
as ξi <

2ABC(G)

n
, for i ≥ σ + 1

=
σ∑
i=1

ξi −
2σABC(G)

n
.

Similarly, for k ≤ σ, it can be easily verified that
k∑
i=1

ξi − k
2ABC(G)

n
≤

σ∑
i=1

ξi −
2σABC(G)

n
,

which completes the proof.

The following result gives a lower bound for the Laplacian ABC-energy of a graph G, in

terms of the atom-bound connectivity index ABC(G).

Corollary 3.2 Let G be a connected graph of order n ≥ 3 having atom-bound connectivity index

ABC(G). Then

E(L̃(G)) ≥ 2
(
ξ1 −

2ABC(G)

n

)
,

with equality if and only if σ = 1; and

E(L̃(G)) ≥ 2
(4ABC(G)

n
− ξn−1

)
,

with equality if and only if σ = n− 2

Proof. Using Theorem 3.1 and the fact that
k∑
i=1

ξi = 2ABC(G)−
n−1∑
i=k+1

ξi, the result follows.

From Corollary 3.2, it is clear that any lower bound for ξ1 helps us to find a lower bound for

the Laplacian ABC-energy of a graph G and any upper bound for ξn−1 helps us to find a lower

bound for the Laplacian ABC-energy of a graph G.

For the regular and bipartite semi-regular graphs, we have the following relation between the

Laplacian ABC-energy and the corresponding Laplacian energy of a graph.

Theorem 3.3 Let G be connected graph of order n ≥ 3 having atom-bond connectivity index

ABC(G) and LE(G) be its Laplacian energy. Then following statements hold.

(i) If G is an r-regular graph, then E(L̃(G)) =
√
2r−2
r

LE(G).

(ii) If G is an (r, s)-semiregular bipartite graph, then E(L̃(G)) =
√

r+s−2
rs

LE(G).
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Proof. If G is an r-regular graph, then by (1) of Theorem 3.1 in [22], we have ξi =
√
2r−2
r

µi,

where µi is the i-th Laplacian eigenvalue of G. Also, 2ABC(G) = ξ1 + ξ2 + · · · + ξn−1 =
√
2r−2
r

(
µ1 + µ2 + · · · + µn−1

)
=
√
2r−2
r

2m. The first part now follows from the definition of

Laplacian ABC-energy of G. Similarly, if G is an (r, s)-semiregular bipartite graph, then result

follows from (2) of Theorem 3.1 in [22].

A very interesting and useful lemma due to Fulton [11] is as follows.

Lemma 3.4 Let A and B be two real symmetric matrices both of order n. If k, 1 ≤ k ≤ n, is

a positive integer, then
k∑
i=1

λi(A+B) ≤
k∑
i=1

λi(A) +
k∑
i=1

λi(B),

where λi(X) is the ith eigenvalue of X.

Recall that di =
∑

vj∈N(vi)

√
di+dj−2
didj

is the ABC-degree of the vertex vi ∈ V (G). A graph

G is said to be ABC-regular if the ABC-degrees of all its vertices is the same. The following

result gives an upper bound for the Laplacian ABC-energy in terms of the ABC-degrees and

ABC-energy of a graph.

Theorem 3.5 Let G be a connected graph of order n ≥ 3 with ABC-degrees d1, d2, . . . , dn. Let

σ be the number of Laplacian ABC-eigenvalues of G which are greater than or equal to 2ABC(G)
n

.

Then

E(L̃(G)) ≤ EABC(G) + 2
σ∑
i=1

(
di −

2ABC(G)

n

)
.

If G is ABC-regular, then the equality occurs.

Proof. Applying Lemma 3.4 to

L̃(G) = D(G)− Ã(G),

where D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of ABC-degrees of G, we get

k∑
i=1

ξi(G) ≤
k∑
i=1

di +
k∑
i=1

ϑi, (3.6)

where ϑi(G) is the i-th ABC-eigenvalue ofG. Let σ be the number of Laplacian ABC-eigenvalues

of G which are greater than or equal to 2ABC(G)
n

. Then 1 ≤ σ ≤ n − 1. From the definition of
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ABC-energy, we have

EABC(G) = 2 max
1≤j≤n

k∑
i=1

ϑi(G) ≥ 2
σ∑
i=1

ϑi(G).

This together with inequality 3.6 gives

2
σ∑
i=1

ξi(G) ≤ 2
σ∑
i=1

di + 2
σ∑
i=1

ϑi(G),

that is, 2
σ∑
i=1

ξi −
4ABC(G)σ

n
≤ 2

σ∑
i=1

di + EABC(G)− 4ABC(G)σ

n
.

Thus, using Theorem 3.1, it follows that

E(L̃(G)) ≤ EABC(G) + 2
σ∑
i=1

(
di −

2ABC(G)

n

)
.

If G is an ABC-regular graph, then it is clear that the equality occurs.

The Frobinus norm of L̃(G) is ‖L̃(G)‖2F =
n−1∑
i=1

ξ2i . Also, the Frobinus norm of L(G) =

L̃(G)− 2ABC(G)
n

In is

‖L(G)‖2F =
n∑
i=1

θ2i =
n∑
i=1

(
ξi −

2ABC(G)

n

)2

=
n∑
i=1

ξ2i +
4ABC(G)

n2

n∑
i=1

.1− 4ABC(G)

n

n∑
i=1

ξi

=
n∑
i=1

ξ2i −
4ABC(G)2

n
= ‖L̃(G)‖2F −

4ABC(G)2

n
.

Next, we derive an upper bound for the Laplacian ABC-energy of a graph G, in terms of the

atom-bound connectivity index, the order and the parameter ‖L̃(G)‖2F .

Theorem 3.6 Let G be a connected graph of order n ≥ 3. Then

E(L̃(G)) ≤ 2ABC(G)

n
+

√
(n− 1)

(
‖L̃(G)‖2F −

(
2ABC(G)

n

)2)
, (3.7)

with equality if and only if either G ∼= Kn or G has three distinct Laplacian ABC-eigenvalues,

which are 0, γ + 2ABC(G)
n

and 2ABC(G)
n

− γ, where γ =

√
‖L̃(G)‖2F−( 2ABC(G)

n )
2

n−1 .

Proof. As ξn = 0, so we have

E(L̃(G))− 2ABC(G)

n
=

n−1∑
i=1

∣∣∣∣ξi − 2ABC(G)

n

∣∣∣∣ .
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Now, by applying the Cauchy-Schwarz inequality to the vectors(∣∣∣∣ξ1 − 2ABC(G)

n

∣∣∣∣ , ∣∣∣∣ξ2 − 2ABC(G)

n

∣∣∣∣ , . . . , ∣∣∣∣ξn−1 − 2ABC(G)

n

∣∣∣∣)
and (1, 1, . . . , 1), we get(

n−1∑
i=1

∣∣∣∣ξi − 2ABC(G)

n

∣∣∣∣
)2

≤ (n− 1)
n−1∑
i=1

(
ξi −

2ABC(G)

n

)2

(3.8)

Further,

n−1∑
i=1

(
ξi −

2ABC(G)

n

)2

=
n∑
i=1

(
ξi −

2ABC(G)

n

)2

−
(

2ABC(G)

n

)2

= ‖L̃(G)‖2F −
(

2ABC(G)

n

)2

.

This observation together with inequality 3.8 and the definition of Laplacian ABC-energy gives

that

E(L̃(G)) =
2ABC(G)

n
+

n−1∑
i=1

∣∣∣∣ξi − 2ABC(G)

n

∣∣∣∣
≤2ABC(G)

n
+

√√√√(n− 1)

(
‖L̃(G)‖2F −

(
2ABC(G)

n

)2
)
.

Suppose that Inequality (3.7) is an equality. Then equality occurs in (3.8), that is,∣∣∣∣ξ1 − 2ABC(G)

n

∣∣∣∣ =

∣∣∣∣ξ2 − 2ABC(G)

n

∣∣∣∣ = · · · =
∣∣∣∣ξn−1 − 2ABC(G)

n

∣∣∣∣ . (3.9)

Since ξ1 − 2ABC(G)
n

> 0 and ξn−1 − 2ABC(G)
n

≥ 0 or ξn−1 − 2ABC(G)
n

< 0, it follows that if

ξn−1− 2ABC(G)
n

≥ 0, then from (3.9) we get ξ1− 2ABC(G)
n

= ξ2− 2ABC(G)
n

= · · · = ξn−1− 2ABC(G)
n

,

that is, ξ1 = ξ2 = · · · = ξn−1. This shows that equality occurs in (3.7) in this case if and only if

G has two distinct Laplacian ABC-eigenvalues, which is so by Lemma 2.1 if and only if G ∼= Kn.

On the other hand, if ξn−1 − 2ABC(G)
n

< 0, then we can find a positive integer t, such that

ξ1 − 2ABC(G)
n

= · · · = ξt − 2ABC(G)
n

= γ and ξt+1 − 2ABC(G)
n

= · · · = ξn−1 − 2ABC(G)
n

= −γ. This

gives that ξi = γ+ 2ABC(G)
n

, for i = 1, 2, . . . , t and ξi = 2ABC(G)
n
−γ, for i = t+1, . . . , n−1. Since

‖L̃(G)‖2F −
(

2ABC(G)
n

)2
=

n−1∑
i=1

(
ξi − 2ABC(G)

n

)2
=

n−1∑
i=1

∣∣∣ξi − 2ABC(G)
n

∣∣∣2 = (n− 1)
∣∣∣ξi − 2ABC(G)

n

∣∣∣2 , it

follows that γ =

√
‖L̃(G)‖2F−( 2ABC(G)

n )
2

n−1 . Thus, it follows that equality occurs in (3.7) in this case
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if and only if G has three distinct Laplacian ABC-eigenvalues, which are 0, γ + 2ABC(G)
n

and
2ABC(G)

n
− γ.

Conversely, it can be easily verified that equality holds in (3.7) for the graphs mentioned in

the statement of the theorem.
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