On the eigenvalues of Laplacian $A B C$-matrix of graphs

Hilal A. Ganie ${ }^{a}$, Xueliang Li^{b}, Bilal A. Rather ${ }^{c}$
${ }^{a}$ Department of School Education JK Govt. Kashmir, India
${ }^{b}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China ${ }^{c}$ Mathematical Science Department, United Arab Emirates University, UAE ${ }^{a}$ hilahmad1119kt@gmail.com, ${ }^{b}$ lxl@nankai.edu.cn, ${ }^{c}$ bilalahmadrr@gmail.com

Abstract

For a simple graph G, the Laplacian $A B C$-matrix is defined by $\tilde{\mathrm{L}}(G)=\bar{D}(G)-$ $\tilde{\mathrm{A}}(G)$, where $\bar{D}(G)$ is the diagonal matrix of $A B C$-degrees and $\tilde{\mathrm{A}}(G)$ is the $A B C$-matrix of G. The eigenvalues of the matrix $\tilde{\mathrm{L}}(G)$ are called the Laplacian $A B C$-eigenvalues of G. In this paper, we solve the problem of characterization of connected graphs having exactly three distinct Laplacian $A B C$-eigenvalues. We also introduce the concept of trace norm of the matrix $\tilde{\mathrm{L}}(G)-\frac{\operatorname{tr}(\tilde{\mathrm{L}}(G))}{n} I$, called the Laplacian $A B C$-energy of G. We obtain some upper and lower bounds for the Laplacian $A B C$-energy and characterize the extremal graphs which attain these bounds.

Keywords: Adjacency matrix; $A B C$-matrix; Laplacian $A B C$-matrix; distinct eigenvalues; extremal graphs.

AMS subject classification: 05C50, 05C92, 15A18.

1 Introduction

In this paper, we consider only connected, simple and finite graphs. A graph $G(V(G), E(G))$ (or simply G) consists of a vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and an edge set $E(G)$. The number of elements in $V(G)$ is order n and the number of elements in $E(G)$ is size m of G. If u is adjacent to v, we denote it by $v \sim u$. The neighbourhood of a vertex v, denoted by $N(v)$, is the set of vertices adjacent to $v \in V(G)$. The degree of $v \in V(G)$, denoted by $d_{G}(v)$ (or simply $\left.d_{v}\right)$, is the cardinality of $N(v)$. A graph is r-regular, if $d_{v}=r$, for each $v \in V(G)$. The length of a shortest path between two vertices is known as the distance and the maximum distance between
any pair of vertices is the diameter of G. For other graph theoretic notations and definitions, we follow [2].

The adjacency matrix of a graph G, denoted by $A(G)$, is defined as

$$
A(G)= \begin{cases}1 & \text { if } \quad v_{i} \sim v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

The adjacency matrix $A(G)$ is real symmetric, so its eigenvalues are real, denoted by $\lambda_{1}(G) \geq$ $\lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G)$ and are known as the adjacency spectrum (or spectrum) of G. The energy of the adjacency matrix of G is defined by

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}(G)\right|
$$

The spectral parameter $\mathcal{E}(G)$ is a widely studied parameter and has its origin in theoretical chemistry, where it helps in approximating the π-electron energy of hydrocarbons. For more about the energy $\mathcal{E}(G)$ of a graph G, we refer to [19,21]. More literature about the adjacency matrix $A(G)$ can be found in (1,7).

The $A B C$-matrix of a graph G is a square matrix of order n and is defined as

$$
\tilde{\mathrm{A}}(G)=\left(a_{i j}\right)_{n \times n}= \begin{cases}\sqrt{\frac{d_{v_{i}}+d_{v_{j}}-2}{d_{v_{i}} d_{v_{j}}}} & \text { if } v_{i} \sim v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

This matrix was introduced in [9] and is related to the topological index: atom-bond connectivity ($A B C$-index for short) of a graph G. The $A B C$-index is a degree based topological index 10 and is defined to be the sum of weights $\sqrt{\frac{d_{v_{i}}+d_{v_{j}}-2}{d_{v_{i}} d_{v_{j}}}}$ over all edges $v_{i} v_{j}$ of a graph G, that is,

$$
A B C(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{d_{v_{i}}+d_{v_{j}}-2}{d_{v_{i}} d_{v_{j}}}} .
$$

In [10], the $A B C$-index was shown to be correlated to the heat formation of alkanes. Gutman et al. [16] proved that the $A B C$-index can reproduce the heat of formation with an accuracy comparable to that of high-level ab intio and DFT (MP2, B3LYP) quantum chemical calculations. More mathematical literature about $A B C$-index can be found in [3, 8, 12, 15].

Let $\vartheta_{1} \geq \vartheta_{1} \geq \cdots \geq \vartheta_{n}$ be the $A B C$-eigenvalues of G, where ϑ_{1} is called the $A B C$-spectral radius of G. Then the $A B C$-energy of G is defined by

$$
E_{A B C}(G)=\sum_{i=1}^{n}\left|\vartheta_{i}\right| .
$$

The $A B C$-spectral parameters like energy were studied in [4], $A B C$-spectral radius in [14], and other spectral properties in $[5,6,13,18,20$.

For $v_{i} \in V(G)$, let $\bar{d}_{v_{i}}=\sum_{v_{j} \in N\left(v_{i}\right)} \sqrt{\frac{d_{v_{i}}+d_{v_{j}}-2}{d_{v_{i}} d_{v_{j}}}}$ be the $A B C$-degree of a vertex v_{i}. From now onwards, we simply write \bar{d}_{i} instead of $\bar{d}_{v_{i}}$. We observe that \bar{d}_{i} is the same as the i-th row sum of the $A B C$-matrix. The Laplacian $A B C$-matrix of G introduced in [22] is defined as $\tilde{\mathrm{L}}(G)=\bar{D}(G)-\tilde{\mathrm{A}}(G)$, where $\bar{D}(G)=\operatorname{diag}\left(\bar{d}_{1}, \bar{d}_{2}, \ldots, \bar{d}_{n}\right)$ is the diagonal matrix of $A B C$-degrees of G. Clearly, each row sum of $\tilde{\mathrm{L}}(G)$ is zero, so 0 is its one of the eigenvalue. Besides, $\tilde{\mathrm{L}}(G)$ is a real symmetric positive semi-definite matrix, its eigenvalues are called the Laplacian $A B C$ eigenvalues of G, denoted by $\xi, i=1,2, \ldots, n$. Since each ξ_{i} is real so we can arrange them as $\xi_{1} \geq \xi_{2} \geq \cdots \geq \xi_{n-1}>\xi_{n}=0$, where ξ_{1} is called the Laplacian $A B C$-spectral radius. The multiset of eigenvalues of $\tilde{\mathrm{L}}(G)$ is known as the Laplacian $A B C$-spectrum of G. If an eigenvalue ξ of $\tilde{\mathrm{L}}(G)$ occurs with multiplicity l, then we represent it as $\xi^{[l]}$. Yang, Deng and Li 22 studied various properties of the matrix $\tilde{\mathrm{L}}(G)$, which includes characterization of graphs with one and two distinct Laplacian $A B C$-eigenvalues of graphs, bounds for the largest Laplacian $A B C$-eigenvalue and the smallest non-zero Laplacian $A B C$-eigenvalue. In this paper, we carry forward the problem of characterizing graphs with three distinct Laplacian $A B C$-eigenvalues.

We denote the complete graph by K_{n}, the complete bipartite graph by $K_{a, b}$, the path graph by P_{n}, the cycle graph by C_{n}, etc. For other undefined notation and terminology from spectral graph theory, we refer to [7].

The rest of the paper is organized as follows. In Section 2, we characterize the graphs with exactly three distinct Laplacian $A B C$-eigenvalues. In Section 3, we introduce the concept of Laplacian $A B C$-energy of a graph. We obtain some upper and lower bounds for the Laplacian $A B C$-energy and characterize the extremal graphs for these bounds.

2 Graphs with three distinct Laplacian $A B C$-eigenvalues

In this section, we first mention some known results about the Laplacian $A B C$-eigenvalues. We obtain the Laplacian $A B C$-spectrum for some well-known families of graphs. Further, we completely solve the problem of characterization of graphs with three distinct Laplacian $A B C$ eigenvalues.

A natural problem in the spectral of theory of graph matrices is the following problem.
Problem 1 Let G be a connected graph of order $n \geq 2$ and let $M(G)$ be a graph matrix associated to G. Let k, where $1 \leq k \leq n$, be a positive integer. Characterize the graphs having exactly k
distinct $M(G)$-eigenvalues.
This problem has been considered for the adjacency matrix, the Laplacian matrix, the signless Laplacian matrix, the normalized Laplacian matrix, the distance matrix, etc, for small value of k. In fact, various papers can be found in the literature regarding this problem for the mentioned matrices when $k \leq 4$. For the Laplacian $A B C$-matrix, this problem was considered by Yang, Deng and Li in [22] for $k=1$ and 2 and their result is given below.

Lemma 2.1 ($[\mathbf{2 2}]$) Let G be a connected graph of order $n \geq 2$. Then the following holds.
(i) G has one distinct Laplacian $A B C$-eigenvalue if and only if $G \cong K_{2}$.
(ii) G has two distinct Laplacian $A B C$-eigenvalue if and only if $G \cong K_{n}$.

In the rest of this section, we aim to solve Problem (1) for $k=3$, and for which we need some basic properties of the Laplacian $A B C$-eigenvalues.

Let M be a matrix partitioned into blocks and let Q be the matrix whose entries are the average row sums (column sums) of the blocks of M. The matrix Q is known as the quotient matrix and if the row sums (columns sums) of each block in M are some constants, then the partition is regular (equitable) and we say Q is a regular (equitable) quotient matrix (see [1]). In general, the eigenvalues of M interlace the eigenvalues of Q, however for regular partitions, each eigenvalue (see [1, 7]) of Q is an eigenvalue of M.

Any column vector $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$ can be regarded as function defined on $V(G)$ which relates every v_{i} to x_{i}, that is $X\left(v_{i}\right)=x_{i}$ for all $i=1,2, \ldots, n$. Also, it is easy to see that

$$
X^{T} \tilde{\mathrm{~L}}(G) X=\sum_{v_{j} \in N\left(v_{i}\right)} \sqrt{\frac{d_{v_{i}}+d_{v_{j}}-2}{d_{v_{i}} d_{v_{j}}}}\left(x_{i}-x_{j}\right)^{2}=\sum_{i=1}^{n} \bar{d}_{i} x_{i}^{2}-2 \sum_{v_{j} \in N\left(v_{i}\right)} \sqrt{\frac{d_{v_{i}}+d_{v_{j}}-2}{d_{v_{i}} d_{v_{j}}}} x_{i} x_{j}
$$

where $\bar{d}_{i}=\bar{d}_{v_{i}}=\sum_{v_{j} \in N\left(v_{i}\right)} \sqrt{\frac{d_{v_{i}}+d_{v_{j}}-2}{d_{v_{i}} d_{v_{j}}}}$. A real number ξ is a Laplacian $A B C$-eigenvalue with its associated eigenvector X if and only if $X \neq 0$ and for every $v_{i} \in V(G)$, we have

$$
\begin{equation*}
\xi X\left(v_{i}\right)=\sum_{v_{j} \in N\left(v_{i}\right)} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}\left(X\left(v_{i}\right)-X\left(v_{j}\right)\right) \tag{2.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\xi X\left(v_{i}\right)-\bar{d}_{i} X\left(v_{i}\right)=-\sum_{v_{j} \in N\left(v_{i}\right)} \sqrt{\frac{d_{v_{i}}+d_{v_{j}}-2}{d_{v_{i}} d_{v_{j}}}} X\left(v_{j}\right), \tag{2.2}
\end{equation*}
$$

Equations (2.1) and 2.2 are the (ξ, X)-eigenequations for the Laplacian $A B C$-matrix.

A subset S of the vertex set $V(G)$ is said to be an independent set if no two vertices of S are adjacent in G. It is said to be a clique if every two vertices of S are adjacent in G. The cardinality of largest possible independent set in G is called independence number of G and the cardinality of a largest possible clique in G is called clique number of G.

Next, we have a result which helps us in finding some Laplacian $A B C$-eigenvalues of G, provided G has some special structure.

Theorem 2.2 Let G be a connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $\mathcal{I}=$ $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ be a subset of G such that $N\left(v_{i}\right)=N\left(v_{j}\right)$, for all $i, j \in\{1,2, \ldots, p\}$. Then the following statements hold.
(i) If \mathcal{I} is an independent set of G, then the vertices of \mathcal{I} have the same $A B C$-degree, say ξ and ξ is a Laplacian $A B C$-eigenvalue of G with multiplicity at least $p-1$.
(ii) If \mathcal{I} is a clique of G, then the vertices of \mathcal{I} have the same $A B C$-degree, say ξ and $\xi-\frac{\sqrt{2 d^{*}-2}}{d^{*}}$ is a Laplacian $A B C$-eigenvalue of G with multiplicity at least $p-1$, where d^{*} is the degree of $v_{i} \in \mathcal{I}$.

Proof. We first suppose that \mathcal{I} is an independent set. Since, $\mathcal{I}=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is an independent set, where each vertex sharing the same neighbourhood, therefore we have $d_{1}=d_{2}=$ $\cdots=d_{p}$. This last equality gives us $\bar{d}_{1}=\bar{d}_{2}=\cdots=\bar{d}_{p}=\xi$. We first index the vertices in the independent set, so that the Laplacian $A B C$-matrix of G can be written as

$$
\tilde{\mathrm{L}}(G)=\left(\begin{array}{cccc|c}
\xi & 0 & \ldots & 0 & \\
0 & \xi & \ldots & 0 & B_{p \times(n-p)} \\
\vdots & \vdots & \ddots & \vdots & \\
0 & 0 & \ldots & \xi & \\
\hline & \left(B_{p \times(n-p)}\right)^{T} & & C_{(n-p) \times(n-p)}
\end{array}\right) .
$$

For $i=2,3, \ldots, p$, let $X_{i-1}=(-1, x_{i 2}, x_{i 3}, \ldots, x_{i p}, \underbrace{0,0,0, \ldots, 0}_{n-p})^{T}$ be the vector in \mathbb{R}^{n} such that $x_{i j}=1$ if $i=j$ and 0 otherwise. Suppose $X_{1}, X_{2}, \ldots, X_{p-1}$ are linearly dependent vectors. Then there exists scalers $a_{1}, a_{2}, \ldots, a_{p-1}$ not all zero, such that

$$
a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{p-1} X_{p-l}=\mathbf{0} .
$$

This implies that

$$
\left(-\sum_{i=1}^{p-1} a_{i}, a_{1}, a_{2}, \ldots, a_{p-1}, 0,0, \ldots, 0\right)=\mathbf{0}
$$

and it follows that $a_{1}=a_{2}=\cdots=a_{p-1}=0$. Therefore, the vectors $X_{1}, X_{2}, \ldots, X_{p-1}$ cannot be linearly dependent. Noting that the rows of B are identical, we see that

$$
\tilde{\mathrm{L}}(G) X_{1}=(-\xi, \quad \xi, \quad 0, \quad \ldots \quad, 0, \quad 0, \quad \ldots, \quad, 0)^{T}=\xi X_{1} .
$$

Similarly, we see that $X_{2}, X_{3}, \ldots, X_{p-1}$ are the eigenvectors of $\tilde{\mathrm{L}}(G)$ corresponding to eigenvector ξ. This completes the proof of (i).

Next, suppose that \mathcal{I} is a clique in G. Let us label the vertices of G in such a way that the first p vertices are the vertices in \mathcal{I}. Under this labelling the Laplacian $A B C$-matrix of G can be written as

$$
\tilde{\mathrm{L}}(G)=\left(\begin{array}{cccc|c}
\xi & -\frac{\sqrt{2 d^{*}-2}}{d^{*}} & \cdots & -\frac{\sqrt{2 d^{*}-2}}{d^{*}} & \\
-\frac{\sqrt{2 d^{*}-2}}{d^{*}} & \xi & \cdots & -\frac{\sqrt{2 d^{*}-2}}{d^{*}} & B_{p \times(n-p)} \\
\vdots & \vdots & \ddots & \vdots & \\
-\frac{\sqrt{2 d^{*}-2}}{d^{*}} & -\frac{\sqrt{2 d^{*}-2}}{d^{*}} & \ldots & \xi & \\
\hline & & \left(B_{p \times(n-p))^{T}}\right. & C_{(n-p) \times(n-p)}
\end{array}\right)
$$

Proceeding as in (i) with the same set of eigenvectors, we can verify that $\xi-\frac{\sqrt{2 d^{*}-2}}{d^{*}}$ is a Laplacian $A B C$-eigenvalue of G. This completes the proof.

Theorem 2.2 helps us to obtain the Laplacian $A B C$-eigenvalues of some well-known families of graphs. In the following result we mention some of these families.

Proposition 2.3 Let G be a connected graph of order $n \geq 4$. Then the following statements hold.
(i) The Laplacian $A B C$-spectrum of $K_{1, n-1}$ is

$$
\left\{n \sqrt{\frac{n-2}{n-1}},\left(\sqrt{\frac{n-2}{n-1}}\right)^{[n-2]}, 0\right\}
$$

(ii) The Laplacian $A B C$-spectrum of $K_{a, b}$ is

$$
\left\{(a+b) \sqrt{\frac{a+b-2}{a b}},\left(b \sqrt{\frac{a+b-2}{a b}}\right)^{[a-1]},\left(a \sqrt{\frac{a+b-2}{a b}}\right)^{[b-1]}, 0\right\}
$$

(iii) The Laplacian $A B C$-spectrum of the complete split graph $C S_{\omega, n-\omega}$, with clique number ω and independence number $n-\omega$ is

$$
\left\{2(n-\omega) \sqrt{\frac{n+\omega-3}{\omega(n-1)}},\left(\omega \frac{\sqrt{2 n-4}}{n-1}+(n-\omega) \sqrt{\frac{n+\omega-3}{\omega(n-1)}}\right)^{[\omega-1]}\right.
$$

$$
\left.\left((n-\omega) \sqrt{\frac{n+\omega-3}{\omega(n-1)}}\right)^{[n-\omega-1]}, 0\right\}
$$

(iv) The Laplacian $A B C$-spectrum of $K_{n}-e$, where e is an edge, is

$$
\begin{aligned}
\left\{(n-2) \frac{\sqrt{2 n-4}}{n-1}+\frac{\sqrt{2 n-5}}{(n-1)(n-2)},\right. & \left((n-2) \sqrt{\frac{2 n-5}{(n-1)(n-2)}}\right)^{[n-4]} \\
& \left.\left((n-2) \frac{\sqrt{2 n-4}}{n-1}+2 \sqrt{\frac{2 n-5}{(n-1)(n-2)}}\right)^{[n-4]}, 0\right\}
\end{aligned}
$$

(v) The Laplacian $A B C$-spectrum of $K_{1, n-1}+e$ is

$$
\begin{aligned}
\left\{\frac { 1 } { 4 } \left(3 \sqrt{2}+(n-2) \sqrt{\frac{n-2}{n-1}} \pm\right.\right. & \sqrt{\left.\left(3 \sqrt{2}+(n-2) \sqrt{\frac{n-2}{n-1}}\right)^{2}-8 n \sqrt{2} \sqrt{\frac{n-2}{n-1}}\right)} \\
& \left.\left(\sqrt{\frac{n-2}{n-1}}\right)^{[n-4]}, \frac{3}{\sqrt{2}}, 0\right\}
\end{aligned}
$$

Proof. (i) is a special case of (ii), so we prove (ii). As $K_{a, b}$ has a independent vertices sharing the same neighbourhood with common $A B C$-degree $b \sqrt{\frac{a+b-2}{a b}}$, so by Theorem $2.2, b \sqrt{\frac{a+b-2}{a b}}$ is a Laplacian $A B C$-eigenvalue of $K_{a, b}$ with multiplicity $a-1$. Likewise, b independent vertices have the common neighbourhood with each vertex having same $A B C$-degree $a \sqrt{\frac{a+b-2}{a b}}$. Thus, by Theorem 2.2, $a \sqrt{\frac{a+b-2}{a b}}$ is a Laplacian $A B C$-eigenvalue of $K_{a, b}$ with multiplicity $b-1$. Also, 0 is a simple $A B C$-eigenvalue of $K_{a, b}$. Using the fact that $\xi_{1}+\xi_{2}+\cdots+\xi_{n-1}=\sum_{i=1}^{n} \tilde{\mathrm{~d}}_{i}$, we get $(a+b) \sqrt{\frac{a+b-2}{a b}}$, the remaining Laplacian $A B C$-eigenvalue of $K_{a, b}$.
(iv) is a special case of (iii), we proceed to prove (iii). As ω vertices of $C S_{\omega, n-\omega}$ form the clique and its each vertex shares the same neighbourhood with common $A B C$-degree ($\omega-$ 1) $\frac{\sqrt{2 n-4}}{n-1}+(n-\omega) \sqrt{\frac{n+w-3}{\omega(n-1)}}$. So, by Theorem 2.2, it follows that $\omega \frac{\sqrt{2 n-4}}{n-1}+(n-\omega) \sqrt{\frac{n+w-3}{\omega(n-1)}}$ is a Laplacian $A B C$-eigenvalue of $C S_{\omega, n-\omega}$ with multiplicity $\omega-1$. Again, the graph $C S_{\omega, n-\omega}$ has an independent set on $n-\omega$ vertices each sharing the same neighbourhood with common ABC-degree $(n-\omega) \sqrt{\frac{n+\omega-3}{\omega(n-1)}}$ giving by Theorem 2.2 that $(n-\omega) \sqrt{\frac{n+\omega-3}{\omega(n-1)}}$ is Laplacian $A B C$ eigenvalue of $C S_{\omega, n-\omega}$ with multiplicity $n-\omega-1$. The other two Laplacian $A B C$-eigenvalues of $C S_{\omega, n-\omega}$ are 0 and $2(n-\omega) \sqrt{\frac{n+\omega-3}{\omega(n-1)}}$.
(v). As above, we can verify that $\sqrt{\frac{n-2}{n-1}}$ with multiplicity $n-4$ and $\frac{3}{\sqrt{2}}$ are Laplacian $A B C$ eigenvalues of $K_{1, n-1}+e$. The other three Laplacian $A B C$-eigenvalues of $K_{1, n-1}+e$ are the
eigenvalues of the following equitable quotient matrix

$$
\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
-\frac{2}{\sqrt{2}} & \frac{2}{\sqrt{2}}+(n-3) \sqrt{\frac{n-2}{n-1}} & -(n-3) \sqrt{\frac{n-2}{n-1}} \\
0 & -\sqrt{\frac{n-2}{n-1}} & \sqrt{\frac{n-2}{n-1}}
\end{array}\right)
$$

The eigenvalues of above matrix are

$$
\left\{0, \frac{1}{4}\left(3 \sqrt{2}+(n-2) \sqrt{\frac{n-2}{n-1}} \pm \sqrt{\left.\left(3 \sqrt{2}+(n-2) \sqrt{\frac{n-2}{n-1}}\right)^{2}-8 n \sqrt{2} \sqrt{\frac{n-2}{n-1}}\right)}\right\}\right.
$$

This completes the proof.

The following theorem gives the relation between the eigenvalues of a matrix with the eigenvalues of its principal submatrices, which can be found in 17.

Theorem 2.4 (Interlacing Theorem, $[\mathbf{1 7]})$ Let $M \in \mathbb{M}_{n}$ be a real symmetric matrix. Let A be a principal submatrix of M of order $m,(m \leq n)$. Then the eigenvalues of M and A satisfy the following inequalities

$$
\lambda_{i+n-m}(M) \leq \lambda_{i}(A) \leq \lambda_{i}(M), \quad \text { with } \quad 1 \leq i \leq m
$$

The following is the main result of this section and gives the characterization of connected graphs with exactly three Laplacian $A B C$-eigenvalues.

Theorem 2.5 Let G be a connected graph of order $n \geq 4$. Then the following statements hold.
(i) If the diameter of G is at least 3, then there is no graph with three distinct Laplacian $A B C$-eigenvalues.
(ii) If G is a bipartite graph of diameter at most 2 , then G has three distinct Laplacian $A B C$ eigenvalues if and only if G is the star graph or the complete bipartite graph with partite sets of same cardinality.
(iii) If G is of diameter at most 2 and multipartite, then G has three distinct Laplacian ABCeigenvalues if and only if G is the complete t-partite graph $K_{p, p, \ldots, p}$.
(iv) If G is unicyclic graph, then G has three distinct Laplacian $A B C$-eigenvalues if and only if G is either C_{4} or C_{5}.

Proof. (i) If G is of diameter at least 3, then the path P_{4} is its induced subgraph. The principal submatrix of $\tilde{\mathrm{L}}(G)$ corresponding to the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ in P_{4} is

$$
B_{1}=\left(\begin{array}{cccc}
d_{1} & -a & -b & -c \\
-a & d_{2} & -d & -e \\
-b & -d & d_{3} & -f \\
-c & -e & -f & d_{4}
\end{array}\right)
$$

where for $i=1,2,3,4, d_{i}, a, b, c, d, e$ and f are non-negative real numbers. The characteristic polynomial of B_{1} is $p_{1}(x)=x^{4}-\left(d_{1}+d_{2}+d_{3}+d_{4}\right) x^{3}+x^{2} t\left(-a^{2}-b^{2}-c^{2}-d^{2}+d_{1} d_{2}+d_{1} d_{3}+\right.$ $\left.d_{2} d_{3}+d_{1} d_{4}+d_{2} d_{4}+d_{3} d_{4}-e^{2}-f^{2}\right)+x\left(a^{2} d_{3}+a^{2} d_{4}+2 a b d+2 a c e+b^{2} d_{2}+b^{2} d_{4}+2 b c f+c^{2} d_{2}+\right.$ $\left.c^{2} d_{3}+d^{2} d_{1}+d^{2} d_{4}+d_{1} e^{2}+d_{3} e^{2}+2 d e f+d_{1} f^{2}+d_{2} f^{2}-d_{1} d_{2} d_{3}-d_{1} d_{2} d_{4}-d_{1} d_{3} d_{4}-d_{2} d_{3} d_{4}\right)-$ $a^{2} d_{3} d_{4}+a^{2} f^{2}-2 a b d d_{4}-2 a b e f-2 a c d_{3} e-2 a c d f-b^{2} d_{2} d_{4}+b^{2} e^{2}-2 b c d e-2 b c d_{2} f+c^{2} d^{2}-c^{2} d_{2} d_{3}-$ $d^{2} d_{1} d_{4}-d_{1} d_{3} e^{2}-2 d d_{1}$ ef $-d_{1} d_{2} f^{2}+d_{1} d_{2} d_{3} d_{4}$. It can be easily verified that the polynomial $p_{1}(x)$ has four distinct zeros. If $x_{1}>x_{2}>x_{3}>x_{4}$ are the zeros of $p_{1}(x)$, then by Theorem 2.4 we get that $\xi_{n-3} \leq x_{1} \leq \xi_{1}, \xi_{n-2} \leq x_{2} \leq \xi_{2}, \xi_{n-1} \leq x_{3} \leq \xi_{3}$ and $\xi_{n} \leq x_{4} \leq \xi_{4}$. Using these inequalities together with the fact that $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct we conclude that G has at least four distinct Laplacian $A B C$-eigenvalues.
(ii). If G is $K_{1, n-1}$, then by Proposition 2.3 , it is clear that G has exactly three distinct Laplacian $A B C$-eigenvalues. If $G \cong K_{a, a}$ with $n=2 a$, then by (ii) of Proposition 2.3, the Laplacian $A B C$ spectrum of G is $\left\{0,2 \sqrt{2 a-2},(\sqrt{2 a-2})^{2 a-2}\right\}$ and the result holds in this case. Conversely, assume that G is a bipartite graph of diameter at most 2 having three distinct Laplaian $A B C$ eigenvalues. We claim that G is either $K_{a, a}$ or $K_{1, n-1}$. Clearly, K_{n} is the only connected graph with diameter 1 and by Lemma 2.1, this graph has two distinct Laplacian $A B C$-eigenvalues. It follows that G can not be of diameter 1. Therefore, G must be of diameter 2 . Let G be a bipartite graph of diameter 2. Suppose u and v are two non-adjacent vertices of G. If u has a neighbour not adjacent to v, then this neighbour along with u and v induces the path P_{4}, which implies that diameter of G is greater than 2, and this cannot happen. Thus any two non-adjacent vertices must share the same neighbour, so it follows that G is the complete multipartite graph. For the complete bipartite graph case, if G is either $K_{a, a}$ or $K_{1, n-1}$, then there is nothing to prove, else G can be $K_{a, n-a}, a \neq 1, n \neq 2 a$ and by Proposition 2.3 , it is clear that this graph has more than three distinct Laplacian $A B C$-eigenvalues. This completes the proof in this case.

For the complete t-partite graph with $t \geq 3$, first we assume that $G \cong K_{p, p, \ldots, p}$. Then there are p independent subsets sharing the same neighbourhood such that each vertex has the same $A B C$-degree $\sqrt{2 p(t-1)-2}$. So, by Theorem 2.2 , we get a Laplacian $A B C$-eigenvalue
$\sqrt{2 p(t-1)-2}$ with multiplicity $p t-t$. The other t Laplacian $A B C$-eigenvalues of $K_{p, p, \ldots, p}$ are the eigenvalues of the following equitable quotient matrix

$$
\left(\begin{array}{cccc}
\sqrt{2 p(t-1)-2} & \frac{-\sqrt{2 p(t-1)-2}}{t-1} & \cdots & \frac{-\sqrt{2 p(t-1)-2}}{\frac{t-1}{}} \tag{2.3}\\
\frac{-\sqrt{2 p(t-1)-2}}{t-1} & \sqrt{2 p(t-1)-2} & \cdots & \frac{-\sqrt{2 p(t-1)-2}}{t-1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{-\sqrt{2 p(t-1)-2}}{t-1} & \frac{-\sqrt{2 p(t-1)-2}}{t-1} & \cdots & \sqrt{2 p(t-1)-2}
\end{array}\right) .
$$

Now, it is easy to show that $\frac{t \sqrt{2 p(t-1)-2}}{t-1}$ is an eigenvalue of (2.3) with multiplicity $t-1$ and 0 is always a Laplacian $A B C$-eigenvalue of $K_{p, p, \ldots, p}$. This shows that $K_{p, p, \ldots, p}$ is the candidate graph with three distinct Laplacian $A B C$-eigenvalues. Next, we show that $K_{p_{1}, p_{2}, \ldots, p_{t}}$ have more than three distinct Laplacian $A B C$-eigenvalues. For that it is enough to prove that $K_{p, p, \ldots, p, q}, p \neq q$ has more than three distinct Laplacian $A B C$-eigenvalues. As above, it is easy to see that $p(t-$ 2) $\frac{\sqrt{2(p(t-1)+q)-2}}{p(t-1)+q}+q \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}}$ and $p(t-1) \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}}$ are Laplacian $A B C$-eigenvalues of $K_{p, p, \ldots, p, q}$ with multiplicities $(t-1)(p-1)$ and $q-1$, respectively. The other t Laplacian $A B C$-eigenvalues of $K_{p, p, \ldots, p, q}$ are the eigenvalues of the following equitable quotient matrix

$$
\left(\begin{array}{ccc|c}
d & \cdots & -\frac{p \sqrt{2(p(t-2)+q)-2}}{p(t-2)+q} & -q \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}} \tag{2.4}\\
-\frac{p \sqrt{2(p(t-2)+q)-2}}{p(t-2)+q} & \cdots & -\frac{p \sqrt{2(p(t-2)+q)-2}}{p(t-2)+q} & -q \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}} \\
\vdots & \ddots & \vdots & \vdots \\
-\frac{p \sqrt{2(p(t-2)+q)-2}}{p(t-2)+q} & \cdots & d & -q \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}} \\
\hline-p \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}} & \cdots & -p \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}} & p(t-1) \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}}
\end{array}\right)
$$

where $d=p(t-2) \frac{\sqrt{2(p(t-1)+q)-2}}{p(t-1)+q}+q \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}}$. Consider $X_{i-1}=\left(-1, x_{i 2}, x_{i 3}, \ldots, x_{i(t-1)}, 0\right)$, where $x_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { otherwise },\end{array}\right.$ for $i=2,3, \ldots, t-1$. Now, we can easily verify that X_{1}, \ldots, X_{t-2} are the eigenvectors corresponding to the Laplacian $A B C$-eigenvalue $p(t-1) \frac{\sqrt{2(p(t-1)+q)-2}}{p(t-1)+q}+$ $q \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}}$. The other two eigenvalues of (2.3) with the given blocks are the eigenvalues of the following equitable quotient matrix

$$
\left(\begin{array}{cc}
q \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}} & -q \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}} \\
-(t-1) \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}} & (t-1) \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}}
\end{array}\right),
$$

and its eigenvalues are 0 and $(p(t-1)+q) \sqrt{\frac{p(2 t-3)+q-2}{p(t-1)(p(t-2)+q)}}$. Therefore it follows that $K_{p, p, \ldots, p, q}$ has more than three distinct Laplacian $A B C$-eigenvalues.

Lastly, If G is a unicyclic graph, then as above the diameter of G is exactly 2 . So, G must be one of the following graphs: $C_{4}, C_{5}, K_{1, n-1}+e$. By Proposition 2.3, the graph $K_{1, n-1}+e$ has more than three distinct Laplacian $A B C$-eigenvalues. Also, the graph C_{4} is bipartite and follows by part (ii). Further, for the graph C_{5}, the Laplacian $A B C$-spectrum of C_{5} is

$$
\left\{(2.55834)^{[2]},(0.977198)^{[2]}, 0\right\}
$$

and so the result follows in this case.

Parts (iii) and (iv) of Theorem 2.5 give an insight that there can be more non-bipartite graphs with diameter 2 having three distinct Laplacian $A B C$-eigenvalues. Therefore, we leave the following problem.

Problem 2 Characterize completely the non-bipartite graphs with diameter 2 and three distinct Laplacian ABC-eigenvalues.

3 Laplacian $A B C$-energy

In this section, we introduce the concept of Laplacian $A B C$-energy of a graph G. We establish some tight bounds for this quantity.

For the matrix $M \in \mathbb{M}_{m \times n}(\mathbb{R})$, the positive square roots of the eigenvalues of $M M^{T}$ are the singular values of M, denoted by $\sigma_{i}(M)$, (or simply by $\left.\sigma_{i}\right), i=1,2, \ldots, n$. Let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ be the singular values of M. The sum of the first k largest singular values $\|M\|_{k}=\sum_{i=1}^{k} \sigma_{i}, 1 \leq$ $k \leq n$ is the k-norm of M. For $k=1,\|M\|_{1}=\sigma_{1}$ is the spectral norm, for $2 \leq k \leq n-1$, $\|M\|_{k}=\sum_{i=1}^{k} \sigma_{i}$ is known as the Kay Fan k-norm and for $k=n$, the norm $\|M\|_{n}=\sum_{i=1}^{n} \sigma_{i}$ is called the trace norm of M. In case of normal matrices and in particular for symmetric matrices, singular values are the absolute values of their eigenvalues. So for symmetric matrices, the trace norm is the sum of absolute values of the eigenvalues. Nikiforov [21], defined the energy of a symmetric matrix M as the absolute sum of values of its eigenvalues. Motivated by this, we introduce a new operator $\bar{L}=\tilde{\mathrm{L}}(G)-\bar{\xi} I_{n}$, where $\bar{\xi}=\sum_{i=1}^{n-1} \xi_{i}$ is the average of the Laplacian $A B C$-eigenvalues. Also, we observe that $\bar{\xi}=\sum_{i=1}^{n} \bar{d}_{i}=\frac{2 A B C(G)}{n}$. Clearly, \bar{L} is the real symmetric matrix and its eigenvalues are real, denoted by $\theta_{i}, i=1,2, \ldots, n$. Therefore, the Laplacian $A B C$-energy is defined by

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\theta_{i}\right|=\sum_{i=1}^{n}\left|\xi_{i}-\bar{\xi}\right|=\sum_{i=1}^{n}\left|\xi_{i}-\frac{2 A B C(G)}{n}\right|=\sum_{i=1}^{n} \sigma_{i}(\bar{L}) \tag{3.5}
\end{equation*}
$$

Let σ be the largest positive integer such that $\xi_{\sigma} \geq \frac{2 A B C(G)}{n}$. That is, σ is the positive integer with $\xi_{\sigma} \geq \frac{2 A B C(G)}{n}$ and $\xi_{\sigma+1}<\frac{2 A B C(G)}{n}$. It is clear that σ gives the number of Laplacian $A B C$ eigenvalues of G which lie in $\left[0, \frac{2 A B C(G)}{n}\right]$ and the eigenvalues which lie in $\left[\frac{2 A B C(G)}{n}, n\right)$. It is an interesting and hard problem in Linear Algebra to find the distribution of the eigenvalues of a given matrix. The problem of distribution of eigenvalues of a given matrix has been considered for many graph matrices and various interesting results are obtained. Like other graph matrices, the following problem can be of interest for the Laplacian $A B C$-matrix.

Problem 3 Among all connected graphs G of order n with a given parameter α, like the number of edges, the independence number, the matching number, the chromatic number, the vertex covering number, the $A B C(G)$-index, etc, determine the number of Laplacian $A B C$-eigenvalues in the interval $[0, \alpha]$.

The next result shows that we can express the Laplacian $A B C$-energy in terms of Ky Fan k-norm of the Laplacian $A B C$-matrix.

Theorem 3.1 Let G be a connected graph of order $n \geq 3$ having atom-bond connectivity index $A B C(G)$. Then, the Laplacian $A B C$-energy of G satisfies the following relation

$$
E(\tilde{L}(G))=2\left(\sum_{i=1}^{\sigma} \xi_{i}-\frac{2 \sigma A B C(G)}{n}\right)=2 \max _{1 \leq k \leq n}\left(\sum_{i=1}^{k} \xi_{i}-\frac{2 k A B C(G)}{n}\right),
$$

where $\sum_{i=1}^{k} \xi_{i}$ is the sum of the first k largest Laplaian ABC-eigenvalues (Ky Fan k-norm) of G and σ is the number of Laplacian $A B C$-eigenvalues in $\left[0, \frac{2 A B C(G)}{n}\right]$.
Proof. Let σ be the largest positive integer such that $\xi_{\sigma} \geq \frac{2 A B C(G)}{n}$. Then by the definition of Laplacian $A B C$-energy $E(\tilde{\mathrm{~L}}(G))$ and the fact $2 A B C(G)=\sum_{i=1}^{n} \xi_{i}$, we have

$$
\begin{aligned}
E(\tilde{\mathrm{~L}}(G)) & =\sum_{i=1}^{n}\left|\xi_{i}-\frac{2 A B C(G)}{n}\right|=\sum_{i=1}^{\sigma}\left(\xi_{i}-\frac{2 A B C(G)}{n}\right)+\sum_{i=\sigma+1}^{n}\left(\frac{2 A B C(G)}{n}-\xi_{i}\right) \\
& =\sum_{i=1}^{\sigma} \xi_{i}-\frac{4 \sigma A B C(G)}{n}+2 A B C(G)-\sum_{i=\sigma+1}^{n} \xi_{i}=2\left(\sum_{i=1}^{\sigma} \xi_{i}-\frac{2 \sigma A B C(G)}{n}\right) .
\end{aligned}
$$

Next, we shall prove that $2\left(\sum_{i=1}^{\sigma} \xi_{i}-\frac{2 \sigma A B C(G)}{n}\right)=2 \max _{1 \leq k \leq n}\left(\sum_{i=1}^{k} \xi_{i}-\frac{2 k A B C(G)}{n}\right)$. For $k>\sigma$, we have
$\sum_{i=1}^{k} \xi_{i}-\frac{2 k A B C(G)}{n}=\sum_{i=1}^{\sigma} \xi_{i}+\sum_{i=\sigma+1}^{k} \xi_{i}-\frac{2 k A B C(G)}{n}$

$$
\begin{aligned}
& <\sum_{i=1}^{\sigma} \xi_{i}+(k-\sigma) \frac{2 A B C(G)}{n}-k \frac{2 A B C(G)}{n} \text { as } \xi_{i}<\frac{2 A B C(G)}{n}, \text { for } i \geq \sigma+1 \\
& =\sum_{i=1}^{\sigma} \xi_{i}-\frac{2 \sigma A B C(G)}{n}
\end{aligned}
$$

Similarly, for $k \leq \sigma$, it can be easily verified that $\sum_{i=1}^{k} \xi_{i}-k \frac{2 A B C(G)}{n} \leq \sum_{i=1}^{\sigma} \xi_{i}-\frac{2 \sigma A B C(G)}{n}$, which completes the proof.

The following result gives a lower bound for the Laplacian $A B C$-energy of a graph G, in terms of the atom-bound connectivity index $A B C(G)$.

Corollary 3.2 Let G be a connected graph of order $n \geq 3$ having atom-bound connectivity index $A B C(G)$. Then

$$
E(\tilde{L}(G)) \geq 2\left(\xi_{1}-\frac{2 A B C(G)}{n}\right)
$$

with equality if and only if $\sigma=1$; and

$$
E(\tilde{L}(G)) \geq 2\left(\frac{4 A B C(G)}{n}-\xi_{n-1}\right)
$$

with equality if and only if $\sigma=n-2$
Proof. Using Theorem 3.1 and the fact that $\sum_{i=1}^{k} \xi_{i}=2 A B C(G)-\sum_{i=k+1}^{n-1} \xi_{i}$, the result follows.
From Corollary 3.2, it is clear that any lower bound for ξ_{1} helps us to find a lower bound for the Laplacian $A B C$-energy of a graph G and any upper bound for ξ_{n-1} helps us to find a lower bound for the Laplacian $A B C$-energy of a graph G.

For the regular and bipartite semi-regular graphs, we have the following relation between the Laplacian $A B C$-energy and the corresponding Laplacian energy of a graph.

Theorem 3.3 Let G be connected graph of order $n \geq 3$ having atom-bond connectivity index $A B C(G)$ and $L E(G)$ be its Laplacian energy. Then following statements hold.
(i) If G is an r-regular graph, then $E(\tilde{L}(G))=\frac{\sqrt{2 r-2}}{r} L E(G)$.
(ii) If G is an (r, s)-semiregular bipartite graph, then $E(\tilde{L}(G))=\sqrt{\frac{r+s-2}{r s}} L E(G)$.

Proof. If G is an r-regular graph, then by (1) of Theorem 3.1 in 22, we have $\xi_{i}=\frac{\sqrt{2 r-2}}{r} \mu_{i}$, where μ_{i} is the i-th Laplacian eigenvalue of G. Also, $2 A B C(G)=\xi_{1}+\xi_{2}+\cdots+\xi_{n-1}=$ $\frac{\sqrt{2 r-2}}{r}\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n-1}\right)=\frac{\sqrt{2 r-2}}{r} 2 m$. The first part now follows from the definition of Laplacian $A B C$-energy of G. Similarly, if G is an (r, s)-semiregular bipartite graph, then result follows from (2) of Theorem 3.1 in 22 .

A very interesting and useful lemma due to Fulton [11] is as follows.
Lemma 3.4 Let A and B be two real symmetric matrices both of order n. If $k, 1 \leq k \leq n$, is a positive integer, then

$$
\sum_{i=1}^{k} \lambda_{i}(A+B) \leq \sum_{i=1}^{k} \lambda_{i}(A)+\sum_{i=1}^{k} \lambda_{i}(B)
$$

where $\lambda_{i}(X)$ is the $i^{\text {th }}$ eigenvalue of X.
Recall that $\bar{d}_{i}=\sum_{v_{j} \in N\left(v_{i}\right)} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}$ is the $A B C$-degree of the vertex $v_{i} \in V(G)$. A graph G is said to be $A B C$-regular if the $A B C$-degrees of all its vertices is the same. The following result gives an upper bound for the Laplacian $A B C$-energy in terms of the $A B C$-degrees and $A B C$-energy of a graph.

Theorem 3.5 Let G be a connected graph of order $n \geq 3$ with $A B C$-degrees $\bar{d}_{1}, \bar{d}_{2}, \ldots, \bar{d}_{n}$. Let σ be the number of Laplacian $A B C$-eigenvalues of G which are greater than or equal to $\frac{2 A B C(G)}{n}$. Then

$$
E(\tilde{L}(G)) \leq E_{A B C}(G)+2 \sum_{i=1}^{\sigma}\left(\bar{d}_{i}-\frac{2 A B C(G)}{n}\right)
$$

If G is $A B C$-regular, then the equality occurs.
Proof. Applying Lemma 3.4 to

$$
\tilde{\mathrm{L}}(G)=\bar{D}(G)-\tilde{\mathrm{A}}(G)
$$

where $\bar{D}(G)=\operatorname{diag}\left(\bar{d}_{1}, \bar{d}_{2}, \ldots, \bar{d}_{n}\right)$ is the diagonal matrix of $A B C$-degrees of G, we get

$$
\begin{equation*}
\sum_{i=1}^{k} \xi_{i}(G) \leq \sum_{i=1}^{k} \bar{d}_{i}+\sum_{i=1}^{k} \vartheta_{i} \tag{3.6}
\end{equation*}
$$

where $\vartheta_{i}(G)$ is the i-th $A B C$-eigenvalue of G. Let σ be the number of Laplacian $A B C$-eigenvalues of G which are greater than or equal to $\frac{2 A B C(G)}{n}$. Then $1 \leq \sigma \leq n-1$. From the definition of
$A B C$-energy, we have

$$
E_{A B C}(G)=2 \max _{1 \leq j \leq n} \sum_{i=1}^{k} \vartheta_{i}(G) \geq 2 \sum_{i=1}^{\sigma} \vartheta_{i}(G)
$$

This together with inequality 3.6 gives

$$
\begin{aligned}
& 2 \sum_{i=1}^{\sigma} \xi_{i}(G) \leq 2 \sum_{i=1}^{\sigma} \bar{d}_{i}+2 \sum_{i=1}^{\sigma} \vartheta_{i}(G) \\
& \text { that is, } 2 \sum_{i=1}^{\sigma} \xi_{i}-\frac{4 A B C(G) \sigma}{n} \leq 2 \sum_{i=1}^{\sigma} \bar{d}_{i}+E_{A B C}(G)-\frac{4 A B C(G) \sigma}{n}
\end{aligned}
$$

Thus, using Theorem 3.1, it follows that

$$
E(\tilde{\mathrm{~L}}(G)) \leq E_{A B C}(G)+2 \sum_{i=1}^{\sigma}\left(\bar{d}_{i}-\frac{2 A B C(G)}{n}\right)
$$

If G is an $A B C$-regular graph, then it is clear that the equality occurs.
The Frobinus norm of $\tilde{\mathrm{L}}(G)$ is $\|\tilde{\mathrm{L}}(G)\|_{F}^{2}=\sum_{i=1}^{n-1} \xi_{i}^{2}$. Also, the Frobinus norm of $\bar{L}(G)=$ $\tilde{\mathrm{L}}(G)-\frac{2 A B C(G)}{n} I_{n}$ is

$$
\begin{aligned}
\|\bar{L}(G)\|_{F}^{2} & =\sum_{i=1}^{n} \theta_{i}^{2}=\sum_{i=1}^{n}\left(\xi_{i}-\frac{2 A B C(G)}{n}\right)^{2}=\sum_{i=1}^{n} \xi_{i}^{2}+\frac{4 A B C(G)}{n^{2}} \sum_{i=1}^{n} .1-\frac{4 A B C(G)}{n} \sum_{i=1}^{n} \xi_{i} \\
& =\sum_{i=1}^{n} \xi_{i}^{2}-\frac{4 A B C(G)^{2}}{n}=\|\tilde{\mathrm{L}}(G)\|_{F}^{2}-\frac{4 A B C(G)^{2}}{n}
\end{aligned}
$$

Next, we derive an upper bound for the Laplacian $A B C$-energy of a graph G, in terms of the atom-bound connectivity index, the order and the parameter $\|\tilde{\mathrm{L}}(G)\|_{F}^{2}$.

Theorem 3.6 Let G be a connected graph of order $n \geq 3$. Then

$$
\begin{equation*}
E(\tilde{L}(G)) \leq \frac{2 A B C(G)}{n}+\sqrt{(n-1)\left(\|\tilde{L}(G)\|_{F}^{2}-\left(\frac{2 A B C(G)}{n}\right)^{2}\right)} \tag{3.7}
\end{equation*}
$$

with equality if and only if either $G \cong K_{n}$ or G has three distinct Laplacian ABC-eigenvalues, which are $0, \gamma+\frac{2 A B C(G)}{n}$ and $\frac{2 A B C(G)}{n}-\gamma$, where $\gamma=\sqrt{\frac{\|\tilde{L}(G)\|_{F}^{2}-\left(\frac{2 A B C(G)}{n}\right)^{2}}{n-1}}$.

Proof. As $\xi_{n}=0$, so we have

$$
E(\tilde{\mathrm{~L}}(G))-\frac{2 A B C(G)}{n}=\sum_{i=1}^{n-1}\left|\xi_{i}-\frac{2 A B C(G)}{n}\right|
$$

Now, by applying the Cauchy-Schwarz inequality to the vectors

$$
\left(\left|\xi_{1}-\frac{2 A B C(G)}{n}\right|,\left|\xi_{2}-\frac{2 A B C(G)}{n}\right|, \ldots,\left|\xi_{n-1}-\frac{2 A B C(G)}{n}\right|\right)
$$

and $(1,1, \ldots, 1)$, we get

$$
\begin{equation*}
\left(\sum_{i=1}^{n-1}\left|\xi_{i}-\frac{2 A B C(G)}{n}\right|\right)^{2} \leq(n-1) \sum_{i=1}^{n-1}\left(\xi_{i}-\frac{2 A B C(G)}{n}\right)^{2} \tag{3.8}
\end{equation*}
$$

Further,

$$
\begin{aligned}
\sum_{i=1}^{n-1}\left(\xi_{i}-\frac{2 A B C(G)}{n}\right)^{2} & =\sum_{i=1}^{n}\left(\xi_{i}-\frac{2 A B C(G)}{n}\right)^{2}-\left(\frac{2 A B C(G)}{n}\right)^{2} \\
& =\|\tilde{\mathrm{L}}(G)\|_{F}^{2}-\left(\frac{2 A B C(G)}{n}\right)^{2}
\end{aligned}
$$

This observation together with inequality 3.8 and the definition of Laplacian $A B C$-energy gives that

$$
\begin{aligned}
E(\tilde{\mathrm{~L}}(G)) & =\frac{2 A B C(G)}{n}+\sum_{i=1}^{n-1}\left|\xi_{i}-\frac{2 A B C(G)}{n}\right| \\
& \leq \frac{2 A B C(G)}{n}+\sqrt{(n-1)\left(\|\tilde{\mathrm{L}}(G)\|_{F}^{2}-\left(\frac{2 A B C(G)}{n}\right)^{2}\right)} .
\end{aligned}
$$

Suppose that Inequality (3.7) is an equality. Then equality occurs in (3.8), that is,

$$
\begin{equation*}
\left|\xi_{1}-\frac{2 A B C(G)}{n}\right|=\left|\xi_{2}-\frac{2 A B C(G)}{n}\right|=\cdots=\left|\xi_{n-1}-\frac{2 A B C(G)}{n}\right| \tag{3.9}
\end{equation*}
$$

Since $\xi_{1}-\frac{2 A B C(G)}{n}>0$ and $\xi_{n-1}-\frac{2 A B C(G)}{n} \geq 0$ or $\xi_{n-1}-\frac{2 A B C(G)}{n}<0$, it follows that if $\xi_{n-1}-\frac{2 A B C(G)}{n} \geq 0$, then from (3.9) we get $\xi_{1}-\frac{2 A B C(G)}{n}=\xi_{2}-\frac{2 A B C(G)}{n}=\cdots=\xi_{n-1}-\frac{2 A B C(G)}{n}$, that is, $\xi_{1}=\xi_{2}=\cdots=\xi_{n-1}$. This shows that equality occurs in (3.7) in this case if and only if G has two distinct Laplacian $A B C$-eigenvalues, which is so by Lemma 2.1 if and only if $G \cong K_{n}$. On the other hand, if $\xi_{n-1}-\frac{2 A B C(G)}{n}<0$, then we can find a positive integer t, such that $\xi_{1}-\frac{2 A B C(G)}{n}=\cdots=\xi_{t}-\frac{2 A B C(G)}{n}=\gamma$ and $\xi_{t+1}-\frac{2 A B C(G)}{n}=\cdots=\xi_{n-1}-\frac{2 A B C(G)}{n}=-\gamma$. This gives that $\xi_{i}=\gamma+\frac{2 A B C(G)}{n}$, for $i=1,2, \ldots, t$ and $\xi_{i}=\frac{2 A B C(G)}{n}-\gamma$, for $i=t+1, \ldots, n-1$. Since $\|\tilde{\mathrm{L}}(G)\|_{F}^{2}-\left(\frac{2 A B C(G)}{n}\right)^{2}=\sum_{i=1}^{n-1}\left(\xi_{i}-\frac{2 A B C(G)}{n}\right)^{2}=\sum_{i=1}^{n-1}\left|\xi_{i}-\frac{2 A B C(G)}{n}\right|^{2}=(n-1)\left|\xi_{i}-\frac{2 A B C(G)}{n}\right|^{2}$, it follows that $\gamma=\sqrt{\frac{\|\tilde{\mathrm{L}}(G)\|_{F}^{2}-\left(\frac{2 A B C(G)}{n}\right)^{2}}{n-1}}$. Thus, it follows that equality occurs in (3.7) in this case
if and only if G has three distinct Laplacian $A B C$-eigenvalues, which are $0, \gamma+\frac{2 A B C(G)}{n}$ and $\frac{2 A B C(G)}{n}-\gamma$.

Conversely, it can be easily verified that equality holds in (3.7) for the graphs mentioned in the statement of the theorem.

References

[1] A.E. Brouwer, W.H. Haemers Spectra of Graphs, Springer New York 2010.
[2] G. Chartrand, P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill edition, New Delhi, 2006.
[3] J. Chen, X. Gou, Extreme atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 713-722.
[4] X. Chen, On ABC eigenvalues and ABC energy, Linear Algebra Appl. 544 (2018) 141-157.
[5] X. Chen, On extremality of ABC spectral radius of a tree, Linear Algebra Appl. 564 (2019) 159-169.
[6] X. Chen, A note on ABC spectral radius of graphs, Linear and MultiLinear Algebra (2020) http://doi.org/10.1080/03081087.2020.1748849.
[7] D.M. Cvetković, M. Doob, H. Sachs, Spectra of graphs. Theory and Applications, Pure and Applied Mathematics, 87. Academic Press, Inc. New York 1980.
[8] K.C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math. 65 (2010) 11811188.
[9] E. Estrada, The $A B C$ matrix, J. Math. Chem. 55 (2017) 1021-1033.
[10] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849-855.
[11] W. Fulton, Eigenvalues, invariant factors, highest weights and Schubert calculus, Bull. Amer. Math. Soc. (NS) 37 (2000) 209-249.
[12] B. Furtula, A. Graovac, D. Vukic̆ević, Atom-bond connectivity of trees, Discrete Appl. Math. 157 (2009) 2828-2835.
[13] Y. Gao, Y. Shao, The $A B C$ energy of trees, Linear Algebra Appl. 577 (2019) 186-201.
[14] M. Ghorbani, X. Li, M.H. Nezhaad, J. Wang, Bounds on the $A B C$ spectral radius and ABC energy of graphs, Linear Algebra Appl. 589 (2020) 145-164.
[15] I. Gutman, B. Furtula, Trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 68 (2012) 131-136.
[16] I. Gutman, J. Tos̆ović, S. Radenković, S. Marković, On atom-bond connectivity index and its chemical applications, Indian J. Chem. Sect. A: Inorg. Phys. Theor. Anal. 51 (2012) 690-694.
[17] R. Horn, C. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, New Delhi, 2012.
[18] S. Li, L. Wang, H. Zhang, On ABC Estrada index of graphs, Discrete Math. 344(11) (2021) 112586.
[19] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York 2012.
[20] X. Li, J. Wang, On the ABC spectral radius of unicyclic graphs, Linear Algebra Appl. 596 (2020) 71-81.
[21] V. Nikiforov, Beyond graph energy: norms of graphs and matrices, Linear Algebra Appl. 506 (2016) 82-138.
[22] N. Yang, B. Deng, X. Li, Laplacian ABC-eigenvalues of graphs MATCH Commun. Math. Comput. Chem. 85 (2021) 195-206.

