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Abstract

The traveling salesman problem (TSP) is one of the classic research topics in
the field of operations research, graph theory and computer science. In this
paper, we propose a generalized model of traveling salesman problem, denoted
by generalized traveling salesman path problem. Let G = (V,E, c) be a weighted
complete graph, in which c is a nonnegative metric cost function on edge set
E, i.e., c : E → R+. The traveling salesman path problem aims to find a
Hamiltonian path in G with minimum cost. Compared to the traveling salesman
path problem, we are given extra vertex subset V ′ and edge subset E′ in the
problem proposed in this paper; its goal is to construct a path which traverses all
the edges in E′ while only needs to visit each vertex in V ′ exactly once. Based
on integer programming, we give a mathematical model of the problem, and
design a 1+

√
5

2 -approximation algorithm for the problem by combining linear
programming rounding strategy and a special graph structure.

Keywords: TSP, Generalized traveling salesman path problem, Approximation
algorithm, LP rounding

1. Introduction

The traveling salesman problem (abbreviated as TSP), as well as its related
generalized model, is one of the hot research topics in many fields, such as
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operations research, graph theory, and computer science [1, 3, 13, 19, 23, 26].
In the TSP, a salesman must visit several cities exactly once and return to the
city where he starts. Traveling between different cities requires a certain cost,
the salesman wants the total traveling cost to be minimized. The traveling
salesman problem can be defined by graph theory as follows: given a complete
graph G = (V,E) with an edge-weight (or edge-cost) function c : E → R+,
the object is to find a Hamiltonian cycle with minimum cost in G. That is,
TSP is equivalent to finding the minimum-weighted Hamiltonian cycle on the
corresponding weighted undirected graph, i.e., the cycle which passes through all
vertices once and has the smallest sum of weights. Dantzig et al. [8] proposed the
earliest mathematical programming formulation of TSP and designed a feasible
solution for the instance consisting of 49 cities in the America.

Unfortunately, the traveling salesman problem is NP-hard even if the cost
function satisfies the metric property [23]. Heuristic algorithms and approxi-
mation algorithms are commonly used to solve this kind of problem. Heuristic
algorithms can usually construct a feasible solution, but cannot theoretically char-
acterize the quality of the solution. In this paper, we mainly focus on designing
approximation algorithm, whose performance is measured by the approximation
ratio.

For metric TSP (i.e., the edge-cost function is metric), the most well-
known algorithm is the 1.5-approximation algorithm independently designed by
Christofides and Serdjukov [6, 35]. This algorithm has not been improved for
more than forty years, until Karlin et al. proposed a (1.5 − ε)-approximation
algorithm in which ε is a fairly small constant greater than 10−36 [22]. For TSP
under Euclidean [4], low-genus [9, 10] or planar metrics [5, 17, 24], polynomial-
time approximation schemes (PTAS) have been found. With regard to negative
results, it has been proved that there is no polynomial-time algorithm with an
approximation ratio better than 220

219 for this problem unless unless P=NP [29].
Furthermore there is no polynomial-time approximation algorithm with constant
ratio if the edge-cost function doesn’t satisfy the triangle inequality, under the
same assumption [30].

The traveling salesman problem with the special metric cost function has
also received extensive attention, such as the graph-TSP. In the graph-TSP, the
cost of an edge is defined by the minimum number of edges along the path of its
two endpoints in the underlying graph. Gharan, Saberi and Singh [15] designed
an approximation algorithm with ratio (1.5− ε) in which ε > 0. Their algorithm
framework is quite similar to Christofides’ algorithm, but they used different
strategies for selecting spanning trees. Specifically, they first proposed the linear
programming relaxation of the problem, and then selected the spanning tree
randomly by sampling from the maximum entropy distribution defined by linear
programming relaxation, except in some cases where the solution of LP is almost
integral. Mömke and Svensson [27] proposed a 1.461-approximation algorithm
based on a new use of matching that allows certain edges to be removed from the
matching. Mucha [28] proposed an improved analysis of the method proposed
by Mömke and Svensson, then the bound of the approximation ratio is proved
to be 13

9 . Besides, for the travelling salesman path problem in graphic metrics,
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he proposed an upper bound of 19
12 + ε in which ε is an arbitrary constant greater

than 0. For the graph-TSP and other related problems, Sebö and Vygen [34]
obtained several new results. Particularly, they designed a better algorithm for
graph-TSP with an approximation ratio of 1.4.

The traveling salesman path problem (TSPP) is another important general-
ization model of TSP, many scholars have studied this problem and obtained a
series of achievements [14, 20, 21, 25, 31, 33, 37]. Compared with TSP, in this
problem we are given an additional origin and destination, the goal is to find
a path from the starting point to the destination which passes through all the
other cities exactly once with minimum cost. Hoogeveen [21] presented the first
constant factor approximation algorithm for TSPP, where the approximation
ratio of this algorithm is 5

3 . AN et al. [2] improved the algorithm for the first
time in nearly two decades, and combining the liner programming relaxation
with a special kind of graph structure (called narrow cut), they designed a
1+
√
5

2 -approximation algorithm for the TSPP. A series of exciting progress has
been made in approximation algorithms for TSPP based on the critical chain
structure of narrow cuts [16, 31, 32, 37, 38]. These developments culminated in
Zenklusen’s recent breakthrough results [39]. Combining the idea of dynamic
programming introduced by Traub and Vygen [37] with Karger’s breakthrough
in approaching the minimum number of cuts, Zenklusen [39] broke through the
limitations of the concept of narrow cuts and designed a better algorithm based
on this result, with an approximation ratio of 1.5.

Let G = (V,E, c) be the weighted complete graph defined above, V ′ and
E′ represent the subset of vertices and edges, respectively. In this paper, we
consider the problem defined as follows: given two distinct vertices s (source)
and t (terminal), the goal is to construct an s-t path with minimum sum of
weights that traverses all the edges in E′ and visits each vertex of V ′ exactly
once. We refer to this problem as the generalized traveling salesman path
problem, which is abbreviated as GTSPP for convenience. Based on the linear
programming relaxation of this problem, we propose a spanning tree selection
strategy. After making appropriate modifications to the spanning tree, we
can construct a feasible solution to the original problem. Based on the above
strategies, we design an approximation algorithm for GTSPP. In the process
of analyzing the approximation ratio of the algorithm, we further discuss the
related characteristics of graph structure, especially the narrow cut. At the
beginning, we prove that the approximation ratio of this algorithm is 1.6577,
and we subsequently improved the approximation ratio to 1+

√
5

2 by further
observation and using more rigorous analysis which improves our previous work
[36].

The remainder of this paper is organized as follows. In Section 2, we present
some preliminary conclusions and LP model of GTSPP. We design an algorithm
to solve GTSPP and analyze it in Section 3. In Section 4, we propose a tighter
analysis on the approximation ratio. We present our conclusions in Section 5.
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2. Preliminaries

By investigating the structure characteristics of this problem, we characterize
the sufficient and necessary conditions for the existence of feasible solutions:
feasible solutions exist if and only if E′ consists of disjoint paths and the degree
of s and t in E′ is at most 1. Therefore, edges in E \ E′ associated with an
internal vertex in one of these paths can never be used, thus all such edges can
be removed, and each path in E′ can be treated as an edge from the starting
point to the end point. In the presence of feasible solutions, we may wish to
assume that the edges in E′ are pairwise disjoint.

Since the edge-weight function satisfies triangle inequality, then vertices that
are neither in V ′, nor s or t, or endpoints in E′ can be deleted. Otherwise
we can shortcut any tour that visits such vertices without increasing the total
cost. Based on the above observations, we construct a new graph G1 = (V1, E1)
and consider solving the original problem on it. G1 = G[V1] is the induced
subgraph of G on V1 in which V1 = V ′ ∪ V (E′)∪ {s, t}. In order to facilitate the
analysis of the feasibility of the algorithm in the following, it can be assumed that
{s, t} ∩ V (E′) = ∅. This assumption is reasonable. According to the symmetry,
we might as well take s as an example to explain, if s is the endpoint of one edge
in E′, that is, there is an edge e ∈ E′, and its endpoints are s and s1, then any
feasible solution of GTSPP can be divided into two parts: s-s1 and an s1-t path
that visits each vertex of V ′ exactly once and traverses E′ \ {e1}. Thus, we just
need to find the s1-t path above in this case.

Before presenting the model and algorithm of TSPP, we first introduce some
notations and terminology used in this paper. For a partition (U, Ū) in which
U ⊂ V , the corresponding set of cut edges is denoted by δ(U) := {{u, v}|u ∈
U, v ∈ Ū}. The partition (U, Ū) is called an s-t cut if |U ∩ {s, t}| = 1; otherwise
it is called the non-separating cut.

Inspired by the Held-Karp relaxation of TSP and TSPP, we propose the
LP-relaxation of GTSPP as follows:

min
∑
e∈E1

cexe

s.t.
∑
e∈δ(S)

xe ≥ 1 ∀S ( V1, |S ∩ {s, t}| = 1

∑
e∈δ(S)

xe ≥ 2 ∀S ( V1, |S ∩ {s, t}| 6= 1, S 6= ∅

∑
e∈δ({v})

xe = 2 ∀v ∈ V1 \ {s, t}

∑
e∈δ({s})

xe =
∑

e∈δ({t})

xe = 1

xe = 1 ∀e ∈ E′

xe ≥ 0 ∀e ∈ E1 \ E′,

(1)

The first and second constraints ensure that there are no sub-path and sub-tour.
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Though this LP-relaxation contains exponential multiple constraints, we can still
solve it in polynomial time by using the ellipsoid method in which the separation
oracle is a minimum cut problem [18].

Definition 1. Let Q and J be the vertex subset and edge subset, respectively.
For the spanning subgraph G′ = (V, J), if its set of odd-degree vertices happens
to be Q, then J is a Q-join.

In fact, the matching with vertex set Q is a special kind of Q-join (all vertices
have degree 1). To illustrate the concept of Q-join more intuitively, we present a
simple instance in Figure 1:

Figure 1: An instance of Q-join, Q = {v1, v3, v4, v5}.

Definition 2. (wrong-degree set) For a spanning tree T and two specified distinct
vertices s and t, the wrong-degree set is defined as odd(T )4 {s, t} := (odd(T ) \
{s, t})∪({s, t}\odd(T )), where odd(T ) denotes the set of vertices with odd degree
in T .

During the analysis of the algorithm, we need to analyze the relationship
between the weight of Q-join and the optimal value of (1), for which we give the
following terms in advance:

Definition 3. [12] (Q-join polytope)

P ↑Q−join := {y ∈ RE≥0|y(δ(C)) ≥ 1 ∀C ⊂ V and |C ∩Q| is odd}.

Given a vertex subset Q, J is assumed to be the minimum Q-join, then
∀y ∈ P ↑Q−join, c(J) ≤ c(y) holds.

Definition 4. (spanning tree polytope [11]) The spanning tree polytope of
G = (V,E), denoted by PST (G), can be defined as follows:


x(E) = |V | − 1,

x(E[S]) ≤ |S| − 1,∀S ⊂ V, S 6= ∅
x ∈ RE≥0,

(2)

where E[S] represents the set of edges whose end-vertices are both in S.
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Lemma 5. Let D represent the feasible region of (1), then we can obtain that
D ⊂ PST (G1).

Proof. Let x be a feasible solution of (1), i.e., x ∈ D, thus it can be derived that

x(E1) =
1

2

∑
v∈V1

dG1
(v)

=
1 + 1 + 2(|V1| − 2)

2
= |V1| − 1

and

x(E1[S]) =
1

2

∑
v∈S

dG1
(v)−

∑
e∈δ(S)

xe

 ,∀S ⊂ V1, S 6= ∅.

If |S ∩ {s, t}| = 1, then

x(E1[S]) =
1

2

∑
v∈S

dG1
(v)−

∑
e∈δ(S)

xe)


≤ 1

2
[1 + 2(|S| − 1)− 1]

= |S| − 1;

else , we have that

x(E1[S]) =
1

2

∑
v∈S

dG1
(v)−

∑
e∈δ(S)

xe)


≤ 1

2
(2|S| − 2)

= |S| − 1.

Let x be a given element of D, it can be decomposed into a convex combination
of several spanning trees of G1, i.e., x :=

∑k
i=1 γiχTi in which {T1, T2, · · · , Tk}

is the set of spanning tree of G1, k is bounded by a polynomial,
∑k
i=1 γi = 1,

and γi ≥ 0 ∀i ∈ [k]. Based on the relevant conclusions in the literature [7, 18], it
can be derived that such a convex combination can be found in polynomial time.

In addition, according to the characteristics of the problem, we have the
following conclusion for the spanning trees in the above convex combination of
x:

Lemma 6. ∀e ∈ E′ and 1 ≤ i ≤ k, χTi(e) = 1 holds.
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Proof. Let x :=
∑k
i=1 γiχTi , since ∀x ∈ D and for every edge e in E′, xe = 1

holds. Thus for each e ∈ E′ we have
∑k
i=1 γiχTi(e) = 1. Besides, 0 ≤ χTi(e) ≤

1 ∀e ∈ E′, and hence
k∑
i=1

γiχTi(e) ≤
k∑
i

γi = 1,

implying that for each e ∈ E′ and i ∈ [k], χTi(e) = 1.

3. Algorithm and analysis

The framework of algorithms to solve TSP or TSPP is usually divided into
three steps: in the first step, the goal is to construct a cost-bounded spanning
tree. In the second step, edges are added to the spanning tree so as to construct
an Euler tour or trail (the same edge appearing more than once is denoted as a
multiple edge). Some vertices may be visited multiple times in the Euler tour or
trail obtained in the second step, so the third step uses the shortcut strategy
to convert Euler tour or trail into a Hamiltonian cycle or path. Notice that in
the framework above, the operation of adding edges only occurs in the first and
second steps, and the third step only deletes edges. The main difference between
GTSPP and classical TSPP is that in GTSPP, feasible solutions are not free
to select edges that go through, but must traverse the edges in E′. Therefore,
when designing the algorithm to solve GTSPP based on the above framework, it
is necessary to ensure that after completing the first and second steps, the edges
in E′ have been included in the Euler tour or trail. It is required that the edges
in E′ are not removed after performing the shortcut operation in the third step
(this can be done by using the strategy shown in Figure 2).

A natural doubt is whether Zenklusen’s algorithm [39] can be called upon to
tackle this generalized problem and get the same approximation ratio. Unfortu-
nately, the answer is no due to the graphically structured nature of the problem
itself. Specifically, in the Zenklusen algorithm, a special feasible solution y is
constructed according to x∗, the optimal solution of TSPP’s linear programming
relaxation, then the minimum spanning tree on the support of y (denoted by T )
is constructed. If the algorithm is called directly, there is no guarantee that the
above feasible solution y can be found in polynomial time, nor that the edges in
E′ will be selected by T .

Therefore, in this section we design an algorithm that is guaranteed to output
a feasible solution for GTSPP but with an approximation ratio greater than 1.5.

3.1. Approximation algorithm for GTSPP
The algorithm we designed still uses the algorithm framework for TSP and

TSPP: firstly, we construct a spanning tree, and then add some edges to modify
the spanning tree to make it become an Euler trail. Finally, we use the shortcut
strategy to obtain a Hamilton paths satisfying the constraints. The details are
as follows:
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Algorithm 1
Input:
1: An undirected graph G = (V,E) with metric edge-cost function c.
2: Source s and terminal t.
3: Required vertex subset V ′ ⊆ V and edge subset E′ ⊆ E.
Output: A path satisfying the constraints mentioned-above.
4: begin:
5: Construct an induced subgraph of G, G1 := G[V1] in which V1 = V (E′) ∪
{s, t} ∪ V ′.

6: Solve the LP-relaxation (1) and let x∗ denote the optimal solution.
7: Decompose x∗ into a convex combination of polynomial number of spanning

trees {T1, T2, · · · , Tk}, that is, x∗ =
∑k
i=1 γiχTi .

8: Sample the spanning tree Ti with probability γi and let T represent the final
selected spanning tree.

9: Find the wrong-degree set of T , denote by Q.
10: Compute a minimum Q-join J .
11: Perform the shortcut operation on the Eulerian s-t trail in T ∪ J , denote

the resulting path by P .
12: output P .
13: end

Lemma 7. Algorithm 1 will produce a feasible solution of GTSPP.

Proof. In GTSPP, a feasible solution will traverse the edges in E′ and visit each
vertex in V ′ exactly once. Since P is an s-t Hamiltonian path of G1, thus it
must visit each vertex of G1 exactly once. Furthermore, V ′ is a subset of V (G1),
so P must visit each vertex in V1 exactly once.

The next step is to prove that P traverse the edges in E′. Note that, the
Eulerian s-t trail in T ∪ J goes through each edge in E′ exactly once. So the
key is to prove that there is an appropriate shortcut operation which guarantees
that the edges in E′ will not be deleted in Step 11 of Algorithm 1.

If no edge is removed after performing the Step 11 of Algorithm 1, that is,
there is no cycle in T ∪ J , then P is exactly the Eulerian s-t trail, so all edges in
E′ are traversed by it once. Otherwise, suppose there are several cycles in T ∪ J .
Based on the reasonable assumptions we we made in Section 2: edges in E′ are
pairwise disjoint and {s, t} ∩ V (E′) = ∅, the cycles in T ∪ J can exist only in
the two forms shown in Figure 2:
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Figure 2: An example illustrating the case when the cycle in T ∪ J exists, in which the edges
in E′ are marked in purple.

In the left instance, we preform the shortcut and get a subpath v1-v2-v3-v4-
· · · -vq-vq+1; in the right instance, we preform the shortcut and get a subpath
v1-v2-v4-· · · -vq-v3-vq+1. For both two instances, we construct a feasible subpath
via shortcut.

3.2. Analysis of approximation ratio
In this subsection, we conduct a comprehensive analysis of the performance

of Algorithm 1 and finally prove that its approximation ratio is no more than
9−
√
33

2 . Since the edge-cost function c is metric, we have that c(P ) ≤ c(T ∪ J).
Therefore, we consider the upper bounds of the cost of T and J to analyze the
relationship between the cost of P and the optimal value of (1). According to
the selection strategy of T , it can be derived that

E[c(T )] =

k∑
i=1

γic(Ti) = c(x∗).

Thus the next task is to analyze the cost of the minimum Q-join J , while it is
difficult to directly analyze the cost of J . Motivated by the work of An et al.
[2], we give the upper bound of the cost of J by analyzing the cost of a special
element in Q-join polytope, which is composed of x∗ and χT . In order to find an
element in Q-join polytope with desired properties, we need to use the structural
characteristics of narrow cut, which is defined as follows:

Definition 8. [2] Let (U, Ū) be an s-t cut, if
∑
e∈δ(U) x

∗
e < 1 + τ for 0 < τ ≤ 1,

then (U, Ū) is called a τ -narrow cut.

In analyzing the cost of J , we take advantage of the concept of Q-join
polytope. But in defining this concept, we use only those sets whose subsets
that intersect Q contains odd number of vertices. For these sets, the following
property holds:
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Lemma 9. [2] Let (U, Ū) be an s-t cut and |U ∩ Q| ≡ 1( mod 2), then the
inequality |δ(U) ∩ T | ≥ 2 holds.

For an s-t cut (U, Ū), the probability that |U ∩ Q| ≡ 1( mod 2) can be
formulated by the following lemma.

Lemma 10.
Pr[|U ∩Q| ≡ 1( mod 2)] ≤

∑
e∈δ(U)

x∗e − 1.

Proof. Let |T | represent the number of edges in T , |δ(U) ∩ T | = X and p(x)
denote the probability function of the random variable X, then we have that

E[X]− 1 =

|T |∑
K=0

K · p(X = K)−
|T |∑
K=0

p(X = K)

=

|T |∑
K=0

(K − 1) · p(X = K),

|δ(U) ∩ T | ≥ 1 always holds since T is a spanning tree of G1, thus

E[X]− 1 =

|T |∑
K=1

(K − 1) · p(X = K)

=

|T |∑
K=2

(K − 1) · p(X = K)

≥
|T |∑
K=2

p(X = K)

= Pr[X ≥ 2].

As Lemma 9 states, if |U ∩Q| ≡ 1( mod 2) then |δ(U) ∩ T | ≥ 2, implying

Pr[|U ∩Q| ≡ 1( mod 2)] ≤ Pr[X ≥ 2]

≤ E[X]− 1

=
∑

e∈δ(U)

x∗e − 1.

Since for any edge e, the probability that it belongs to T equals to x∗e, thus the
last equation holds.

Initially, we set y := αx∗ + βχT . Let (U, Ū) be a cut such that |U ∩ Q| is
odd, then y(δ(U)) ≥ 2α+ β if (U, Ū) is the non-separating cut; otherwise, we
have that y(δ(U)) ≥ α

∑
e∈δ(U) x

∗
e + 2β. In order to prove that y is in the Q-join

polytope, it is necessary to ensure that y(δ(U)) ≥ 1 in the above two cases which
can be achieved if both 2α+ β ≥ 1 and α

∑
e∈δ(U) x

∗
e + 2β ≥ 1 hold. If we set
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α = β = 1
3 , then neither 2α+β nor

∑
e∈δ(U) x

∗
e+2β is less than 1, this is because∑

e∈δ(U) x
∗
e ≥ 1. However, the approximation ratio of the algorithm is not good

enough at this time. In the above analysis, when partition (U, Ū) separating s
and t, we consider the worst case, that is,

∑
e∈δ(U) x

∗
e = 1. But in fact this case

is not necessary to consider, otherwise E[|δ(U) ∩ T |] =
∑
e∈δ(U) x

∗
e = 1, which

implies |U ∩Q| is even (Lemma 9), a contradiction.
A natural thought is whether it is possible to conduct a more detailed analysis

of the assignment criteria of α and β to ensure that the value of 2α+ β is still
not less than 1. Also, make α

∑
e∈δ(U) x

∗
e + 2β can be greater than or equal to 1

after modification (may not need to be modified).
Now we perform a specific analysis according to the value range of

∑
e∈δ(U) x

∗
e.

If (U, Ū) is a large-weighted odd s-t cut, then α
∑
e∈δ(U) x

∗
e + 2β ≥ 1 still holds

after appropriately increasing α and decreasing β. For the odd s-t cut (U, Ū)
with low weights, we may need to add small fractions of it so as to ensure
y ∈ P ↑Q−join. It should be noted that an edge may be contained by different s-t
cuts, we need to handle this carefully. Using the concept of τ -narrow cut, these
low-weighted s-t cuts are shown to be "almost" disjoint. This provides great
convenience for us to modify y.

An, Kleinberg, and Shmoys [2] proved that the τ -narrow cuts form a chain,
and there exists a partition {Mi}ki=1 of V1 satisfying:

1. M1 = {s}, Mk = {t};
2. {U |(U, Ū) is τ -narrow, s ∈ U}={Ui|1 ≤ i < k} in which Ui := ∪ij=1Mj .

Figure 3: An example illustrating the chain structure of τ -narrow cuts.

Let M≤i := ∪ij=1Mj , M≥i = ∪kj=iMj and Li := E(Mi,M≥i+1), it is obvious
that Li’s are disjoint and Li ⊆ δ(Ui) for all i. For each τ -narrow cut (Ui, Ūi),
they propose a lower bound on

∑
e∈Li x

∗
e as follows:

∑
e∈Li

x∗e >
1− τ +

∑
e∈δ(Ui) x

∗
e

2
≥ 1− τ

2
.
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For each τ -narrow cut, let h∗Ui denote the indicator vector:

(h∗Ui)e =

{
x∗e, if e ∈ Li;
0, otherwise.

We present the first result for the approximation ratio analysis of Algorithm 1.

Theorem 11. The expectation of the cost of P is no more than 1.6577 times
the optimal value of (1), i.e, E[c(P )] ≤ 1.6577c(x∗).

Proof. Set

y := αx∗ + βχT +
∑

i:|Ui∩Q| is odd, 1≤i<k

1− (α+ 2β)

1− 0.5τ
h∗Ui ,

where α = 0.35, β = 0.3 and τ = 1−2β
α − 1. Then we show that y ∈ P ↑Q−join. It

is obvious that y ≥ 0, besides y(δ(U)) is not less than 1 for non-separating cut
(U, Ū) since 2α+ β = 1 still holds.

Suppose (U, Ū) is an s-t cut such that |U ∩Q| is odd, if
∑
e∈δ(U) x

∗
e ≥ 1 + τ ,

then

y(δ(U)) ≥ α
∑

e∈δ(U)

x∗e + β|δ(U) ∩Q|

≥ α(1 + τ) + 2β

= 1.

Else,
∑
e∈δ(U) x

∗
e < 1 + τ , then

y(δ(U)) ≥ α
∑

e∈δ(U)

x∗e + β|δ(U) ∩Q|+ 1− (α+ 2β)

1− 0.5τ
h∗U (δ(U))

≥ α+ 2β +
1− (α+ 2β)

1− 0.5τ
(1− 0.5τ)

= 1.

So we have proved that y ∈ P ↑Q−join. The next task is to analyze the cost of P .

E[c(P )] ≤ E(c(T )) + E[c(J)]

≤ E[c(T )] + E[c(y)]

= E[c(T )] + αE[c(x∗)] + βE[c(χT )] + E

c
 ∑
i:|Ui∩Q| is odd, 1≤i<k

A · h∗Ui


= (1 + α+ β)c(x∗) + c

(
k−1∑
i=1

Pr[|Ui ∩Q| is odd] ·A · h∗Ui

)

≤ (1 + α+ β)c(x∗) + τ ·A · c

(
k−1∑
i=1

h∗Ui

)
≤ (1 + α+ β + τ ·A)c(x∗),
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where A := 1−(α+2β)
1−0.5τ .

The third inequality holds based on Lemma 10, this is because for every
τ -narrow cut (U, Ū), the probability that |U ∩Q| is odd is less than τ . The last
inequality is obvious from the disjointness of Li’s.

Substitute the values of α, β and τ into the above formula, we get that:

E[c(P )] ≤ 1.6577c(x∗).

Next, our goal is to analyze the algorithm more carefully to get an improved
ratio. Different from the previous analysis, we use

1−τ+
∑
e∈δ(Ui)

x∗e
2 to represent

the lower bound of
∑
e∈Li x

∗
e, rather than 1 − τ

2 . Then we can improve the
approximation ratio as follows:

Theorem 12. E[c(P )] ≤ 9−
√
33

2 c(x∗).

Proof. Set

y := αx∗ + βχT +
∑

i:|Ui∩Q| is odd, 1≤i<k

1− (α
∑
e∈δ(Ui) x

∗
e + 2β)

bi
h∗Ui ,

where α = 33−
√
33

66 , β =
√
33
33 and bi :=

1−τ+
∑
e∈δ(Ui)

x∗e
2 .

We can prove that y ∈ P ↑Q−join in a similar way to that in Theorem 11, while
there is no fundamental change in the proof, so we omit it here.

For the cost of P , it can be derived that

E[c(P )] ≤ (1 + α+ β)c(x∗) + c

(
k−1∑
i=1

Pr[|Ui ∩Q| is odd]
1− (α

∑
e∈δ(Ui) x

∗
e + 2β)

bi
h∗Ui

)

≤ (1 + α+ β)c(x∗) + c

(
k−1∑
i=1

(x∗(δ(Ui))− 1)
1− (α

∑
e∈δ(Ui) x

∗
e + 2β)

bi
h∗Ui

)

≤ (1 + α+ β)c(x∗) +

[
max
0≤η≤τ

(
η

1− (2β + α(1 + η))

1− 0.5τ + 0.5η

)]
c

(
k−1∑
i=1

h∗Ui

)

≤
(

1 + α+ β + max
0≤η≤τ

(
η

1− (2β + α(1 + η))

1− 0.5τ + 0.5η

))
c(x∗).

Let R(η) := η 1−(2β+α(1+η))
1−0.5τ+0.5η ; then utilizing relevant knowledge in mathematical

analysis, R(η) takes its maximum value at

η0 =
1

α
(1− 3α− 2β +

√
(−2α)(1− 3α− 2β)),

hence

E[c(P )] ≤ (11α+ 5β − 1− 4
√

(−2α)(1− 3α− 2β))c(x∗)

=
9−
√

33

2
c(x∗).

13



4. A tighter analysis of approximation ratio

In subsection 3.2, in order to ensure that y ∈ P ↑Q−join, Li’s are selected to
supplement the odd s-t cut (U, Ū) with small weights. There are two criteria for
the selection of edge set in Li’s, one is that its weight needs to be large enough,
that is, not less than a threshold; and the other is that any two edge sets do not
intersect.

In this section, by appropriately relaxing the requirements of the second
criterion, we are able to select {ĥ∗Ui} with higher weights.

Lemma 13. There exists a set of indicator function {ĝ∗Ui}
k−1
i=1 such that

• ĥ∗Ui ∈ R+
E1
∀i ∈ {1, 2, · · · , k − 1};

•
∑k−1
i=1 ĥ

∗
Ui
≤ x∗;

• ĥ∗Ui(δ(Ui)) ≥ 1 ∀i ∈ {1, 2, · · · , k − 1}.

The proof is similar to the Lemma 3.12 of [2], so we omit it here. Then based
on Lemma 13, we can obtain the desired approximation ratio.

Theorem 14. E[c(P )] ≤ 1+
√
5

2 c(x∗).

Proof. Set

y := αx∗ + βχT +
∑

i:|Ui∩Q| is odd, 1≤i<k

[1− (αx∗(δ(Ui)) + 2β)]ĝ∗Ui ,

where α =
√
5
5 and β = 5−2

√
5

5 .
By the same argument as Theorem 12, we can prove that y is in Q-join

polytope. For a τ -narrow cut (U, Ū) with |U ∩Q| odd, we have that:

y (δ(U)) ≥ α
∑

e∈δ(Ui)

x∗e + β|δ(U) ∩Q|+

1−

α ∑
e∈δ(Ui)

x∗e + 2β

 ĥ∗Ui(δ(U))

≥ α
∑

e∈δ(Ui)

x∗e + 2β +

1−

α ∑
e∈δ(Ui)

x∗e + 2β

 · 1
= 1.

14



Now, we aim to analyze the cost of P .

E[c(P )] ≤ (1 + α+ β)c(x∗) + c

k−1∑
i=1

Pr [|Ui ∩Q| is odd]

1−

α ∑
e∈δ(Ui)

x∗e + 2β

 ĥ∗Ui


≤ (1 + α+ β)c(x∗) + c

k−1∑
i=1

 ∑
e∈δ(Ui)

x∗e − 1

1−

α ∑
e∈δ(Ui)

x∗e + 2β

 ĥ∗Ui


≤ (1 + α+ β)c(x∗) +

{
max
0≤η≤τ

η [1− (2β + α(1 + η))]

}
c

(
k−1∑
i=1

ĥ∗Ui

)

≤ (1 + α+ β)c(x∗) +

{
max
0≤η≤τ

η[1− (2β + α(1 + η))]

}
c(x∗).

According to the calculation,

max
0≤η≤τ

η[1− (2β + α(1 + η))] = max
0≤η≤τ

αη(τ − η)

=
(1− α− 2β)2

4α
.

Then we obtain

E[c(P )] ≤
(

1 + α+ β +
(1− α− 2β)2

4α

)
c(x∗)

=
1 +
√

5

2
c(x∗).

5. Conclusion

In this paper, we introduce the generalized traveling salesman path problem
and propose its linear programming relaxation. Based on the LP-relaxation
and the narrow cuts, we design an algorithm for GTSPP and prove that its
approximation ratio is 1+

√
5

2 . Compared with the traveling salesman path
problem, there is still some gap in the approximation ratio, and it is our future
work to reduce or even eliminate this gap.
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