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Abstract

Let G be a vertex-colored connected graph. A subset X of the vertex-set of G

is called proper if any two adjacent vertices in X have distinct colors. The graph

G is called proper vertex-disconnected if for any two vertices x and y of G, there

exists a vertex subset S of G such that when x and y are nonadjacent, S is proper

and x and y belong to different components of G − S; whereas when x and y are

adjacent, S + x or S + y is proper and x and y belong to different components of

(G− xy)− S. For a connected graph G, the proper vertex-disconnection number of

G, denoted by pvd(G), is the minimum number of colors that are needed to make

G proper vertex-disconnected.

In this paper, we firstly characterize the graphs of order n with proper vertex-

disconnection number k for k ∈ {1, n − 2, n − 1, n}. Secondly, we give some suf-

ficient conditions for a graph G such that pvd(G) = χ(G), and show that almost

all graphs G have pvd(G) = χ(G) and pvd(G) = χ(G). We also give an equiv-

alent statement of the famous Four Color Theorem. Furthermore, we study the

relationship between the proper disconnection number pd(G) of G and the prop-

er vertex-disconnection number pvd(L(G)) of the line graph L(G) of G. Finally,

we show that it is NP-complete to decide whether a given vertex-colored graph is

proper vertex-disconnected, and it is NP-hard to decide for a fixed integer k ≥ 3,

whether the pvd-number of a graph G is no more than k, even if k = 3 and G is a

planar graph with ∆(G) = 12. We also show that it is solvable in polynomial time

to determine the proper vertex-disconnection number for a graph with maximum

degree less than four.
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1 Introduction

All graphs considered in this paper are finite, simple, undirected and nontrivial. Let

G = (V (G), E(G)) be a connected graph with vertex-set V (G) and edge-set E(G). For a

vertex v ∈ V , the open neighborhood of v in G is the set NG(v) = {u ∈ V (G)|uv ∈ E(G)}
and the degree of v is d(v) = |NG(v)|, and the closed neighborhood is the set NG[v] =

NG(v) ∪ {v}. If there is no confusion, we use N(x) and N [x] to denote them. The

minimum degree and maximum degree of G are denoted by δ(G) and ∆(G), respectively.

For a vertex v and vertex subset S of V (G), we simply let S + v = S ∪ {v}. A clique

of G is a set Q of vertices of G such that every pair of vertices of Q are adjacent. The

maximum size of a clique of G is called the clique number of G, denoted by w(G). For

any notation and terminology not defined here, we follow those used in [8].

For a graph G and a positive integer k, let c : V (G) → [k] be a vertex-coloring,

or simply a coloring, of G, where and in what follows [k] denotes the set {1, 2, ..., k} of

integers. Similarly, an edge-coloring of a graph G is an assignment of colors to the edges of

G. A coloring of G is proper if no two adjacent vertices in G are assigned the same color.

For a coloring c, let Γ(c) be the set of colors used in c and |Γ(c)| be the number of colors

of c. A coloring c is a k-coloring if |Γ(c)| = k. A graph is k-colorable if it has a proper

k-coloring. The chromatic number of G, denoted by χ(G), is the minimum number k for

which the graph G is k-colorable. If χ(G) = k, the graph G is said to be k-chromatic.

In a vertex-colored graph G, a set of vertices of G is rainbow if any two vertices of the

set have different colors and proper if any two adjacent vertices of the set have different

colors. In an edge-colored graph G, a set of edges of G is rainbow if any two edges of

the set have different colors and proper if any two adjacent edges of the set have different

colors.

For a connected graph G, let x and y be any two vertices of G. If x and y are

nonadjacent, then an x-y vertex-cut is a subset S of V (G) such that x and y belong to

different components of G−S. If x and y are adjacent, then an x-y vertex-cut is a subset

S of V (G) such that x and y belong to different components of (G−xy)−S. An edge-cut

of a graph G is a set R of edges of G such that G−R is disconnected.

From Menger’s Theorem, we learn that paths are in the same position as cuts in the

study of graph connectivity. Chartrand et al. in [12] introduced the concept of rainbow

connection of graphs. Ten years later, Chartrand et al. [11] introduced the concept of

rainbow disconnection of graphs, which is a dual concept of the rainbow connection of

graphs. An edge-coloring is called a rainbow disconnection coloring of G if for every

two distinct vertices of G, there exists a rainbow edge-cut in G separating them. For a

connected graph G, the rainbow disconnection number of G, denoted by rd(G), is the

smallest number of colors required for a rainbow disconnection coloring of G. For more
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results about the rainbow disconnection of graphs, we refer to [2, 5, 6, 7].

Inspired by the concept of rainbow disconnection of graphs, the authors of [4] in-

troduced the concept of rainbow vertex-disconnection of graphs. For a vertex-colored

connected graph G, let x and y be two vertices of G. An x-y rainbow vertex-cut is an

x-y vertex-cut S such that if x and y are nonadjacent, then S is rainbow; if x and y are

adjacent, then S + x or S + y is rainbow. A vertex-colored graph G is called rainbow

vertex-disconnected if for any two distinct vertices x and y of G, there exists an x-y rain-

bow vertex-cut. In this case, the vertex-coloring is called a rainbow vertex-disconnection

coloring of G. For a connected graph G, the rainbow vertex-disconnection number of G,

denoted by rvd(G), is the minimum number of colors that are needed to make G rainbow

vertex-disconnected. We refer the reader to [13, 22] for more relevant results.

Andrews et al. [1] and Borozan et al. [9] independently introduced the concept of

proper connection of graphs. Inspired by the concept of rainbow disconnection and prop-

er connection of graphs, the authors of [3] and [13] introduced the concept of proper

disconnection of graphs. An edge-colored graph is called proper disconnected if for each

pair of distinct vertices of G, there exists a proper edge-cut separating them. At this

time, the edge-coloring is called a proper disconnection coloring of G. For a connected

graph G, the proper disconnection number of G, denoted by pd(G), is defined as the

minimum number of colors that are needed to make G proper disconnected. In addition,

monochromatic versions of above concepts have also been introduced, and we refer reader

to [19, 20, 21].

As shown above, in the studies of rainbow (vertex-)disconnection and proper discon-

nection, people studied the colored connectivity of graphs by rainbow edge(vertex)-cut

and proper edge-cut. All these parameters can be regarded as some kinds of new chro-

matic numbers, compared to the classical chromatic number. In order to strength the

research of colored connectivity of graphs, as well as try to explore the difference between

the new chromatic numbers and the classical chromatic number, we naturally turn our

attention to proper vertex-cut and introduce the concept of proper vertex-disconnection

in this paper.

For a vertex-colored connected graph G, let x and y be two vertices of G. An x-y

proper vertex-cut is an x-y vertex-cut S such that if x and y are nonadjacent, then S is

proper; if x and y are adjacent, then S+x or S+y is proper. A vertex-colored graph G is

called proper vertex-disconnected if for any two vertices x and y of G, there exists an x-y

proper vertex-cut. In this case, the vertex-coloring is called a proper vertex-disconnection

coloring of G, denoted by pvd-coloring for short. For a connected graph G, the proper

vertex-disconnection number (abbreviated as pvd-number) of G, denoted by pvd(G), is

the minimum number of colors that are needed to make G proper vertex-disconnected. A

graph G is called k-proper vertex-disconnection colorable if pvd(G) ≤ k. A pvd-coloring
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of G with pvd(G) colors is called an optimal pvd-coloring of G.

This paper is organized as follows. In Section 2, we provide some fundamental results

that will be used in later discussion, and also characterize the graphs of order n with pvd-

number k for k ∈ {1, n−2, n−1, n}. In Section 3, we give some sufficient conditions for a

graphG such that pvd(G) = χ(G) and prove that almost all graphsG have pvd(G) = χ(G)

and pvd(G) = χ(G). Furthermore, we present an equivalent assertion of the Four Color

Theorem. In Section 4, we study the relationship between pd(G) and pvd(L(G)). In

Section 5, we show that it is NP-complete to decide whether a given vertex-colored graph

is proper vertex-disconnected. We also show that it is NP-hard to decide for a fixed

integer k ≥ 3, whether the pvd-number of a graph G is no more than k, even if k = 3 and

the graph G is a planar graph with ∆(G) = 12. In addition, we show that it is solvable

in polynomial time to determine the pvd-number for a graph with maximum degree less

than four , and we also give a polynomial time algorithm for pvd-coloring a graph with

maximum degree less than four.

2 Preliminaries

At the very beginning, we state some fundamental results about the pvd-numbers of

graphs, which will be used frequently in the sequel.

Lemma 2.1 If G is a connected graph and H is a connected subgraph of G, then pvd(H) ≤
pvd(G).

Proof. Suppose that c is an optimal pvd-coloring of G and H is a connected subgraph

of G. Let c′ be a coloring that is obtained by restricting c to H. Let x and y be two

vertices of H and S be an x-y proper vertex-cut of G. Then S ′ = S ∩ V (H) is an x-y

proper vertex-cut in H; otherwise, if there exists an x-y path P with length at least 2 in

H −S ′, then P is also in G−S, a contradiction. Thus, c′ is a pvd-coloring of H and then

pvd(H) ≤ pvd(G). �

A block of a graph G is a maximal connected subgraph of G that contains no cut

vertices. So, a block of G is a cut edge of G or a 2-connected subgraph of G with at least

three vertices. The block decomposition of G is the set of blocks of G. Next we will show

that pvd(G) is equal to maximal pvd-number pvd(B) among the blocks B of G. The proof

method is similar to the one used in [4].

Lemma 2.2 Let G be a connected graph, and let B be a block of G such that pvd(B) is

maximum among all blocks of G. Then pvd(G) = pvd(B).
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Proof. Suppose that {B1, B2, · · · , Bt} is the block decomposition ofG. Let k = max{pvd(Bi)|i ∈
[t]}. If G has no cut vertex, then G = B1 and the result follows. Next, we assume that

G has at least one cut vertex. Since each block is a connected subgraph of G, we have

pvd(G) ≥ k by Lemma 2.1.

Let ci be an optimal pvd-coloring of Bi, where i ∈ [t]. Let H be a connected graph

consisting of some blocks of G and c′ be an optimal pvd-coloring of H. Let Bi (i ∈ [t]) be

the block having a common vertex with H, where Bi is the subgraph of G but not of H.

Suppose that v is the common vertex of Bi and H. We define a color exchange operation

on Bi as follows: If c′(v) = ci(v), we do nothing. If c′(v) 6= ci(v), we may assume that

c′(v) = a and ci(v) = b. Assign color a to the vertices of Bi with color b, and color b

to the vertices of Bi with color a (if such vertices exist) . By doing the color exchange

operation on Bi, we can separately obtain a coloring of H ∪Bi with max{|Γ(c′)|, |Γ(ci)|}
colors, and an optimal pvd-coloring, denoted by c∗i , of Bi. Note that c∗i may be the same

as ci.

Firstly, we take a block, say B1, and let G1 = B1. Then we find a block B(∈
{B2, · · · , Bt}) which has a common vertex with the graph Gi (1 ≤ i ≤ t − 1). Let

Gi+1 = Gi ∪ B. By doing the color exchange operation on B, we can obtain a vertex-

coloring of Gi+1 and an optimal pvd-coloring of B. Repeatedly, we have Gt = G, and can

separately obtain a vertex-coloring c of G with k colors and an optimal pvd-coloring c∗i of

Bi for each i ∈ [t].

Let x and y be two vertices of G. If there exists a block, say Bi, which contains both

x and y, then any x-y proper vertex-cut in Bi under the coloring c∗i is an x-y proper

vertex-cut in G. If x and y are in different blocks, then there is exactly one x-y internally

disjoint path, say P , in G and the path P contains at least one cut vertex, say w. Then

{w} is an x-y proper vertex-cut in G. Hence, pvd(G) ≤ k. �

As a consequence of Lemma 2.2, the study of proper vertex-disconnection can be

restricted to 2-connected graph. We now present an upper bound for the pvd-number of

a graph.

Theorem 2.3 If G is a connected graph, then pvd(G) ≤ χ(G).

Proof. Let c be a proper coloring of G with |Γ(c)| = χ(G). Note that N(x) is proper for

each vertex v of G. For any two vertices x, y, if x, y are nonadjacent, then N(x) is an x-y

proper vertex-cut. If x, y are adjacent, consider the set F = N(x) \ {y}. Since F is an

x-y vertex-cut and F ∪ {y} = N(x) is proper, F is an x-y proper vertex-cut. Then c is

also a pvd-coloring of G, and so pvd(G) ≤ χ(G). �
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Theorem 2.4 [10] Brooks’ Theorem

If G is a connected graph, and is neither an odd cycle nor a complete graph, then χ(G) ≤
∆(G).

By above results, we have the following consequence: if G is a connected graph, and

neither an odd cycle nor a complete graph, then

1 ≤ pvd(G) ≤ χ(G) ≤ ∆(G) ≤ n− 1. (1)

Next we give two useful lemmas, which will be used frequently in the following.

Lemma 2.5 Let G be a connected graph, and let x, y be two adjacent vertices of G having

at least two common neighbors. Then x and y receive different colors in any optimal pvd-

coloring.

Proof. Let c be any optimal pvd-coloring of G. Suppose vertices v1, v2 are two common

neighbors of x and y. Then for any v1-v2 proper vertex-cut S of G under the coloring c,

there must be {x, y} ⊆ S. Since x, y are adjacent, we have c(x) 6= c(y). �

Lemma 2.6 Let G be a connected graph. If any two adjacent vertices of G have at least

two common neighbors, then pvd(G) = χ(G).

Proof. Let c be an optimal pvd-coloring of G. If any two adjacent vertices, say x, y, of G

have at least two common neighbors, then c(x) 6= c(y) by Lemma 2.5. Thus c is also a

proper coloring of G. Then χ(G) ≤ pvd(G). By Theorem 2.3, we have pvd(G) = χ(G).

�

For a graph G of order n, since its pvd-coloring is a vertex-coloring, there is naturally

an inequality 1 ≤ pvd(G) ≤ n. We next characterize the connected graphs of order n with

pvd-number k for k ∈ {1, n− 2, n− 1, n}. Firstly, we give the pvd-number of a triangle.

Lemma 2.7 If G is a triangle, then pvd(G) = 2.

Proof. Let V (G) = {v1, v2, v3}. For any optimal pvd-coloring c of G, consider the v1-

v3 proper vertex-cut S. Note that S = {v2}. Since v1, v3 are adjacent, the set {v1, v2}
or {v2, v3} is proper. Since v2 is adjacent to both v1 and v3, we have c(v1) 6= c(v2) or

c(v2) 6= c(v3). Then |Γ(c)| ≥ 2 and pvd(G) ≥ 2. Define a coloring c′ of G such that

c′(v1) = c′(v2) = 1 and c′(v3) = 2. Obviously, the set {v1} is a v2-v3 vertex-cut and

{v1, v3} is proper. Then {v1} is a v2-v3 proper vertex-cut. Similarly, {v2} is a v1-v3 proper

vertex-cut and {v3} is a v1-v2 proper vertex-cut. Thus c′ is a pvd-coloring of G and

pvd(G) ≤ 2. �
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Theorem 2.8 Let G be a connected graph. Then pvd(G) = 1 if and only if G is triangle-

free.

Proof. Suppose pvd(G) = 1. If G contains a triangle, then pvd(G) ≥ 2 by Lemmas 2.1

and 2.7, a contradiction. On the contrary, suppose that G is triangle-free. Then N(v) is

an independent set for each v ∈ V (G). Define a vertex coloring c of G such that c(v) = 1

for every v ∈ V (G). For any two vertices x, y of G, if x, y are nonadjacent, then N(x) is

an x-y proper vertex-cut. If x, y are adjacent, consider the set F = N(x)\{y}. Obviously,

F is an x-y vertex-cut. Since N(x) is independent, F ∪ {y} is proper. Then F is an x-y

proper vertex-cut. Thus c is a pvd-coloring, and so pvd(G) = 1. �

It is well known that for any graph G of order n, χ(G) = n if and only if G is a

complete graph. We have the same result for graphs G with pvd(G) = n.

Theorem 2.9 Let G be a connected graph of order n ≥ 4. Then pvd(G) = n if and only

if G is a complete graph.

Proof. If pvd(G) = n, then G is a complete graph by Inequality (1) and Theorem 2.8. If

G is complete, then pvd(G) = χ(G) = n by Lemma 2.6. �

Let G be a connected graph of order n. It is known that χ(G) ≥ w(G) the clique

number of G. Next we study the relation between pvd(G) and w(G), and use it to

characterize the graphs with pvd-numbers n− 1 and n− 2.

Lemma 2.10 Let G be a connected graph. Then the following conditions hold.

(i) If w(G) < 4, then pvd(G) ≥ w(G)− 1.

(ii) If w(G) ≥ 4, then pvd(G) ≥ w(G).

Proof. Suppose w(G) < 4. If w(G) = 2, then G is triangle-free and pvd(G) = 1 by

Theorem 2.8. If w(G) = 3, then G contains at least one triangle, and pvd(G) ≥ 2 by

Lemmas 2.1 and 2.7. Hence, pvd(G) ≥ w(G) − 1. Suppose w(G) ≥ 4, then Kw(G) is a

subgraph of G. Then pvd(G) ≥ pvd(Kw(G)) = w(G) by Theorem 2.9. �

Two known and useful results are stated as follows.

Theorem 2.11 [15] Let G be a graph of order n. Then χ(G) = n − 1 if and only if

w(G) = n− 1.

Theorem 2.12 [16] Let G be a graph of order n ≥ 5. Then χ(G) = n− 2 if and only if

w(G) = n− 2 or G is isomorphic to C5 ∨Kn−5.
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Theorem 2.13 Let G be a connected graph of order n ≥ 5. Then pvd(G) = n− 1 if and

only if w(G) = n− 1.

Proof. Note that G is noncomplete. If pvd(G) = n − 1, then χ(G) ≥ n − 1 by Theorem

2.6. Since χ(G) = n if and only if G is complete, we have χ(G) = n − 1, and then

w(G) = n − 1 by Theorem 2.11. If w(G) = n − 1 ≥ 4, then χ(G) = n − 1 by Theorem

2.11. Then pvd(G) = n− 1 by Theorem 2.6 and Lemma 2.10. �

Theorem 2.14 Let G be a connected graph of order n ≥ 7. Then pvd(G) = n− 2 if and

only if w(G) = n− 2 or G is isomorphic to C5 ∨Kn−5.

Proof. Note that G is noncomplete. If pvd(G) = n − 2, then χ(G) ≥ n − 2 and w(G) ≤
n− 2. Then χ(G) = n− 2 by Theorem 2.11. Hence w(G) = n− 2 or G is isomorphic to

C5 ∨Kn−5 by Theorem 2.12. On the contrary, if w(G) = n− 2 ≥ 5, then pvd(G) ≥ n− 2

by Lemma 2.10. By Theorems 2.9 and 2.13, we have pvd(G) = n− 2. If G is isomorphic

to C5 ∨ Kn−5, then any two adjacent vertices of G has at least two common neighbors.

Then pvd(G) = χ(G) = n− 2 by Lemma 2.6. �

3 Sufficient conditions for pvd(G) = χ(G)

In this section, we give some sufficient conditions for a graph G with pvd(G) = χ(G)

and prove that almost all graphs G have pvd(G) = χ(G) and pvd(G) = χ(G). In addition,

we present an equivalent assertion of the Four Color Theorem.

Theorem 3.1 Let G be a connected graph. If δ(G) ≥ n+2
2

, then pvd(G) = χ(G).

Proof. If δ(G) ≥ n+2
2

, then for any two adjacent vertices of G, there are at least n+2
2
×

2−n = 2 common neighbors if n is even, and at least n+3
2
× 2−n = 3 common neighbors

if n is odd. Then by Lemma 2.6 we have pvd(G) = χ(G). �

A graph G is color critical if χ(H) < χ(G) for every proper subgraph H of G. Such

graphs were first investigated by Dirac ([14]). Here, for simplicity, we abbreviate the term

“color critical” to “critical”. A k-critical graph is one that is k-chromatic and critical.

Two useful results are stated as follows.

Theorem 3.2 [14] A k-chromatic graph contains a k-critical subgraph.

Theorem 3.3 [14] Let G be a connected (k + 1)-critical graph. Then δ(G) ≥ k.
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Theorem 3.4 Let G be a connected graph of order n. If χ(G) ≥ n+4
2

, then pvd(G) =

χ(G).

Proof. Let χ(G) = k. Then G has a k-critical subgraph by Theorem 3.2. Denote the

subgraph by H. Then δ(H) ≥ k − 1 by Theorem 3.3. Since χ(G) = k ≥ n+4
2

, we

have δ(H) ≥ k − 1 ≥ n+2
2
≥ |V (H)|+2

2
. Then pvd(H) = χ(H) by Theorem 3.1. Since

pvd(H) ≤ pvd(G) ≤ χ(G) by Lemma 2.1 and Theorem 2.3, and χ(G) = χ(H), we have

pvd(G) = χ(G). �

We can immediately get an equivalent statement of Theorem 3.4 by Theorem 2.3.

Theorem 3.5 Let G be a connected graph of order n, and k be an integer with k ≥ n+4
2

.

Then pvd(G) = k if and only if χ(G) = k.

Note that since the converse proposition of Theorem 3.4 is not necessarily true, there

may be some omissive conditions in the use of Theorem 3.5 to characterize the graphs

with some specific pvd-numbers. For example, for the case k = n− 1, pvd(G) = n− 1 if

and only if χ(G) = n − 1 when n − 1 ≥ n+4
2

, that is, n ≥ 6. However, when n = 5, the

proposition that pvd(G) = 4 if and only if χ(G) = 4 still holds by Theorem 2.13.

Let G be a nontrivial connected graph. For each edge e = xy ∈ E(G), we add two

new vertices u, v such that u, v are common neighbors of x, y and u, v are nonadjacent.

Denote the set of new added vertices to an edge xy by Sxy. The resulted graph is called

the associate graph of G and denote it by G∗. Note that the set of all new added vertices

to G is independent. In addition, a graph G is called a wing graph if there exists a graph

H such that G = H∗, namely that any two adjacent vertices of degrees at least 3 of G

have two common neighbors of degrees 2. Then we have the following result.

Lemma 3.6 If G is a connected graph, then pvd(G∗) = χ(G).

Proof. Since G is nontrivial and connected, we have χ(G) ≥ 2. Let V (G∗) = V (G) ∪ V ′,
where V ′ is set of all new added vertices. Since any two adjacent vertices of G has at least

two common neighbors in G∗, they receive different colors in any optimal pvd-coloring of

G∗ by Lemma 2.5. Then χ(G) ≤ pvd(G∗). Next we show pvd(G∗) ≤ χ(G). Let c be a

proper coloring G. Define a coloring c∗ of G∗ such that c∗(v) = c(v) for v ∈ V (G) and

c∗(v) = 1 for v ∈ V ′. Noth that |Γ(c∗)| = |Γ(c)|. Let x, y be any two vertices of G∗.

Suppose {x, y} ⊆ V (G). If x, y are nonadjacent, then NG(x) is an x-y proper vertex-cut.

If x, y are adjacent, consider the set F = {NG(x) \ {y}} ∪ Sxy. It is obvious that F is an

x-y vertex-cut. Since each vertex in Se is only adjacent to x and y, then F is proper. Since

c∗(x) 6= c∗(y), we have at least one vertex of {x, y}, say x, whose color is different from

1. Then F ∪ {x} is proper and F is an x-y proper vertex-cut. Suppose that one vertex
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of {x, y}, say x, belongs to V ′. If x, y are nonadjacent, then NG∗(x) is an x-y proper

vertex-cut. If x, y are adjacent, let z be another neighbor of x. We have c∗(z) 6= c∗(y) by

the definition of c∗. Then {z} is an x-y proper vertex-cut. Hence c∗ is a pvd-coloring of

G∗ and then pvd(G∗) ≤ χ(G). �

Corollary 3.7 Let G be a connected graph. If χ(G) ≥ 3, then pvd(G∗) = χ(G∗).

Proof. Let c be a proper coloring of G. Define a coloring c∗ of G∗ as follows. Let

c∗(v) = c(v) for v ∈ V (G). For each edge xy of G, since |Γ(c)| ≥ 3, we can find a color

of Γ(c) \ {c(x), c(y)}. Assign the color to each vertex of Sxy. Then Γ(c∗) = Γ(c). It is

easy to check that c∗ is a proper coloring of G∗, and then χ(G∗) ≤ χ(G). Since G is a

subgraph of G∗, we have χ(G) ≤ χ(G∗). Then χ(G) = χ(G∗). Hence χ(G∗) = pvd(G∗)

by Theorem 3.6 . �

The authors of [4, 22] introduced and studied the rainbow vertex-disconnection of

graphs. For a connected graph G, it is obvious that pvd(G) ≤ rvd(G). However, there is

no directed relation between rvd(G) and χ(G). We continue to study the graphs G with

pvd(G) = χ(G) with the help of rvd(G). The following results are from [4].

Theorem 3.8 [4] Let G be a connected graph of order n. Then rvd(G) = n if and only

if any two vertices has at least two common neighbors.

Theorem 3.9 [4] Almost all graphs G of order n have rvd(G) = rvd(G) = n.

By Lemma 2.6, Theorems 3.8 and 3.9, we can get the following two results immediately.

Corollary 3.10 Let G be a connected graph of order n. If rvd(G) = n, then pvd(G) =

χ(G).

Theorem 3.11 Almost all graphs G have pvd(G) = χ(G) and pvd(G) = χ(G).

Referring to [6], we know that for a graph G, the pvd-coloring of G is a global coloring

and the classical proper vertex coloring is a local coloring. It is somewhat interesting

that pvd(G) = χ(G) holds in so many classes of graphs G. We next give an equivalent

statement of the Four Color Theorem. It is known that there are several equivalent

statements of the Four Color Theorem in graph theory, one of which is as follows.

Theorem 3.12 [8] The Four Color Theorem

Every loopless planar graph is 4-colorable.

If G is a loopless planar graph, then G∗ is also a loopless planar graph by the definition

of an associate graph. By Lemma 3.6, we have the following equivalent statement.

Theorem 3.13 Every loopless planar wing graph is 4-proper vertex-disconnection col-

orable.
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4 The relation between pd(G) and pvd(L(G))

Given a connected graph G and its line graph L(G), the authors of [4] showed that

rd(G) ≤ rvd(L(G)). We next give the same relation between pd(G) and pvd(L(G)).

Theorem 4.1 Let G be a connected graph and L(G) be the line graph of G. Then pd(G) ≤
pvd(L(G)).

Proof. Let c′ be a pvd-coloring of the line graph L(G) of G. Since there is a one-to-one

correspondence between the edge-coloring of G and the vertex-coloring of L(G), we can

get an edge-coloring c of G according to the coloring c′. Next we will show that c is a

proper disconnection coloring of G. For any two vertices u, v, if one vertex is of degree 1,

then the pendent edge is an x-y proper cut. If d(u) = d(v) = 2 and u, v are in a triangle

T , let V (T ) = {u, v, z}. Then z is the common neighbor of u and v. Let e1 = uv, e2 = uz

and e3 = vz. Let vei (i ∈ [3]) be the vertex in L(G) corresponding to the edge ei in

G. Then the vertex subset {ve1 , ve2 , ve3} induces a triangle in L(G). Let S be a ve2-ve3
proper vertex-cut in L(G). Then ve1 ∈ S, and S+ ve2 or S+ ve3 is a proper vertex subset.

Assume that S + ve2 is proper. Then {e1, e2} is a u-v proper cut in G. For the other

cases of u and v, we can always find two nonadjacent edges e1 and e2 in E(G) such that

e1 is incident to u and e2 is incident to v. Then ve1 , ve2 are nonadjacent in L(G). Let S

be a ve1-ve2 proper vertex-cut in L(G). Then {ve1 , ve2} * S. We can get that the edge

subset F , to which S corresponds in G, is a u-v proper cut. Otherwise, assume that there

is a u-v path P in G − F . Since e1, e2 belong to G − F , the path P + e1 + e2 in G − F
corresponds to a ve1-ve2 path in L(G)− S, a contradiction. �

For a graph G, it is known that χ′(G) = χ(L(G)). By above theorem we have pd(G) ≤
pvd(L(G)). However, the equality is not always true. Next we will give a sufficient

condition for pd(G) < pvd(L(G)), and an example graph G such that the difference of

pd(G) and pvd(L(G)) can be very large. Three useful results are stated as follows.

Lemma 4.2 [3] Let G be a connected graph, and let B be a block of G such that pd(B)

is maximum among all blocks of G. Then pd(G) = pd(B).

Theorem 4.3 [3] If G is a connected graph, then pd(G) ≤ χ′(G)− 1.

Theorem 4.4 [3] Let Km,n be a complete bipartite graph with 2 ≤ m ≤ n. Then

pd(Km,n) = dn
2
e .

Corollary 4.5 Let G be a connected graph and L(G) be the line graph of G. If δ(G) ≥ 4,

then pd(G) < pvd(L(G)).

11



Proof. By contradiction, suppose pd(G) = pvd(L(G)). Since χ′(G) = χ(L(G)), we have

pvd(L(G)) = pd(G) ≤ χ′(G) − 1 = χ(L(G)) − 1 by Theorem 4.3. Then pvd(L(G)) <

χ(L(G)). Hence for any optimal pvd-coloring c of L(G), there are two adjacent vertices

x, y in L(G) such that c(x) = c(y). Since δ(G) ≥ 4, the vertices x, y belong to some clique

Kt (t ≥ 4) in L(G). By Theorem 2.9, the vertices x and y should have different colors

under the coloring c, a contradiction, and so pd(G) < pvd(L(G)). �

Theorem 4.6 For any integers a and b with 4 ≤ 2a ≤ b, there is a connected graph G

such that pd(G) = a and pvd(L(G)) = b.

Proof. Let K2,2a be a complete bipartite graph with bipartition (V1, V2), where V1 =

{u1, u2} and V2 = {v1, · · · , v2a}. Let V3 = {v2a+1, · · · , vb} be a set of vertices. Note that

V3 is empty if b = 2a. Joint vi to u1 for each 2a + 1 ≤ i ≤ b. The resulted graph is

denoted by G. Then pd(G) = a by Theorems 4.2 and 4.4. Now consider the line graph

L(G). Denote the vertex, to which the edge u1vi (i ∈ [b]) of G corresponds in L(G), by pi,

and the vertex, to which the edge u2vi (i ∈ [2a]) of G corresponds in L(G), by zi. Then

E(L(G)) = {pipj, zlzs, plzl, : 1 ≤ i, j ≤ b, 1 ≤ l, s ≤ 2a}. Since w(L(G)) = b ≥ 4, we have

pvd(L(G)) ≥ b. Define a coloring c of L(G) such that c(pi) = i for i ∈ [b] and c(zj) = j

for j ∈ [2a]. Observe that N(v) is proper for each vertex v ∈ L(G). It is easy to check

that c is a pvd-coloring of L(G), and then pvd(L(G)) ≤ b. �

Since a ≤ b
2
, we have b − a ≥ b

2
. So for this graph G, we have pvd(L(G)) − pd(G) =

b− a ≥ b
2
, which can be arbitrarily large.

5 Hardness results

In this section, we first show some NP-hardness results for the proper vertex-disconnection

of graphs. Then we show that it is solvable in polynomial time to determine the pvd-

number for a graph with maximum degree less than four .

5.1 NP-hardness results

The hardness results for rainbow (vertex-)disconnection and proper disconnection have

been studied, see [2, 13]. The proof of the following results uses a similar technique.

At first we introduce some notation and terminology. Let X be a finite set of Boolean

variables. A truth assignment for X is a function T : X 7→ {true, false}. We extend T

to the set L := X ∪ {x : x ∈ X} by setting T (x) := true if T (x) := false and vice versa

(x can be regarded as the negation of x). The elements of L are called the literals over

X. A clause over X is a disjunction of literals and is satisfied by a truth assignment if

12



and only if at least one of its members is true. A Boolean formula in conjunctive normal

form, abbreviated as CNF formula, over X is a conjunction of clauses and is satisfiable

if and only if there is a truth assignment simultaneously satisfying all of its clauses. A

CNF formula is a 3CNF formula if each of its clauses consists of exactly three literals.

Lemma 5.1 Given a vertex-colored graph G and two vertices s, t of G, deciding whether

there is an s-t proper vertex-cut in G is NP-complete.

Proof. Since deciding whether a given vertex subset of G is an s-t proper vertex-cut can

be done in polynomial-time, this problem is in NP. We now show that the problem is

NP-complete by giving a polynomial reduction from the 3-SAT problem to this problem.

Given a 3CNF formula φ = ∧mi=1ci over n variables x1, x2, · · · , xn, we construct a graph

Gφ with two special vertices s, t and a vertex-coloring f such that there is an s-t proper

vertex-cut in Gφ if and only if φ is satisfiable. Let Lci(x) denote the location of literal x

in clause ci for i ∈ [m].

We define Gφ as follows:

V (Gφ) = {ci, ui,k, vi,k, zi,k : i ∈ [m], k ∈ [3]} ∪ {xj, xj : j ∈ [n]} ∪ {s, t, b}.

E(Gφ) = {xjvi,k, xjui,k : If xj ∈ ci and Lci(xj) = k, i ∈ [m], j ∈ [n], k ∈ [3]}
∪ {xjui,k, xjvi,k : If xj ∈ ci and Lci(xj) = k, i ∈ [m], j ∈ [n], k ∈ [3]}
∪ {xjxj, sxj, sxj, szi,1 : i ∈ [m], j ∈ [n]}
∪ {ciui,k, civi,k, cizi,3, cib : i ∈ [m], k ∈ [3]}
∪ {vi,kzi,k, zi,1zi,2, zi,2zi,3 : i ∈ [m], k ∈ [3]}
∪ {tci, sb, bt : i ∈ [m]}.

Now we define a vertex-coloring f of Gφ as follows: For i ∈ [m], j ∈ [n] and k ∈ [3],

let f(xj) = f(xj) = rj, f(ui,k) = f(vi,k) = f(zi,k) = ri,k, f(s) = f(t) = r, and f(ci) =

f(b) = r′. All those colors are distinct, see Figure 1.

We claim that there is an s-t proper vertex-cut in Gφ if and only if φ is satisfiable.

Suppose that there is an s-t proper vertex-cut S in Gφ. Since the vertex b is the

common neighbor of s and t in Gφ, we have b ∈ S. Then ci /∈ S for each i ∈ [m] by the fact

that cib ∈ E(Gφ) and f(ci) = f(b). Thus S also separates s and ci. There exists at least

one j (j ∈ [n]) such that xj ∈ S or xj ∈ S. Otherwise, we have that {vi,k : k ∈ [3]} ⊆ S.

Since f(vi,k) = f(zi,k) and vi,kzi,k ∈ E(Gφ), we have {zi,k : k ∈ [3]} * S. Then there is an

s-t path in G \S, a contradiction. Since f(xj) = f(xj) and xjxj ∈ E(Gφ), the vertices xj

and xj can not simultaneously belong to S. If xj ∈ S, set xj = 1. If xj ∈ S, set xj = 0.
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Figure 1: The literals xj, xl of ci and xj, xl are the first and second literals, respectively.

Furthermore, if the literal associated with xj in clause ci is false, then vi,l ∈ S where l is

the location of literal in clause ci. Then from above discussion, we obtain that the three

literals of ci cannot be false simultaneously. Therefore, φ is satisfiable.

Suppose that φ is satisfiable. We now try to find an s-t proper vertex-cut S in Gφ

under the coloring f . Clearly, b ∈ S and ci /∈ S for each i ∈ [m]. For any variable xj

(j ∈ [n]), if xj = 0, let xj ∈ S. In this case, if xj ∈ ci, then xj is adjacent to vi,k in Gφ

and let vi,k ∈ S. If xj ∈ ci, then xj is adjacent to ui,k in Gφ and let {ui,k, zi,k} ⊆ S. For

any variable xj (j ∈ [n]), if xj = 1, let xj ∈ S. In this case, if xj ∈ ci, then xj is adjacent

to ui,k in Gφ and let {ui,k, zi,k} ⊆ S. If xj ∈ ci, then xj is adjacent to vi,k in Gφ and let

vi,k ∈ S. Therefore, for any literal x of ci with Lci(x) = k, if x is false, then vi,k ∈ S; if x

is true, then {ui,k, zi,k} ⊆ S. Note that there is always one vertex of {vi,k, zi,k} belonging

to S. Since each ci is satisfied, the set S is an s-t vertex-cut. Observe that S is proper.

Then S is an s-t proper vertex-cut. The proof is complete. �

Theorem 5.2 Given a vertex-colored graph G, deciding whether G is proper vertex-

disconnected is NP-complete.

Proof. Let G be a given vertex-colored graph. Note that a graph is proper vertex-

disconnected if and only if for any two vertices there is a proper vertex-cut separating

them. For any two vertices u, v, deciding whether a given vertex subset of G is a u-v

proper vertex-cut can be done in polynomial time. Hence this problem is in NP.

For the vertex-colored graph Gφ defined above, we can get that Gφ is proper vertex-

disconnected if and only if Gφ has an s-t proper vertex-cut. Since the necessity is obvious,

we show the sufficiency below. For any two vertices x, y of Gφ, if one vertex, say y,

belongs to {xj, xj, ui,k, vi,k, zi,k, b : j ∈ [n], i ∈ [m], k ∈ [3]}, observe that N(y) is proper.
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Then if x /∈ N(y), then the set N(y) is an x-y proper vertex-cut; if x ∈ N(y), then the

set N(y) \ {x} is an x-y proper vertex-cut. If x = ci and y = cj for i, j ∈ [m], consider

the clause ci. Let x be the first literal of clause ci, where x = xl or xl for some l ∈ [n].

Then the set Fi = {ui,1, ui,2, ui,3, zi,1, vi,2, vi,3, x, t, b} is a ci-cj (i 6= j) proper vertex-cut.

Furthermore, Fi is also an s-ci proper vertex-cut, and Fi \ {t} is a t-ci proper vertex-cut.

Thus, any pair of vertices have a proper vertex-cut in Gφ. The proof is complete by

Lemma 5.1. �

In the classical vertex-coloring, for a fixed positive integer k, the graph k-colorability

problem is the problem to determine whether G is k-colorable. We now define the graph

k-proper vertex-disconnection colorability problem as the problem to determine whether

G is k-proper vertex-disconnection colorable for a fixed positive integer k. Referring to

[17, 18], there are the following results.

Theorem 5.3 [18] For a fixed integer k ≥ 3, the graph k-colorability problem is NP-

complete.

Theorem 5.4 [17] Graph 3-colorability is NP-complete, even though the graph G is pla-

nar with ∆ = 4.

Theorem 5.5 For a fixed positive integer k ≥ 3, the graph k-proper vertex-disconnection

colorable problem is NP-hard, even if k = 3 and the graph G is a planar graph with

∆(G) = 12.

Proof. Firstly, this problem is not in NP. For a fixed positive integer k ≥ 3, let a graph

G be a yes-instance of the problem. The solution of the instance is a pvd-coloring c of

G with |Γ(c)| ≤ k. However, deciding whether the coloring c is a pvd-coloring of G,

namely whether G is proper vertex-disconnected, cannot be solved in polynomial time

by Theorem 5.2. Secondly, note that a graph G is k-colorable if and only if χ(G) ≤ k.

By Lemma 3.6, we have pvd(G∗) = χ(G). Then a graph G is k-colorable if and only if

G∗ is k-proper vertex-disconnection colorable. At this time, if G is a planar graph with

∆(G) = 4, the corresponding associate graph G∗ is a planar graph with ∆(G∗) = 12.

Then the proof is complete by Theorems 5.3 and 5.4. �

5.2 Polynomial time solvable results

At first, we give the pvd-number for a 3-regular noncomplete graph.

Lemma 5.6 If G is a 3-regular noncomplete graph, then pvd(G) ≤ 2.
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Figure 2: The graph G0 and the vertex-coloring.

Proof. Firstly, if G is the graph G0 (see Figure 2), then we color G0 with two colors as

shown in Figure 2. It is easy to check that G is proper vertex-disconnected. Next, we

consider the graph G 6= G0. If G has no triangle, then pvd(G) = 1 by Theorem 2.8.

Suppose that G has at least one triangle. We say that a triangle is isolated in G if there

is no triangle in G having common vertex with it. If there are two triangles sharing a

same edge, then denote the structure by θ-type structure. Because G is 3-regular and

noncomplete, then for any triangle, it either is isolated or belongs to a θ-type structure.

In addition, observe that any two different θ-type structures are vertex-disjoint. Let

T = {T1, T2, · · · , Ts} be the set of all isolated triangles and θ-type structures of G, where

Ti is an isolated triangle or a θ-type structure and V (Ti) ∩ V (Tj) = ∅ (i 6= j). Next we

give a vertex-coloring c : V (G) 7→ [2] as follows.

Coloring Algorithm

Input: A connected 3-regular noncomplete graph G with T = {T1, T2, · · · , Ts}.
Output: A coloring c of G and vertex subsets U1, U2, V2.

1: Set i = 1 and the vertex subsets U1 = U2 = V2 = ∅.
2: For i = 1 to s do:

3: If Ti is a triangle, then

4: if we can find a vertex, say vi, of Ti nonadjacent to each vertex of V2,

then assign vi with color 2. Set V2 := V2 ∪ {vi} and i := i+ 1.

5: else choose two vertices, say vi, zi, of Ti and assign color 2 to them.

Assign color 1 to the last vertex, say ui, of Ti. Set U1 := U1 ∪ {ui}, U2

:= U2 ∪ {vi, zi}, and i := i+ 1.

6: else Ti is a θ-type structure, then find a vertex, say vi of degree 3 in Ti and

assign it with color 2. Set V2 := V2 ∪ {vi} and i := i+ 1.

7: Assign color 1 to the remaining vertices.

If coloring c is a pvd-coloring of G, then we have pvd(G) ≤ 2. Next we begin to check

it.

By the Coloring Algorithm, we know that no triangle in G is monochromatic. A

triangle is called general if it is isolated, and has two vertices with color 1 and one vertex

with color 2. A triangle is called particular if it is isolated, and has two vertices with
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Figure 3: (a) A θ-type structure, and (b) a particular triangle under the coloring c.

color 2 and one vertex with color 1. Let V (G) = U1 ∪ U2 ∪ V1 ∪ V2, where U1, U2 and V2

are obtained by above algorithm. Note that Ui (i ∈ [2]) consists of all vertices with color

i in particular triangles, and V2 consists of all vertices with color 2 in general triangles

and θ-type structures. Furthermore, the subsets U1 and V2 are separately independent.

Let Tv (v ∈ V (G)) denote the isolated triangle to which the vertex v belongs. For any

isolated triangle T , suppose that V (T ) = {u, v, z}. Denote the third neighbor of u, v and

z by u′,v′ and z′. We call {u′, v′, z′} the neighbor set of T . Then we have the following

claims.

Claim 1: the neighbor set of a particular triangle is independent.

Suppose that T is a particular triangle with V (T ) = {u, v, z} and neighbor set

{u′, v′, z′}. Then c(u′) = c(v′) = c(z′) = 2 by Step 6, as shown in Figure 3(b). We first

show that each vertex of {u′, v′, z′} is in a general triangle. Since c(u′) = c(v′) = c(z′) = 2,

each vertex of {u′, v′, z′} is in a triangle. If one vertex, say u′, belongs to a θ-type struc-

ture T , then dT (u′) = 3 by Step 7. Then dG(u′) ≥ 4, a contradiction. Hence each vertex

of {u′, v′, z′} is in an isolated triangle. When we color Tu, these triangles Tu′ , Tv′ and

Tz′ have already been colored. Because when we begin to color Tu′ , none of the vertices

in N(u′) are colored. Then we can assign color 2 to u′ by Step 5, and triangle Tu′ is

general. Similarly, we can get that the triangles Tv′ and Tz′ are general. Since Tu is an

isolated triangle, the vertices u′, v′ and z′ are different. Suppose there are two vertices

in {u′, v′, z′} are adjacent, say that u′, v′ are adjacent. Since d(u′) = d(v′) = 3, we have

Tu′ = Tv′ . Since c(u′) = c(v′) = 2, the triangle Tu′ is particular, a contradiction. Thus

{u′, v′, z′} is an independent set.

Claim 2: For each vertex v ∈ V1 ∪ U2, the set N(v) is proper.

Suppose that v ∈ V1. Then c(v) = 1. If v is not in a triangle, then N(v) is independent

and proper. If v belongs to exactly one triangle, then the triangle Tv is general by

the definition of V1. Let V (Tv) = {v, v1, v2} and the third neighbor of v be v3. Then

{c(v1), c(v2)} = {1, 2} and v3 is nonadjacent to v1 and v2. Then N(v) = {v1, v2, v3} is

proper. If v belongs to two triangles, then v belongs to a θ-type structure T . Assume that

N(v) = {v1, v2, v3} and dT (v2)=3. Then T is colored as shown in Figure 3(a), namely

that c(v1) = c(v3) = 1 and c(v2) = 2. Hence N(v) is proper. Suppose v ∈ U2. Then
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c(v) = 2 and v is in a particular triangle. Then N(v) consists of two nonadjacent vertices

with color 2 and one vertex with color 1 (see Figure 3(b)). Thus N(v) is proper.

Now we show that c is a pvd-coloring of G. For any two vertices x, y, we discuss them

case by case. If one vertex, say x, is in V1 ∪ U2, then N(x) is proper by Claim 2. Then

N(x) is an x-y proper vertex-cut if x, y are nonadjacent, and N(x) \ {y} is an x-y proper

vertex-cut if x, y are adjacent. If one vertex, say x, is in U1, then x is in a particular

triangle. Let V (Tx) = {x, v, z} and the neighbor set of Tx be {x′, v′, z′} such that p, p′ are

adjacent for each vertex p ∈ {x, v, z}. If y = x′, then {v′, z′} is an x-y proper vertex-cut

by Claim 1. If y = v′, then {x′, v, z′} is an x-y proper vertex-cut. If y = z′, then {x′, v′, z}
is an x-y proper vertex-cut. If y /∈ {x′, v′, z′}, then {x′, v′, z′} is an x-y proper vertex-cut.

If x, y ∈ V2, then x, y are nonadjacent. If one vertex, say x, is in a θ-type structure T ,

then v is a vertex of degree 3 in T by the fact that c(v) = 2. Denote these two vertices of

degree 2 in T by u, z. Then {u, z} is an x-y proper vertex-cut. Now assume that x and

y belong to two different general triangles. Let V (Tx) = {x, u, v} and the neighbor set of

Tx be {x′, u′, v′} such that p, p′ are adjacent for each vertex p ∈ {x, u, v}. Then x′, u′ and

v′ are three different vertices. Suppose y = u′. If x′, v′ are nonadjacent, then {u, x′, v′} is

an x-y proper vertex-cut. If x′, v′ are adjacent, consider the adjacent relation between x′

and u′. If x′, u′ are adjacent, then v′, u′ are nonadjacent by the fact that G 6= G0. Denote

the third neighbor of v′ by z, then {u, x′, z} is an x-y proper vertex-cut. If x′, u′ are

nonadjacent, denote the third neighbor of x′ by z. If z, v′ are nonadjacent, then {u, v′, z}
is an x-y proper vertex-cut. If z′, v′ are adjacent, then {u, z} is an x-y proper vertex-cut.

For the case y = v′, we can discuss it similarly as above. Next assume y /∈ {u′, v′}. If x′, v′

are nonadjacent, then {u, x′, v′} is an x-y proper vertex-cut. If x′, v′ are adjacent, consider

the adjacent relation of x′, u′. If x′, u′ are nonadjacent, then {x′, u′, v} is an x-y proper

vertex-cut. If x′, u′ are adjacent, then u′, v′ are nonadjacent by the fact that G 6= G0.

Then {u′, v′} is an x-y proper vertex-cut. Thus c is a pvd-coloring of G. �

Let H be a graph as shown in Figure 4, in which v is called the key vertex of H. Now

we give the pvd-number of a general noncomplete graph with maximum degree less than

four .

v

Figure 4: The graph H

Lemma 5.7 If G is a connected noncomplete graph with ∆(G) ≤ 3, then pvd(G) ≤ 2.
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Proof. If G is triangle-free, then pvd(G) = 1 by Theorem 2.8. Suppose that G has at

least one triangle. Let G′ be a maximal connected subgraph of G with δ(G′) ≥ 2. Then

pvd(G) = pvd(G′) by Lemma 2.2. Let {u1, · · · , ut} be the set of vertices of degree 2 in G′

and H1, · · · , Ht be t copies of H such that the key vertex of Hi is vi (i ∈ [t]). We construct

a new graph G′′ by connecting vi and ui for each i ∈ [t]. Then G′′ is a 3-regular graph. By

Lemma 5.6, pvd(G′′) ≤ 2. Since G′ is a subgraph of G′′, we have pvd(G) = pvd(G′) ≤ 2.

�

Theorem 5.8 Let G be a connected graph with ∆(G) ≤ 3. Then pvd(G) = 4 if and only

if G is isomorphic to K4.

Proof. The sufficiency is obvious by Theorem 2.9. Suppose pvd(G) = 4. Then G is

complete. Otherwise, we have pvd(G) ≤ 2 by Lemma 5.7, a contradiction. Since ∆(G) ≤
3, G is isomorphic to K4. �

Theorem 5.9 Determining the pvd-number of a graph with maximum degree less than

four is solvable in polynomial time.

Proof. Let G be a connected graph with ∆(G) ≤ 3. Then 1 ≤ pvd(G) ≤ χ(G) ≤
∆(G) + 1 ≤ 4 by Theorem 2.3. Firstly, decide whether G is isomorphic to K4. If G is

isomorphic to K4, then pvd(G) = 4; If not, decide whether G has triangles. If G is triangle-

free, then pvd(G) = 1 by Theorem 2.8. If G has at least one triangles, then pvd(G) = 2

by Lemma 2.7 and Theorem 5.7. Note that there is no graph G with pvd(G) = 3. �

Furthermore, we can also obtain a polynomial time algorithm to find a pvd-coloring for

a connected graph with maximum degree less than four . Suppose that G is a connected

graph with ∆(G) ≤ 3. If G is triangle-free, then the coloring c, in which c(v) = 1 for each

v ∈ V (G), is a pvd-coloring of G. If G is complete, then the coloring such that each vertex

has a different color is a pvd-coloring of G. Now suppose that G is noncomplete and has

at least one triangle. Let G′ and G′′ be the two graphs as shown in the proof of Lemma

5.7. Then we can obtain a pvd-coloring c′′ of G′′ by the Coloring Algorithm in the proof

of Lemma 5.6. Because G′ is a subgraph of G′′, let c′ be the coloring that is obtained by

restricting c′′ to G′. Then c′ is a pvd-coloring of G′. Let V (G) = V (G′)∪ V ′, and let c be

a coloring of G such that c(v) = c′(v) if v ∈ V (G′) and c(v) = 1 if v ∈ V ′. It is easy to

check that c is a pvd-coloring of G. Thus we obtain a pvd-coloring of G in polynomial time.
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