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Abstract

An edge-cut of an edge-colored connected graph is called a rainbow cut if

no two edges in the edge-cut are colored the same. An edge-colored graph is

rainbow disconnected if for any two distinct vertices u and v of the graph, there

exists a rainbow cut separating u and v. For a connected graph G, the rainbow

disconnection number of G, denoted by rd(G), is defined as the smallest number

of colors required to make G rainbow disconnected.

In this paper, we first give some upper bounds for rd(G), and moreover,

we completely characterize the graphs which meet the upper bounds of the

Nordhaus-Gaddum type result obtained early by us. Secondly, we propose a

conjecture that for any connected graph G, either rd(G) = λ+(G) or rd(G) =

λ+(G) + 1, where λ+(G) is the upper edge-connectivity, and prove that the

conjecture holds for many classes of graphs, which supports this conjecture.

Moreover, we prove that for an odd integer k, if G is a k-edge-connected k-

regular graph, then χ′(G) = k if and only if rd(G) = k. It implies that there are

infinitely many k-edge-connected k-regular graphs G for which rd(G) = λ+(G)

for odd k, and also there are infinitely many k-edge-connected k-regular graphs

G for which rd(G) = λ+(G) + 1 for odd k. For k = 3, the result gives rise to

an interesting result, which is equivalent to the famous Four-Color Problem.

Finally, we give the relationship between rd(G) of a graph G and the rainbow

vertex-disconnection number rvd(L(G)) of the line graph L(G) of G.
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1 Introduction

All graphs considered in this paper are finite and undirected, and all graphs are

simple unless specifically stated. Let G = (V (G), E(G)) be a nontrivial connect-

ed graph with vertex-set V (G) and edge-set E(G). For v ∈ V (G), let dG(v) and

NG(v) (NG[v]) denote the degree and the open (closed) neighborhood of v in G (or

simply d(v) and N(v) (N [v]) respectively, when the graph G is clear from the con-

text). We use δ(G) and ∆(G) to denote the minimum and maximum degree of G,

respectively. For S ⊆ V (G), the subgraph of G induced by S is denoted by G[S]. A

u-v-path is a path with ends u and v. For a positive integer k, we always write [k] for

the set {1, 2, · · · , k} of integers. For any notation or terminology not defined here,

we follow those used in [8, 9].

Let G be a graph with an edge-coloring c: E(G) → [k], where adjacent edges

may be colored the same. When adjacent edges of G receive different colors by c,

the edge-coloring c is called proper. The chromatic index of G, denoted by χ′(G),

is the minimum number of colors needed in a proper edge-coloring of G. A famous

theorem due to Vizing [23] asserts that for any simple graph G, either χ′(G) = ∆(G)

or χ′(G) = ∆(G) + 1. If χ′(G) = ∆(G), then G is said to be in Class 1; if χ′(G) =

∆(G) + 1, then G is said to be in Class 2.

We know that there are two ways to study the connectivity of graphs, one is to

use paths, and the other is to use cuts. The rainbow connection using paths has

been studied extensively; see for examples, papers [11, 16, 18] and book [17] and the

references therein. So, it is natural to consider rainbow edge-cuts for the colored

connectivity in edge-colored graphs. In [10], Chartrand et al. first discussed the

rainbow edge-cuts by introducing the concept of rainbow disconnection of graphs. In

[4] we call all of them global colorings of graphs since they relate global structural

property: connectivity of graphs.

Recall that an edge-cut of a connected graph G is a set F of edges such that G−F
is disconnected. For two distinct vertices u and v of G, let λG(u, v) (or simply λ(u, v)

when the graph G is clear from the context) denote the minimum number of edges in

an edge-cut F such that u and v lie in different components of G−F . The minimum

cardinality of an edge-cut of G is the edge-connectivity of G, denoted by λ(G) (i.e.,

λ(G) is the minimum value of λG(u, v) taken over all pairs of distinct vertices u, v);

whereas the maximum value of λG(u, v) taken over all pairs of distinct vertices u, v

is the upper edge-connectivity of G, denoted by λ+(G). This graph parameter λ+(G)

was introduced and extensively studied in [6, 7]. The following proposition presents

another interpretation for λ(u, v).
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Proposition 1.1 [12, 13] For every two vertices u and v in a graph G, λ(u, v) is

equal to the maximum number of pairwise edge-disjoint u-v-paths in G.

The following concept of rainbow disconnection of graphs was introduced by Char-

trand et al. in [11]. An edge-cut R of an edge-colored connected graph G is called a

rainbow cut if no two edges in R are colored the same. Let u and v be two distinct

vertices of G. A rainbow edge-cut R of G is called a u-v-rainbow cut if u and v belong

to different components of G − R. An edge-colored graph G is called rainbow dis-

connected if for every two distinct vertices u and v of G, there exists a u-v-rainbow

cut in G. In this case, the edge-coloring is called a rainbow disconnection coloring

(or rd-coloring for short) of G. For a connected graph G, the rainbow disconnection

number of G, denoted by rd(G), is defined as the smallest number of colors required

to make G rainbow disconnected. An optimal rd-coloring of G is an rd-coloring with

rd(G) colors.

Similarly, in [3, 19] we introduce the concept of rainbow vertex-disconnection of

graphs. For a connected and vertex-colored graph G, let x and y be two vertices of

G. If x and y are nonadjacent, then an x-y-vertex-cut is a subset S of V (G) such

that x and y belong to different components of G − S. If x and y are adjacent,

then an x-y-vertex-cut is a subset S of V (G) such that x and y belong to different

components of (G− xy)− S. A vertex subset S of G is rainbow if no two vertices of

S have the same color. An x-y-rainbow vertex-cut is an x-y-vertex-cut S such that

if x and y are nonadjacent, then S is rainbow; if x and y are adjacent, then S + x

or S + y is rainbow. Here one can see that if x and y are adjacent, this really causes

some inconvenience for the definition of rainbow x-y-vertex-cuts. This is done just

for in accordance with the common sense connectivity of graphs.

A vertex-colored graph G is called rainbow vertex-disconnected if for any two

distinct vertices x and y of G, there exists an x-y-rainbow vertex-cut. In this case,

the vertex-coloring c is called a rainbow vertex-disconnection coloring (or rvd-coloring

for short) of G. For a connected graph G, the rainbow vertex-disconnection number of

G, denoted by rvd(G), is the minimum number of colors required to make G rainbow

vertex-disconnected. An optimal rvd-coloring of G is an rvd-coloring with rvd(G)

colors.

This paper is organized as follows. In Section 2, we obtain some upper bounds for

rd(G), and moreover, we completely characterize the graphs which meet the upper

bound of the Nordhaus-Gaddum type result obtained early by us. In Section 3, we

propose a conjecture that for any connected graph G, λ+(G) ≤ rd(G) ≤ λ+(G) + 1,

and prove that the conjecture holds for many classes of graphs, which supports this
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conjecture. Furthermore, for all odd k ≥ 1, we give a sufficient and necessary con-

dition for a k-edge-connected k-regular graph G with rd(G) = k, from which we

get that there are infinitely many k-edge-connected k-regular graphs G for which

rd(G) = λ+(G) for odd k, and also there are infinitely many k-edge-connected k-

regular graphs G for which rd(G) = λ+(G)+1 for odd k. Moreover, we get a relation-

ship between face-colorings and rainbow disconnection colorings of 3-connected cubic

plane graphs. Finally, we give the relationship between rd(G) of G and rvd(L(G)) of

the line graph L(G) of G.

2 Some upper bounds for rd(G)

In this section, we obtain some upper bounds for the rainbow disconnection num-

ber of a graph G. Let G be a graph and X a proper subset of V (G). To shrink X is

to delete all the edges between vertices of X and then identify the vertices of X into

a single vertex. We denote the resulting graph by G/X. For each vertex x of G, let

Ex be a set of all edges incident with x in G. For an edge-colored graph G, a vertex

v of G is proper if the colors of edges incident with v are distinct in G. Now we give

some upper bounds for rd(G) in terms of the upper edge-connectivity. First, we give

some useful lemmas and introduce a shrinking operation.

Lemma 2.1 [10] If G is a nontrivial connected graph, then

λ(G) ≤ λ+(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1.

Lemma 2.2 [10] (i) If G is the Petersen graph, then rd(G) is 4.

(ii) If Wn = Cn−1 ∨K1 is the wheel of order n ≥ 4, then rd(Wn) = 3.

Lemma 2.3 [2] For a graph G, the following results hold.

(i) For any vertex u of G, let H = G− u. Then rd(G) ≤ ∆(H) + 1.

(ii) If there exists a vertex u of G such that H = G−u is in Class 1 and dH(x) ≤
∆(H)− 1 for each x ∈ NG(u), then rd(G) ≤ ∆(H).

Remark 1. From the proof of Lemma 2.3 (i), we know that there exists an rd-

coloring of G using colors in [∆(H)+1] such that each vertex is proper except the

vertex u.

Lemma 2.4 [21] Let G be a loopless multigraph with maximum degree ∆(G). Then

χ′(G) ≤ b3
2
∆(G)c.
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Lemma 2.5 Let G be a loopless multigraph and H be a graph by shrinking a vertex

subset of G to a single vertex h. If CH(u, v) is a u-v-edge-cut in H, where u, v ∈
V (H) \ h, then it is also a u-v-edge-cut in G.

Proof. Let H = G/Y , where Y ⊆ V (G). Assume that CH(u, v) is not a u-v-edge-cut

in G, namely, there exists a u-v-path P avoiding CH(u, v) in G. Then P/Y is still a

u-v-path in H avoiding CH(u, v), which is a contradiction. �

We define a shrinking operation on a graph G as follows.

For a given graph G, let λ+(G) = k and S = {x|d(x) ≥ k + 1}. For fixed k and

S, suppose |S| ≥ 2. Let u, v be two vertices of S. Then we can find a minimum

u-v-edge-cut C(u, v) such that |C(u, v)| ≤ λ+(G) and G \ C(u, v) = C1 ∪ C2. Then

we define the two operations o and O as follows:

o({G}) =

{G/V (C1), G/V (C2)}, if |G ∩ S| ≥ 2,

{G}, otherwise.

O({G1, G2, · · · , Gp}) = ∪pi=1o({Gi}).

We keep the multiple edges in each operation. Since the graph is split into two pieces

when we do the operation, the operation cannot last endlessly. Hence, there exists an

integer r such that Or({G}) = Or+1({G}). Finally, we get a finite set of connected

graphs, where each graph has exactly one vertex with degree at least λ+(G) + 1. We

call this procedure of making a graph G into such pieces the shrinking operation on

G.

Then we derive the following theorem by the shrinking operation and Lemmas

2.4 and 2.5.

Theorem 2.6 Let G be a loopless multigraph with upper edge-connectivity λ+(G).

Then rd(G) ≤ b3
2
λ+(G)c.

Proof. If ∆(G) = λ+(G), then the result holds by Lemma 2.1. Otherwise, suppose

that we get a family of graphs H = {H1, H2, . . . , Ht} by the shrinking operation on

G (if only one vertex has degree at least λ+(G) + 1, then let H = {G}). Let hi

be the unique vertex of Hi with dHi
(hi) ≥ λ+(G) + 1 and H ′i = Hi − hi for each

i ∈ [t]. Then ∆(H ′i) ≤ λ+(G) for each i ∈ [t]. It follows from Lemma 2.4 that

χ′(H ′i) ≤ 3
2
∆(H ′i) ≤ b3

2
λ+(G)c for each i ∈ [t]. Then there exists a proper edge-

coloring f ′i for H ′i using colors from [b3
2
λ+(G)c] for each i ∈ [t]. For each graph Hi

(i ∈ [t]), we now define a coloring fi of Hi as follows. Let fi(e) = f ′i(e) for each e ∈ H ′i,
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where i ∈ [t]. For each u ∈ NHi
(hi) (i ∈ [t]), since dH′i(u) ≤ ∆(H ′i) < b3

2
λ+(G)c,

there is an au ∈ [b3
2
λ+(G)c] such that the color au is not assigned to any edge incident

with u in Hi. Define fi(hiu) = au for each i ∈ [t]. We show that fi is an rd-coloring

of Hi for each i ∈ [t]. Let w and z be two distinct vertices of Hi for some i ∈ [t].

Then at least one of the vertices w and z belongs to H ′i (i ∈ [t]), say w ∈ V (H ′i).

Since the set Ew separates w and z and is rainbow under fi in Hi (i ∈ [t]), then fi

is an rd-coloring of Hi using colors from [b3
2
λ+(G)c], and each vertex of Hi is proper

except vertex hi under fi. Namely, rd(Hi) ≤ b3
2
λ+(G)c for each i ∈ [t].

Now we claim that we can obtain an rd-coloring of G using colors from [b3
2
λ+(G)c]

by adjusting colorings of shrunk graphs. Suppose that F1 and F2 are two graph-

s obtained by one o operation for F in terms of two vertices x1, x2 of F , where

d(x1), d(x2) ≥ λ+(G) + 1 in F . Without loss of generality, let Fi = F/V (Fi) and

xi ∈ Fi (i ∈ [2]). Suppose that for each i ∈ [2], Fi has an rd-coloring fi using colors

from [b3
2
λ+(G)c]. Let yi be the vertex by shrinking vertex-set V (Fi) in F (i ∈ [2]).

Note that d(yi) ≤ λ+(G) in Fi for each i ∈ [2]. So, yi 6= xi and the vertex yi is proper

in Fi. We can exchange the colors of f2 for F2 such that c(e)|F2 = c(e)|F1 for each

e ∈ C(x1, x2) in F and the new coloring f ′2 is still an rd-coloring of F2 using colors

from [b3
2
λ+(G)c]. Then we obtain a coloring f of F using colors from [b3

2
λ+(G)c] by

letting f(e) = f1(e) if e ∈ F1 and f(e) = f ′2(e) if e ∈ F2 \ y2. We now verify that the

coloring f is an rd-coloring of F . For any two vertices p, q of F , if p ∈ V (F1) and

q ∈ V (F2), then CF (x1, x2) is a p-q-rainbow cut in F ; if p, q belong to one of V (F1),

V (F2), without loss of generality, say p, q ∈ V (F1), then there exists a p-q-rainbow

cut CF1(p, q) in F1 that is also a p-q-rainbow cut in F by Lemma 2.5. Repeating

the above inverse shrinking procedure, we finally get an rd-coloring of G using colors

from [b3
2
λ+(G)c]. Hence, rd(G) ≤ b3

2
λ+(G)c. Moreover, for the Petersen graph P ,

we have rd(P ) = 4 = b3
2
λ+(P )c since λ+(P ) = 3. Thus, the upper bound is sharp in

some sense. �

Next we obtain another bound for rd(G).

Theorem 2.7 Let G be a graph of order n with maximum degree ∆(G) and upper

edge-connectivity λ+(G). Then rd(G) ≤ min{n + λ+(G) − ∆(G) − 1,∆(G) + 1}.
Furthermore, the bound is sharp in some sense.

Proof. Let v be a vertex with degree ∆(G) and S = V (G) \ N [v]. Then there

exist at most λ+(G) edges from x to N [v] for each vertex x of S ∪ N(v) in G by

the definition of upper edge-connectivity. Let G′ = G − v. Observe that ∆(G′) ≤
min{n + λ+(G) − ∆(G) − 2,∆(G)}. So, rd(G) ≤ ∆(G′) + 1 = min{n + λ+(G) −
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∆(G) − 1,∆(G) + 1} by Lemma 2.3. Furthermore, it follows from Lemma 2.2 that

rd(G) = n + λ+(G) −∆(G) − 1 if G is K1,n−1 or Wn and rd(G) = ∆(G) + 1 if G is

the Petersen graph. The upper bound is sharp in some sense. �

In the rest of this section, we always assume that all graphs have at least four

vertices, and that both G and G are connected. For any vertex u ∈ V (G), let ū

denote the vertex in G corresponding to the vertex u. We then characterize the

graphs which meet the upper bounds of the Nordhaus-Gaddum type result obtained

early by us. The following several lemmas will be used.

Lemma 2.8 [1] Let G be a connected graph and let G∆ denote the subgraph of G

induced by the vertices of maximum degree ∆(G). If every connected component of

G∆ is a unicyclic graph or a tree, and G∆ is not a disjoint union of cycles, then G

is in Class 1.

Lemma 2.9 [2] Let G be a connected graph of order n. If rd(G) ≥ n − 2, then G

has at least two vertices of degree at least n− 2.

Lemma 2.10 [10] If H is a connected subgraph of a graph G, then rd(H) ≤ rd(G).

Lemma 2.11 [10] Let G be a connected graph, and let B be a block of G such that

rd(B) is maximum among all the blocks of G. Then rd(G) = rd(B).

Lemma 2.12 [10] Let G be a connected graph of order n ≥ 2. Then rd(G) = n− 1

if and only if G has at least two vertices of degree n− 1.

Lemma 2.13 Let G be a graph of order n ≥ 3. Then rd(G) = n − 2 if and only if

one of the following conditions holds.

(i) G has exactly one vertex of degree n− 1 and another vertex of degree n− 2.

(ii) G is a graph with ∆(G) = n − 2 and there are two nonadjacent vertices of

degree n− 2 in G.

(iii) G is a graph not in (ii) with ∆(G) = n− 2 and at least two maximum degree

vertices. In addition, for some pair of vertices u, v of degree n− 2, there is a vertex

z of G such that z /∈ N(u) ∪ N(v) or there are two distinct vertices x, y such that

x ∈ N(u) \ N [v] and y ∈ N(v) \ N [u] and x, y belong to the same component of

G[V \ {u, v}].

Proof. For any graph that satisfies one of the conditions (i), (ii) and (iii), we first get

that rd(G) ≤ n − 2 by Lemma 2.12. Furthermore, we find that λ+(G) ≥ n − 2, so

rd(G) ≥ n− 2 by Lemma 2.1.
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We now verify the converse. Assume, to the contrary, that there exists a graph

G with rd(G) = n− 2 but it does not satisfy any of the conditions (i), (ii) and (iii).

Note that G has at least two vertices of degree at least n − 2 by Lemma 2.9 and G

does not have two vertices of degree n − 1. Therefore G satisfies the following two

conditions:

(1) ∆(G) = n − 2 and there exists an edge for any two vertices of degree n − 2

in G.

(2) G has two distinct vertices x, y such that x ∈ N(u)\N [v] and y ∈ N(v)\N [u]

for any pair vertices u, v of degree n− 2, and x, y belong to different components of

G[V \ {u, v}].
We will show that the rainbow disconnection number of a graph G satisfying

conditions (1) and (2) is at most n− 3. We first present a claim as follows.

Claim 1. If G be a graph satisfying conditions (1) and (2), then dG(a) ≤ n − 3

for each a ∈ V (G) \ {u, v}.
Proof of Claim 1: If G[V \{u, v}] has at least three components or two components

where each part has at least 2 vertices, then dG(a) ≤ n−3 for each a ∈ V (G)\{u, v}.
If G[V \ {u, v}] has two components, one of which has exactly one vertex, then the

vertex of the single vertex component is x or y. Without loss of generality, let x be

the vertex in this single vertex component. Assume, to the contrary, that there exists

a vertex w of V (G) \ {u, v} with dG(w) = n− 2. Then v, w are two vertices of degree

n− 2 that do not meet condition (2) since x /∈ N(v)∪N(w). This is a contradicton.

If x or y is a pendent vertex in G, without loss of generality, say x, then let

G′ = G − x. Then dG′\v(a) ≤ n − 4 for each a ∈ V (G′) \ v. Thus, we have

rd(G′) ≤ n− 3 by Lemma 2.3 (i). Furthermore, rd(G) = rd(G′) ≤ n− 3 by Lemma

2.11. Otherwise, suppose that G∗1 is the component in G[V \ {u, v}] that contains

vertex x and G∗2 is the remaining components in G[V \{u, v}], and |G∗1|, |G∗2| ≥ 2. Let

G1 = G[V (G∗1) ∪ {u, v}] and G2 = G[V (G∗2) ∪ {u, v}]. Observe that ∆(G1),∆(G2) ≤
n− 3 and ∆(G1 \ u),∆(G2 \ v) ≤ n− 4. Therefore, there is an rd-coloring c1 (c2) of

G1 (G2) using colors from [n− 3] such that each vertex of G1 (G2) is proper except

for the vertex u (v) by Remark 1. Then we can exchange the colors of c2 for G2 such

that the colors of edges incident with u in G2 \v are different from the colors of edges

incident with v in G1, and color the edge uv in G2 with the same color as uv under

c1. The new coloring c′2 is still an rd-coloring of G2 using colors from [n − 3] such

that each vertex of G2 is proper except for the vertex v. Then we get a coloring c of

G by letting c(e) = c1(e) if e ∈ G1 and c(e) = c′2(e) if e ∈ G2 and |c| = n− 3. We can

verify that coloring c is an rd-coloring of G. Let p, q be two vertices of G. If there
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exists a vertex of {p, q} that does not belong to {u, v}, without loss of generality, say

p, then the set Ep is a p-q-rainbow cut in G. If {p, q} = {u, v}, then the set E1
v ∪E2

u

is a p-q-rainbow cut in G, where E1
v is the set of edges incident with vertex v in G1

and E2
u is the set of edges incident with vertex u in G2. Hence, rd(G) ≤ n− 3. This

is a contradiction with our assumption. �

In [2], we obtained the Nordhaus-Gaddum type result for rd(G), and examples

were given to show that the upper and lower bounds are sharp. However, we are

not satisfied with these examples because they are special graphs. We restate it as

follows.

Lemma 2.14 [2] If G is a connected graph such that G is also connected, then n−2 ≤
rd(G) + rd(G) ≤ 2n − 5 and n − 3 ≤ rd(G) · rd(G) ≤ (n − 2)(n − 3). Furthermore,

these bounds are sharp.

Next we will completely characterize the graphs which meet the upper bounds in

the above Nordhaus-Gaddum type result combining Lemma 2.13.

Theorem 2.15 Let G be a graph of order n ≥ 4. Then rd(G) + rd(G) = 2n− 5 (or

rd(G) · rd(G) = (n− 2)(n− 3)) if and only if one of G and G satisfies the following

three conditions:

(i) condition (ii) or (iii) in Lemma 2.13 holds;

(ii) it has exactly two vertices of degree n− 2, say u, v;

(iii) it has at least two vertices of degree 2 except {x, y} or {z}, where x ∈ N(u) \
N [v], y ∈ N(v) \N [u] and z /∈ N(u) ∪N(v).

Proof. Without loss of generality, suppose that G satisfies the above three conditions.

Obviously, rd(G) = n− 2 by Lemma 2.13. Since G has at least two vertices of degree

2 except {x, y} or {z}, the graph G \ {ū, v̄} is of order n − 2 and has at least two

vertices of degree n − 3. So, rd(G) = rd(G \ {ū, v̄}) = n − 3 by Lemmas 2.11 and

2.12.

Conversely, assume that there exists a graph G with rd(G) + rd(G) = 2n − 5.

Since G is connected, we have rd(G) ≤ n− 2 by Lemma 2.12. Therefore, it remains

to consider the case rd(G) = n − 2, rd(G) = n − 3 by symmetry. Similarly, if

rd(G) · rd(G) = (n − 2)(n − 3), we only need to consider the case rd(G) = n − 2,

rd(G) = n − 3 by symmetry. Obviously, G satisfies (ii) or (iii) of Lemma 2.13. If G

has more than 2 vertices with degree n−2, then G has at least 3 vertices with degree

1. Then rd(G) ≤ n − 4 by Lemmas 2.10 and 2.11, this is a contradiction. Thus,
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condition (ii) holds. To prove (iii), assume, to the contrary, that G has at most one

vertex of degree 2 except {x, y} or {z}. Then G \ {ū, v̄} has at most one vertex of

degree at least n−3. Since dG(ū) = dG(v̄) = 1, we have rd(G) = rd(G\{ū, v̄}) ≤ n−4

by Lemmas 2.11 and 2.12. This is a contradiction with our condition. �

3 Graphs with rd(G) ≤ λ+(G) + 1

First, we recall some known results.

Lemma 3.1 [2] If G is a connected k-regular graph, then k ≤ rd(G) ≤ k + 1.

Lemma 3.2 [2] If G = Kn1,n2,...,nk
is a complete k-partite graph of order n, where

k ≥ 2 and n1 ≤ n2 ≤ · · · ≤ nk, then

rd(Kn1,n2,...,nk
) =

n− n2, if n1 = 1,

n− n1, if n1 ≥ 2.

Lemma 3.3 [10] The rainbow disconnection number of the grid graph Gm,n is as

follows.

(i) For all n ≥ 2, rd(G1,n) = rd(Pn) = 1.

(ii) For all n ≥ 3, rd(G2,n) = 3.

(iii) For all n ≥ 4, rd(G3,n) = 3.

(iv) For all n ≥ m ≥ 4, rd(Gm,n) = 4.

Observe that rd(G) ≤ λ+(G) + 1 for all connected regular graphs, complete mul-

tipartite graphs and grid graphs. Therefore, we propose the following conjecture.

Conjecture 3.4 Let G be a connected graph with upper edge-connectivity λ+(G).

Then λ+(G) ≤ rd(G) ≤ λ+(G) + 1.

Obviously, the lower bound is always true by Lemma 2.1. Furthermore, we give

some classes of graphs that support the upper bound of the conjecture. The following

are some useful lemmas which will be used in the sequel.

Lemma 3.5 [10] Let G be a nontrivial connected graph. Then rd(G) = 1 if and only

if G is a tree.
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Lemma 3.6 [10] Let G be a nontrivial connected graph. Then rd(G) = 2 if and only

if each block of G is either K2 or a cycle and at least one block of G is a cycle.

Lemma 3.7 [20] Let G be a graph of order n (n ≥ k + 2 ≥ 3). If |E(G)| > k+1
2

(n−
1)− 1

2
σk(G), where σk(G) =

∑
x ∈ V (G)

d(x) ≤ k

(k − d(x)), then λ+(G) ≥ k + 1.

We recall some notions of graphs from [14]. A simple graph G is overfull if

|E(G)| > b |V (G)|
2
c∆(G). A graph G is subgraph-overfull if it has an overfull subgraph

H with ∆(H) = ∆(G). Obviously, every overfull graph is subgraph-overfull. For

subgraph-overfull graphs and graphs whose maximum degree does not exceed 3, we

have the following observations, which support Conjecture 3.4.

Observation 3.8 Let G be a subgraph-overfull graph with upper edge-connectivity

λ+(G). Then rd(G) ≤ λ+(G) + 1.

Proof. Let H be an overfull subgraph of G with ∆(H) = ∆(G). Then |E(H)| >
b |V (H)|

2
c∆(H) ≥ |V (H)|−1

2
∆(H). Combining Lemma 3.7, we have ∆(G) ≥ λ+(G) ≥

λ+(H) ≥ ∆(H) = ∆(G). So, λ+(G) = ∆(G). It follows from Lemma 2.1 that

rd(G) ≤ λ+(G) + 1. �

Observation 3.9 Let G be a graph with ∆(G) ≤ 3. Then rd(G) ≤ λ+(G) + 1.

Proof. Obviously, λ+(G) ≤ ∆(G) ≤ 3. If λ+(G) = 1, we get that G is a tree. It

follows from Lemma 3.5 that rd(G) = 1. If λ+(G) = 2, G must contain a cycle and

any cycle of G does not have a chord, namely, G is a graph that each block of G is

a cycle or K2 and at least one block of G is a cycle. Then rd(G) = 2 by Lemma 3.6.

If λ+(G) = 3, we have rd(G) ≤ ∆(G) + 1 = 4 by Lemma 2.1. �

For a graph with a large maximum degree, we get the following result.

Theorem 3.10 Let G be a graph with order n and ∆(G) ≥ n − 3. Then rd(G) ≤
λ+(G) + 1.

Proof. Let d(u) = ∆(G) and G′ = G − u. Suppose λ+(G) = k. If ∆(G) ≥ n − 2,

we have ∆(G′) ≤ k; otherwise, let v be a vertex with dG′(v) ≥ k + 1. Then we have

λ+(u, v) ≥ k + 1, which is a contradiction. Thus, rd(G) ≤ ∆(G′) + 1 ≤ k + 1 by

Lemma 2.3.
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If ∆(G) = n − 3, let d(u) = n − 3 and let p, q be two vertices which are not

adjacent to u, i.e., V (G) = N [u]∪{p, q}. Note that dG(x) ≤ k+ 2 for each x ∈ N(u)

and dG(p), dG(q) ≤ k + 1 since λ+(G) = k. Thus, ∆(G′) ≤ k + 1. We distinguish the

following cases to discuss.

Case 1. ∆(G′) ≤ k.

It follows from Lemma 2.3 that rd(G) ≤ ∆(G′) + 1 ≤ k + 1.

Case 2. ∆(G′) = k + 1.

Let D = {x|x ∈ V (G′) and dG′(x) = k + 1}. If D ⊆ {p, q}, then G′[D] is

K1 (otherwise, λ(p, q) = k + 1, a contradiction). Thus, it follows from Lemma 2.8

that G′ is in Class 1. Moreover, dG′(x) ≤ ∆(G′) − 1 for each x ∈ NG(u). So,

rd(G) ≤ ∆(G′) = k + 1 by Lemma 2.3.

Suppose D ∩ N(u) 6= φ. We claim |D ∩ N(u)| = 1. Assume that there are at

least two vertices in D ∩N(u), say x1, x2. Note that dN(u)(x1) = dN(u)(x2) = k − 1.

So, {p, q} ⊆ N(xi) for each i ∈ [2]. Then we find λG(x1, x2) ≥ k + 1, which is a

contradiction. Let D ∩N(u) = {a}. Then {p, q} ⊆ N(a) since dN(u)(a) ≤ k − 1. Let

R = N(u)\N [a], T = N(p)∪N(q). Note that R∩T = ∅ and there is no edge between

R and T ∪ {p, q}. Assume that R ∩ T 6= ∅ or there exists a vertex of R adjacent to a

vertex of T ∪ {p, q}. Then we have λ+(u, a) ≥ k + 1, which is a contradiction. Thus,

T ⊆ N [a]. Let S = N [a] \ T . If there exists a vertex s ∈ S such that s belongs to a

component with a vertex of R in G[R∪ S], then let s ∈ S1 and S2 = S \ S1. Observe

that the edge-set E(u, S2 ∪ T ) ∪ E(S1, a) is a u-a-edge-cut by the definitions of R,

S1 and S2. Let G1 = G[R ∪ S1 ∪ {u, a}]− ua and G2 = G[T ∪ S2 ∪ {u, p, q}]. Write

G′1 = G1 − u and G′2 = G2 − a. Observe that ∆(G′1),∆(G′2) ≤ k. By Lemma 2.3

and Remark 1, there exists an rd-coloring ci of Gi (i ∈ [2]) using colors from [k + 1],

moreover, x is proper for each x ∈ V (G1) \ {u} (x ∈ V (G2) \ {a}) in coloring c1 of

G1 (c2 of G2). Since |E(u, S2 ∪ T )∪E(S1, a)| = k, we can exchange colors of c2 such

that E(u, S2 ∪ T ) ∪ E(S1, a) have distinct colors. Then we get a coloring c of G by

identifying the graphs G1 and G2 using colors from [k + 1].

Furthermore, we can verify that the coloring c is an rd-coloring of G. For any two

vertices w, z of G, if there exists a vertex not in {u, a}, say w, then the set Ew is a

w-z-rainbow cut in G; if {w, z} = {u, a}, then E(u, S2∪T )∪E(S1, a) is a u-a-rainbow

cut in G. Hence, rd(G) ≤ k + 1. �

By Observation 3.9 and Theorem 3.10, we know that Conjecture 3.4 holds for

small graphs.

Corollary 3.11 Let G be a graph of order n ≤ 7. Then rd(G) ≤ λ+(G) + 1.
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For a k-regular graph G, we know that λ+(G) = k by Lemma 3.7, and then the

conjecture holds by Lemma 3.1. In particular, we want to further know which k-

regular graphs satisfy rd(G) = k. In [2], we presented some results for this question.

For all odd k ≥ 1, we now deduce the following result for k-edge-connected k-regular

graphs.

Theorem 3.12 Let k be an odd integer, and G be a k-edge-connected k-regular graph.

Then χ′(G) = k if and only if rd(G) = k.

Proof. Suppose, first, that χ′(G) = k. By Lemma 2.1, we have k = λ(G) ≤ rd(G) ≤
χ′(G) = k. Thus, rd(G) = k.

Conversely, suppose rd(G) = k and let c be an optimal rd-coloring of G. If G

has a k-rainbow cut T such that G \ T has two non-trivial components, say G1, G2,

then we do an operation f , i.e., the graph G shrinks V (G1), V (G2) to vertices x1, x2,

respectively. The resulting edge-colored graphs are denoted by G/V (G1), G/V (G2),

respectively. Furthermore, the obtained edge-colored graphs G/V (G1) and G/V (G2)

are both k-edge-connected k-regular. Assume, to the contrary, that there exists a

u-v-edge-cut V in G/V (G1), where u, v ∈ G/V (G1) and |V | < k. If x1 /∈ {u, v}, then

V is also a u-v-edge-cut in G by Lemma 2.5, which contradicts the condition; if one

of {u, v} is x1, without loss of generality, say u = x1, then V is a w-v-edge-cut in G,

where w is any vertex of V (G1). Similarly, this is a contradiction.

Claim 1. The coloring c of G restricted to G/V (G1) is an rd-coloring of G/V (G1).

Proof of Claim 1: Note that V (G/V (G1)) = V (G2)∪{x1}. Let u, v be two vertices

of G/V (G1). Suppose u, v ∈ V (G2). Let W be a u-v-rainbow cut in G and let WH

be the set of edges of W ∩H for any subgraph H of G. Since G1, G2 are both dk
2
e-

connected, we have |WG2| ≥ dk2e. Now we show W ⊆ G2 ∪ T . If the remaining edges

of W are all in G1, then there still is a u-v-path in G \W since G1 is dk
2
e-connected

and |WG1| ≤ bk2c < d
k
2
e for k odd, which is a contradiction. If G1 and T both

have edges of W , without loss of generality, suppose that |WG1| = s, |WT | = t and

|WG2| = r, where 0 < t, s < bk
2
c, s+ t ≤ bk

2
c and r+ s+ t = k. When we remove the

set WT from G, at most t u-v-paths that go through T are destroyed. However, there

are s+ t u-v-paths going through T in G, and so at least one u-v-path goes through

T \W in G since s ≥ 1. Moreover, G1 \W is connected since |WG1| < dk2e and G1 is

dk
2
e-connected. So, there is at least one u-v-path in G \W , which is a contradiction.

Therefore, W ⊆ G2 ∪ T . Then W is a u-v-rainbow cut of G/V (G1), otherwise, if

G/V (G1) has a u-v-path avoiding the set W , then there exists a u-v-path in G \W
since G1 is connected, which is a contradiction. If x1 ∈ {u, v}, then the set Ex1 is a
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u-v-rainbow cut of G/V (G1). The proof is complete.

Repeating the operation f until the obtained edge-colored graphs do not satisfy

the condition of operation f , the resulting edge-colored k-edge-connected k-regular

graphs are denoted by F = {Fi|i ∈ [`]}.
Claim 2. The coloring of the graph Fi in F is a proper coloring of Fi for each

i ∈ [`].

Proof of Claim 2: Assume that there exists a graph Fi for some i ∈ [`] whose

coloring is not proper. If Fi (i ∈ [`]) has two vertices, say p, q, which are not proper,

then there exists a p-q-rainbow cut Z in Fi that are not Ep or Eq. Thus, we get that

Z is a rainbow cut in Fi such that Fi \ Z has two non-trivial components, which is

a contradiction to our operation. Hence, Fi has at most one vertex, say bi, which is

not proper for each i ∈ [`]. Given an i ∈ [`], let kt (t ∈ [k]) be the number of edges

incident with vertex bi and with color t in Fi, and moreover, let Fi,Aj
be a subgraph of

Fi induced by the set of edges with colors in Aj, where Aj is the color set [k]\{j} for

some j ∈ [k]. Then for the graph Fi (i ∈ [`]), we get (k− 1)(|Fi| − 1) +
∑

t∈Aj
kt ≡ 0

(mod 2) since the sum of degrees of vertices in Fi,Aj
is even for each j ∈ [k]. Therefore,

we have
∑

t∈A1
kt ≡

∑
t∈A2

kt ≡ · · · ≡
∑

t∈Ak
kt ≡ 0 (mod 2) since (k− 1)(|Fi| − 1) is

even, which gives k1 ≡ k2 ≡ · · · ≡ kk (mod 2). Since
∑k

i=1 ki = k is odd, we obtain

that k1 ≡ k2 ≡ · · · ≡ kk ≡ 1 (mod 2), and then k1 = k2 = · · · = kk = 1. So, the

vertex bi is also proper in Fi for each i ∈ [`].

For each vertex x of G, the colors of edges incident with vertex x are not changed

in each operation f . Thus, the optimal rd-coloring c of G is a proper coloring of G,

i.e., χ′(G) ≤ k. Combining Lemma 2.1, we get χ′(G) = k. �

Remark 2. For odd k, any optimal rd-coloring of a k-edge-connected k-regular

graph G is a proper coloring of G. However, for even k the argument does not

follow; see the following example. Let G be a k-edge-connected k-regular graph

with V (G) = {ui, vi|i ∈ [2r]} ∪ {pi, qi|i ∈ [2r − 2]} and E(G) = {piuj, qivj, ujvj|i ∈
[2r − 2], j ∈ [2r]} ∪ {uiui+r, vivi+r|i ∈ [r]}. Observe that k = 2r. We give a coloring

c of G as follows.

? c(p1ui) = c(p1ui+r) = i, i ∈ [r];

? c(uiui+r) = r + i, i ∈ [r];

? c(uivi) ≡ i+ 1 (mod 2r), i ∈ [2r];

? c(uipj) ≡ i+ j (mod 2r), 2 ≤ j ≤ r − 1;

? c(uipj) ≡ i+ j + 1 (mod 2r), r ≤ j ≤ 2r − 2;

? the coloring of the remaining edges can be obtained symmetrically.
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Note that |c| = 2r and each vertex of G is proper except vertices p1, q1 under the

coloring c. Therefore, it is easy to verify that c is an optimal rd-coloring of G, but it

is not a proper coloring of G.

Remark 3. From Vizing’s theorem we know that for a k-regular graph G, χ′(G) = k

or k + 1. Since for k = 3 determining χ′(G) = 3 or 4 is NP-complete [15], there are

infinitely many k-edge-connected k-regular graphs G for which χ′(G) = k for odd

k, and also there are infinitely many k-edge-connected k-regular graphs G for which

χ′(G) = k + 1 for odd k. So, from our Theorem 3.12 one can get that there are

infinitely many k-edge-connected k-regular graphs G for which rd(G) = k for odd

k, and also there are infinitely many k-edge-connected k-regular graphs G for which

rd(G) = k + 1 for odd k. Since for k-edge-connected k-regular graphs G one has

λ+(G) = k, we then get that there are infinitely many k-edge-connected k-regular

graphs G for which rd(G) = λ+(G) for odd k, and also there are infinitely many

k-edge-connected k-regular graphs G for which rd(G) = λ+(G) + 1 for odd k.

Obviously, for k = 3, we get the following corollary from Theorem 3.12.

Corollary 3.13 [2] Let G be a 3-edge-connected cubic graph. Then χ′(G) = 3 if and

only if rd(G) = 3.

For planar graphs, Corollary 3.13 gives rise to an interesting result, which is

equivalent to the famous Four-Color Problem. We know the Four-Color Problem is

equivalent to the following statement (For a history of the Four-Color Problem, see

Biggs et al. [5] or Wilson [24].)

Problem 3.14 [5, 8, 24] Every plane graph without cut edges is 4-face-colorable.

The Four-Color Problem is equivalent to the assertion that every 3-connected

cubic plane graph is 4-face-colorable. Tait [22] found a surprising relationship between

face-colorings and edge-colorings of 3-connected cubic plane graphs.

Theorem 3.15 [22] A 3-connected cubic plane graph G is 4-face-colorable if and only

it is 3-edge-colorable, i.e., χ′(G) = 3.

Moreover, we prove that a cube graph is 3-connected is equivalent to it is 3-edge-

connected.

Theorem 3.16 A cube graph G is 3-connected if and only if G is 3-edge-connected.

Proof. First, let G be a 3-connected cube graph. Obviously, the G is 3-edge-

connected. Conversely, suppose that G is a 3-edge-connected cube graph. We now
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prove that G is 3-connected. Assume, to the contrary, that G has a 2-vertex-cut

{u, v}. Since G is a 3-regular graph, we can find a 2-edge-cut incident with vertex

{u, v}. This is a contradiction with our assumption. �

Therefore, we get the following result.

Lemma 3.17 Let G be a 3-connected cubic graph. Then χ′(G) = 3 if and only if

rd(G) = 3.

Combining Theorem 3.15 and Lemma 3.17, we get a relationship between face-

colorings and rainbow disconnection colorings of 3-connected cubic plane graphs.

Theorem 3.18 A 3-connected cubic plane graph G is 4-face-colorable if and only if

rd(G) = 3.

4 Relationship of rd(G) and rvd(L(G))

The line graph L(G) of a graph G has the edges of G as its vertices, and two

distinct edges of G are adjacent in L(G) if and only if they share a common vertex

in G. Now, we study the relationship between rd(G) and rvd(L(G)).

Lemma 4.1 [3] For an integer n ≥ 2,

rvd(Kn) =

{
n− 1, if n = 2, 3,

n, if n ≥ 4.

Theorem 4.2 Let G be a graph and L(G) be the line graph of G. Then rd(G) ≤
rvd(L(G)).

Proof. Let c0 be an optimal rvd-coloring of the line graph L(G). Then we get an

edge-coloring c of G corresponding to the vertex-coloring c0 of L(G). We can verify

that c is an rd-coloring of G. For any two vertices u, v of G, if uv is not a pendent

edge, we can find two edges e1, e2 incident with vertices u, v, respectively, and the

edge e1 (or e2) does not have two ends as u, v. Suppose that e1 = ux and e2 = vy,

where x, y ∈ V (G) \ {u, v} and x, y could be the same vertex. We know that e1, e2

correspond to two vertices of L(G), denoted by a and b. We claim that the edge-set

S of G which corresponds to an a-b-rainbow vertex-cut S ′ in L(G) is a u-v-rainbow

cut in G. Assume that there still exists a u-v-path P in G which avoids the edge-set
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S of G. Then the u-v-path P in G corresponds to an a-b-path P ′ which avoids the

vertex set S ′ in L(G). This is a contradiction. If uv is a pendent edge of G, then uv

is a u-v-rainbow cut in G. �

We know that the chromatic index of G is equal to the chromatic number of L(G).

Similarly, we want to know whether rd(G) = rvd(L(G)) for any graph G. However,

the equality is not always true. For the moment we obtain the following necessary

condition for the equality.

Theorem 4.3 Let G be a graph with δ(G) ≥ 4 and L(G) be the line graph of G. If

rd(G) = rvd(L(G)), then rd(G) = χ′(G).

Proof. Assume, to the contrary, that rd(G) < χ′(G). Then rvd(L(G)) < χ(L(G))

since χ′(G) = χ(L(G)). Let rvd(L(G)) = t and c be an any vertex-coloring of L(G)

using colors from [t]. Then there exist two adjacent vertices u, v which have the same

color in L(G). Observe that u, v must contain in some K` ( ` ≥ 4) of L(G) since

δ(G) ≥ 4, and the K` has at most `−1 colors in L(G). Thus, any t-vertex-coloring c of

L(G) is not an rvd-coloring of L(G) by Lemma 4.1. This contradicts rvd(L(G)) = t.

�
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