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Abstract

For given graphs G and H, the graph G is H-saturated if G does not contain H as
a subgraph but for any e ∈ E(G), G+ e contains H. In this note, we prove that if G
is an n-vertex Kr+1-saturated graph such that for each vertex v ∈ V (G),∑

w∈N(v)

dG(w) ≥ (r − 2)d(v) + (r − 1)(n− r + 1),

then ρ(G) ≥ ρ(Sn,r), where Sn,r is the graph obtained from a copy of Kr−1 with vertex
set S by adding n − r + 1 vertices, each of which has neighborhood S. This provides
a sharp lower bound for the spectral radius in an n-vertex Kr+1-saturated graph for
r = 2, 3, verifying a special case of a conjecture by Kim, Kim, Kostochka and O.
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1 Introduction

A key theme in extremal graph theory is to study the relations between the number of edges
of graphs and the substructures they have. This study goes back to 1941 when Turán [16]
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proved that the n-vertex complete r-partite graph is the unique graph having maximum
number of edges among all n-vertex graphs not having Kr+1 as a subgraph. Since then,
the studies on the extremal number, denoted ex(n,H), which is defined to be the maximum
number of edges in an n-vertex graph not containing H as a subgraph, was extensively done.

As the extremal number is defined in terms of the maximality, it naturally implies that
any addition of edge to an extremal example creates a copy of Kr+1. This motivates to
give a name to such a concept of maximality with respect to edge addition, introducing the
notion of saturation. For given graphs G and H, the graph G is H-saturated if H is not a
subgraph of G but for any e ∈ E(G), H is a subgraph of G + e. With this definition, the
extremal number ex(n,H) can be treated as the maximum number of edges in an n-vertex
H-saturated graph.

The saturation number of H, written sat(n,H), is defined to be the minimum number
of edges in an n-vertex H-saturated graph and was also extensively studied. The first result
on saturation numbers was proved in 1964 [5]. Erdős, Hajnal and Moon [5] determined
the saturation number of Kr+1 and characterized the extremal graphs. We let Sn,r be the
n-vertex graph obtained from a copy of Kr−1 with the vertex set S by adding n − r + 1
vertices, each of which has neighborhood S.

Theorem A [5]. If 2 ≤ r < n, then sat(n,Kr+1) = (r − 1)(n − r + 1) +
(
r−1
2

)
. The only

n-vertex Kr+1-saturated graph with sat(n,Kr+1) edges is the graph Sn,r.

For history and exciting developments on the theory of saturation number, we refer the
reader to an excellent survey [6] by Faudree, Faudree, and Schmitt.

Note that for a graph with given number of vertices, the average degree d(G) = 2|E(G)|
|V (G)|

carries the same information with |E(G)|, so the Turán’s theorem can be restated in terms
of the average degree. As the relations between the average degree d(G) and subgraph
structures of G have been explored, it is natural to ask what will happen if we replace d(G)
with another parameter?

For a graph G, let A(G) denote its adjacency matrix and let ρ(G) denote the spectral
radius of maximum of A(G), that is, ρ(G) = max{|λi| : 1 ≤ i ≤ n}, where λ1, . . . , λn are
the eigenvalues of A(G). Since A(G) is real-valued and symmetric, all λis are real numbers,
and we may assume λ1 ≥ · · · ≥ λn. By the Perron-Frobenius Theorem (see [8, 9]), we have
ρ(G) = λ1.

It is well-known that the maximum degree of G plus one bounds from above the chromatic
number of the graph. Wilf [18] improved this fact by replacing the maximum degree by its
spectral radius, showing that the chromatic number is at most its spectral radius plus one.
In this result, the spectral radius plays a similar role with the maximum degree, hinting that
the spectral radius of a graph might be a right parameter for replacing the average degree
in Turán’s theorem.

Indeed, Nikiforov [13] proved that the spectral radius behaves like the average degree in
terms of Turán’s theorem: if G is an n-vertex Kr+1-free graph, then ρ(G) ≤ ρ(Tn,r). Since
each Kr+1-saturated graph is Kr+1-free, his theorem implies the following.

2



Theorem B [12]. If G is a Kr+1-saturated graph with n vertices, then

ρ(G) ≤ ρ(Tn,r).

Similarly, one can naturally ask whether the spectral radius verison of the Erdős-Hajnal-
Moon theorem is true, in other words, “what is the minimum possible spectral radius ρ(G) of
an n-vertex Kr+1-saturated graph?” Indeed, Kim, Kim, Kostochka, and O [11] conjectured
as follows.

Conjecture 1.1. [11] If G is an n-vertex Kr+1-saturated graph, then ρ(G) ≥ ρ(Sn,r).

Furthermore, they supported this conjecture by giving an asymptotically tight lower
bound of ρ(Sn,r) +

r−2
2

+ Θ( r
1.5
√
n
). In particular, their bound is tight for r = 2, verifying the

conjecture for r = 2.

Theorem C [11]. If G is an n-vertex K3-saturated graph, then ρ(G) ≥ ρ(Sn,2); equality
holds only when G is Sn,2 or a Moore graph.

In this note, we prove that if G is an n-vertex Kr+1-saturated graph such that for each
vertex v ∈ V (G),

∑
w∈N(v) d(w) ≥ (r− 2)d(v) + (r− 1)(n− r + 1), then ρ(G) ≥ ρ(Sn,r). By

using this, we give a simpler proof of Theorem C and also prove Conjecture 1.1 for r = 3.
For undefined terms of graph theory, see West [17]. For basic properties of spectral graph

theory, see Brouwer and Haemers [2] or Godsil and Royle [8].

2 Results and proofs

We first prove Theorem 2.2. Note that the spectral radius of Sn,r is as follows.

Proposition 2.1. [7, 11, 15] For integers 2 ≤ r < n,

ρ(Sn,r) =
r − 2 +

√
(r − 2)2 + 4(r − 1)(n− r + 1)

2
.

Theorem 2.2. If G is an n-vertex Kr+1-saturated graph such that for each vertex v ∈ V (G),∑
w∈N(v)

d(w) ≥ (r − 2)d(v) + (r − 1)(n− r + 1),

then ρ(G) ≥ ρ(Sn,r).

Proof. Let A be the adjacency matrix of G and let x = (x1, . . . , xn)
T be the Perron vector

corresponding to the spectral radius of G, say ρ. Note that x has all positive entries by the
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Perron-Frobenius theorem. Without loss of generality, we may assume that
∑n

i=1 xi = 1.
Suppose that p(x) = x2 − (r − 2)x− (r − 1)(n− r + 1). Then we have

p(A)x =
[
A2 − (r − 2)A− (r − 1)(n− r + 1)I

]
x = p(ρ)x.

Thus we have

p(ρ) = p(ρ)

 ∑
v∈V (G)

xv

 =
∑

v∈V (G)

p(ρ)xv =
∑

v∈V (G)

∑
u∈V (G)

p(A)vuxu =
∑

v∈V (G)

xv

∑
u∈V (G)

p(A)uv

≥ min
v∈V (G)

∑
u∈V (G)

p(A)uv = min
v∈V (G)

∑
u∈V (G)

(A2 − (r − 2)A− (r − 1)(n− r + 1)I)uv

= min
u∈V (G)

 ∑
w∈N(u)

d(w)

− (r − 2)d(u)− (r − 1)(n− r + 1)

 ≥ 0,

which yields that ρ(G) ≥ ρ(Sn,r). □

With Theorem 2.2, we now give a simpler proof of Theorem C.
Proof of Theorem C. We may assume n ≥ 3, as it is otherwise trivial. By Theorem 2.2,
it suffices to show that for each vertex v ∈ V (G),∑

w∈N(v)

d(w) ≥ n− 1.

As G is K3-saturated and n ≥ 3, the graph G has diameter two. Moreover, G is K3-free,
so a breadth first search yields

∑
w∈N(v) d(w) ≥ d(v) + (n − 1 − d(v)) = n − 1. Equality in

the bound holds only when for every vertex v ∈ V (G), and every vertex x ∈ V (G)\N [v],
we have |N(v) ∩ N(x)| = 1. This yields that G does not have a cycle of length at most 4.
If V (G)\N [v] = ∅ for some vertex v, then G is Sn,2. Otherwise, the girth of G is exactly
5, which implies that it is a Moore graph by Hoffman and Singleton [10] (see also [9, 4]). □

For a vertex v ∈ V (G), let N(v) = {u ∈ V (G) : uv ∈ E(G)} and N [v] = N(u) ∪ {v}.
Next, we prove a sharp lower bound for the spectral radius in an n-vertex K4-saturated
graph.

Theorem 2.3. If G is an n-vertex K4-saturated graph, then ρ(G) ≥ ρ(Sn,3); equality holds
only when G is Sn,3.

Proof. By Theorem 2.2, it suffices to show that for each vertex v ∈ V (G),∑
w∈N(v)

d(w) ≥ d(v) + 2(n− 2).
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We consider the following two types of vertices v separately.

Case 1. The graph induced by the closed neighborhood N [v] is K4-saturated. Since G[N [v]]
is K4-saturated, G[N(v)] is K3-saturated. As an addition of vw creates a new K4 in G for
all w /∈ N [v], such a w has at least two neighbors in N(v), so we have∑

w∈N(v)

d(w) ≥ d(v) + 2|E(G[N(v)])|+ 2(n− d(v)− 1) (1)

By Theorem A, we have
|E(G[N(v)])| ≥ d(v)− 1. (2)

Thus, we have∑
w∈N(v)

d(w) ≥ d(v) + 2(d(v)− 1) + 2(n− d(v)− 1) = d(v) + 2(n− 2).

Case 2. The graph induced by the closed neighborhood N [v] is not K4-saturated.
If there is a vertex w ̸= v with d(w) = n − 1, then w is also adjacent to v. Then K4-

freeness of G implies that G[N(v)] is a star with the center w and G[N [v]] = Sd(v)+1,2, a
contradiction that G[N [v]] is not K4-saturated. Hence, we may assume ∆(G) ≤ n− 2.

Moreover, we may assume δ(G) ≥ 4 as well. Indeed, if there exists a vertex w of degree
two, all the vertices in V (G) − G[N [w]] must be adjacent to the two vertices in N(w) and
G[N(w)] = K2 since G is K4-saturated. This yields ∆(G) = n− 1, a contradiction. If there
exists a vertex w with d(w) = 3, then G[N(w)] is not K3, which implies that there are two
vertices u, u′ ∈ N(w) such that u and u′ are not adjacent. Also G[N(w)] is not trivial since
the addition of an edge from w to one of its non-neighbors creates a K4. Thus the remaining
vertex u′′ in N(w) is adjacent to at least one of u and u′. Every vertex in V (G)−N [w] must
be adjacent to the vertex u′′ since the addition of an edge from w to one of its non-neighbors
creates a K4. If u

′′ is adjacent to both u and u′, then we have ∆(G) = n− 1, contradiction.
Now, we may assume that u′′ is adjacent to u′. Then similarly, u′ is adjacent to all the
vertices in V (G)−N [w], which implies that V (G)−N [w] is independent. Then we cannot
create a copy of K4 by adding an edge uu′ to G. Hence we indeed may assume δ(G) ≥ 4.

Let G1, . . . , Gt be the components of G[N(v)] having at least one edge, and let

N1 =
⋃

1≤i≤t

V (Gi), N2 = N(v)−N1, and N3 = V (G)−N [v].

Note that N(v) = N1 ∪ N2 and N3 ̸= ∅. As adding an edge vw for some w ∈ N3

yields a copy of K4 in G, we have E(G[N(v)]) ̸= ∅, so t ≥ 1. Also, since δ(G) ≥ 4 and
|E(G[N2])| = 0, we have |N(x) ∩N3]| ≥ 3 for all vertices x ∈ N2. Thus we have∑

w∈N(v)

d(w) = d(v) + 2|E(G[N1])|+ |[N1, N3]|+ |[N2, N3]|

≥ d(v) + 2(d(v)− |N2| − t) + |[N1, N3]|+ 3|N2|
≥ 3d(v) + |N2| − 2t+ |[N1, N3]|. (3)
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Now we need to estimate |[N1, N3]|. For each u ∈ N3, choose i(u) ∈ [t] such that there is
an edge w1w2 ∈ E(Gi(u)) such that w1, w2 ∈ N(u). As adding uv to G creates K4, such an
i(u) must exist. Let E1 be the set of such edges uw1, uw2, then we have E1 ⊆ [N1, N3] and
|[N1, N3]| ≥ |E1| = 2|N3| = 2(n− d(v)− 1).

If t = 1, then (3) yields∑
w∈N(v)

d(w) ≥ 3d(v) + |N2| − 2t+ 2(n− d(v)− 1)

≥ d(v) + 2(n− 2) + |N2| ≥ d(v) + 2(n− 2), (4)

as desired.
If t ≥ 2, then take an edge xiyi ∈ E(Gi) for each i ∈ [t], and let xt+1 = x1. Adding an

edge yixi+1 to G yields a copy of K4 in G, we know that there are two adjacent vertices u
and u′ in N3 such that {yi, xi+1} ⊆ N(u)∩N(u′). No matter what i(u), i(u′) are, this copy of
K4−e contains at least two edges not in E1. As these edges outside E1 we obtain are distinct
for all i ∈ [t], we obtain 2t edges in [N1, N3] \ E1, hence |[N1, N3]| ≥ 2(n − d(v) − 1) + 2t.
This together with (3) yields∑
w∈N(v)

d(w) ≥ 3d(v) + |N2|+ 2(n− d(v)− 1) = d(v) + 2(n− 1) + |N2| > d(v) + 2(n− 2),

(5)

as desired.
Assume that we have

∑
w∈N(v) d(w) = d(v) + 2(n − 2) for all v ∈ V (G). Then we have

an equality in each step of the computation.
If there exists a vertex v for which G[N [v]] is K4-saturated, then an equality in (2) gives

|E(G[N(v)])| = d(v)−1, which implies that G[N(v)] is a Sd(v),2 by Theorem A, since G[N(v)]
is K3-saturated. This implies that G[N [v]] = Sd(v)+1,3, and every vertex in V (G) − N [v] is
adjacent to exactly two vertices in N(v) to have an equality in (1). Let x be the center of
the star, Sd(v),2. Note that any edge of G[N(v)] is incident to x. Thus we have d(x) = n− 1
since if x′ ∈ V (G) − N [v] is not adjacent to x, then adding vx′ to G does not yield a copy
of K4, a contradiction. As G[N [x]] = G is K4-saturated, we again have G = Sn,3 by letting
x play the role of v.

Now, assume that for every vertex v, G[N [v]] is not K4-saturated while
∑

w∈N(v) d(w) =

d(v) + 2(n − 2) for all v ∈ V (G). Then we have ∆(G) ≤ n − 2. Otherwise, G[N [v]] is
K4-saturated for some vertex v with ∆(G) = d(v), which applies to Case 1.

As the second equality in (5) is strict, we must have t = 1 and the inequalities in (4) are
equalities for every vertex v ∈ V (G). Moreover, for any v ∈ V (G), we have N2 = ∅ and
G[N(v)] must be a tree. If G[N(v)] has two vertices u, u′ of distance at least three within
the tree G[N(v)], adding an edge uu′ to G yields a copy of K4 with vertices u, u′, w, w′ for
some w,w′ ∈ N3. However, the edges wx,wx′ in E1 incident with w belongs to a triangle
wxx′, while wuu′ does not form a triangle. Hence at least one of wu and wu′ are not in E1,
implying that |[N1, N3]| ≥ |E1| + 1 > 2(n − d(v) − 1). Then we have a strict inequality in
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(4), a contradiction. Hence G[N(v)] must be a tree of diameter two, a star. However, this
shows that G[N [v]] is K4-saturated, which contradicts the assumption.

Thus, we can conclude that G = Sn,3 if we have
∑

w∈N(v) d(w) = d(v) + 2(n − 2) for all

v ∈ V (G). □
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