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Abstract

Let G be an edge-colored graph. A triangle of G is called rainbow if any two edges
of the triangle have distinct colors. We use m(G) and ¢(G) to denote the number of
edges of G and the number of colors appearing on the edges of G, respectively. Li
et al. in 2014 proved that every edge-colored graph of order n with m(G) + ¢(G) >
n(n + 1)/2 contains a rainbow triangle and this result is best possible. In 2019,
Fujita et al. characterized all graphs G satisfying m(G) + ¢(G) > n(n+1)/2 — 1
but containing no rainbow triangle. In this paper, we conjecture that every edge-
colored graph of order n with m(G) + ¢(G) > n(n + 1)/2 + 3(k — 1) contains k
edge-disjoint rainbow triangles. We show that the conjecture holds for £ = 2 and
3 and these results are best possible. Furthermore, we characterize all graphs G
satisfying m(G) + ¢(G) >

n(n + 1)/2 + 2 but not containing two edge-disjoint
rainbow triangles. At the end, we propose a conjecture on the number of vertex-
disjoint rainbow triangles in an edge-colored graph.
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1 Introduction

We only consider simple graphs in this paper. For terminology and notation not defined
here, we refer the reader to [2]. An edge-colored graph is a triple G = (V(G), E(G),C),
where V(G) and E(G) are the vertex-set and edge-set of G, respectively, and C is a
mapping from F(G) to a set N of colors, called an edge-coloring of G. In an edge-colored
graph G, we use C(e) to denote the color of an edge e and C(G) to denote the set of
colors of all the edges of G. For convenience, set m(G) = |E(G)| and ¢(G) = |C(G)|. A
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subgraph of an edge-colored graph G is called rainbow if any two edges of the subgraph
receive distinct colors. Let C'Ng(u) denote the set of colors on the edges incident with a
vertex u in G, and d&(u) = |CNg(u)|. We use C'Ng(u) and df(u) to denote the color-
netghborhood and color-degree of a vertex u in GG, respectively. When there is no confusion,
we write CN(u) and d°(u) instead of C'Ng(u) and dg,(u), respectively. Let 0°(G) denote
the minimum value of d°(u) over all vertices u in G, called the minimum color-degree of

the edge-colored graph G.

For two vertex-disjoint graphs G and H, we use GV H to denote the new graph obtained
by adding edges joining every vertex of G to all vertices of H. For a subset S of V(G),
we use G[S] to denote the subgraph of G induced by S, and G — S to denote the induced
subgraph G[V(G)\ S]. For any two distinct vertex subsets S and T in G, we use Eg(S,T)
(for short E(S,T)) to denote the edge subset of G such that the two ends of each edge
of E(S,T) are in S and T, respectively. Set C(S,T) = {C(e):e € E(S,T)}. If S = {v},
then we simply write E(v,T) and C(v,T) for E({v},T) and C'({v},T), respectively.

In 1907, Mantel proved a classical result about the existence of triangle in graphs. This
result says that every graph G of order n with m(G) > L"IQJ contains a triangle. Li et al.
in 2014, showed a result on the existence of rainbow triangles in edge-colored graphs in

[10]. This result can be viewed as the rainbow version of Mantel’s theorem.

Theorem 1.1. [10] Let G be an edge-colored graph on n > 3 vertices with m(G)+c(G) >

n(n+1)/2. Then G contains a rainbow triangle.

Furthermore, Fujita et al. in [8] generalized Theorem 1.1 by characterizing all graphs
G satisfying m(G) + ¢(G) > n(n+1)/2 — 1 but containing no rainbow triangle. Next, we
give a special graph class Gy and state their result.

Let Gy be the set of all edge-colored complete graphs that satisfy the following two
properties:

e K € Gy;

e For every G € Gy of order n > 2 with ¢(G) = n — 1, there exists a bipartition
V(G) = V1 UV, such that E(Vy, V3) is monochromatic and G[V;] € Gy for i = 1,2. Note
that, for each G € Gy, G satisfies the condition m(G)+¢(G) = n(n+1)/2—1 but contains

no rainbow triangle.

Theorem 1.2. [8] Let G be an edge-colored graph on n > 3 vertices with m(G) + ¢(G) >
n(n+1)/2 — 1. If G contains no rainbow triangle, then G belongs to Gy.

Another significant result was proved by Erdés in [7] after Mantel” theorem in 1955:
every graph G of order n with m(G) > || + k contains at least k2] triangles for
k < min{4,n/2}. Recently, Ehard et al. [6] considered the number of rainbow triangles

in edge-colored graphs and obtained the following result.



Theorem 1.3. [6] Let k be a positive integer and G be an edge-colored graph on n > 3k
vertices with m(G) + ¢(G) > n(n+1)/2+k — 1. Then G contains k rainbow triangles.

They also found all edge-colored graphs on n > 3k vertices with m(G) + ¢(G) >
n(n+1)/2+4 k — 1 that contain exactly k rainbow triangles. The following graph class G;
implies that the condition on Theorem 1.3 is best possible for n > 3k.

Let G; be the set of all edge-colored complete graphs on n > 3k vertices that are

constructed recursively as follows:

e (3 is the edge-colored complete graph with vertex-set {vy, vs, ..., v,_31 }, where C'(v;v;) =
i for all vv; € E(Gy) if i < j;

e For 1 < <k, let K3 be a rainbow triangle vertex-disjoint from G;_1, and let G; =
G;_1 V K3. Each of the colors of edges in K3 does not belong to C(G;_1), Eg,(Gi_1, K3)

is monochromatic and the color of Eg,(G;-1, K3) is neither used in G;_; nor in K.

Notice that for each Gy € G1, m(Gy) + ¢(Gy) > (5) + k — 1 and Gy contains exactly k

rainbow triangles.

Theorem 1.4. [6] Let G be an edge-colored graph on n > 3k vertices. If m(G) + ¢(G) >
n(n+1)/2+k—1 and G contains exactly k rainbow triangles, then G € Gy.

In the past period of time, much work on the existence of rainbow triangles in edge-
colored graphs has been done extensively. More results about this problem can be found
in [1, 3, 4, 5. Furthermore, one can find quite a few publications on the number of
vertex-disjoint rainbow triangles in edge-colored graphs under the constraints of §¢(G),
¢(@) or color-neighborhood union; see [9, 11, 12, 13, 14, 15] for examples. Motivated by
the above results, we consider the number of edge-disjoint rainbow triangles in an edge-
colored graph G under the constraints of m(G) and ¢(G). We first pose the following
conjecture.

Conjecture 1.5. Let k be a positive integer and G be an edge-colored graph of n > 4k
vertices with m(G)+c¢(G) > n(n+1)/2+3k—3. Then G contains k edge-disjoint rainbow

triangles.

We confirm this conjecture for the cases k € {2,3} with n > k(k + 4), and then we
give a graph class G, to show that the bound of conjecture 1.5 is sharp for n > 4k if the
conjecture holds.

Theorem 1.6. Let G be an edge-colored graph on n > 12 wvertices with m(G) + ¢(G) >
n(n+1)/2+ 3. Then G contains two edge-disjoint rainbow triangles.

Theorem 1.7. Let G be an edge-colored graph on n > 21 wvertices with m(G) + ¢(G) >
n(n+1)/2+6. Then G contains three edge-disjoint rainbow triangles.



Gy,

Figure 1: G, € G2 and G}, contains two edge-disjoint rainbow triangles when k& = 3.

Let Gy be the set of all edge-colored complete graphs on n > 4k vertices that are
constructed recursively as follows:

e (51 is the edge-colored complete graph with vertex-set {vi,vo, ..., Vp 414}, Where
C(vv;) =i for all vv; € E(Gy) if i < j;

e For 2 < < k, let K4 be a rainbow complete graph vertex-disjoint from G;_;, and
let G; = G;_1 V K4. Each of the colors of edges in K, does not belong to C(G;_1),
E¢,(Gi_1, K4) is monochromatic and the color of Fg,(G;_1, K4) is neither used in G;_;
nor in Kjy.

Notice that for each Gy € Go, m(Gg) +¢(Gg) = 5) +n—4k+4 -1+ 7k —-1) =
n(n+1)/2 4 3k — 4. However, G, contains exactly k — 1 edge-disjoint rainbow triangles.
See Figure 1.

At the end of this section, we completely characterize an edge-colored graph G of order
n with m(G) + ¢(G) > n(n + 1)/2 + 2 but without two edge-disjoint rainbow triangles.

Theorem 1.8. Let G be an edge-colored graph on n > 12 wvertices with m(G) + ¢(G) >
n(n+1)/2+2. Then G contains two edge-disjoint rainbow triangles or G € Gs.

Gs is defined as the set of all edge-colored complete graphs on n > 5 vertices with the

following structures:

e Let Gy be the edge-colored complete graph in Gy (defined above) with vertex-set
{v1,vg,...,v,_3} and let K, be a rainbow complete graph with vertex-set {uy, ug, ug, us}
such that C(K,) N C(Gy) = 0;

e (5 is an edge-colored complete graph obtained from Gg by substituting K, for some
vertex v; of Gy such that C(u;v,) = C(v;vg) for all 1 < j <4 and every vertex vy, # v.
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Figure 2: G € G3 and G does not contains two edge-disjoint rainbow triangles.

Notice that for each G € Gs, m(G) + ¢(G) = n(n + 1)/2 + 2. However, G contains no

two edge-disjoint rainbow triangles. See Figure 2.

Because the proof of Theorem 1.7 is a little bit complicated, we give it an outline here.
The proof of Theorem 1.7 goes by contradiction, which involves three main steps. In the
first step, we know that GG contains at least eight rainbow triangles by Theorems 1.3 and
1.4. Using Lemma 2.2 and the recoloring operation, we can deduce that G' contains no
rainbow clique of order five. Then it follows from Lemma 2.3 that there are two vertex-
disjoint rainbow triangles, say T; = x;y;2;x; for © = 1,2, in GG. Further, by a short analysis
for other six rainbow triangles, we can deduce that there are two copies of rainbow Kjy,
say Hy = G[{z1,11, z1,u}] and Hy = G[{x2, Yo, 22,v}]. In the second step, we distinguish
three cases according to the number of common vertices of H; and Hy. At first we obtain
a new edge-colored graph G* by the recoloring operation. By Lemma 2.2 again, one can
see that this operation does not create new rainbow triangles and breaks all the rainbow
triangles belonging to H; for i = 1,2. Then by Theorem 1.1 we can find a rainbow triangle
T* not belonging to H; for i = 1,2 in G*. Finally, it is easy to find three edge-disjoint
rainbow triangles that include T™* in G.

This paper is organized as follows: In Section 2, we first build up basic terminology
and significant conditions. In Section 3, we give the proofs of Theorems 1.6, 1.7 and 1.8.
At the last section, Section 4, we pose a conjecture and construct a special graph class to

show that the bound of this conjecture is sharp if it holds.



2 Terminology and lemmas

At the beginning of this section, we give two sufficient conditions to guarantee the
existence of three edge-disjoint rainbow triangles in an edge-colored graph. Furthermore,
note that Theorem 1.6 will be used in the proof of Lemma 2.1. We will give the proof of

Theorem 1.6 in Section 3 independent of Lemma 2.1.

Lemma 2.1. Let G be an edge-colored graph on n > 12 wvertices with m(G) + ¢(G) >
n(n+1)/2+6. Suppose that G contains five distinct rainbow triangles T;, 1 < i <5, that

satisfy one of the following two conditions:
(1) T, Ty, T3, Ty and Ts contain a common edge in G;
(2) Ty, Ty, T3 and Ty contain a common edge and they are edge-disjoint from Ts.

Then G contains three edge-disjoint rainbow triangles.

Proof. First, assume that T; satisfies the condition (1) for i = 1,2,3,4,5. Set T; = zyzx
for 1 <i <5 and Gy = G — {zy}. Note that m(Gy) + ¢(Go) > n(n+1)/2+6 —2 =
n(n+1)/2+4. From Theorem 1.6, there exist two edge-disjoint rainbow triangles 7" and
Ty in Gy. It is easily seen that there is at least one rainbow triangle T; such that T; is
edge-disjoint from 7" and Ty in G, where 1 <17 < 5.

Next, we suppose that T; satisfies the condition (2) for i = 1,2,3,4,5 and G does
not contain three edge-disjoint rainbow triangles. Assume that T; = xyz;x for 1 < < 4,
Ts = vowu and Gy = G—{zy}. Since m(Go)+c(Go) > n(n+1)/2+6—-2 =n(n+1)/2+4,
from Theorem 1.6 there exist two edge-disjoint rainbow triangles 77 and 7" in Gy. To
avoid that G contains three edge-disjoint rainbow triangles, E(7") U E(T") uses exactly
one edge of T; for some 1 < i < 4. Without loss of generality, set 7" = zz;zo0 and
T" = xz3zyx. If Ty is edge-disjoint from 77 and T”, then T5, T" and T” are three edge-
disjoint rainbow triangles in GG, a contradiction. Recall that T5 is edge-disjoint from T;
for 1 <1 < 4. We may assume T5 = wz12ow. Then T”, Ty and Ty are three edge-disjoint

rainbow triangles, a contradiction. The proof is thus complete. O

Next we introduce an important lemma of this paper, which will be used frequently in
the following proofs. In this lemma, we mainly consider the number of times that each of

the three colors of a rainbow triangle appears in G.

Lemma 2.2. Let G be an edge-colored graph on n > 21 vertices with m(G) + ¢(G) >
n(n+1)/2 4+ 6. If G does not contain three edge-disjoint rainbow triangles, then each of

the three colors in every rainbow triangle appears only once in G.

Overview: Because the proof of this lemma is quite complicated, we first give it an
outline. The proof goes by contradiction. At first we fix a rainbow triangle T' = zyzx in
G and set Gy = G — E(T). Since C(T)NC(Gyp) # 0, we distinguish three cases according
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to the value of |C(T) N C(Gy)| being 1,2,3, respectively. The cases of |C(T) N C(Gy)|
being 1,2 are easy to be settle done. Only he case of |C'(T) N C(Gy)| being 3 is hard to
be fixed, for which we use three main steps. In the first step, we find two distinct vertices
wy and wq such that wyyzw; and wexrzw, are two rainbow triangles different from 7' in
G. In the second step, we show that neither Gol[{z,y, z, w1, wy }] nor Gi[{x,y, z, wy, wa}]
contains an rainbow triangle, where G; = G — {xy, 2wy, zws}. This means that every
rainbow triangle contains at least one edge of E(T") U {zwy, zws} in G. In the third step,
by a short analysis we can find five rainbow triangles such that they satisfy the condition

(2) of Lemma 2.1, which implies the existence of three edge-disjoint rainbow triangles in

G.

Next we proceed to giving the details of our proof.

Proof of Lemma 2.2: Suppose not, choose an arbitrary rainbow triangle T' = zyzz in
G with C(T) N C(Gy) # 0, where Gy = G — E(T). Note that Gy does not contain two
edge-disjoint rainbow triangles. Next, we consider the following three cases, depending
on the value of |C(T") N C(Gy)|.

Case 1. |C(T)NC(Gyp)| = 3.
Note that m(Go)+c(Go) > n(n+1)/2+6—3 = n(n+1)/2+3. By Theorem 1.6, G con-
tains two edge-disjoint rainbow triangles. Hence, the two edge-disjoint rainbow triangles

together with 1" compose three edge-disjoint rainbow triangles in G, a contradiction.

Case 2. |C(T)NC(Gy)| = 2.

Without loss of generality, set C(T)NC(Gy) = {C(zy),C(yz)} and G; = G —{zy, xz}.
Since m(G1) +¢(Gy) > n(n+1)/24+6—3 =n(n+1)/2+ 3, by Theorem 1.6 G; contains
two edge-disjoint rainbow triangles. If neither of them contains yz, then these two edge-
disjoint rainbow triangles together with 7" compose three edge-disjoint rainbow triangles
in GG, a contradiction. Hence, we assume that one of the two rainbow triangles contains
yz, say wiyzw;. By the same discussions for G — {xy,yz} and G — {zz,yz}, we can
obtain two rainbow triangles wezzw, and wszryws in G. If wy, we and w3 are pairwise
different, then wiyzw;, worzwy and wsryws are three edge-disjoint rainbow triangles in
G, a contradiction.

Assume w; = w3 # w,. Note that m(Gy) +¢(Go) > n(n+1)/2+6—-4 =n(n+1)/2+2.
The fact that Gg is not complete, together with Theorems 1.3 and 1.4, implies that G|
contains at least four distinct rainbow triangles. It is clear that each rainbow triangle of
Go uses at least one edge in {wyy, wex,wez}. Otherwise, we can easily find a rainbow
triangle that is edge-disjoint from w;yzw, (or wsryws) and wexzws in G, a contradiction.

Let Hy = Gol{z,y, z, w1, ws}]. It can be seen that H, contains at most three trian-

gles: zwiwsx, zwiwez and ywiwoy; see Figure 3. Hence, there is at least one rainbow



triangle T of Gy that does not belong to Hy. Obviously, T} uses exactly one edge e; of
{w1y, wex, wyz}. In fact, regardless of e; = wyx, wez or wyy, our discussion is similar.
Hence, we only consider the case that e; = wex. Without loss of generality, suppose

T1 = U1TW2U .

z

H,

Figure 3: Hp is an induced subgraph of G, where the black solid edges must belong to Hop, the black dotted edges do not
belong to Hp and the red solid edges possibly exist in Hp.

Recall that T" and T are two edge-disjoint rainbow triangles. If zwjwsz or ywiwsy
is rainbow, then we can find three edge-disjoint rainbow triangles in GG, a contradiction.
Hence, Hy contains at most one rainbow triangle, which implies that there are at least
two other rainbow triangles 7% and 75 in G that do not belong to Hy. Similarly, we
assume that 7; contains e; € {wyy, wox, wyz} for i = 2,3. For i = 2 or 3, if e; = wyy,
then T, T7 and T; are three edge-disjoint rainbow triangles in G, a contradiction. If
e; = ey = ez = wqx, then T, Ty, T3, woxzws contains a common edge wox and they
are edge-disjoint from zywiz. It follows from the condition (2) of Lemma 2.1 that G
contains three edge-disjoint rainbow triangles, a contradiction. If e; = e3 = zwy or
{ea, e3} = {wox, wyz}, it is not difficult to find that there are three edge-disjoint rainbow
triangles in GG, a contradiction. Similarly, we can prove the cases that w; # ws = w3 and
wy = wo # wW3.

If wy = wy = ws, set Gq = G — {xwy,yz}. Since m(G1)+c¢(G1) >n(n+1)/246—-3 =
n(n +1)/2 4+ 3, by Theorem 1.6 there are two edge-disjoint rainbow triangles 77 and Ty
in G;. To avoid that GG contains three edge-disjoint rainbow triangles, one of the edges
xy and xz is contained in 77 or T5. Without loss of generality, assume T} = wryw. It is
clear that w # ws. Then we find two distinct vertices w; = wy and w(# wy) such that
wiyzwy, wixzw, and wryw are three distinct rainbow triangles in G. Consequently, by a

similar discussion with the case of w; = w3 # wy, we can find a contradiction.

Case 3. |C(T)NC(Gy)| = 1.
Assume C(T') N C(Gy) = {C(xy)}. At first, we prove the following claims.



Claim 1. There are two distinct vertices wy and wsy such that wyyzw; and wexzwsy are

two rainbow triangles different from 7" in G.

Proof. 1f not, by a similar argument for G — {zy, zz} and G — {zy,yz} in Case 2, we can
find two rainbow triangles u,yzu; and usxzus distinct from T in G. Clearly, u; = ug. Set
G1 =G —{uyz,zy}. Since m(Gy) +¢(G1) > n(n+1)/2+ 3, by Theorem 1.6 G; contains
two edge-disjoint rainbow triangles 77 and T5. If E(77) N E(T3) contains no zz or yz,
then T7, T; and T are edge-disjoint rainbow triangles in GG, a contradiction. Without loss
of generality, we suppose that T} contains xz in Gy, say 17 = uszrzug. Clearly, ujyzu,
and usrzus are rainbow triangles in G and us # wuy, a contradiction. The claim thus
follows. O]

Choose two vertices wy and ws that satisfy Claim 1 in G. Let G; = G — {zy, zwq, 2w }.
Since m(G1) + ¢(G1) > n(n+1)/2+6 —5=n(n+1)/2+ 1 and G, is not complete, by
Theorems 1.3 and 1.4 we can find three rainbow distinct triangles in GG;. For convenience,
set Hy = G1[{z,y, z, w1, ws}]; see Figure 4. Note that H; contains at most two triangles
ywiwyy and rxwiwex. Hence, there is at least one rainbow triangle that does not belong
to H,. In fact, every rainbow triangle not belonging to H; must contain an edge in
{wex, xz, zy,yw;}. Otherwise, this rainbow triangle, and zzwsz and yzwy are three

edge-disjoint rainbow triangles, a contradiction.

Claim 2. H; contains no rainbow triangle.

Proof. Suppose to the contrary that H; contains at least one rainbow triangle. choose a
rainbow triangle 7} that does not belong to Hy, and set V(17) — V(H;) = {u;}. Then
Ty contains an edge e; of {wex,x2, 2y, yw,}. By symmetry, we only need to consider
the cases e; € {wox,xz}. If Hy contains two rainbow triangles, then both ywjwyy and
rwywex are rainbow. If e; = wox, then T, T} and ywiwsy are three edge-disjoint rainbow
triangles, a contradiction. If e; = xz, then T}, yzw,y and rxwiwsex are three edge-disjoint

rainbow triangles, a contradiction.

If H, contains only one rainbow triangle, without loss of generality, assume that yw,w,y
is a rainbow triangle. Thus, there is another rainbow triangle 7, that does not belong
to Hy. Similarly, T» contains an edge ey of {wex, xz, 2y, yw; } and suppose that V(Ty) —
V(Hy) = {ua}. If e; = zwq(yz), then ywiwey, T; and T(xzwex) are three edge-disjoint
rainbow triangles for ¢« = 1,2, a contradiction. If e; = e; = xz, then T, T, T, zzwox
and ywywsy satisfy the condition (2) of Lemma 2.1. Then G contains three edge-disjoint
rainbow triangles, a contradiction. Similarly, we can find a contradiction when e; = ey =
yw;. Hence, we have {e,es} = {xz,yw;}. By a similar analysis for G — {yw;, 2z}, we

can always deduce a contradiction, and the claim thus follows. O]



z z

H() Hl

Figure 4: H; is an induced subgraph of G;, where the black solid edges must belong to H;, the black dotted edges do not
belong to H; and the red solid edges possibly exist in H; for ¢ = 1,2.

Assume that T7, Ty and T3 are three rainbow triangles that does not belong to H; in
G1. Let e; € E(T;) N{wsx, x2z, zy,yw } and V(T;) — V(Hy) = {w;} for 1 <i < 3.

Recall that Gy = G — {xy, yz, 2z} and m(Gy) + ¢(Go) > n(n +1)/2 4 1. Since Gy is
not complete, by Theorems 1.3 and 1.4 we can find three distinct rainbow triangles in Gj.
Set Hy = Gol{z,y, z, w1, wy}]; see Figure 4. Note that H, contains at most three triangles
ywiwey, rwiwex and zwiwyz. If ywiwsey or xwiwsx is a triangle in Hy, then it also belongs
to Hy. From Claim 1, we know that neither yw;wsy nor rwwyx is a rainbow triangle.
Hence, Hy contains at most one rainbow triangle. In fact, every rainbow triangle not
belonging to Hy must contain one edge in {zws, zws, 2wy, yw; }. Otherwise, this rainbow

triangle, and xzwsx and yzw,y are three edge-disjoint rainbow triangles, a contradiction.

Claim 3. H, contains no rainbow triangle.

Proof. Suppose that Hy contains exactly one rainbow triangle. This implies that zw;wyz
is the unique rainbow triangle in Hy and there are at least two rainbow triangles 77 and
T3 that do not belong to Hy. Similarly, we know that 77 contains exactly one edge e from
{zwsy, zwsy, zwy, yw }, and set V(T7) — V(Hy) = {v;} for i = 1,2, If ef = zwq(or yw,),
then 7', T and zwjwyz are three edge-disjoint rainbow triangles, a contradiction. If
e} = eb = zws(zwy), we can find five rainbow triangles in G' by considering G — {zw,, yz},
and the details are omitted. Similarly, we can prove the case that e] = €5 = zw;. If
{ei,e5} = {zwy, zwy} and vy # vy, then T, T} and Ty are three edge-disjoint rainbow
triangles in G, a contradiction. Hence, we have that {ef, e5} = {zwq, zwq} and vy = vs.
Without loss of generality, set 17 = zvjwez and Ty = zwyv12. Now we go back to the
graph H; and T} for ¢ = 1,2,3. If e; = xw,, then T, T; and T are three edge-disjoint
rainbow triangles in G for ¢ = 1, 2,3, a contradiction. By symmetry, we have e; # yw,
for i = 1,2,3, which means {ej, es,e3} C {zz,yz}. We assume, without loss of generality,

that e; = e = xz. Then we can observe that u; # us. That implies that there is a
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vertex, say uj, such that u; # vy. Thus, T, T} and yzw,y are three edge-disjoint rainbow

triangles in GG, a contradiction. n

After the three claims, we come back to our proof. Assume that 77, 75 and 75 are three
rainbow triangles that do not belong to Hy in Gg. Let ef € E(T}") N {zws, zws, zwq, yw; }
and V(T7) — V(Hy) = {v;} for 1 <i < 3.

We assert that e] = e5 = e5. If not, then we can always find two edge-disjoint rainbow
triangles 77" and T} in {77,175, T5}. Thus, T, T; and T} are three edge-disjoint rainbow
triangles in GG, a contradiction.

Without loss of generality, set e] = e} = e5 = zwo. Then 17, T3, T3, xzwszr and yzw,y
always satisfy the condition (2) of Lemma 2.1. Then, we can find three edge-disjoint

rainbow triangles in (G, which yields a contradiction.

Combining with the above three cases, the proof of Lemma 2.2 is now complete. O

At the end of this section, we will give a lemma on the existence of a rainbow Kj or
two vertex-disjoint rainbow triangles under the conditions that G does not contain three
edge-disjoint rainbow triangles and m(G) + ¢(G) > n(n+ 1)/2 + 6, which will be used in
the proof of Theorem 1.7.

Lemma 2.3. Let G be an edge-colored graph on n > 21 wvertices with m(G) + ¢(G) >
n(n+1)/2+6. If G does not contain three edge-disjoint rainbow triangles, then G contains

a raimbow Ky or two vertex-disjoint rainbow triangles.

Proof. Suppose that G contains no rainbow K5 and two vertex-disjoint rainbow triangles.
From Theorem 1.3, we know that G contains at least seven rainbow triangles. If G
contains exactly seven rainbow triangles, then from Theorem 1.4 we have G € G;. That
implies that G contains three edge-disjoint rainbow triangles, a contradiction. Hence, we
assume that G' contains at least eight rainbow triangles {7;,1 < i < 8}.

The condition that G does not contain three edge-disjoint rainbow triangles implies that
any five rainbow triangles in {7;,1 < ¢ < 8} do not satisfy the condition (1) of Lemma 2.1.
Hence, there must exist two edge-disjoint rainbow triangles, say 77 and T5. It is clear that
V(T1) NV (T3) # 0. Next, assume that Ty = zyzz, To = zuvxr and H = G[{z,y, z,u,v}].

We first show the following claim.

Claim. H is a complete graph.

Proof. By symmetry, we only need to prove uy € E(G). If not, then H contains at most
seven triangles. Hence, there is at least one rainbow triangle T3 such that V(T3) € V(H).
The condition that G does not contain three edge-disjoint rainbow triangles implies that

T contains exactly one edge e; from {zy,yz, zz, xu,uv, zv}. Let V(T3) — V(H) = {w, }.
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If e = wv(yz), then Ty (T3) and T3 are vertex-disjoint, a contradiction. Then e; €

{zy, xz,zu, zv}. By symmetry, we only consider the case of e; = zv.

To avoid that T}, T3 and uzvu are three edge-disjoint rainbow triangles, uvzu must not
be rainbow. Hence, there is a rainbow triangle Ty such that Ty # T3 and V(1)) € V(H).
By the same discussion for T, we know that 7T contains exactly one edge e; from H
with es € {zy,zz, zu,zv}. Let V(Ty) — V(H) = {wa}. If e = zu and wy # w,, then
Ty, T3 and T} are three edge-disjoint rainbow triangles, a contradiction. If e = zu and
wy = wy, from Lemma 2.2 we have that G[{u,v,x,w,}] is rainbow. Hence, uvvwu is a
rainbow triangle vertex-disjoint from 77, a contradiction. If es = xz and w; = ws,, then
zv ¢ E(G). Otherwise, by Lemma 2.2 we have that G[{z,v,x,w;}] is rainbow, which
implies that T, T, and zvw;z are three edge-disjoint rainbow triangles, a contradiction.
Similarly, we can deduce a contradiction when e, = xy and w; = wy. Since T3 # Ty, we

have wy # wy when e; = zv. Hence, we have ey € {xv, zz, xy} and wy # ws.

If e; = xz and wy # we, to avoid that T3, Ty and uvzu are three edge-disjoint rainbow
triangles in G, then uvzu must not be rainbow. Hence, there is a rainbow triangle T5 such
that Ty ¢ {15, Ty} and V(T5) € V(H). Let V(T5)—V(H) = {ws}. By a similar argument,
we know that T5 contains exactly one edge eg from H, ws ¢ {wq,wy} and e3 € {xv, zz, xy}.
If e3 = xy, then T3, Ty and T5 are three edge-disjoint rainbow triangles, a contradiction.
Hence, e3 € {zv,zz} and wy ¢ {w;,wy}. By symmetry, suppose e3 = xz. We assert
that wzzu is not rainbow. If not, then T3, Ty, T5, uzxu and T3 satisfy the condition
(2) of Lemma 2.1. This means that G contains three edge-disjoint rainbow triangles,
a contradiction. Hence, there is a rainbow triangle Tg such that Ty ¢ {T3,7Ty,T5} and
V(Ts) € V(H). Let V(Ts) — V(H) = {w4}. It is clear that Ty contains exactly one
edge ey from H, wy ¢ {wy,wy, w3} and e4 € {vz, zz}. If ey = xz, then we can deduce a
contradiction from the rainbow triangles 77, Ty, T5, Ts and T3 and Lemma 2.1. If e = xv,

we can also deduce a contradiction by repeating the above analyses.

If e5 € {zv, 2y} and w; # wq, by a similar discussion we can always find five rainbow
triangles such that they satisfy the condition (2) of Lemma 2.1. Consequently, G contains

three edge-disjoint rainbow triangles, a contradiction. The claim thus follows. O]

After the claim we come back to the proof. Since H is complete, and yzr € T; and
ux € Ty, from Lemma 2.2 both C(yz) and C(ux) appear only once in G. Then, zyuz is
also a rainbow triangle. By repeat use of Lemma 2.2, we can show that H is a rainbow

complete graph, a contradiction. The proof of the lemma is thus complete. O]
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3 Proofs of our main results

After the above preparations, we are ready to give the proofs of our main results.

Proof of Theorem 1.6: Suppose to the contrary that G does not contain two edge-
disjoint rainbow triangles. From Theorem 1.3, G' contains at least four distinct rainbow
triangles. Since GG does not contain two edge-disjoint rainbow triangles, any two of these
rainbow triangles have one common edge. Hence, we need to consider the following two

cases:

Case 1. There are three rainbow triangles with a common edge in G.

Assume that the common edge is zy, and T, = xyv;z, i = 1,2,3, are three distinct
rainbow triangles in G. Set Gy = G — {xy}. It can be seen that m(Gy) + ¢(Go) >
n(n+1)/2+3—-2=n(n+1)/2+1. Thus, by Theorem 1.1 G, contains a rainbow triangle
To. Clearly, Ty must be edge-disjoint from one of {7}, T5, T3} in G.

Case 2. Any three rainbow triangles have no common edges in G.

Without loss of generality, suppose that T} = zyzx, Ty = xzwzx and T3 = rywx
are three distinct rainbow triangles in G. Assume that Go = G — {zy,wz}. Thus,
m(Go) + ¢(Go) > n(n+1)/2+3 -4 =n(n+1)/2 —1. Note that Gy is not a complete
graph, by Theorem 1.2 GGy contains a rainbow triangle Ty. It is clear that Tj must be

edge-disjoint from at least one of {17,T5, T3} in G.

Combining the above two cases, the proof is thus complete. O

To prove Theorem 1.8, we first recall an important operation on graphs. Let G be a
graph and X be a proper subset of the vertex-set of G. To shrink X is to delete all edges
between the vertices of X and then identify the vertices of X into a single vertex. The

resulting graph is denoted by G/ X.

Proof of Theorem 1.8: Suppose that the statement is false. From Theorem 1.1, we
know that GG contains a rainbow triangle. For each rainbow triangle of GG, we have the

following claim.

Claim 1. Each of the three colors in every rainbow triangle appears only once in G.

Proof. Choose an arbitrary rainbow triangle ' = zyzx in G and set Gy = G—{zy, yz, zx}.
The hypothesis implies that Gy contains no rainbow triangles. Suppose to the contrary,
that there is a color C'(zy) in T that appears at least twice in G. This means that
C(zy) € C(T)NC(Gy). Let Gy = G — {zxy,yz}. Notice that m(Gy) + ¢(Gy) > m(G) —
2+ ¢(G)—1>n(n+1)/2—1. Since G, is not a complete graph, by Theorem 1.2 G
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contains a rainbow triangle T7. Obviously, 77 contains xz; since otherwise, G contains
two edge-disjoint rainbow triangles T" and Tj, a contradiction. Assume that 77 = zzwzx
and Go = G — {zz}. Noticing that m(Gz) + ¢(G2) > m(G) — 1+ ¢(G) =1 >n(n+1)/2,
by Theorem 1.1 G5 contains a rainbow triangle 75.

We assert that V(T3) C {x,y, z,w}. If not, Ty is a rainbow triangle edge-disjoint from
T or T in G, a contradiction. Thus, 75 has two choices in Gs, i.e. Ty = xywx or
Ty = ywzy. Without loss of generality, set To = xywz and G3 = G — {xy, wz}. Recall
that C(xy) € C(T)NC(Gp). Then, m(G3)+c(G3) > m(G)—2+¢(G)—1 > n(n+1)/2—1.
Since (G5 is not a complete graph, by Theorem 1.2 again (G3 contains a rainbow triangle
T5. It can be easily seen that T3 must be edge-disjoint from one of the rainbow triangles
from {T,Ty,T5}, a contradiction. The claim thus follows. ]

We need to show more claims before proceeding our proof.

Claim 2. G contains a rainbow clique of order four.

Proof. From Theorem 1.3, we may assume that 77, T and T3 are three distinct rainbow
triangles in G. If T3, T» and T3 contain a common edge e in G, let Gy = G — {e}. Note
that m(Gy) + ¢(Go) > n(n+1)/2+ 2 —2 = n(n + 1)/2. Hence, by Theorem 1.1 Gy
contains a rainbow triangle Ty, and it is not difficult to see that Ty must be edge-disjoint

from one of the triangles from {7}, 75,73}, a contradiction.

Hence, we may assume that 77 = xyzx, 15 = zzwzr and T3 = xywz. It is clear that
G[{z,y, z,w}] is complete. Note that each edge of G[{z,y, z, w}] is contained in a rainbow
triangle. From Claim 1, G[{x,y, z, w}] is a rainbow complete graph, and the claim thus
follows. O

Next, let Ky = G[{z,y, z,w}] be a rainbow complete graph, and let G* be the edge-
colored graph obtained from G by recoloring zz, yw and yz with C'(zw).

Claim 3. G* does not contain rainbow triangles and G* € G,.

Proof. From Claim 1, one can see that each color of K, appears only one time in G and
this operation of recoloring does not create new rainbow triangles and breaks all rainbow
triangles belonging to K,. Note that each rainbow triangle of G* is also rainbow in G.
Suppose that G* contains a rainbow triangle. Then G contains a rainbow triangle not
belonging to K, which implies that we can find two edge-disjoint rainbow triangles in
G, a contradiction. Hence, H contains no rainbow triangles. Note that m(G*) + ¢(G*) >
m(G) + ¢(G) —3 = n(n+ 1) — 1. From Theorem 1.2, we have G* € Gy, and the claim
thus follows. O

It follows from G* € G, that G* is complete. Note that the operation of recoloring does
not change any edge of G. Then G is also complete.
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Claim 4. C(v, K4) is monochromatic for each vertex v € G — Kjy.

Proof. Choose an arbitrary v € G — K,4. Recalling that G is complete, without loss
of generality, suppose C(vz) # C(vy). By Claim 1, we know that vzyv is a rainbow
triangle, which implies that vxyv and zzwz are two edge-disjoint rainbow triangles in G,

a contradiction. O

After the claims, we come back to our proof. From Claim 2, take a rainbow K, from G.
Let H be the edge-colored graph obtained from G by shrinking V' (K}4) to a vertex u such
that C(vu) = C(v, K4) for each vertex v in G — Ky. It is not difficult to see that if G*
contains no rainbow triangles, then H contains no rainbow triangles. From Claims 1 and
4, we have C(H) = C(G) \ C(K4). Note that H is complete and |V (H)| =n — 3. Then,
m(H)+c¢(H)=m(G)+¢(G) —6—-6—3(n—4) > (n—2)(n—3)/2 — 1. From Theorem
1.2, we know that H € Gy, which implies that G € Gs, a contradiction. The proof is now
complete. O

Proof of Theorem 1.7: Suppose to the contrary, that G does not contain three edge-
disjoint rainbow triangles. From Theorem 1.3, we know that G contains at least seven
rainbow triangles. If G contains exactly seven rainbow triangles, then from Theorem 1.4
we have G € G;, which implies that GG contains three edge-disjoint rainbow triangles,

a contradiction. Hence, we suppose that G contains at least eight rainbow triangles
{T;,1 <i <8}

Claim. G contains no rainbow clique of order five.

Proof. Suppose to the contrary that G[Vp] is a rainbow Ky with Vo = {z,y, z,u,v}. Let
G* be an edge-colored graph obtained from G by recoloring zy, zz, xu, rv and zv with
C(yu). From Lemma 2.2, one can see that this operation does not create new rainbow
triangles and breaks all rainbow triangles belonging to G[Vp]. Since m(G*) + ¢(G*) =
m(G)+¢(G)—5>n(n+1)/2+1, by Theorem 1.1 G* contains a rainbow triangle 7* not
belonging to G*[Vp]. Tt is not difficult to see that each rainbow triangle of G* corresponds
to a rainbow triangle of G. Thus, T* is also a rainbow triangle not belonging to G[V;] in
G. Then, we can easily find three edge-disjoint rainbow triangles that include 7" in G, a

contradiction. O

From the above Claim and Lemma 2.3, there are two vertex-disjoint rainbow triangles,
say T; = x;y;z;x; for i = 1,2. To avoid that G contains three rainbow edge-disjoint
triangles, each T; contains at least one edge of E(T)) U E(T3) for 3 < i < 8. It follows
from the fact that 77 and 75 have no common vertices that each T; can not simultaneously
contain an edge of T} and an edge of T, for 3 < ¢ < 8. If there are four rainbow
triangles T;,, T5,, T;, and Tj, in {71;,3 <4 < 8} such that T}, contains an edge of T} for

15



1 < j <4, then it is not difficult to see that there must exist two edge-disjoint rainbow
triangles 77 and 7" in {T;,,T;,, T;

get three edge-disjoint rainbow triangles in GG, a contradiction. Hence, for the remaining

T;,}. Since T" and T" are edge-disjoint from T, we

1 2 37

six rainbow triangles {7;,3 < i < 8}, we suppose that T; contains one edge of T} for
t = 3,4,5 and Tj contains one edge of 75 for j = 6,7, 8. For convenience, we suppose that
V(T;) — V(T1) = {u;} and V(T};) — V(T3) = {v;} for i =3,4,5 and j = 6,7,8. If u; # u;
for 3 <i # j <5, then T}, T; and T5 are three edge-disjoint rainbow triangles in G, a
contradiction. Then, uz = uy = us. Similarly, we can get v = v; = vg. Set u = uz and
v = vg. Thus, one can see that both G[{z1,y1, z1,u}] and G[{z2,ya, 29, v}]| are rainbow

copy of Kjy.
Let Hy = Gl{z1,y1,21,u}] and Hy = G[{x2,ys, 22,v}]. From Lemma 2.2, each color of

H, and H, appears only one time in G. Note that H; and H; have at most two common
vertices. If H; and H, have two common vertices, without loss of generality, set u = x5
and 1 = v. Let G1 = G — {x1u, y121, Y222 }. Note that this operation breaks triangles T;
for 1 <7 < 8. Since m(Gy) + ¢(G1) > n(n+1)/2, by Theorem 1.1 G; contains a rainbow
triangle 7" not belonging to H; or Hy. One can easily get three edge-disjoint rainbow

triangles in GG, a contradiction.

If H; and H, have only one common vertex, set u = v. We assert that Eg(Ty,Ts) = 0.
In fact, by symmetry we only consider the case x1xs ¢ E(G). If not, from Lemma 2.2
we know that C'(uz;) appears only once in G for ¢ = 1,2. Hence, uzizou is a rainbow

triangle edge-disjoint from 7} and 75 in G, a contradiction.

Let G* be the edge-colored graph obtained from G by recoloring x1y1, y121 and z;u with
C(uz) and recoloring xays, Y222 and zou with C'(uxs). From Lemma 2.2, one can see that
this operation does not create new rainbow triangles and breaks all the rainbow triangles
belonging to H; for i = 1,2. Since m(G*) 4+ ¢(G*) = m(G) + ¢(G) — 6 > n(n+1)/2, by
Theorem 1.1 G* contains a rainbow triangle 7™ not belonging to H; for i = 1,2. It is easy

to find three edge-disjoint rainbow triangles that include 7™ in GG, a contradiction.

The proof for the case that H; and H, have no common vertices is similar to the above

discussions, and the details are omitted. The proof is now complete. O

4 Concluding remarks

At the end of the paper, we pose a conjecture about the number of vertex-disjoint
rainbow triangles in an edge-colored graph G under the constraints of m(G) and ¢(G).
We also construct a graph class G, to show that the bound in the conjecture is sharp for
n > 5k if it holds.

Conjecture 4.1. Let G be an edge-colored graph on n > 5k vertices with m(G) + ¢(G) >
n(n+1)/2+ 6k —6. Then G contains k vertez-disjoint rainbow triangles.
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Let G, be the set of all edge-colored complete graphs on n > 5k vertices that are
constructed recursively as follows:

e GGy is the edge-colored complete graph with vertex-set {vi,vo,..., Uy _sr45}, where
C(vvj) =i for all vv; € E(Gy) if i < j;

e For 1 < i <k —1, let K5 be a rainbow complete graph vertex-disjoint from G;_q,
and let G; = G;_1 V K5. Each of the colors of edges in K5 does not belong to C(G;_1),
E¢,(G;—1, K5) is monochromatic and the color of Fg,(G;—1, K5) is neither used in G;_;

nor in K.

Notice that for each Gy € Gy, m(Gy) + ¢(Gr) > (3)+n —5k+5—1+11(k —1) =
n(n+1)/2 + 6k — 7 and Gy, contains exactly k — 1 vertex-disjoint rainbow triangles.
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