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Abstract

LetG be an edge-colored graph. A triangle ofG is called rainbow if any two edges

of the triangle have distinct colors. We use m(G) and c(G) to denote the number of

edges of G and the number of colors appearing on the edges of G, respectively. Li

et al. in 2014 proved that every edge-colored graph of order n with m(G) + c(G) ≥
n(n + 1)/2 contains a rainbow triangle and this result is best possible. In 2019,

Fujita et al. characterized all graphs G satisfying m(G) + c(G) ≥ n(n + 1)/2 − 1

but containing no rainbow triangle. In this paper, we conjecture that every edge-

colored graph of order n with m(G) + c(G) ≥ n(n + 1)/2 + 3(k − 1) contains k

edge-disjoint rainbow triangles. We show that the conjecture holds for k = 2 and

3 and these results are best possible. Furthermore, we characterize all graphs G

satisfying m(G) + c(G) ≥ n(n + 1)/2 + 2 but not containing two edge-disjoint

rainbow triangles. At the end, we propose a conjecture on the number of vertex-

disjoint rainbow triangles in an edge-colored graph.
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1 Introduction

We only consider simple graphs in this paper. For terminology and notation not defined

here, we refer the reader to [2]. An edge-colored graph is a triple G = (V (G), E(G), C),

where V (G) and E(G) are the vertex-set and edge-set of G, respectively, and C is a

mapping from E(G) to a set N of colors, called an edge-coloring of G. In an edge-colored

graph G, we use C(e) to denote the color of an edge e and C(G) to denote the set of

colors of all the edges of G. For convenience, set m(G) = |E(G)| and c(G) = |C(G)|. A

1Supported by NSFC No.12131013 and 11871034.
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subgraph of an edge-colored graph G is called rainbow if any two edges of the subgraph

receive distinct colors. Let CNG(u) denote the set of colors on the edges incident with a

vertex u in G, and dcG(u) = |CNG(u)|. We use CNG(u) and dcG(u) to denote the color-

neighborhood and color-degree of a vertex u in G, respectively. When there is no confusion,

we write CN(u) and dc(u) instead of CNG(u) and dcG(u), respectively. Let δc(G) denote

the minimum value of dc(u) over all vertices u in G, called the minimum color-degree of

the edge-colored graph G.

For two vertex-disjoint graphs G and H, we use G∨H to denote the new graph obtained

by adding edges joining every vertex of G to all vertices of H. For a subset S of V (G),

we use G[S] to denote the subgraph of G induced by S, and G−S to denote the induced

subgraph G[V (G)\S]. For any two distinct vertex subsets S and T in G, we use EG(S, T )

(for short E(S, T )) to denote the edge subset of G such that the two ends of each edge

of E(S, T ) are in S and T , respectively. Set C(S, T ) = {C(e) : e ∈ E(S, T )}. If S = {v},
then we simply write E(v, T ) and C(v, T ) for E({v}, T ) and C({v}, T ), respectively.

In 1907, Mantel proved a classical result about the existence of triangle in graphs. This

result says that every graph G of order n with m(G) > bn2

4
c contains a triangle. Li et al.

in 2014, showed a result on the existence of rainbow triangles in edge-colored graphs in

[10]. This result can be viewed as the rainbow version of Mantel’s theorem.

Theorem 1.1. [10] Let G be an edge-colored graph on n ≥ 3 vertices with m(G)+c(G) ≥
n(n+ 1)/2. Then G contains a rainbow triangle.

Furthermore, Fujita et al. in [8] generalized Theorem 1.1 by characterizing all graphs

G satisfying m(G) + c(G) ≥ n(n+ 1)/2− 1 but containing no rainbow triangle. Next, we

give a special graph class G0 and state their result.

Let G0 be the set of all edge-colored complete graphs that satisfy the following two

properties:

• K1 ∈ G0;
• For every G ∈ G0 of order n ≥ 2 with c(G) = n − 1, there exists a bipartition

V (G) = V1 ∪ V2 such that E(V1, V2) is monochromatic and G[Vi] ∈ G0 for i = 1, 2. Note

that, for each G ∈ G0, G satisfies the condition m(G)+c(G) = n(n+1)/2−1 but contains

no rainbow triangle.

Theorem 1.2. [8] Let G be an edge-colored graph on n ≥ 3 vertices with m(G) + c(G) ≥
n(n+ 1)/2− 1. If G contains no rainbow triangle, then G belongs to G0.

Another significant result was proved by Erdős in [7] after Mantel’ theorem in 1955:

every graph G of order n with m(G) ≥ bn2

4
c + k contains at least kbn

2
c triangles for

k < min{4, n/2}. Recently, Ehard et al. [6] considered the number of rainbow triangles

in edge-colored graphs and obtained the following result.
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Theorem 1.3. [6] Let k be a positive integer and G be an edge-colored graph on n ≥ 3k

vertices with m(G) + c(G) ≥ n(n+ 1)/2 + k − 1. Then G contains k rainbow triangles.

They also found all edge-colored graphs on n ≥ 3k vertices with m(G) + c(G) ≥
n(n+ 1)/2 + k− 1 that contain exactly k rainbow triangles. The following graph class G1
implies that the condition on Theorem 1.3 is best possible for n ≥ 3k.

Let G1 be the set of all edge-colored complete graphs on n ≥ 3k vertices that are

constructed recursively as follows:

•G0 is the edge-colored complete graph with vertex-set {v1, v2, ..., vn−3k}, where C(vivj) =

i for all vivj ∈ E(G0) if i < j;

• For 1 ≤ i ≤ k, let K3 be a rainbow triangle vertex-disjoint from Gi−1, and let Gi =

Gi−1 ∨K3. Each of the colors of edges in K3 does not belong to C(Gi−1), EGi
(Gi−1, K3)

is monochromatic and the color of EGi
(Gi−1, K3) is neither used in Gi−1 nor in K3.

Notice that for each Gk ∈ G1, m(Gk) + c(Gk) ≥ (n2 ) + k − 1 and Gk contains exactly k

rainbow triangles.

Theorem 1.4. [6] Let G be an edge-colored graph on n ≥ 3k vertices. If m(G) + c(G) ≥
n(n+ 1)/2 + k − 1 and G contains exactly k rainbow triangles, then G ∈ G1.

In the past period of time, much work on the existence of rainbow triangles in edge-

colored graphs has been done extensively. More results about this problem can be found

in [1, 3, 4, 5]. Furthermore, one can find quite a few publications on the number of

vertex-disjoint rainbow triangles in edge-colored graphs under the constraints of δc(G),

c(G) or color-neighborhood union; see [9, 11, 12, 13, 14, 15] for examples. Motivated by

the above results, we consider the number of edge-disjoint rainbow triangles in an edge-

colored graph G under the constraints of m(G) and c(G). We first pose the following

conjecture.

Conjecture 1.5. Let k be a positive integer and G be an edge-colored graph of n ≥ 4k

vertices with m(G)+c(G) ≥ n(n+1)/2+3k−3. Then G contains k edge-disjoint rainbow

triangles.

We confirm this conjecture for the cases k ∈ {2, 3} with n ≥ k(k + 4), and then we

give a graph class G2 to show that the bound of conjecture 1.5 is sharp for n ≥ 4k if the

conjecture holds.

Theorem 1.6. Let G be an edge-colored graph on n ≥ 12 vertices with m(G) + c(G) ≥
n(n+ 1)/2 + 3. Then G contains two edge-disjoint rainbow triangles.

Theorem 1.7. Let G be an edge-colored graph on n ≥ 21 vertices with m(G) + c(G) ≥
n(n+ 1)/2 + 6. Then G contains three edge-disjoint rainbow triangles.
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Figure 1: Gk ∈ G2 and Gk contains two edge-disjoint rainbow triangles when k = 3.

Let G2 be the set of all edge-colored complete graphs on n ≥ 4k vertices that are

constructed recursively as follows:

• G1 is the edge-colored complete graph with vertex-set {v1, v2, ..., vn−4k+4}, where

C(vivj) = i for all vivj ∈ E(G1) if i < j;

• For 2 ≤ i ≤ k, let K4 be a rainbow complete graph vertex-disjoint from Gi−1, and

let Gi = Gi−1 ∨ K4. Each of the colors of edges in K4 does not belong to C(Gi−1),

EGi
(Gi−1, K4) is monochromatic and the color of EGi

(Gi−1, K4) is neither used in Gi−1

nor in K4.

Notice that for each Gk ∈ G2, m(Gk) + c(Gk) = (n2 ) + n − 4k + 4 − 1 + 7(k − 1) =

n(n+ 1)/2 + 3k − 4. However, Gk contains exactly k − 1 edge-disjoint rainbow triangles.

See Figure 1.

At the end of this section, we completely characterize an edge-colored graph G of order

n with m(G) + c(G) ≥ n(n+ 1)/2 + 2 but without two edge-disjoint rainbow triangles.

Theorem 1.8. Let G be an edge-colored graph on n ≥ 12 vertices with m(G) + c(G) ≥
n(n+ 1)/2 + 2. Then G contains two edge-disjoint rainbow triangles or G ∈ G3.

G3 is defined as the set of all edge-colored complete graphs on n ≥ 5 vertices with the

following structures:

• Let G0 be the edge-colored complete graph in G0 (defined above) with vertex-set

{v1, v2, ..., vn−3} and let K4 be a rainbow complete graph with vertex-set {u1, u2, u3, u4}
such that C(K4) ∩ C(G0) = ∅;
• G is an edge-colored complete graph obtained from G0 by substituting K4 for some

vertex vi of G0 such that C(ujvk) = C(vivk) for all 1 ≤ j ≤ 4 and every vertex vk 6= vi.
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Figure 2: G ∈ G3 and G does not contains two edge-disjoint rainbow triangles.

Notice that for each G ∈ G3, m(G) + c(G) = n(n + 1)/2 + 2. However, G contains no

two edge-disjoint rainbow triangles. See Figure 2.

Because the proof of Theorem 1.7 is a little bit complicated, we give it an outline here.

The proof of Theorem 1.7 goes by contradiction, which involves three main steps. In the

first step, we know that G contains at least eight rainbow triangles by Theorems 1.3 and

1.4. Using Lemma 2.2 and the recoloring operation, we can deduce that G contains no

rainbow clique of order five. Then it follows from Lemma 2.3 that there are two vertex-

disjoint rainbow triangles, say Ti = xiyizixi for i = 1, 2, in G. Further, by a short analysis

for other six rainbow triangles, we can deduce that there are two copies of rainbow K4,

say H1 = G[{x1, y1, z1, u}] and H2 = G[{x2, y2, z2, v}]. In the second step, we distinguish

three cases according to the number of common vertices of H1 and H2. At first we obtain

a new edge-colored graph G∗ by the recoloring operation. By Lemma 2.2 again, one can

see that this operation does not create new rainbow triangles and breaks all the rainbow

triangles belonging to Hi for i = 1, 2. Then by Theorem 1.1 we can find a rainbow triangle

T ∗ not belonging to Hi for i = 1, 2 in G∗. Finally, it is easy to find three edge-disjoint

rainbow triangles that include T ∗ in G.

This paper is organized as follows: In Section 2, we first build up basic terminology

and significant conditions. In Section 3, we give the proofs of Theorems 1.6, 1.7 and 1.8.

At the last section, Section 4, we pose a conjecture and construct a special graph class to

show that the bound of this conjecture is sharp if it holds.
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2 Terminology and lemmas

At the beginning of this section, we give two sufficient conditions to guarantee the

existence of three edge-disjoint rainbow triangles in an edge-colored graph. Furthermore,

note that Theorem 1.6 will be used in the proof of Lemma 2.1. We will give the proof of

Theorem 1.6 in Section 3 independent of Lemma 2.1.

Lemma 2.1. Let G be an edge-colored graph on n ≥ 12 vertices with m(G) + c(G) ≥
n(n+ 1)/2 + 6. Suppose that G contains five distinct rainbow triangles Ti, 1 ≤ i ≤ 5, that

satisfy one of the following two conditions:

(1) T1, T2, T3, T4 and T5 contain a common edge in G;

(2) T1, T2, T3 and T4 contain a common edge and they are edge-disjoint from T5.

Then G contains three edge-disjoint rainbow triangles.

Proof. First, assume that Ti satisfies the condition (1) for i = 1, 2, 3, 4, 5. Set Ti = xyzix

for 1 ≤ i ≤ 5 and G0 = G − {xy}. Note that m(G0) + c(G0) ≥ n(n + 1)/2 + 6 − 2 =

n(n+ 1)/2 + 4. From Theorem 1.6, there exist two edge-disjoint rainbow triangles T and

T0 in G0. It is easily seen that there is at least one rainbow triangle Ti such that Ti is

edge-disjoint from T and T0 in G, where 1 ≤ i ≤ 5.

Next, we suppose that Ti satisfies the condition (2) for i = 1, 2, 3, 4, 5 and G does

not contain three edge-disjoint rainbow triangles. Assume that Ti = xyzix for 1 ≤ i ≤ 4,

T5 = uvwu and G0 = G−{xy}. Since m(G0)+c(G0) ≥ n(n+1)/2+6−2 = n(n+1)/2+4,

from Theorem 1.6 there exist two edge-disjoint rainbow triangles T ′ and T ′′ in G0. To

avoid that G contains three edge-disjoint rainbow triangles, E(T ′) ∪ E(T ′′) uses exactly

one edge of Ti for some 1 ≤ i ≤ 4. Without loss of generality, set T ′ = xz1z2x and

T ′′ = xz3z4x. If T5 is edge-disjoint from T ′ and T ′′, then T5, T
′ and T ′′ are three edge-

disjoint rainbow triangles in G, a contradiction. Recall that T5 is edge-disjoint from Ti

for 1 ≤ i ≤ 4. We may assume T5 = wz1z2w. Then T ′′, T2 and T5 are three edge-disjoint

rainbow triangles, a contradiction. The proof is thus complete.

Next we introduce an important lemma of this paper, which will be used frequently in

the following proofs. In this lemma, we mainly consider the number of times that each of

the three colors of a rainbow triangle appears in G.

Lemma 2.2. Let G be an edge-colored graph on n ≥ 21 vertices with m(G) + c(G) ≥
n(n + 1)/2 + 6. If G does not contain three edge-disjoint rainbow triangles, then each of

the three colors in every rainbow triangle appears only once in G.

Overview: Because the proof of this lemma is quite complicated, we first give it an

outline. The proof goes by contradiction. At first we fix a rainbow triangle T = xyzx in

G and set G0 = G−E(T ). Since C(T )∩C(G0) 6= ∅, we distinguish three cases according
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to the value of |C(T ) ∩ C(G0)| being 1,2,3, respectively. The cases of |C(T ) ∩ C(G0)|
being 1,2 are easy to be settle done. Only he case of |C(T ) ∩ C(G0)| being 3 is hard to

be fixed, for which we use three main steps. In the first step, we find two distinct vertices

w1 and w2 such that w1yzw1 and w2xzw2 are two rainbow triangles different from T in

G. In the second step, we show that neither G0[{x, y, z, w1, w2}] nor G1[{x, y, z, w1, w2}]
contains an rainbow triangle, where G1 = G − {xy, zw1, zw2}. This means that every

rainbow triangle contains at least one edge of E(T ) ∪ {zw1, zw2} in G. In the third step,

by a short analysis we can find five rainbow triangles such that they satisfy the condition

(2) of Lemma 2.1, which implies the existence of three edge-disjoint rainbow triangles in

G.

Next we proceed to giving the details of our proof.

Proof of Lemma 2.2: Suppose not, choose an arbitrary rainbow triangle T = xyzx in

G with C(T ) ∩ C(G0) 6= ∅, where G0 = G − E(T ). Note that G0 does not contain two

edge-disjoint rainbow triangles. Next, we consider the following three cases, depending

on the value of |C(T ) ∩ C(G0)|.

Case 1. |C(T ) ∩ C(G0)| = 3.

Note that m(G0)+c(G0) ≥ n(n+1)/2+6−3 = n(n+1)/2+3. By Theorem 1.6, G0 con-

tains two edge-disjoint rainbow triangles. Hence, the two edge-disjoint rainbow triangles

together with T compose three edge-disjoint rainbow triangles in G, a contradiction.

Case 2. |C(T ) ∩ C(G0)| = 2.

Without loss of generality, set C(T )∩C(G0) = {C(xy), C(yz)} and G1 = G−{xy, xz}.
Since m(G1) + c(G1) ≥ n(n+ 1)/2 + 6− 3 = n(n+ 1)/2 + 3, by Theorem 1.6 G1 contains

two edge-disjoint rainbow triangles. If neither of them contains yz, then these two edge-

disjoint rainbow triangles together with T compose three edge-disjoint rainbow triangles

in G, a contradiction. Hence, we assume that one of the two rainbow triangles contains

yz, say w1yzw1. By the same discussions for G − {xy, yz} and G − {xz, yz}, we can

obtain two rainbow triangles w2xzw2 and w3xyw3 in G. If w1, w2 and w3 are pairwise

different, then w1yzw1, w2xzw2 and w3xyw3 are three edge-disjoint rainbow triangles in

G, a contradiction.

Assume w1 = w3 6= w2. Note that m(G0)+c(G0) ≥ n(n+1)/2+6−4 = n(n+1)/2+2.

The fact that G0 is not complete, together with Theorems 1.3 and 1.4, implies that G0

contains at least four distinct rainbow triangles. It is clear that each rainbow triangle of

G0 uses at least one edge in {w1y, w2x,w2z}. Otherwise, we can easily find a rainbow

triangle that is edge-disjoint from w1yzw1(or w3xyw3) and w2xzw2 in G, a contradiction.

Let H0 = G0[{x, y, z, w1, w2}]. It can be seen that H0 contains at most three trian-

gles: xw1w2x, zw1w2z and yw1w2y; see Figure 3. Hence, there is at least one rainbow
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triangle T1 of G0 that does not belong to H0. Obviously, T1 uses exactly one edge e1 of

{w1y, w2x,w2z}. In fact, regardless of e1 = w2x,w2z or w1y, our discussion is similar.

Hence, we only consider the case that e1 = w2x. Without loss of generality, suppose

T1 = u1xw2u1.

Figure 3: H0 is an induced subgraph of G0, where the black solid edges must belong to H0, the black dotted edges do not

belong to H0 and the red solid edges possibly exist in H0.

Recall that T and T1 are two edge-disjoint rainbow triangles. If zw1w2z or yw1w2y

is rainbow, then we can find three edge-disjoint rainbow triangles in G, a contradiction.

Hence, H0 contains at most one rainbow triangle, which implies that there are at least

two other rainbow triangles T2 and T3 in G0 that do not belong to H0. Similarly, we

assume that Ti contains ei ∈ {w1y, w2x,w2z} for i = 2, 3. For i = 2 or 3, if ei = w1y,

then T , T1 and Ti are three edge-disjoint rainbow triangles in G, a contradiction. If

e1 = e2 = e3 = w2x, then T1, T2, T3, w2xzw2 contains a common edge w2x and they

are edge-disjoint from xyw1x. It follows from the condition (2) of Lemma 2.1 that G

contains three edge-disjoint rainbow triangles, a contradiction. If e2 = e3 = zw2 or

{e2, e3} = {w2x,w2z}, it is not difficult to find that there are three edge-disjoint rainbow

triangles in G, a contradiction. Similarly, we can prove the cases that w1 6= w2 = w3 and

w1 = w2 6= w3.

If w1 = w2 = w3, set G1 = G−{xw1, yz}. Since m(G1) + c(G1) ≥ n(n+ 1)/2 + 6− 3 =

n(n + 1)/2 + 3, by Theorem 1.6 there are two edge-disjoint rainbow triangles T1 and T2

in G1. To avoid that G contains three edge-disjoint rainbow triangles, one of the edges

xy and xz is contained in T1 or T2. Without loss of generality, assume T1 = wxyw. It is

clear that w 6= w3. Then we find two distinct vertices w1 = w2 and w(6= w1) such that

w1yzw1, w1xzw1 and wxyw are three distinct rainbow triangles in G. Consequently, by a

similar discussion with the case of w1 = w3 6= w2, we can find a contradiction.

Case 3. |C(T ) ∩ C(G0)| = 1.

Assume C(T ) ∩ C(G0) = {C(xy)}. At first, we prove the following claims.
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Claim 1. There are two distinct vertices w1 and w2 such that w1yzw1 and w2xzw2 are

two rainbow triangles different from T in G.

Proof. If not, by a similar argument for G−{xy, xz} and G−{xy, yz} in Case 2, we can

find two rainbow triangles u1yzu1 and u2xzu2 distinct from T in G. Clearly, u1 = u2. Set

G1 = G−{u1z, xy}. Since m(G1) + c(G1) ≥ n(n+ 1)/2 + 3, by Theorem 1.6 G1 contains

two edge-disjoint rainbow triangles T1 and T2. If E(T1) ∩ E(T2) contains no xz or yz,

then T1, T2 and T are edge-disjoint rainbow triangles in G, a contradiction. Without loss

of generality, we suppose that T1 contains xz in G1, say T1 = u3xzu3. Clearly, u1yzu1

and u3xzu3 are rainbow triangles in G and u3 6= u1, a contradiction. The claim thus

follows.

Choose two vertices w1 and w2 that satisfy Claim 1 in G. Let G1 = G−{xy, zw1, zw2}.
Since m(G1) + c(G1) ≥ n(n + 1)/2 + 6− 5 = n(n + 1)/2 + 1 and G1 is not complete, by

Theorems 1.3 and 1.4 we can find three rainbow distinct triangles in G1. For convenience,

set H1 = G1[{x, y, z, w1, w2}]; see Figure 4. Note that H1 contains at most two triangles

yw1w2y and xw1w2x. Hence, there is at least one rainbow triangle that does not belong

to H1. In fact, every rainbow triangle not belonging to H1 must contain an edge in

{w2x, xz, zy, yw1}. Otherwise, this rainbow triangle, and xzw2x and yzw1y are three

edge-disjoint rainbow triangles, a contradiction.

Claim 2. H1 contains no rainbow triangle.

Proof. Suppose to the contrary that H1 contains at least one rainbow triangle. choose a

rainbow triangle T1 that does not belong to H1, and set V (T1) − V (H1) = {u1}. Then

T1 contains an edge e1 of {w2x, xz, zy, yw1}. By symmetry, we only need to consider

the cases e1 ∈ {w2x, xz}. If H1 contains two rainbow triangles, then both yw1w2y and

xw1w2x are rainbow. If e1 = w2x, then T , T1 and yw1w2y are three edge-disjoint rainbow

triangles, a contradiction. If e1 = xz, then T1, yzw1y and xw1w2x are three edge-disjoint

rainbow triangles, a contradiction.

If H1 contains only one rainbow triangle, without loss of generality, assume that yw1w2y

is a rainbow triangle. Thus, there is another rainbow triangle T2 that does not belong

to H1. Similarly, T2 contains an edge e2 of {w2x, xz, zy, yw1} and suppose that V (T2)−
V (H1) = {u2}. If ei = xw2(yz), then yw1w2y, Ti and T (xzw2x) are three edge-disjoint

rainbow triangles for i = 1, 2, a contradiction. If e1 = e2 = xz, then T , T1, T2, xzw2x

and yw1w2y satisfy the condition (2) of Lemma 2.1. Then G contains three edge-disjoint

rainbow triangles, a contradiction. Similarly, we can find a contradiction when e1 = e2 =

yw1. Hence, we have {e1, e2} = {xz, yw1}. By a similar analysis for G − {yw1, xz}, we

can always deduce a contradiction, and the claim thus follows.
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Figure 4: Hi is an induced subgraph of Gi, where the black solid edges must belong to Hi, the black dotted edges do not

belong to Hi and the red solid edges possibly exist in Hi for i = 1, 2.

Assume that T1, T2 and T3 are three rainbow triangles that does not belong to H1 in

G1. Let ei ∈ E(Ti) ∩ {w2x, xz, zy, yw1} and V (Ti)− V (H1) = {ui} for 1 ≤ i ≤ 3.

Recall that G0 = G − {xy, yz, xz} and m(G0) + c(G0) ≥ n(n + 1)/2 + 1. Since G0 is

not complete, by Theorems 1.3 and 1.4 we can find three distinct rainbow triangles in G0.

Set H0 = G0[{x, y, z, w1, w2}]; see Figure 4. Note that H0 contains at most three triangles

yw1w2y, xw1w2x and zw1w2z. If yw1w2y or xw1w2x is a triangle in H0, then it also belongs

to H1. From Claim 1, we know that neither yw1w2y nor xw1w2x is a rainbow triangle.

Hence, H0 contains at most one rainbow triangle. In fact, every rainbow triangle not

belonging to H0 must contain one edge in {xw2, zw2, zw1, yw1}. Otherwise, this rainbow

triangle, and xzw2x and yzw1y are three edge-disjoint rainbow triangles, a contradiction.

Claim 3. H0 contains no rainbow triangle.

Proof. Suppose that H0 contains exactly one rainbow triangle. This implies that zw1w2z

is the unique rainbow triangle in H0 and there are at least two rainbow triangles T ∗1 and

T ∗2 that do not belong to H0. Similarly, we know that T ∗i contains exactly one edge e∗i from

{xw2, zw2, zw1, yw1}, and set V (T ∗i ) − V (H0) = {vi} for i = 1, 2. If e∗i = xw2(or yw1),

then T , T ∗i and zw1w2z are three edge-disjoint rainbow triangles, a contradiction. If

e∗1 = e∗2 = zw2(zw1), we can find five rainbow triangles in G by considering G−{zw2, yz},
and the details are omitted. Similarly, we can prove the case that e∗1 = e∗2 = zw1. If

{e∗1, e∗2} = {zw1, zw2} and v1 6= v2, then T , T ∗1 and T ∗2 are three edge-disjoint rainbow

triangles in G, a contradiction. Hence, we have that {e∗1, e∗2} = {zw1, zw2} and v1 = v2.

Without loss of generality, set T ∗1 = zv1w2z and T ∗2 = zw1v1z. Now we go back to the

graph H1 and Ti for i = 1, 2, 3. If ei = xw2, then T , Ti and T ∗2 are three edge-disjoint

rainbow triangles in G for i = 1, 2, 3, a contradiction. By symmetry, we have ei 6= yw1

for i = 1, 2, 3, which means {e1, e2, e3} ⊆ {xz, yz}. We assume, without loss of generality,

that e1 = e2 = xz. Then we can observe that u1 6= u2. That implies that there is a
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vertex, say u1, such that u1 6= v1. Thus, T1, T
∗
1 and yzw1y are three edge-disjoint rainbow

triangles in G, a contradiction.

After the three claims, we come back to our proof. Assume that T ∗1 , T ∗2 and T ∗3 are three

rainbow triangles that do not belong to H0 in G0. Let e∗i ∈ E(T ∗i )∩ {xw2, zw2, zw1, yw1}
and V (T ∗i )− V (H0) = {vi} for 1 ≤ i ≤ 3.

We assert that e∗1 = e∗2 = e∗3. If not, then we can always find two edge-disjoint rainbow

triangles T ∗i and T ∗j in {T ∗1 , T ∗2 , T ∗3 }. Thus, T , T ∗i and T ∗j are three edge-disjoint rainbow

triangles in G, a contradiction.

Without loss of generality, set e∗1 = e∗2 = e∗3 = xw2. Then T ∗1 , T ∗2 , T ∗3 , xzw2x and yzw1y

always satisfy the condition (2) of Lemma 2.1. Then, we can find three edge-disjoint

rainbow triangles in G, which yields a contradiction.

Combining with the above three cases, the proof of Lemma 2.2 is now complete.

At the end of this section, we will give a lemma on the existence of a rainbow K5 or

two vertex-disjoint rainbow triangles under the conditions that G does not contain three

edge-disjoint rainbow triangles and m(G) + c(G) ≥ n(n+ 1)/2 + 6, which will be used in

the proof of Theorem 1.7.

Lemma 2.3. Let G be an edge-colored graph on n ≥ 21 vertices with m(G) + c(G) ≥
n(n+1)/2+6. If G does not contain three edge-disjoint rainbow triangles, then G contains

a rainbow K5 or two vertex-disjoint rainbow triangles.

Proof. Suppose that G contains no rainbow K5 and two vertex-disjoint rainbow triangles.

From Theorem 1.3, we know that G contains at least seven rainbow triangles. If G

contains exactly seven rainbow triangles, then from Theorem 1.4 we have G ∈ G1. That

implies that G contains three edge-disjoint rainbow triangles, a contradiction. Hence, we

assume that G contains at least eight rainbow triangles {Ti, 1 ≤ i ≤ 8}.
The condition that G does not contain three edge-disjoint rainbow triangles implies that

any five rainbow triangles in {Ti, 1 ≤ i ≤ 8} do not satisfy the condition (1) of Lemma 2.1.

Hence, there must exist two edge-disjoint rainbow triangles, say T1 and T2. It is clear that

V (T1) ∩ V (T2) 6= ∅. Next, assume that T1 = xyzx, T2 = xuvx and H = G[{x, y, z, u, v}].
We first show the following claim.

Claim. H is a complete graph.

Proof. By symmetry, we only need to prove uy ∈ E(G). If not, then H contains at most

seven triangles. Hence, there is at least one rainbow triangle T3 such that V (T3) * V (H).

The condition that G does not contain three edge-disjoint rainbow triangles implies that

T3 contains exactly one edge e1 from {xy, yz, xz, xu, uv, xv}. Let V (T3)− V (H) = {w1}.
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If e1 = uv(yz), then T1 (T2) and T3 are vertex-disjoint, a contradiction. Then e1 ∈
{xy, xz, xu, xv}. By symmetry, we only consider the case of e1 = xv.

To avoid that T1, T3 and uzvu are three edge-disjoint rainbow triangles, uvzu must not

be rainbow. Hence, there is a rainbow triangle T4 such that T4 6= T3 and V (T4) * V (H).

By the same discussion for T4, we know that T4 contains exactly one edge e2 from H

with e2 ∈ {xy, xz, xu, xv}. Let V (T4) − V (H) = {w2}. If e2 = xu and w1 6= w2, then

T1, T3 and T4 are three edge-disjoint rainbow triangles, a contradiction. If e2 = xu and

w1 = w2, from Lemma 2.2 we have that G[{u, v, x, w1}] is rainbow. Hence, uvw1u is a

rainbow triangle vertex-disjoint from T1, a contradiction. If e2 = xz and w1 = w2, then

zv /∈ E(G). Otherwise, by Lemma 2.2 we have that G[{z, v, x, w1}] is rainbow, which

implies that T1, T2 and zvw1z are three edge-disjoint rainbow triangles, a contradiction.

Similarly, we can deduce a contradiction when e2 = xy and w1 = w2. Since T3 6= T4, we

have w1 6= w2 when e2 = xv. Hence, we have e2 ∈ {xv, xz, xy} and w1 6= w2.

If e2 = xz and w1 6= w2, to avoid that T3, T4 and uvzu are three edge-disjoint rainbow

triangles in G, then uvzu must not be rainbow. Hence, there is a rainbow triangle T5 such

that T5 /∈ {T3, T4} and V (T5) * V (H). Let V (T5)−V (H) = {w3}. By a similar argument,

we know that T5 contains exactly one edge e3 fromH, w3 /∈ {w1, w2} and e3 ∈ {xv, xz, xy}.
If e3 = xy, then T3, T4 and T5 are three edge-disjoint rainbow triangles, a contradiction.

Hence, e3 ∈ {xv, xz} and w3 /∈ {w1, w2}. By symmetry, suppose e3 = xz. We assert

that uzxu is not rainbow. If not, then T1, T4, T5, uzxu and T3 satisfy the condition

(2) of Lemma 2.1. This means that G contains three edge-disjoint rainbow triangles,

a contradiction. Hence, there is a rainbow triangle T6 such that T6 /∈ {T3, T4, T5} and

V (T6) * V (H). Let V (T6) − V (H) = {w4}. It is clear that T6 contains exactly one

edge e4 from H, w4 /∈ {w1, w2, w3} and e4 ∈ {vx, zx}. If e4 = xz, then we can deduce a

contradiction from the rainbow triangles T1, T4, T5, T6 and T3 and Lemma 2.1. If e4 = xv,

we can also deduce a contradiction by repeating the above analyses.

If e2 ∈ {xv, xy} and w1 6= w2, by a similar discussion we can always find five rainbow

triangles such that they satisfy the condition (2) of Lemma 2.1. Consequently, G contains

three edge-disjoint rainbow triangles, a contradiction. The claim thus follows.

After the claim we come back to the proof. Since H is complete, and yx ∈ T1 and

ux ∈ T2, from Lemma 2.2 both C(yx) and C(ux) appear only once in G. Then, xyux is

also a rainbow triangle. By repeat use of Lemma 2.2, we can show that H is a rainbow

complete graph, a contradiction. The proof of the lemma is thus complete.
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3 Proofs of our main results

After the above preparations, we are ready to give the proofs of our main results.

Proof of Theorem 1.6: Suppose to the contrary that G does not contain two edge-

disjoint rainbow triangles. From Theorem 1.3, G contains at least four distinct rainbow

triangles. Since G does not contain two edge-disjoint rainbow triangles, any two of these

rainbow triangles have one common edge. Hence, we need to consider the following two

cases:

Case 1. There are three rainbow triangles with a common edge in G.

Assume that the common edge is xy, and Ti = xyvix, i = 1, 2, 3, are three distinct

rainbow triangles in G. Set G0 = G − {xy}. It can be seen that m(G0) + c(G0) ≥
n(n+1)/2+3−2 = n(n+1)/2+1. Thus, by Theorem 1.1 G0 contains a rainbow triangle

T0. Clearly, T0 must be edge-disjoint from one of {T1, T2, T3} in G.

Case 2. Any three rainbow triangles have no common edges in G.

Without loss of generality, suppose that T1 = xyzx, T2 = xzwx and T3 = xywx

are three distinct rainbow triangles in G. Assume that G0 = G − {xy, wz}. Thus,

m(G0) + c(G0) ≥ n(n + 1)/2 + 3 − 4 = n(n + 1)/2 − 1. Note that G0 is not a complete

graph, by Theorem 1.2 G0 contains a rainbow triangle T0. It is clear that T0 must be

edge-disjoint from at least one of {T1, T2, T3} in G.

Combining the above two cases, the proof is thus complete.

To prove Theorem 1.8, we first recall an important operation on graphs. Let G be a

graph and X be a proper subset of the vertex-set of G. To shrink X is to delete all edges

between the vertices of X and then identify the vertices of X into a single vertex. The

resulting graph is denoted by G/X.

Proof of Theorem 1.8: Suppose that the statement is false. From Theorem 1.1, we

know that G contains a rainbow triangle. For each rainbow triangle of G, we have the

following claim.

Claim 1. Each of the three colors in every rainbow triangle appears only once in G.

Proof. Choose an arbitrary rainbow triangle T = xyzx in G and set G0 = G−{xy, yz, zx}.
The hypothesis implies that G0 contains no rainbow triangles. Suppose to the contrary,

that there is a color C(xy) in T that appears at least twice in G. This means that

C(xy) ∈ C(T ) ∩ C(G0). Let G1 = G − {xy, yz}. Notice that m(G1) + c(G1) ≥ m(G) −
2 + c(G) − 1 ≥ n(n + 1)/2 − 1. Since G1 is not a complete graph, by Theorem 1.2 G1
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contains a rainbow triangle T1. Obviously, T1 contains xz; since otherwise, G contains

two edge-disjoint rainbow triangles T and T1, a contradiction. Assume that T1 = xzwx

and G2 = G− {xz}. Noticing that m(G2) + c(G2) ≥ m(G)− 1 + c(G)− 1 ≥ n(n+ 1)/2,

by Theorem 1.1 G2 contains a rainbow triangle T2.

We assert that V (T2) ⊆ {x, y, z, w}. If not, T2 is a rainbow triangle edge-disjoint from

T or T1 in G, a contradiction. Thus, T2 has two choices in G2, i.e. T2 = xywx or

T2 = ywzy. Without loss of generality, set T2 = xywx and G3 = G − {xy, wz}. Recall

that C(xy) ∈ C(T )∩C(G0). Then, m(G3)+c(G3) ≥ m(G)−2+c(G)−1 ≥ n(n+1)/2−1.

Since G3 is not a complete graph, by Theorem 1.2 again G3 contains a rainbow triangle

T3. It can be easily seen that T3 must be edge-disjoint from one of the rainbow triangles

from {T, T1, T2}, a contradiction. The claim thus follows.

We need to show more claims before proceeding our proof.

Claim 2. G contains a rainbow clique of order four.

Proof. From Theorem 1.3, we may assume that T1, T2 and T3 are three distinct rainbow

triangles in G. If T1, T2 and T3 contain a common edge e in G, let G0 = G − {e}. Note

that m(G0) + c(G0) ≥ n(n + 1)/2 + 2 − 2 = n(n + 1)/2. Hence, by Theorem 1.1 G0

contains a rainbow triangle T4, and it is not difficult to see that T4 must be edge-disjoint

from one of the triangles from {T1, T2, T3}, a contradiction.

Hence, we may assume that T1 = xyzx, T2 = xzwx and T3 = xywx. It is clear that

G[{x, y, z, w}] is complete. Note that each edge of G[{x, y, z, w}] is contained in a rainbow

triangle. From Claim 1, G[{x, y, z, w}] is a rainbow complete graph, and the claim thus

follows.

Next, let K4 = G[{x, y, z, w}] be a rainbow complete graph, and let G∗ be the edge-

colored graph obtained from G by recoloring xz, yw and yz with C(xw).

Claim 3. G∗ does not contain rainbow triangles and G∗ ∈ G0.

Proof. From Claim 1, one can see that each color of K4 appears only one time in G and

this operation of recoloring does not create new rainbow triangles and breaks all rainbow

triangles belonging to K4. Note that each rainbow triangle of G∗ is also rainbow in G.

Suppose that G∗ contains a rainbow triangle. Then G contains a rainbow triangle not

belonging to K4, which implies that we can find two edge-disjoint rainbow triangles in

G, a contradiction. Hence, H contains no rainbow triangles. Note that m(G∗) + c(G∗) ≥
m(G) + c(G) − 3 = n(n + 1) − 1. From Theorem 1.2, we have G∗ ∈ G0, and the claim

thus follows.

It follows from G∗ ∈ G0 that G∗ is complete. Note that the operation of recoloring does

not change any edge of G. Then G is also complete.
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Claim 4. C(v,K4) is monochromatic for each vertex v ∈ G−K4.

Proof. Choose an arbitrary v ∈ G − K4. Recalling that G is complete, without loss

of generality, suppose C(vx) 6= C(vy). By Claim 1, we know that vxyv is a rainbow

triangle, which implies that vxyv and xzwx are two edge-disjoint rainbow triangles in G,

a contradiction.

After the claims, we come back to our proof. From Claim 2, take a rainbow K4 from G.

Let H be the edge-colored graph obtained from G by shrinking V (K4) to a vertex u such

that C(vu) = C(v,K4) for each vertex v in G − K4. It is not difficult to see that if G∗

contains no rainbow triangles, then H contains no rainbow triangles. From Claims 1 and

4, we have C(H) = C(G) \ C(K4). Note that H is complete and |V (H)| = n− 3. Then,

m(H) + c(H) = m(G) + c(G)− 6− 6− 3(n− 4) ≥ (n− 2)(n− 3)/2− 1. From Theorem

1.2, we know that H ∈ G0, which implies that G ∈ G3, a contradiction. The proof is now

complete.

Proof of Theorem 1.7: Suppose to the contrary, that G does not contain three edge-

disjoint rainbow triangles. From Theorem 1.3, we know that G contains at least seven

rainbow triangles. If G contains exactly seven rainbow triangles, then from Theorem 1.4

we have G ∈ G1, which implies that G contains three edge-disjoint rainbow triangles,

a contradiction. Hence, we suppose that G contains at least eight rainbow triangles

{Ti, 1 ≤ i ≤ 8}.

Claim. G contains no rainbow clique of order five.

Proof. Suppose to the contrary that G[V0] is a rainbow K5 with V0 = {x, y, z, u, v}. Let

G∗ be an edge-colored graph obtained from G by recoloring xy, xz, xu, xv and zv with

C(yu). From Lemma 2.2, one can see that this operation does not create new rainbow

triangles and breaks all rainbow triangles belonging to G[V0]. Since m(G∗) + c(G∗) =

m(G) + c(G)− 5 ≥ n(n+ 1)/2 + 1, by Theorem 1.1 G∗ contains a rainbow triangle T ∗ not

belonging to G∗[V0]. It is not difficult to see that each rainbow triangle of G∗ corresponds

to a rainbow triangle of G. Thus, T ∗ is also a rainbow triangle not belonging to G[V0] in

G. Then, we can easily find three edge-disjoint rainbow triangles that include T ∗ in G, a

contradiction.

From the above Claim and Lemma 2.3, there are two vertex-disjoint rainbow triangles,

say Ti = xiyizixi for i = 1, 2. To avoid that G contains three rainbow edge-disjoint

triangles, each Ti contains at least one edge of E(T1) ∪ E(T2) for 3 ≤ i ≤ 8. It follows

from the fact that T1 and T2 have no common vertices that each Ti can not simultaneously

contain an edge of T1 and an edge of T2 for 3 ≤ i ≤ 8. If there are four rainbow

triangles Ti1 , Ti2 , Ti3 and Ti4 in {Ti, 3 ≤ i ≤ 8} such that Tij contains an edge of T1 for
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1 ≤ j ≤ 4, then it is not difficult to see that there must exist two edge-disjoint rainbow

triangles T ′ and T ′′ in {Ti1 , Ti2 , Ti3 , Ti4}. Since T ′ and T ′′ are edge-disjoint from T2, we

get three edge-disjoint rainbow triangles in G, a contradiction. Hence, for the remaining

six rainbow triangles {Ti, 3 ≤ i ≤ 8}, we suppose that Ti contains one edge of T1 for

i = 3, 4, 5 and Tj contains one edge of T2 for j = 6, 7, 8. For convenience, we suppose that

V (Ti)− V (T1) = {ui} and V (Tj)− V (T2) = {vj} for i = 3, 4, 5 and j = 6, 7, 8. If ui 6= uj

for 3 ≤ i 6= j ≤ 5, then Ti, Tj and T2 are three edge-disjoint rainbow triangles in G, a

contradiction. Then, u3 = u4 = u5. Similarly, we can get v6 = v7 = v8. Set u = u3 and

v = v6. Thus, one can see that both G[{x1, y1, z1, u}] and G[{x2, y2, z2, v}] are rainbow

copy of K4.

Let H1 = G[{x1, y1, z1, u}] and H2 = G[{x2, y2, z2, v}]. From Lemma 2.2, each color of

H1 and H2 appears only one time in G. Note that H1 and H2 have at most two common

vertices. If H1 and H2 have two common vertices, without loss of generality, set u = x2

and x1 = v. Let G1 = G− {x1u, y1z1, y2z2}. Note that this operation breaks triangles Ti

for 1 ≤ i ≤ 8. Since m(G1) + c(G1) ≥ n(n+ 1)/2, by Theorem 1.1 G1 contains a rainbow

triangle T ′ not belonging to H1 or H2. One can easily get three edge-disjoint rainbow

triangles in G, a contradiction.

If H1 and H2 have only one common vertex, set u = v. We assert that EG(T1, T2) = ∅.
In fact, by symmetry we only consider the case x1x2 /∈ E(G). If not, from Lemma 2.2

we know that C(uxi) appears only once in G for i = 1, 2. Hence, ux1x2u is a rainbow

triangle edge-disjoint from T1 and T2 in G, a contradiction.

Let G∗ be the edge-colored graph obtained from G by recoloring x1y1, y1z1 and z1u with

C(ux1) and recoloring x2y2, y2z2 and z2u with C(ux2). From Lemma 2.2, one can see that

this operation does not create new rainbow triangles and breaks all the rainbow triangles

belonging to Hi for i = 1, 2. Since m(G∗) + c(G∗) = m(G) + c(G) − 6 ≥ n(n + 1)/2, by

Theorem 1.1 G∗ contains a rainbow triangle T ∗ not belonging to Hi for i = 1, 2. It is easy

to find three edge-disjoint rainbow triangles that include T ∗ in G, a contradiction.

The proof for the case that H1 and H2 have no common vertices is similar to the above

discussions, and the details are omitted. The proof is now complete.

4 Concluding remarks

At the end of the paper, we pose a conjecture about the number of vertex-disjoint

rainbow triangles in an edge-colored graph G under the constraints of m(G) and c(G).

We also construct a graph class G4 to show that the bound in the conjecture is sharp for

n ≥ 5k if it holds.

Conjecture 4.1. Let G be an edge-colored graph on n ≥ 5k vertices with m(G) + c(G) ≥
n(n+ 1)/2 + 6k − 6. Then G contains k vertex-disjoint rainbow triangles.
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Let G4 be the set of all edge-colored complete graphs on n ≥ 5k vertices that are

constructed recursively as follows:

• G0 is the edge-colored complete graph with vertex-set {v1, v2, ..., vn−5k+5}, where

C(vivj) = i for all vivj ∈ E(G0) if i < j;

• For 1 ≤ i ≤ k − 1, let K5 be a rainbow complete graph vertex-disjoint from Gi−1,

and let Gi = Gi−1 ∨K5. Each of the colors of edges in K5 does not belong to C(Gi−1),

EGi
(Gi−1, K5) is monochromatic and the color of EGi

(Gi−1, K5) is neither used in Gi−1

nor in K5.

Notice that for each Gk ∈ G4, m(Gk) + c(Gk) ≥ (n2 ) + n − 5k + 5 − 1 + 11(k − 1) =

n(n+ 1)/2 + 6k − 7 and Gk contains exactly k − 1 vertex-disjoint rainbow triangles.
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