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Abstract

Let G be a graph with an edge-coloring c, and let δc(G) denote the minimum color-

degree of G. A subgraph of G is called rainbow if any two edges of the subgraph have

distinct colors. In this paper, we consider color-degree conditions for the existence of

rainbow triangles in edge-colored graphs. At first, we give a new proof for characterizing

all extremal graphs G with δc(G) ≥ n
2 that do not contain rainbow triangles, a known

result due to Li, Ning, Xu and Zhang. Then, we characterize all complete graphs G

without rainbow triangles under the condition δc(G) = log2n, extending a result due

to Li, Fujita and Zhang. Hu, Li and Yang showed that G contains two vertex-disjoint

rainbow triangles if δc(G) ≥ n+2
2 when n ≥ 20. We slightly refine their result by showing

that the result also holds for n ≥ 6, filling the gap of n from 6 to 20. Finally, we prove

that if δc(G) ≥ n+k
2 then every vertex of an edge-colored complete graph G is contained

in at least k rainbow triangles, generalizing a result due to Fujita and Magnant. At the

end, we mention some open problems.

Keywords: edge-coloring; edge-colored complete graph; rainbow triangle; color-degree

condition

AMS Classification 2020: 05C15, 05C38.

1 Introduction

An edge-coloring of a graph G is a mapping c : E(G) → N, where N denotes the set of

natural numbers. A graph G is called an edge-colored graph if G is assigned an edge-coloring.

1



A subset F of edges of G is called rainbow if no pair of edges in F receive the same color, and

a subgraph of G is called rainbow if the edge-set of the subgraph is rainbow.

The notions of “color-degree” and “minimum color-degree” appeared in [3]. Let G be an

edge-colored graph. For a vertex v ∈ V (G), the color-degree of v in G is the number of distinct

colors assigned to the edges incident to v, denoted by dcG(v). We use δc(G) := min{dcG(v) : v ∈
V (G)} to denote the minimum color-degree of G.

In this paper, we will consider the existence of rainbow triangles in edge-colored graphs

under color-degree conditions. This topic has received much attention recent years. For related

references and the recent development, we refer the reader to surveys [8, 11] and the references

[4, 6, 15].

A starting point of extremal graph theory might be the Mantel’s theorem, which states

that every graph G on n vertices contains a triangle if e(G) > n2

4
. Although it can be proved

directly, an obvious but well-known corollary of Mantel’s theorem is that the conclusion still

holds under the weaker condition that “the minimum degree δ(G) > n+1
2

”. In 2012, Li and

Wang [14] considered the corresponding color-degree version, i.e., a color-degree condition for

the existence of rainbow triangles in an edge-colored graph. They proved that every edge-

colored graph G on n vertices contains a rainbow triangle if δc(G) ≥ (
√
7+1)n
6

. Furthermore,

they conjectured that the color-degree condition can be weakened to δc(G) ≥ n+1
2

, and if true,

it is best possible. This conjecture was confirmed by Li [13] in 2013. Aiming to attack Li and

Wang’s conjecture, independently, Li, Ning, Xu and Zhang [12] proved two stronger results in

2014 by completely different methods. We list these results as follows.

Theorem 1 ([13]). Let G be an edge-colored graph of order n. If δc(G) ≥ n+1
2
, then G contains

a rainbow triangle.

Theorem 2 ([12]). Let G be an edge-colored graph of order n. If
∑

v∈V (G) d
c
G(v) ≥ n(n+1)

2
, then

G contains a rainbow triangle.

Theorem 3 ([12]). Let G be an edge-colored graph of order n. If δc(G) ≥ n
2

and G contains no

rainbow triangles, then n is even and G is the complete bipartite graph Kn
2
,n
2
, unless G = K4−e

or K4 when n = 4.

We will give Theorem 3 a new proof in next section. We also study the existence of rainbow

triangles in an edge-colored complete graph. In this direction, Fujita, Li and Zhang [6] obtained

the following result.

Theorem 4 ([6]). Let G be an edge-colored complete graph of order n. If δc(G) > log2n, then

G contains a rainbow triangle, and the bound for δc(G) is tight.

We will characterize the extremal graphs in Theorem 4, with the aid of the so-called Gallai

partition. A partition of a graph G is a family of subsets V1, V2, · · · , Vq of V (G) satisfying that⋃
1≤i≤q Vi = V (G) and Vi

⋂
Vj = ∅ for 1 ≤ i < j ≤ q.
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Definition 5 ([9]). (Gallai partition) Let G be an edge-colored complete graph. A partition

V1, V2, · · · , Vq of G is called a Gallai partition if q ≥ 2, |⋃1≤i<j≤q C(Vi, Vj)| ≤ 2 and |C(Vi, Vj)| =
1 for 1 ≤ i < j ≤ q.

Our characterization result for extremal graphs is as follows.

Theorem 6. Let G be an edge-colored complete graph of order n. If δc(G) ≥ log2n and G

contains no rainbow triangles, then the following statements hold.

(1) dcG(v) = log2n for all v ∈ V (G);

(2) G has a Gallai partition (V1, V2, · · · , Vq) where q = 2 or 4;

(3) C(Vi, Vj)
⋂

(C(Vi)
⋃
C(Vj)) = ∅ for all 1 ≤ i < j ≤ q.

For the existence of rainbow triangles going through each vertex of an edge-colored complete

graph, Fujita and Magnant [7] showed the following result.

Theorem 7 ([7]). Let G be an edge-colored complete graph of order n. If δc(G) ≥ n+1
2

, then

every vertex of G is contained in a rainbow triangle.

The lower bound on δc(G) in Theorem 7 is sharp. To see this, we present the following

example.

Example 8. Consider a complete graph G = K2n. Let v be a vertex of G such that dcG(v) = n.

Set |N1(v)| = 1 and |Ni(v)| = 2 for 2 ≤ i ≤ n. Color the edges between N1(v) and Ni(v) by

i for 2 ≤ i ≤ n. For any vertex u ∈ Ni(v), color two edges between u and Nj(v) by i and j,

respectively, for 2 ≤ i 6= j ≤ n. Color the edge in G[Ni(v)] by a new color different from the

colors of edges incident with v. Then we get an edge-colored complete graph G with δc(G) = n;

(see Figure 1).

v

N1(v)

N2(v)

N3(v)

Nn(v)

· · ·

Figure 1: The structure of G = Kc
n in Example 8

We will prove the following generalization of Theorem 7.

Theorem 9. Let G be an edge-colored complete graph of order n. If δc(G) ≥ n+k
2

, then every

vertex of G is contained in at least k rainbow triangles.
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In 2020, Hu, Li and Yang [10] considered the color-degree condition for the existence of two

vertex-disjoint rainbow triangles in an edge-colored graph, and proposed a general conjecture.

Conjecture 10 ([10]). Let G be an edge-colored graph of order n ≥ 3k, where k ≥ 1 is an

integer. If δc(G) ≥ n+k
2

, then G contains k vertex-disjoint rainbow triangles.

They gave examples to show that if the conjecture is true then it is best possible. They

also confirmed the conjecture for the case of k = 2 when n ≥ 20. Actually, Conjecture 10 is a

rainbow version of an old result of Dirac [5] on degree conditions for vertex-disjoint triangles.

We will give a complete proof for Hu et al.’s result by filling in the gap of n from 6 to 20.

Theorem 11. Let G be an edge-colored graph of order n ≥ 6. If δc(G) ≥ n+2
2

, then G contains

two vertex-disjoint rainbow triangles.

Before proceeding, we introduce some additional terminology and notation. The color of an

edge e in an edge-colored graph G and the set of colors assigned to E(G) are denoted by c(e)

and C(G), respectively. The set of colors appearing on the edges between two vertex subsets

V1 and V2 in G is denoted by C(V1, V2). When V1 = {v}, we simply use C(v, V2) instead of

C({v}, V2). The set of colors appearing on the edges of a subgraph H of G is denoted by

C(H), and if H = G[V1] then we simply write C(V1) for C(G[V1]). The set of neighbors of a

vertex v in a graph G is denoted by NG(v). For 1 ≤ i ≤ dcG(v), let Ni(v) denote the set of

vertices connecting v with edges of the same color i, that is, Ni(v) = {u ∈ NG(v) : c(uv) =

i}. Let dmon(v) be the maximum number of edges incident with v with the same color, that

is, dmon(v) = max{|Ni(v)| : 1 ≤ i ≤ dcG(v)}. The monochromatic-degree of G, denoted by

∆mon(G), is defined as max{dmon(v) : v ∈ V (G)}. For other notation and terminology not

defined here, we refer to [2].

2 Our proofs

In this section, we will give proofs of Theorems 3, 6, 9 and 11, respectively. We first rewrite

Theorem 3 in a more compact form (Theorem 12) as follows, whose proof uses a result due to

Andrásfai et al.

Theorem 12. Let G be an edge-colored graph on n ≥ 5 vertices. If δc(G) ≥ n
2
, then G contains

a rainbow triangle, unless G is a properly colored Kn
2
,n
2

where n is even.

Theorem 13 (Andrásfai, Erdős, Sós [1]). Let G be a triangle-free graph on n vertices. If

δ(G) > 2n
5

, then G is bipartite.

Proof of Theorem 12. Our proof is somewhat inspirited by the proof of Theorem 6 in [13].

Suppose G contains no rainbow triangles. Let G be such a graph with δc(G) ≥ n
2

and the
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number e(G) of edges of G is as small as possible. Clearly, G contains no monochromatic

paths of length three. Otherwise, let P := v0v1v2v3 be such a path. Then the new graph

G′ := G− v1v2 satisfies that δc(G′) = δc(G) ≥ n
2

and e(G′) = e(G)−1, contradicting the choice

of G.

Now assume 4mon := 4mon(G) ≥ 2. Let v ∈ V (G) such that dmon(v) = 4mon = k, and let

U := {u1, u2, . . . , uk} ⊆ NG(v) such that all vui, i ∈ [1, k], have the same color. Suppose that

X = {x1, x2, . . . , xt} ⊆ N(v)\U is a maximum subset such that for any i ∈ [1, t], c(xiv) = ci.

Set c(ujv) = c0 for j ∈ [1, k]. Since G contains no rainbow triangles, for any i 6= j with

1 ≤ i, j ≤ k we have c(xixj) ∈ {ci, cj}. Furthermore, since G contains neither rainbow triangles

nor monochromatic paths of length 3, we get the conclusion (∗) that for any i ∈ [1, k], if

uixj ∈ E(G) then c(uixj) = cj for j ∈ [1, t].

Now we construct a digraph D1 with V (D1) = X and A(D1) = {xixj : 1 ≤ i, j ≤ t, c(xixj) =

cj}. For any xj, notice that N+
D1

(xj) corresponds to a rainbow set of neighbors of xj in X, in

which each color is different from c(vxj). Hence, we obtain

n = |V (G)| ≥ |U |+ |{v}|+ |X|+ (dc(xj)− d+D1
(xj)− |{cj}|)

= 4mon + 1 + dc(xj)− 1 + dc(xj)− d+D1
(xj)− 1

= 4mon + n− 1− d+D1
(xj),

which implies that d+D1
(xj) ≥ 4mon − 1 for any j ∈ [1, t]. By the definition of D1, d

−
D1

(xj) ≤
4mon − 1. Hence, d+D1

(xj) = d−D1
(xj) = 4mon − 1 for any j ∈ [1, t].

If E(U,X) 6= ∅, then dmon(xj) ≥ d−D(xj) + 2 = ∆mon + 1 by the above conclusion (∗), a

contradiction. This proves that E(U,X) = ∅. In the following, we divide the proof into two

cases. First, assume |U | ≥ 3. If G[U ] is properly colored, then G[U ] is triangle-free. Hence,

there exist two vertices, say u1, u2 ∈ U , such that u1u2 /∈ E(G). It follows from the fact

N(u1) ∩ {u1, u2, X} = ∅ that n − 2 − (dc(v) − 1) ≥ dc(u1), which implies that dc(u1) ≤ n−1
2

,

a contradiction. If G[U ] is not properly colored, then there exists a vertex u ∈ U such that

dmon
G[U ](u) ≥ 2, say uui, uuj are colored with the same color. Then, dc(u) − 1 ≤ |G − (X ∪
{u, ui, uj})|, which implies that dc(u) ≤ n

2
− 1, a contradiction. Next we consider the case

|U | = 2 and assume U = {u1, u2}. Clearly, u1u2 ∈ E(G); since otherwise, dc(ui) ≤ n
2
− 1, for

i = 1, 2. Let Y = V (G) − (U ∪ X ∪ {v}). To guarantee that dc(ui) ≥ n
2

for i = 1, 2, the set

of edges incident with ui and Y are rainbow, and n
2
− 2 ≤ |Y | ≤ n − δc(G) − 2. This implies

that |Y | = n
2
− 2 and |X| = n

2
. Suppose c(u1yi) = c′i for yi ∈ Y . Since G contains no rainbow

triangles, we have c(yiyj) ∈ {c′i, c′j}. Now we define a digraph D2 as follows: V (D2) = Y and−−→yiyj
exists if and only if c(yiyj) = c′j. Hence, there exists a vertex y ∈ Y such that d+D2

(y) ≤ |Y |−1
2

,

which implies that dcY ∪U(y) ≤ |Y |−1
2

+ 1. Moreover, for all x ∈ X, since d+D1
(x) = ∆mon− 1 = 1,

D1 has a 1-factor and dcX∪{v}(x) = 2. Hence, dcY (x) = |Y | and C(x,X) ∩ C(x, Y ) = ∅ for

all x ∈ X. Let ω be the number of components of D1. Then, dcX(y) ≤ ω ≤ |X|/3. Thus,

dc(y) ≤
n
2
−3
2

+
n
2
−1
3

+ 2 < n
2
, a contradiction.
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If ∆mon = 1, then G is properly colored. Since G contains no rainbow triangles, G is

triangle-free. Since δ(G) = δc(G) ≥ n
2
> 2n

5
, by Theorem 13 we infer that G is bipartite. By

the condition δc(G) ≥ n
2
, G is a properly colored Kn

2
,n
2
. The proof is complete.

The following result will be used in the proof of Theorem 6.

Lemma 14 ([9]). Let G an edge-colored complete graph. If G contains no rainbow triangles,

then G has a Gallai partition.

Proof of Theorem 6. Let G be a graph satisfying the assumptions of Theorem 6. Note that

if log2n is not an integer, then δc(G) ≥ dlog2ne > log2n. By Theorem 4, G contains a rainbow

triangle, a contradiction. Thus log2n is an integer and δc(G) = log2n. Since G contains no

rainbow triangles, G has a Gallai partition, say V = (V1, V2, · · · , Vq). Note that if q = 3 then

we can take V1 so that only one color is used on the edges between V1 and V (G) \ V1. Then

(V1, V2, V3) can be seen as (V1, V (G) \ V1). Thus we may assume that q = 2 or q ≥ 4.

We proceed the proof by induction on δc(G). The induction base is that δc(G) = 2 and n = 4.

If q = 2, then δc(G[Vi]) ≥ 1 = log2
4
2
, i = 1, 2. Thus, |V1| = |V2| = 2; otherwise, δc(G[Vi]) >

log2|Vi|, which means that there is a rainbow triangle in G[Vi], i = 1, 2, a contradiction. Then,

δc(G[Vi]) = 1, i = 1, 2. Since δc(G) = 2, we have C(v, V1) ∩ C(v, V2) = ∅ for all v ∈ V (G).

Thus, dcG(v) = 3 for all v ∈ V (G) and C(V1, V2) ∩ (C(V1) ∪ C(V2)) = ∅. If q = 4, then let

|Vi| = 1 for 1 ≤ i ≤ 4, and the result follows evidently.

Now let δc(G) = t ≥ 3 and assume that Theorem 6 is true for δc(G) ≤ t− 1.

If q = 2, we can infer that there is a Gallai partition (V1, V2) of G such that |V1| = |V2| = n
2

and δc(G[Vi]) = δc(G)− 1 = log2
n
2
; since otherwise, there exists an i ∈ [1, 2] such that |Vi| < n

2
,

say i = 1. Since δc(G[V1]) ≥ δc(G)− 1 ≥ log2
n
2
, by Theorem 4 there exists a rainbow triangle,

a contradiction. Since G[Vi] contains no rainbow triangles and δc(G[Vi]) = t − 1, by the

induction hypothesis, dcG[Vi]
(v) = t − 1 for i = 1, 2. Since δc(G) = t and |C(V1, V2)| = 1,

we have C(v, V1) ∩ C(v, V2) = ∅ for all v ∈ V (G). Hence, dcG(v) = t for all v ∈ V (G) and

C(V1, V2) ∩ (C(V1) ∪ C(V2)) = ∅.
If q ≥ 4, then choose Vk such that |Vk| = min{|Vi| : 1 ≤ i ≤ q}|. Thus, |Vk| ≤ n

4
. Then,

δc(Vk) = δc(G) − 2 = log2
n
4
, and hence, |Vk| = n

4
. Therefore, q = 4 and |Vi| = n

4
, 1 ≤ i ≤ 4.

Thus, δc(G[Vi]) = log2
n
4

= t−2, 1 ≤ i ≤ 4. By the induction hypothesis, dcG[Vi]
(v) = t−2 for all

v ∈ Vi, 1 ≤ i ≤ 4. Since δc(G) = t and |⋃1≤i<j≤4C(Vj, Vi)| ≤ 2, we have |C(v, V (G) \ Vs)| = 2,

where Vs ∈ {V1, V2, . . . , Vq} such that v ∈ Vs. Then, C(v, Vs) ∩ C(v, Vi) = ∅, for i 6= s.

Thus, dcG(v) = t for all v ∈ V (G) and C(Vs, Vi) ∩ (C(Vs) ∪ C(Vi)) = ∅ for i 6= s. Moreover,

C(Vi, Vj) ∩ (C(Vi) ∪ C(Vj)) = ∅ for 1 ≤ i 6= j ≤ 4. This completes the proof.

Proof of Theorem 9. Let G be a graph satisfying the assumptions of Theorem 9 and

v ∈ V (G), and let t = dcG(v). Suppose |N1(v)| = · · · = |Ns(v)| = 1 and 2 ≤ |Ns+1(v)| ≤ · · · ≤
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|Nt(v)|. Clearly,

s ≥ k + 1 and t− s ≤ n− 1− s
2

. (1)

Let S1 =
⋃

1≤i≤sNi(v) and S2 =
⋃

s+1≤i≤tNi(v). Suppose that R(v) is a maximum such subset

of E(G) that for any edge xy ∈ R(v), vxyv is rainbow. Then the number of rainbow triangles

containing v is equal to |R(v)|.
Now we define an oriented graph D on S1 in such a way that for any edge xy, (1) if

c(xy) = c(vx), then the orientation of the edge is from y to x; (2) if xy ∈ R(v), then we give

the orientation arbitrarily.

Clearly, all out-arcs from a vertex u ∈ S1 are assigned colors different from c(uv). For

u ∈ S1, let

Ru(v) = {uw ∈ R(v) | ←−uw ∈ D},

and

R′u(v) = {uw ∈ R(v) | w ∈ S2}.

Then according to the definition of D, we have

dcS1∪{v}(u) ≤ d+D(u) + 1 + |Ru(v)|.

Since for any edge xy ∈ E(G) \ R(v), vxyv is not rainbow, we have c(xy) ∈ {c(vx), c(vy)}.
Therefore, |C(u, S2) \ {c(uv)}| ≤ t− s+ |R′u(v)|. Hence, we have

dc(u) ≤ d+D(u) + 1 + |Ru(v)|+ |R′u(v)|+ t− s. (2)

Now we proceed the proof of Theorem 9 by induction on k. The case k = 1 follows directly

from Theorem 7. Let k ≥ 2 and assume Theorem 9 holds for k − 1. Suppose to the contrary,

that |R(v)| < k. Since δc(G) ≥ n+k
2
≥ n+k−1

2
, we have |R(v)| = k − 1 by hypothesis. Because

|Ru(v)| + |R′u(v)| ≤ k − 1, if d+D(u) ≤ s−k
2

, we have dc(u) ≤ n+k−1
2

by Inequalities (1) and

(2), a contradiction. Therefore, d+D(u) ≥ s−k+1
2

for u ∈ S1. Let w be a vertex with minimum

out-degree in D. Then, s−k+1
2
≤ d+D(w) ≤ s−1

2
. Assume that d+D(w) = s−k+a

2
, 1 ≤ a ≤ k − 1.

Then,

|Rw(v)|+ |R′w(v)| ≥ k − a+ 1

2
; (3)

otherwise, dc(w) < n+k
2

by Inequality (2). For u ∈ S1

⋃
(ψ(Rw(v))\{w}), since −→uw is an out-arc

from u, we have Ru(v)
⋂
Rw(v) = ∅. Therefore, for u ∈ S1 \ {w}, (Rw(v)

⋃
R′w(v))

⋂
(Ru(v)⋃

R′u(v)) = ∅. Then by Inequality (3), |Ru(v)
⋃
R′u(v)| ≤ k− 1− (k− a+1

2
) ≤ a−1

2
. By Inequal-

ity (2), to guarantee that dc(u) ≥ δc(G) ≥ n+k
2

, we have d+D(u) ≥ s+k−a
2

for all u ∈ S1 \ {w}.
Hence,

∑
u∈S1

d+D(u) ≥ (s− 1) s+k−a
2

+ s−k+a
2

. Since s ≥ k + 1 ≥ 3 and 1 ≤ a ≤ k − 1, we have
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∑
u∈S1

d+D(u) > s(s−1)
2

, a contradiction. The proof is now complete.

Before giving the proof of Theorem 11, we need more preparations. For a vertex v ∈ V , we

say that xy ∈ E(G) is a good edge for v if vxyv is a rainbow triangle. Let R(v) denote the set

of all good edges for v, and r(v) = |R(v)|. The following lemma from [10] gives a lower bound

on the number of rainbow triangles going through the vertex with maximum monochromatic

degree in an edge-colored graph.

Lemma 15 ([10]). Let G be an edge-colored graph of order n and v ∈ V (G) with dmon(v) =

∆mon(G). Then r(v) ≥ 1
2
(2δc(G)− n)(δc(G) + ∆mon(G)− 1).

The following notation is from [7]. Let G be an edge-colored graph and v be a vertex of G.

A subset A of NG(v) is said to have the dependence property with respect to a vertex v /∈ A,

denoted by DPv, if c(aa′) ∈ {c(va), c(va′)} for all aa′ ∈ E(G[A]). Using the same method as in

the proof of Fact 1 of [7] one can directly get the following lemma.

Lemma 16. If a subset A of vertices in an edge-colored graph G has the DPv, then there exists

a vertex x0 ∈ A such that the number of colors different from c(vx0) on the edges incident with

x0 in G[A] is at most |A|−1
2

, and moreover, if it attains the maximum, then G[A] is a complete

subgraph, and dmon(x0) ≥ |A|+1
2

.

Lemma 17. Let G be an edge-colored graph of order n. If δc(G) ≥ n+2
2

and there are two

vertices y, z such that G′ = G−{y, z} has no rainbow triangles, then G has two vertex-disjoint

rainbow triangles containing y and z, respectively.

Proof. Since δc(G) ≥ n+2
2

, we have δc(G′) ≥ δc(G) − 2 ≥ |G′|
2

. By Theorem 3, n is even and

G′ is a properly colored Kn−2
2

,n−2
2

when n ≥ 8, say G′ = G′[A,B], or an edge-colored K4 or

K4− e with dcG′(v) = 2 for all v ∈ V (G′) when n = 6. Since δc(G) ≥ n+2
2

, the edges from every

vertex in G′ to z and y are assigned two different fresh colors, and the edges from y and z,

respectively, to V (G′) are assigned at least n
2

different colors. If n = 6, then we can easily find

two vertex-disjoint rainbow triangles containing z and y, respectively. Thus, we assume n ≥ 8.

In fact, since |C(y, V (G′))| ≥ n
2
≥ 4 and |C(z, V (G′))| ≥ n

2
≥ 4, and |A| = |B| = n

2
− 1 ≥ 3,

we can easily find two vertex-disjoint rainbow triangles containing z and y, respectively. The

proof is thus complete.

Now we are ready for the proof of our last result Theorem 11.

Proof of Theorem 11. Suppose to the contrary, that G is a counterexample with the smallest

number of edges. Since δc(G) ≥ n+2
2

, G contains a rainbow triangle. Let T (G) be the set of all

rainbow triangles in G. Now we proceed by proving the following claims.
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Claim 1. For any rainbow triangle uvwu in T (G), each of the vertices u, v and w is contained

in a rainbow triangle which is edge-disjoint from uvwu.

Proof. Since G contains no vertex-disjoint rainbow triangles, each triangle in T (G) meets at

least one of u, v, w. Let Tu (resp., Tv, Tw) denote the subset of T (G) \ {uvwu}, in which every

triangle contains u (resp., v, w). Thus, T (G) = Tu ∪ Tv ∪ Tw ∪ {uvwu}. If Tu = ∅, then there

is no rainbow triangle in G′ = G − {v, w}. From Lemma 17, we can find two vertex-disjoint

rainbow triangles in G, a contradiction. By symmetry, we have that Tv 6= ∅ and Tw 6= ∅.
Suppose to the contrary, w.l.o.g, that there is no rainbow triangle containing u which is

edge-disjoint from uvwu. This implies that Tu ⊆ Tv ∪ Tw. Therefore, there is no rainbow

triangle in G′ = G−{v, w}. From Lemma 17, we can find two vertex-disjoint rainbow triangles

in G, a contradiction. By symmetry, each of u, v, w is contained in a rainbow triangle which is

edge-disjoint from uvwu. The proof is thus complete.

a1

a2

a3
a0

H1 H2

wv

u

a1

a2

a3

H3

wv

u

a1 a2

H4

wv

u

u

v w

a1a2

a3

rainbow triangles:rainbow triangles:

rainbow triangles: rainbow triangles:

uvwu, ua1a0u,

va2a0v, wa3a0w
uvwu, ua1a2u,

va2a3v, wa3a1w

uvwu, ua1a3u,

va2a3v, wa2a3w

uvwu, ua1a2u,
va1a2v, wa1a2w

Figure 2: Four edge-colored graphs

For convenience, we construct four edge-colored graphs H1, H2, H3 and H4 as shown in

Figure 2. Since G contains no vertex-disjoint rainbow triangles, by Claim 1 we know that any

rainbow triangle uvwu in T (G) must be contained in a copy of H1, H2, H3 or H4 in G as

an outer triangle shown in Figure 2. Let Huvwu be the set of all subgraphs of G isomorphic

to Hi (or simply, Hi-subgraphs) for 1 ≤ i ≤ 4, such that uvwu is the outer triangle of these

subgraphs.

Claim 2. Let uvwu be a rainbow triangle. Then for any H ∈ Huvwu, we have the following

statements.

(1) If H is an H1-subgraph of G, then R(u) ∪R(v) ∪R(w) ⊆ G[V (H)].
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(2) If H is an H2 or H3-subgraph, and R(u) ∪ R(v) ∪ R(w) " G[V (H)], then there is an

H1-subgraph of G in Huvwu.

(3) If H is an H4-subgraph and R(u) ∪ R(v) ∪ R(w) " G[V (H)], then there is an H2 or

H3-subgraph of G in Huvwu.

Proof. Suppose that there exists a vertex x ∈ V (G) \ V (H) such that x is contained in a

rainbow triangle. Since G contains no vertex-disjoint rainbow triangles, the rainbow triangle

containing x must also contain a vertex of each rainbow triangle in G[H].

(1) We may assume xua0x ∈ T (G). Then by Claim 1, there exists a rainbow triangle

containing x which is edge-disjoint from xua0x. Thus by symmetry, at least one of xwvx,

xwa2x, xwa1x is in T (G), which would guarantee that G contains two vertex-disjoint rainbow

triangles, a contradiction.

(2) If H is an H2-subgraph of G, assume xua3x ∈ T (G). Clearly, H − ua1 − ua2 − a1a2 +

ua3 + xa3 + ux is an H1-subgraph of G. If H is an H3-subgraph of G, then at least one of

xua3x, xua2x, xva3x, xwa3x is in T (G). If xua3x ∈ T (G), by Claim 1 there exists a rainbow

triangle containing x which is edge-disjoint from xua3x. Thus by symmetry, at least one of

xwvx, xwa2x, xwa1x is in T (G), which would guarantee that G contains two vertex-disjoint

rainbow triangles, a contradiction. If xua2x ∈ T (G), by Claim 1 there exists a rainbow triangle

which contains x but is edge-disjoint from xua2x. Since G contains no vertex-disjoint rainbow

triangles, xwa3x is in T (G). So, H − wa2 + xa3 + xw is an H1-subgraph of G.

(3) By symmetry, we may assume xua2x ∈ T (G). Then H−ua1+ux+xa2 is an H3-subgraph

of G.

The proof is now complete.

Let u be a vertex of G with dmon(u) = ∆mon(G). By Lemma 15, we have r(u) ≥ 4. Then u

must be contained in a rainbow triangle uvwu.

Claim 3. If R(u) ∪R(v) ∪R(w) ⊆ G[V (H)], then 6 ≤ n ≤ 10 and r(u) ≤ 7.

Proof. We distinguish the following three cases.

Case 1. There exists an H ∈ Huvwu such that H is an H1-subgraph of G.

By Lemma 17, we know that G− {u, a0} has at least one rainbow triangle. By symmetry,

we assume that one of va1a3v, va1wv is in T (G). Clearly, each rainbow triangle with vertex

u must intersect with all rainbow triangles in T (G). Thus, r(u) ≤ 6 by enumeration. Since

va1 ∈ E(G) but va1 /∈ R(u), we have ∆mon(G) ≥ 2. By Lemma 15, r(u) ≥ n+4
2

, and thus

7 ≤ n ≤ 8.

Case 2. There exists an H ∈ Huvwu such that H is an H2 or H3-subgraph of G.

If H ∼= H2, then by Lemma 17, G−{u, a3} contains at least one rainbow triangle. If H is an

H3-subgraph shown as Figure 3 (a), then by Lemma 17 we know that G− {u, a3} contains at

10



least one rainbow triangle. If H is an H3-subgraph shown as Figure 3 (b), then by Lemma 17 we

know that G− {u, a3} contains at least one rainbow triangle. Thus, r(u) ≤ 7 by enumeration.

u

v w

a1a3

a2

u

v w
a1

a3 a2

(a) (b)

Figure 3: H2-subgraphs of G

Since G[V (H)] contains a non-rainbow triangle, we have ∆mon(G) ≥ 2. Applying Lemma 15,

we have r(u) ≥ n+4
2

, and thus 6 ≤ n ≤ 10.

Case 3. There exists an H ∈ Huvwu such that H is an H4-subgraph of G.

Since G contains no vertex-disjoint rainbow triangles, R(u) ⊆ {va1, va2, vw, a1a2, a1w, a2w}.
Thus, r(u) ≤ 6. Then by Lemma 15, we have n ≤ 10. The proof is thus complete.

By Claim 2, w.l.o.g., we assume that R(u) ∪ R(v) ∪ R(w) ⊆ G[V (H)]. If there exists a

vertex x ∈ V (G) \ V (H), let A be a subset of N c(x) such that |A| = dc(x). We can get that

x is not contained in any rainbow triangle, and A has the DPx. Hence by Lemma 16, there

exists a vertex a ∈ A such that

dcA∪{x}(a) ≤ dc(x) + 1

2
. (4)

If n = 6 with V (H) = 5 or n = 7 with V (H) = 6, then there is a vertex in A with

color-degree less than δc(G), a contradiction.

When n = 6 and H = G, by Case 2 of Claim 3, r(u) ≥ 5. Note that each non-rainbow

triangle contributes a vertex with degree 5 in G. Then G is a complete graph. For any rainbow

triangle T in G, we know that there exists a vertex in V (G−T ) with color-degree at most 1 in

G− T . Since |T (G)| ≥ r(u) + 2 ≤ 7, there is a vertex in G with color-degree less than 4.

If n = 7 with H = G, then e(G) ≥ 18 since δc(G) ≥ 5, which implies that d(a) ≥ 5 for

a ∈ G. Hence for any rainbow triangle T in G, by Theorems 1 and 4 we know that each vertex

in V (G− T ) has a color-degree at most 2 in G− T . Hence, dcG(u) ≤ 4, a contradiction.

If n = 8, then the equality in Inequality (4) holds; otherwise, dc(a) < dc(x)+1
2

+n−1−dc(x) ≤
n+2
2

, a contradiction. Hence, G[A] is a complete graph and each vertex a ∈ A has dcA∪{x}(a) = 3

by Lemma 16. Let {y, z} ⊆ V (G) \ (A ∪ {x}). Then c(ay) and c(az) are two fresh colors

for vertex a in G[A ∪ {x}]. Since dc(y) and dc(z) are larger than 5, there must exist two

vertex-disjoint rainbow triangles containing y and z, respectively, a contradiction.

If n = 9, then dc(a) ≤ dc(x)+1
2

+ n− 1− dc(x) < n+2
2

, a contradiction.
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If n = 10, then ∆mon(G) ≤ 2; otherwise, r(u) ≥ 8, a contradiction. Then, dcA∪{x}(a) ≤
b |A|+1

2
c ≤ 3. If dcA∪{x}(a) = 3, then each vertex b in A has at least 2 distinct colors different

from c(xb). Hence, the average value of the monochromatic-degrees of vertices in A∪ {x} is 3,

a contradiction.

The proof of Theorem 11 is now complete.

3 Concluding remarks

In this paper we mainly study color-degree conditions forcing rainbow triangles in edge-

colored graphs. Many unsolved problems are left.

Theorem 3 characterizes all edge-colored graphs on n vertices satisfying δc(G) ≥ n
2

without

rainbow triangles. It is natural to characterize those edge-colored graphs containing no rainbow

triangles with the weaker condition that “δc(G) ≥ n−1
2

”.

We conclude our paper with two open problems recently proposed in [4]: (1) Find tight

color-degree conditions forcing a larger rainbow clique. (2) Find tight color-degree conditions

forcing a rainbow cycle of length at most r for r ≥ 4.
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