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Abstract

Let G = {Gi : i ∈ [n]} be a collection of not necessarily distinct n-vertex graphs

with the same vertex set V , where G can be seen as an edge-colored (multi)graph and

each Gi is the set of edges with color i. A graph F on V is called rainbow if any two

edges of F come from different Gis’. We say that G is rainbow pancyclic if there is a

rainbow cycle C` of length ` in G for each integer ` ∈ [3, n]. In 2020, Joos and Kim

proved a rainbow version of Dirac’s theorem: If δ(Gi) ≥ n
2 for each i ∈ [n], then there

is a rainbow Hamiltonian cycle in G. In this paper, under the same condition, we show

that G is rainbow pancyclic except that n is even and G consists of n copies of Kn
2
,n
2
.

This result supports the famous meta-conjecture posed by Bondy.
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1 Introduction

Recently, some classic results in graph theory have been considered for a collection of graphs,

which can be seen as the rainbow versions of these results. We first give an exact definition

of the rainbow structures in a collection of graphs. Let G = {Gi : i ∈ [m]} be a collection of

not necessarily distinct n-vertex graphs with the same vertex set V , where G can be seen as

an edge-colored (multi)graph and each Gi can be seen as a set of edges with color i. A graph

F on V is called rainbow if any two edges of F come from different Gis’, in other words, any
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two edges of F have distinct colors. In 2020, Aharoni, DeVos, de la Maza, Montejano and

Šámal [2] gave the rainbow version of Mantel’s Theorem as follows.

Theorem 1.1. [2] Suppose G = {G1, G2, G3} is a collection of not necessarily distinct n-

vertex graphs with the same vertex set such that |E(Gi)| > 1+τ2

4
n2 for all 1 ≤ i ≤ 3, where

τ = 4−
√
7

9
. Then there exists a rainbow triangle in G.

The authors also constructed an example to show that the bounds on the numbers of

edges are sharp. What’s surprising is that each graph Gi (1 ≤ i ≤ 3) has to have more than
1+τ2

4
n2 edges in order to guarantee the existence of rainbow triangles (while the Mantel’s

Theorem says that an n-vertex graph with more than only n2/4 edges has a triangle). In the

same paper, the authors posed a conjecture on the rainbow version of Dirac’s Theorem, and

the conjecture was solved by Cheng, Wang and Zhao [9] asymptotically, and by Joos and

Kim [11] completely.

Theorem 1.2. [11] Let G = {Gi : i ∈ [n]} be a collection of not necessarily distinct n-vertex

graphs with the same vertex set. If δ(Gi) ≥ n
2
for each i ∈ [n], then there exists a rainbow

Hamiltonian cycle in G.

Unlike the rainbow version of Mantel’s Theorem, the minimum degree condition of each

Gi (i ∈ [n]) in Theorem 1.2 agrees with that in Dirac’s Theorem (Dirac’s Theorem says that

any n-vertex graph with minimum degree at least n/2 contains a Hamiltonian cycle). The

above two theorems motivate us to consider an interesting problem: for a known result that

any n-vertex graph satisfying a property P contains H as a subgraph, is it true that any

collection G = {Gi : i ∈ [e(H)]} of n-vertex graphs on the same vertex set contains a rainbow

H if each Gi satisfies the property P ? It is obvious that the answer is “Yes” for Dirac’s

Theorem but is “No” for Mantel’ Theorem.

In 1971, Bondy [4] proved that every n-vertex graph is pancyclic under the same degree

condition of Dirac’s Theorem expect for Kn
2
,n
2
, and posed the following meta-conjecture in [5]:

Almost any nontrivial sufficient conditions for the Hamiltonicity of graphs can also guarantee

the pancyclicity of graphs expect for maybe a simple family of exceptional graphs. Inspired

by the meta-conjecture, we consider the rainbow pancyclicity of a collection of graphs under

the Dirac-type condition. The main result of this paper indicates that the answer of the above

problem is “Yes” for the Bondy’s Theorem, and it is also supports the meta-conjecture.

Before the proof of our main result, some notions and known results are needed. For any

two integers i ≤ j, we use [i, j] to denote the set {i, i+1, . . . , j} of integers. In particular, the

set [1, n] of integers is denoted by [n]. Given a vertex v of a graph G and a subgraph F of G,

we use NG(v, F ) to denote the set of neighbours of v in F . Set dG(v, F ) = |NG(v, F )|. Let

Pk and Ck denote the path and cycle on k vertices, respectively. For a cycle C = v1v2 · · · v`v1
and two integers 1 ≤ i < j ≤ `, we use viC

+vj and vjC
−vi to denote the paths vivi+1 · · · vj
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and vjvi−1 · · · vi, respectively. For a path P = v1v2 · · · v` and two integers 1 ≤ i < j ≤ `, we

define viP
+vj and vjP

−vi, similarly. We say that G = {Gi : i ∈ [t]} consists of t copies of G

if G1 = G2 = . . . = Gt = G.

For convenience, in what follows we always use G to denote a collection {Gi : i ∈ [n]}
of not necessarily distinct n-vertex graphs with the same vertex set V . We define δ(G) =

min{δ(Gi) : i ∈ [n]}, where δ(G) denotes the minimum degree of a graph G. We say that

G is rainbow pancyclic if G has a rainbow cycle C` of length ` for every integer ` with

3 ≤ ` ≤ n, and G is rainbow vertex-pancyclic if each vertex of V is contained in a rainbow

cycle of length ` for every integer ` with 3 ≤ ` ≤ n. In 2023, Li, Li and Li [12] showed the

rainbow vertex-pancyclicity of G by improving the value of minimum degree in Theorem 1.2.

Theorem 1.3. [12] If δ(G) ≥ n+1
2
, then G is rainbow vertex-pancyclic.

The following lemmas can be found in [12] and [6], respectively, which will be used in our

proof.

Lemma 1.1. [12] If δ(G) ≥ n
2
, then G has a rainbow Cn−1 or G consists of n copies of

Kn
2
,n
2
.

Lemma 1.2. [6] For an integer n and a cyclic group (Z,+) of n elements, let k ∈ [n − 1]

and I ⊆ Zn. If J = (I + k) ∪ (I − k) and |I| = |J |, then I = I + 2k.

For more results on this topic, please see [1, 3, 7, 8, 10, 13].

2 Main result

Now we give our main result.

Theorem 2.1. If δ(G) ≥ n
2
, then either G is rainbow pancyclic or G consists of n copies of

Kn
2
,n
2
.

Proof. From Theorem 1.3, the result follows when n is odd. Hence, we assume that n is even

below. Combining Theorem 1.2 and Lemma 1.1, we only need to prove that G has a rainbow

C` for each 3 ≤ ` ≤ n− 2.

Claim 1. G has either a rainbow Cn−3 or a rainbow Cn−2.

Proof. Suppose to the contrary that G has no rainbow Cn−2 or Cn−3. By Theorem 1.2,

we can choose a rainbow path Pn−3 = v1v2 · · · vn−3. Without loss of generality, suppose

that vivi+1 ∈ E(Gi) for each i ∈ [n − 4] and V \ V (P ) = {x1, x2, x3}. Since there is no
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rainbow Cn−3 or Cn−2, we have that v1vn−3 /∈ E(Gn−1) ∪ E(Gn) and either v1xi /∈ E(Gn−1)

or vn−3xi /∈ E(Gn) for each i ∈ [3]. Hence,

dGn−1(v1, {x1, x2, x3}) + dGn(vn−3, {x1, x2, x3}) ≤ 3,

which implies that dGn−1(v1, V (P )) + dGn(vn−3, V (P )) ≥ n− 3. Now we define the following

two sets:

I1 = {i ∈ [n− 5] : v1vi+1 ∈ E(Gn−1)} and In−3 = {i ∈ [2, n− 4] : vn−3vi ∈ E(Gn)}.

Note that |I1| + |In−3| = dGn−1(v1, V (P )) + dGn(vn−3, V (P )) ≥ n − 3 and I1 ∪ In−3 ⊆ [n −
4]. This implies that I1 ∩ In−3 6= ∅. Choose an integer i ∈ I1 ∩ In−3, and then we get

that v1P
+vivn−3P

−vi+1v1 is a rainbow Cn−3 with vivn−3 ∈ E(Gn) and vi+1v1 ∈ E(Gn−1), a

contradiction. The claim thus follows.

Claim 2. G has a rainbow Cn−2.

Proof. Suppose to the contrary that G has no rainbow Cn−2. From Claim 1, G has a

rainbow Cn−3. Assume that C = v1v2 . . . vn−3v1 is a rainbow cycle with vivi+1 ∈ E(Gi) for

each i ∈ [n− 3] and V \ V (C) = {x1, x2, x3}, where vn−2 = v1. Set

In−1 = {i ∈ [n− 3] : x1vi+1 ∈ E(Gn−1)} and In = {i ∈ [n− 3] : x1vi ∈ E(Gn)}.

The hypothesis that G has no rainbow Cn−2 implies that In−1 ∩ In = ∅. Since In−1, In ⊆
[n − 3], we have |In−1| + |In| ≤ n − 3. Note that |In−1| ≥ dGn−1(x1) − 2 ≥ n

2
− 2 and

|In| ≥ dGn(x1)− 2 ≥ n
2
− 2. Then, n− 4 ≤ |In−1|+ |In| ≤ n− 3. We distinguish the following

cases to proceed.

Case 1. |In−1|+ |In| = n− 3.

Then, either |In−1| = n
2
− 1 and |In| = n

2
− 2 or |In−1| = n

2
− 2 and |In| = n

2
− 1.

By symmetry, we can assume that the former holds. Note that In−1 ∪ In = [n − 3] and

In−1 ∩ In = ∅. Choose a maximum set {i, i + 1, . . . , i + k} = A such that A ⊆ In−1 and

i − 1, i + k + 1 /∈ In−1. It follows from n
2
− 1 > n−3

2
that |A| ≥ 2, and hence i − 1 ∈ In and

i + k + 1 ∈ In. Therefore, x1vi+k+1C
+vi+kx1 is a rainbow Cn−2 with x1vi+k ∈ E(Gn−1) and

x1vi+k+1 ∈ E(Gn), a contradiction.

Case 2. |In−1|+ |In| = n− 4.

Then, |In−1| = |In| = n
2
−2 and x1x2x3x1 is a triangle both in Gn−1 and Gn. By symmetry

of Gn−2 and Gn−1, x1x2x3x1 is also a triangle in Gn−2. Recall that In−1 ∪ In ⊆ [n − 3] and

In−1 ∩ In = ∅. Without loss of generality, set In−1 ∪ In = [n− 4].

We first prove that NGn−1(x1, C) = NGn(x1, C) = {v2, v4, . . . , vn−4}. Let A = {a, a +

1, . . . , a + k} be a maximum subset of In−1 such that a − 1 /∈ In−1 and a + k + 1 /∈ In−1. If

|A| ≥ 2, then it follows from the definition of In−1 that x1va+k ∈ E(Gn−1) and x1va+k+1 ∈
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E(Gn−1). Since neither va+kx1va+k+1C
+va+k nor va+k+1x1va+k+2C

+va+k+1 is a rainbow Cn−2,

we have a + k + 1 /∈ In and a + k + 2 /∈ In, respectively. Recall that a + k + 1 /∈ In−1 and

In−1∪In = [n−4]. Then, a+k+1 = n−3, a+k+2 = 1 ∈ In−1 and a+k = n−4 ∈ In−1. Recall

that n−5 = s+k−1 ∈ In−1. Therefore, In ⊆ [2, n−6]. Since |In| = n
2
−2, it follows that there

exists a maximal set B = {b, b+1, . . . , b+k′} ⊆ In such that b−1, b+k′+1 /∈ In and |B| ≥ 2.

Since 1, n− 5 ∈ In−1 and In−1 ∪ In = [n− 4], we have that b− 1, b+ k′+ 1 ∈ In−1. Therefore,

vbx1vb+1C
+vb is a rainbow Cn−2, where vbx1 ∈ E(Gn−1) and vb+1x1 ∈ E(Gn), a contradiction.

Thus, we have |A| = 1, which means that all the elements of In−1 and all the elements of In

alternate in [n−4]. If 1 ∈ In, then n−4 ∈ In−1, and hence vn−3x1v1C
+vn−3 is a rainbow Cn−3

with x1vn−3 ∈ E(Gn−1) and x1v1 ∈ E(Gn), a contradiction. Hence, In−1 = {1, 3, . . . , n − 5}
and In = {2, 4, . . . , n− 4}. Consequently, NGn−1(x1, C) = NGn(x1, C) = {v2, v4, . . . , vn−4}.

By the symmetry of n− 2, n− 1, n, we have that

NGn−2(x1, C) = NGn−1(x1, C) = NGn(x1, C) = {v2, v4, . . . , vn−4}.

More generally, by the symmetry of x1, x2, x3 and a similar discussion, we have that for each

j ∈ {2, 3}, either

NGn−2(xj, C) = NGn−1(xj, C) = NGn(xj, C) = {v2, v4, . . . , vn−4}

or

NGn−2(xj, C) = NGn−1(xj, C) = NGn(xj, C) = {v1, v3, . . . , vn−3} \ {vt}

for some odd integer t ∈ [n − 3]. Let Uj = {i : vi ∈ NGn−2(xj, C)} for j ∈ [3]. Recall that

U1 = {2, 4, . . . , n − 4}. If one of U2, U3 is the even integer set (say U2 = {2, 4, . . . , n − 4}),
recalling that x1x2x3x1 is a triangle in Gi for i = n − 2, n − 1, n, then x1x2v4C

+v2x1 is a

rainbow Cn−2 with x1x2 ∈ E(Gn), x2v4 ∈ E(Gn−2) and x1v2 ∈ E(Gn−1), a contradiction.

Thus, suppose U2 = {1, 3, . . . , n−3}\{a} and U3 = {1, 3, . . . , n−3}\{b}, where a, b are odd

integers of [n− 3]. If a 6= b or a = b and n ≥ 8, then there are two consecutive odd integers

c, c+2 ∈ [n−3] such that either c ∈ U2 and c+2 ∈ U3 or c ∈ U3 and c+2 ∈ U2. Without loss

of generality, suppose c ∈ U2 and c + 2 ∈ U3. Then x2x3vc+2C
+vcx1 is a rainbow Cn−2 with

x2x3 ∈ E(Gn−2), x3vc+2 ∈ E(Gn−1) and x2vc ∈ E(Gn), a contradiction. If a = b and n ≤ 6,

then we have n = 6. Without loss of generality, suppose U1 = U2 = {1}. Then, x1x3v1v2x1

is a rainbow C4 with x1x3 ∈ E(Gn−2), x3v1 ∈ E(Gn−1), v1v2 ∈ E(G1) and E(v2x1) ∈ E(Gn),

a contradiction.

From Claim 2, we assume that C = v1v2 · · · vn−2v1 is a rainbow cycle with vivi+1 ∈ E(Gi)

for each i ∈ [n − 2] and V \ V (C) = {x1, x2}, where vn−1 = v1. Next we need to find a

rainbow C` for each 3 ≤ ` ≤ n− 3 in G. Suppose to the contrary that G has no rainbow C`

for some integer ` ∈ [3, n− 3]. Set

In−1 = {i ∈ [n− 2] : x1vi ∈ E(Gn−1)} and In = {i ∈ [n− 2] : x1vi+`−2 ∈ E(Gn)}.
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If In−1 ∩ In 6= ∅, choosing an integer i ∈ In−1 ∩ In, then x1viC
+vi+`−2x1 is a rainbow C`

with x1vi ∈ E(Gn−1) and x1vi+`−2 ∈ E(Gn), a contradiction. So, In−1 ∩ In = ∅. Note that

|In−1| ≥ dGn−1(x1)−1 = n
2
−1 and |In| ≥ dGn(x1)−1 = n

2
−1, which means that |In−1|+|In| ≥

n − 2. It follows from In−1 ∩ In = ∅ and In−1 ∪ In ⊆ [n − 2] that |In−1| = |In| = n
2
− 1 and

x1x2 ∈ E(Gn−1)∩E(Gn). Then, dGn−1(x1, C) = dGn(x1, C) = n
2
− 1. By symmetry of x1 and

x2, we have that dGn−1(x2, C) = dGn(x2, C) = n
2
− 1.

Claim 3. For each integer i ∈ [n− 2], we have x1x2 ∈ E(Gi−1) ∪ E(Gi) ∪ E(Gi+1).

Proof. Without loss of generality, we only need to prove x1x2 ∈ E(G1) ∪ E(G2) ∪ E(G3).

We first assert that one of v1v2, v2v3, v3v4 belongs to E(Gn−1) ∪ E(Gn). Assume to the

contrary that E(Gn−1)∪E(Gn) does not contain any edge of v1v2, v2v3, v3v4. For each integer

i ∈ [4, n − 2], we pair v2vi and v3vi+1, and there are n − 5 such pairs. For each pair, if

v2vi ∈ E(Gn−1) and v3vi+1 ∈ E(Gn), then v2viC
−v3vi+1C

+v2 is a rainbow Cn−2 such that

this rainbow cycle contains no edge of G2. By a similar discussion, we can deduce that

x1x2 ∈ E(G2), and the claim thus follows. Then we assume that either v2vi /∈ E(Gn−1) or

v3vi+1 /∈ E(Gn) for each i ∈ [4, n− 2]. Hence, on the one hand, we have

|NGn−1(v2) ∩ V (C)|+ |NGn(v3) ∩ V (C)| ≤ n− 5.

On the other hand,

|NGn−1(v2) ∩ V (C)|+ |NGn(v3) ∩ V (C)| ≥ 2(
n

2
− 2) = n− 4,

a contradiction. Therefore, one of v1v2, v2v3, v3v4 belongs to E(Gn−1) ∪ E(Gn).

Suppose vivi+1 ∈ E(Gn−1)∪E(Gn) for a fixed integer i ∈ [3] (say vivi+1 ∈ E(Gn−1). Then

there is a new rainbow cycle v1v2 . . . vn−2 with vivi+1 ∈ E(Gn−1) and vjvj+1 ∈ E(Gi) for each

i ∈ [n− 2]− {i}, where vn−1 = v1. Note that this rainbow cycle contains no edge of Gi. By

a similar discussion, we have x1x2 ∈ E(Gi), the claim thus follows.

Recall that In−1 = {i ∈ [n− 2] : x1vi ∈ E(Gn−1)}. Now we can regard In−1 as a subset of

the cyclic group (Zn−2,+) and In−1 + k = {i+ k : i ∈ In−1}. Set

J = (In−1 + (`− 2)) ∪ (In−1 − (`− 2));

J ′ = (In−1 + (`− 3)) ∪ (In−1 − (`− 3)).

If there exists an integer a ∈ J such that x1va ∈ E(Gn), then the definition of J implies that

there is an integer b ∈ In−1 such that either a = b + (` − 2) or a = b − (` − 2). Without

loss of generality, set a = b− (`− 2). It follows from the definition of In−1 that x1vaC
+vbx1

is a rainbow C` with x1va ∈ E(Gn) and x1vb ∈ E(Gn−1), a contradiction. Therefore, |J | ≤
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n− 2− dGn(x1, C) = n− 2− |In| = |In−1|. On the other hand, we have |J | ≥ |In−1|. Then,

|J | = |In−1|. By Lemma 1.2, we have In−1 = In−1 + 2(`− 2).

If there exists an integer a ∈ J ′ such that x2va ∈ E(Gn), then the definition of J ′ implies

that there is an integer b ∈ In−1 such that a = b + (` − 3) or a = b − (` − 3). Without loss

of generality, set a = b− (`− 3). Note that vb+3 ∈ V (vbC
+va) since ` ≤ n− 3. By Claim 3,

we have x1x2 ∈ E(Gb) ∪ E(Gb+1) ∪ E(Gb+2). Without loss of generality, set x1x2 ∈ E(Gb).

It follows from the definition of In−1 that x1x2va
−→
C vbx1 is a rainbow C` with x1x2 ∈ E(Gb),

x2va ∈ E(Gn) and x1vb ∈ E(Gn−1), a contradiction. Therefore, |J ′| ≤ n− 2− dGn(x2, C) =

n − 2 − |In| = |In−1|. On the other hand, we have |J ′| ≥ |In−1|. Then, |J ′| = |In−1|. By

Lemma 1.2, we have In−1 = In−1 + 2(`− 3).

Combining In−1 = In−1 + 2(`−2) with In−1 = In−1 + 2(`−3), we can get In−1 = In−1 + 2.

It follows that either In−1 = {1, 3, . . . , n− 3} or In−1 = {2, 4, . . . , n− 2}, which implies that

either NGn−1(x1) = {v1, v3, . . . , vn−3, x2} or NGn−1(x1) = {v2, v4, . . . , vn−2, x2}. By symmetry,

we can deduce that NGi
(xj) = {v1, v3, . . . , vn−3, x3−j} or NGi

(xj) = {v2, v4, . . . , vn−2, x3−j}
for each i ∈ {n − 1, n} and j ∈ [2]. Without loss of generality, set In−1 = {1, 3, . . . , n − 3}.
So, NGn−1(x1) = {v1, v3, . . . , vn−3, x2}. Recall that In−1 ∩ In = ∅ and In−1 ∪ In ⊆ [n − 2].

Then, In = {2, 4, . . . , n− 2}.

Claim 4. ` is odd.

Proof. Suppose to the contrary that ` is even. If NGn(x1) = {v1, v3, . . . , vn−3, x2}, then

x1v1C
+v`−1x1 is a rainbow C` with x1v1 ∈ E(Gn−1) and v`−1x1 ∈ E(Gn), a contradiction.

Then, NGn(x1) = {v2, v4, . . . , vn−2, x2}.
From the proof of Claim 3, we know that one of v1v2, v2v3, v3v4 is in E(Gn−1) ∪ E(Gn).

Without loss of generality, we assume v1v2 ∈ E(Gn). Let C∗ = v1v2 · · · vn−2v1 be a rainbow

Cn−2 with v1v2 ∈ E(Gn) and vivi+1 ∈ E(Gi) for each i ∈ [2, n − 2], where vn−1 = v1.

Repeating the above discussion, we have NG1(x1) = NGn(x1) = {v2, v4, . . . , vn−2, x2}. Then,

x1v2C
+v`x1 is a rainbow C` with x1v2 ∈ E(G1) and v`x1 ∈ E(Gn), a contradiction. The

claim thus follows.

From Claim 4, we always assume that ` is odd. Recall thatNGn−1(x1) = {v1, v3, . . . , vn−4, x2}.
If NGn(x1) = {v2, v4, . . . , vn−3, x2}, then x1v1C

+v`−1x1 is a rainbow C` with x1v1 ∈ E(Gn−1)

and v`−1x1 ∈ E(Gn), a contradiction. Hence, NGn(x1) = NGn−1(x1) = {v1, v3, . . . , vn−3, x2}.
If NGn−1(x2) = {v1, v3, . . . , vn−3, x1}, then x2x1v1C

+v`−2x2 is a rainbow C` with x1v1 ∈
E(Gn), v`−2x2 ∈ E(Gn−1) and x2x1 ∈ E(G`−2) ∪ E(G`−1) ∪ E(G`) (by Claim 3), a contra-

diction. Then, NGn−1(x2) = {v2, v4, . . . , vn−2, x1}. Similarly, we can deduce that NGn(x2) =

NGn−1(x2) = {v2, v4, . . . , vn−2, x1}.
For each odd integer a ∈ [n − 2], let Ca = va−1x2va+1C

+va−1 be a rainbow Cn−2

with va−1x2 ∈ E(Gn−1) and x2va+1 ∈ E(Gn). Note that Ca does not use any edge of
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Ga or Ga−1. Repeating the above discussions, we can get that NGa(x1) = NGa−1(x1) =

{v1, v3, . . . , vn−3, x2}. Then, NGi
(x1) = {v1, v3, . . . , vn−3, x2} for each i ∈ [n]. Similarly, we

can deduce that NGi
(x2) = {v2, v4, . . . , vn−2, x1} for each i ∈ [n]. Note that Ca contains no

va. Similarly, we have NGi
(va) = {v2, v4, . . . , vn−2, x1} for each i ∈ [n].

For each even integer b ∈ [n − 2], let Cb = vb−1x1vb+1C
+vb−1 be a rainbow Cn−2 with

vb−1x1 ∈ E(Gn−1) and x1vb+1 ∈ E(Gn). Repeating the above discussions again, we can get

that NGi
(vb) = {v1, v3, . . . , vn−3, x2} for each i ∈ [n].

In summary, it is not difficult to see that Gi is a bipartite graph with bipartition

({v1, v3, . . . , vn−3, x2}, {v2, v4, . . . , vn−2, x1})

for each i ∈ [n]. This implies that G consists of n copies of Kn
2
,n
2
, and Theorem 2.1 thus

follows.

3 Acknowledgment

The work was supported by the National Natural Science Foundation of China (Nos. 12131013,

12161141006 and 12201375) and the Tianjin Research Innovation Project for Postgraduate

Students (No.2022BKY039).

References

[1] R. Aharoni, E. Berger, M. Chudnovsky, D. Howard, P. Seymour, Large rainbow matchings

in general graphs, Europ. J. Combin. 79 (2019), 222–227.
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rainbow version of Mantel’s theorem, Adv. Comb. 2(2020), 12 pp.

[3] R. Aharoni, D. Howard, A rainbow r-partite version of the Erdös-Ko-Rado theorem,

Combin. Probab. Comput. 26 (2017), 321–337.

[4] J.A. Bondy, Pancyclic graphs I, J. Comb. Theory, Ser. B, 11(1)(1971), 80-84.

[5] J.A. Bondy, Pancyclic graphs, in: Proceedings of the Second Louisiana Conference on

Combinatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge,

LA. (1971), 167-172.

[6] P. Bradshaw, Transversals and Bipancyclicity in Bipartite Graph Families, Electron. J.

Combin. 28(4):#P4.25, 2021

8



[7] P. Bradshaw, K. Halasz, L. Stacho, From one to many rainbow Hamiltonian cycles,

Graphs & Comb. 38(6)(2022), 1–21.

[8] Y. Cheng, J. Han, B. Wang, G. Wang, Rainbow spanning structures in graph and hyper-

graph system, arXiv:2105.10219.

[9] Y. Cheng, G. Wang, Y. Zhao, Rainbow pancyclicity in graph systems, Electron. J. Com-

bin. 28(3): #P3.24, 2021.

[10] A. Ferber, J. Han, D. Mao, Dirac-type problem of rainbow matchings and Hamilton

cycles in random graphs, arXiv: 2211.05477.

[11] F. Joos, J. Kim, On a rainbow version of Dirac’s theorem, Bull. London Math. Soc.

52(3)(2020), 498–504.

[12] L. Li, P. Li, X. Li, Rainbow structures in a collection of graphs with degree conditions,

J. Graph. Theory. (2023), 1–19. https://doi.org/10.1002/jgt.22966
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