Rainbow pancyclicity in a collection of graphs under the Dirac-type condition

Luyi Li^{1}, Ping Li ${ }^{2}$, Xueliang Li^{1}
${ }^{1}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
${ }^{2}$ School of Mathematics and Statistics
Shaanxi Normal University, Xi'an, Shaanxi 710062, China
Emails: liluyi@mail.nankai.edu.cn, lp-math@snnu.edu.cn, lxl@nankai.edu.cn

Abstract

Let $\mathbf{G}=\left\{G_{i}: i \in[n]\right\}$ be a collection of not necessarily distinct n-vertex graphs with the same vertex set V, where \mathbf{G} can be seen as an edge-colored (multi)graph and each G_{i} is the set of edges with color i. A graph F on V is called rainbow if any two edges of F come from different $G_{i} \mathrm{~s}^{\prime}$. We say that \mathbf{G} is rainbow pancyclic if there is a rainbow cycle C_{ℓ} of length ℓ in \mathbf{G} for each integer $\ell \in[3, n]$. In 2020, Joos and Kim proved a rainbow version of Dirac's theorem: If $\delta\left(G_{i}\right) \geq \frac{n}{2}$ for each $i \in[n]$, then there is a rainbow Hamiltonian cycle in \mathbf{G}. In this paper, under the same condition, we show that \mathbf{G} is rainbow pancyclic except that n is even and \mathbf{G} consists of n copies of $K_{\frac{n}{2}, \frac{n}{2}}$. This result supports the famous meta-conjecture posed by Bondy.

Keywords: rainbow; Hamiltonian cycle; rainbow pancyclic; meta-conjecture
AMS subject classification 2020: 05C15, 05C38, 05C07.

1 Introduction

Recently, some classic results in graph theory have been considered for a collection of graphs, which can be seen as the rainbow versions of these results. We first give an exact definition of the rainbow structures in a collection of graphs. Let $\mathbf{G}=\left\{G_{i}: i \in[m]\right\}$ be a collection of not necessarily distinct n-vertex graphs with the same vertex set V, where \mathbf{G} can be seen as an edge-colored (multi)graph and each G_{i} can be seen as a set of edges with color i. A graph F on V is called rainbow if any two edges of F come from different $G_{i} \mathrm{~s}^{\prime}$, in other words, any
two edges of F have distinct colors. In 2020, Aharoni, DeVos, de la Maza, Montejano and Šámal [2] gave the rainbow version of Mantel's Theorem as follows.

Theorem 1.1. [2] Suppose $\mathbf{G}=\left\{G_{1}, G_{2}, G_{3}\right\}$ is a collection of not necessarily distinct n vertex graphs with the same vertex set such that $\left|E\left(G_{i}\right)\right|>\frac{1+\tau^{2}}{4} n^{2}$ for all $1 \leq i \leq 3$, where $\tau=\frac{4-\sqrt{7}}{9}$. Then there exists a rainbow triangle in \mathbf{G}.

The authors also constructed an example to show that the bounds on the numbers of edges are sharp. What's surprising is that each graph $G_{i}(1 \leq i \leq 3)$ has to have more than $\frac{1+\tau^{2}}{4} n^{2}$ edges in order to guarantee the existence of rainbow triangles (while the Mantel's Theorem says that an n-vertex graph with more than only $n^{2} / 4$ edges has a triangle). In the same paper, the authors posed a conjecture on the rainbow version of Dirac's Theorem, and the conjecture was solved by Cheng, Wang and Zhao [9] asymptotically, and by Joos and Kim [11] completely.

Theorem 1.2. [11] Let $\mathbf{G}=\left\{G_{i}: i \in[n]\right\}$ be a collection of not necessarily distinct n-vertex graphs with the same vertex set. If $\delta\left(G_{i}\right) \geq \frac{n}{2}$ for each $i \in[n]$, then there exists a rainbow Hamiltonian cycle in \mathbf{G}.

Unlike the rainbow version of Mantel's Theorem, the minimum degree condition of each $G_{i}(i \in[n])$ in Theorem 1.2 agrees with that in Dirac's Theorem (Dirac's Theorem says that any n-vertex graph with minimum degree at least $n / 2$ contains a Hamiltonian cycle). The above two theorems motivate us to consider an interesting problem: for a known result that any n-vertex graph satisfying a property \mathcal{P} contains H as a subgraph, is it true that any collection $\mathbf{G}=\left\{G_{i}: i \in[e(H)]\right\}$ of n-vertex graphs on the same vertex set contains a rainbow H if each G_{i} satisfies the property \mathcal{P} ? It is obvious that the answer is "Yes" for Dirac's Theorem but is "No" for Mantel' Theorem.

In 1971, Bondy [4] proved that every n-vertex graph is pancyclic under the same degree condition of Dirac's Theorem expect for $K_{\frac{n}{2}, \frac{n}{2}}$, and posed the following meta-conjecture in [5]: Almost any nontrivial sufficient conditions for the Hamiltonicity of graphs can also guarantee the pancyclicity of graphs expect for maybe a simple family of exceptional graphs. Inspired by the meta-conjecture, we consider the rainbow pancyclicity of a collection of graphs under the Dirac-type condition. The main result of this paper indicates that the answer of the above problem is "Yes" for the Bondy's Theorem, and it is also supports the meta-conjecture.

Before the proof of our main result, some notions and known results are needed. For any two integers $i \leq j$, we use $[i, j]$ to denote the set $\{i, i+1, \ldots, j\}$ of integers. In particular, the set $[1, n]$ of integers is denoted by $[n]$. Given a vertex v of a graph G and a subgraph F of G, we use $N_{G}(v, F)$ to denote the set of neighbours of v in F. Set $d_{G}(v, F)=\left|N_{G}(v, F)\right|$. Let P_{k} and C_{k} denote the path and cycle on k vertices, respectively. For a cycle $C=v_{1} v_{2} \cdots v_{\ell} v_{1}$ and two integers $1 \leq i<j \leq \ell$, we use $v_{i} C^{+} v_{j}$ and $v_{j} C^{-} v_{i}$ to denote the paths $v_{i} v_{i+1} \cdots v_{j}$
and $v_{j} v_{i-1} \cdots v_{i}$, respectively. For a path $P=v_{1} v_{2} \cdots v_{\ell}$ and two integers $1 \leq i<j \leq \ell$, we define $v_{i} P^{+} v_{j}$ and $v_{j} P^{-} v_{i}$, similarly. We say that $\mathbf{G}=\left\{G_{i}: i \in[t]\right\}$ consists of t copies of G if $G_{1}=G_{2}=\ldots=G_{t}=G$.

For convenience, in what follows we always use \mathbf{G} to denote a collection $\left\{G_{i}: i \in[n]\right\}$ of not necessarily distinct n-vertex graphs with the same vertex set V. We define $\delta(\mathbf{G})=$ $\min \left\{\delta\left(G_{i}\right): i \in[n]\right\}$, where $\delta(G)$ denotes the minimum degree of a graph G. We say that \mathbf{G} is rainbow pancyclic if \mathbf{G} has a rainbow cycle C_{ℓ} of length ℓ for every integer ℓ with $3 \leq \ell \leq n$, and \mathbf{G} is rainbow vertex-pancyclic if each vertex of V is contained in a rainbow cycle of length ℓ for every integer ℓ with $3 \leq \ell \leq n$. In 2023, Li, Li and Li [12] showed the rainbow vertex-pancyclicity of \mathbf{G} by improving the value of minimum degree in Theorem 1.2.

Theorem 1.3. [12] If $\delta(\mathbf{G}) \geq \frac{n+1}{2}$, then \mathbf{G} is rainbow vertex-pancyclic.
The following lemmas can be found in [12] and [6], respectively, which will be used in our proof.

Lemma 1.1. [12] If $\delta(\mathbf{G}) \geq \frac{n}{2}$, then \mathbf{G} has a rainbow C_{n-1} or \mathbf{G} consists of n copies of $K_{\frac{n}{2}, \frac{n}{2}}$.

Lemma 1.2. [6] For an integer n and a cyclic group $(\mathbb{Z},+)$ of n elements, let $k \in[n-1]$ and $I \subseteq \mathbb{Z}_{n}$. If $J=(I+k) \cup(I-k)$ and $|I|=|J|$, then $I=I+2 k$.

For more results on this topic, please see $[1,3,7,8,10,13]$.

2 Main result

Now we give our main result.
Theorem 2.1. If $\delta(\mathbf{G}) \geq \frac{n}{2}$, then either \mathbf{G} is rainbow pancyclic or \mathbf{G} consists of n copies of $K_{\frac{n}{2}, \frac{n}{2}}$.

Proof. From Theorem 1.3, the result follows when n is odd. Hence, we assume that n is even below. Combining Theorem 1.2 and Lemma 1.1, we only need to prove that \mathbf{G} has a rainbow C_{ℓ} for each $3 \leq \ell \leq n-2$.

Claim 1. G has either a rainbow C_{n-3} or a rainbow C_{n-2}.
Proof. Suppose to the contrary that \mathbf{G} has no rainbow C_{n-2} or C_{n-3}. By Theorem 1.2, we can choose a rainbow path $P_{n-3}=v_{1} v_{2} \cdots v_{n-3}$. Without loss of generality, suppose that $v_{i} v_{i+1} \in E\left(G_{i}\right)$ for each $i \in[n-4]$ and $V \backslash V(P)=\left\{x_{1}, x_{2}, x_{3}\right\}$. Since there is no
rainbow C_{n-3} or C_{n-2}, we have that $v_{1} v_{n-3} \notin E\left(G_{n-1}\right) \cup E\left(G_{n}\right)$ and either $v_{1} x_{i} \notin E\left(G_{n-1}\right)$ or $v_{n-3} x_{i} \notin E\left(G_{n}\right)$ for each $i \in[3]$. Hence,

$$
d_{G_{n-1}}\left(v_{1},\left\{x_{1}, x_{2}, x_{3}\right\}\right)+d_{G_{n}}\left(v_{n-3},\left\{x_{1}, x_{2}, x_{3}\right\}\right) \leq 3,
$$

which implies that $d_{G_{n-1}}\left(v_{1}, V(P)\right)+d_{G_{n}}\left(v_{n-3}, V(P)\right) \geq n-3$. Now we define the following two sets:

$$
I_{1}=\left\{i \in[n-5]: v_{1} v_{i+1} \in E\left(G_{n-1}\right)\right\} \text { and } I_{n-3}=\left\{i \in[2, n-4]: v_{n-3} v_{i} \in E\left(G_{n}\right)\right\} .
$$

Note that $\left|I_{1}\right|+\left|I_{n-3}\right|=d_{G_{n-1}}\left(v_{1}, V(P)\right)+d_{G_{n}}\left(v_{n-3}, V(P)\right) \geq n-3$ and $I_{1} \cup I_{n-3} \subseteq[n-$ 4]. This implies that $I_{1} \cap I_{n-3} \neq \emptyset$. Choose an integer $i \in I_{1} \cap I_{n-3}$, and then we get that $v_{1} P^{+} v_{i} v_{n-3} P^{-} v_{i+1} v_{1}$ is a rainbow C_{n-3} with $v_{i} v_{n-3} \in E\left(G_{n}\right)$ and $v_{i+1} v_{1} \in E\left(G_{n-1}\right)$, a contradiction. The claim thus follows.

Claim 2. G has a rainbow C_{n-2}.
Proof. Suppose to the contrary that \mathbf{G} has no rainbow C_{n-2}. From Claim 1, \mathbf{G} has a rainbow C_{n-3}. Assume that $C=v_{1} v_{2} \ldots v_{n-3} v_{1}$ is a rainbow cycle with $v_{i} v_{i+1} \in E\left(G_{i}\right)$ for each $i \in[n-3]$ and $V \backslash V(C)=\left\{x_{1}, x_{2}, x_{3}\right\}$, where $v_{n-2}=v_{1}$. Set

$$
I_{n-1}=\left\{i \in[n-3]: x_{1} v_{i+1} \in E\left(G_{n-1}\right)\right\} \text { and } I_{n}=\left\{i \in[n-3]: x_{1} v_{i} \in E\left(G_{n}\right)\right\} .
$$

The hypothesis that \mathbf{G} has no rainbow C_{n-2} implies that $I_{n-1} \cap I_{n}=\emptyset$. Since $I_{n-1}, I_{n} \subseteq$ $[n-3]$, we have $\left|I_{n-1}\right|+\left|I_{n}\right| \leq n-3$. Note that $\left|I_{n-1}\right| \geq d_{G_{n-1}}\left(x_{1}\right)-2 \geq \frac{n}{2}-2$ and $\left|I_{n}\right| \geq d_{G_{n}}\left(x_{1}\right)-2 \geq \frac{n}{2}-2$. Then, $n-4 \leq\left|I_{n-1}\right|+\left|I_{n}\right| \leq n-3$. We distinguish the following cases to proceed.

Case 1. $\left|I_{n-1}\right|+\left|I_{n}\right|=n-3$.
Then, either $\left|I_{n-1}\right|=\frac{n}{2}-1$ and $\left|I_{n}\right|=\frac{n}{2}-2$ or $\left|I_{n-1}\right|=\frac{n}{2}-2$ and $\left|I_{n}\right|=\frac{n}{2}-1$. By symmetry, we can assume that the former holds. Note that $I_{n-1} \cup I_{n}=[n-3]$ and $I_{n-1} \cap I_{n}=\emptyset$. Choose a maximum set $\{i, i+1, \ldots, i+k\}=A$ such that $A \subseteq I_{n-1}$ and $i-1, i+k+1 \notin I_{n-1}$. It follows from $\frac{n}{2}-1>\frac{n-3}{2}$ that $|A| \geq 2$, and hence $i-1 \in I_{n}$ and $i+k+1 \in I_{n}$. Therefore, $x_{1} v_{i+k+1} C^{+} v_{i+k} x_{1}$ is a rainbow C_{n-2} with $x_{1} v_{i+k} \in E\left(G_{n-1}\right)$ and $x_{1} v_{i+k+1} \in E\left(G_{n}\right)$, a contradiction.

Case 2. $\left|I_{n-1}\right|+\left|I_{n}\right|=n-4$.
Then, $\left|I_{n-1}\right|=\left|I_{n}\right|=\frac{n}{2}-2$ and $x_{1} x_{2} x_{3} x_{1}$ is a triangle both in G_{n-1} and G_{n}. By symmetry of G_{n-2} and $G_{n-1}, x_{1} x_{2} x_{3} x_{1}$ is also a triangle in G_{n-2}. Recall that $I_{n-1} \cup I_{n} \subseteq[n-3]$ and $I_{n-1} \cap I_{n}=\emptyset$. Without loss of generality, set $I_{n-1} \cup I_{n}=[n-4]$.

We first prove that $N_{G_{n-1}}\left(x_{1}, C\right)=N_{G_{n}}\left(x_{1}, C\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-4}\right\}$. Let $A=\{a, a+$ $1, \ldots, a+k\}$ be a maximum subset of I_{n-1} such that $a-1 \notin I_{n-1}$ and $a+k+1 \notin I_{n-1}$. If $|A| \geq 2$, then it follows from the definition of I_{n-1} that $x_{1} v_{a+k} \in E\left(G_{n-1}\right)$ and $x_{1} v_{a+k+1} \in$
$E\left(G_{n-1}\right)$. Since neither $v_{a+k} x_{1} v_{a+k+1} C^{+} v_{a+k}$ nor $v_{a+k+1} x_{1} v_{a+k+2} C^{+} v_{a+k+1}$ is a rainbow C_{n-2}, we have $a+k+1 \notin I_{n}$ and $a+k+2 \notin I_{n}$, respectively. Recall that $a+k+1 \notin I_{n-1}$ and $I_{n-1} \cup I_{n}=[n-4]$. Then, $a+k+1=n-3, a+k+2=1 \in I_{n-1}$ and $a+k=n-4 \in I_{n-1}$. Recall that $n-5=s+k-1 \in I_{n-1}$. Therefore, $I_{n} \subseteq[2, n-6]$. Since $\left|I_{n}\right|=\frac{n}{2}-2$, it follows that there exists a maximal set $B=\left\{b, b+1, \ldots, b+k^{\prime}\right\} \subseteq I_{n}$ such that $b-1, b+k^{\prime}+1 \notin I_{n}$ and $|B| \geq 2$. Since $1, n-5 \in I_{n-1}$ and $I_{n-1} \cup I_{n}=[n-4]$, we have that $b-1, b+k^{\prime}+1 \in I_{n-1}$. Therefore, $v_{b} x_{1} v_{b+1} C^{+} v_{b}$ is a rainbow C_{n-2}, where $v_{b} x_{1} \in E\left(G_{n-1}\right)$ and $v_{b+1} x_{1} \in E\left(G_{n}\right)$, a contradiction. Thus, we have $|A|=1$, which means that all the elements of I_{n-1} and all the elements of I_{n} alternate in $[n-4]$. If $1 \in I_{n}$, then $n-4 \in I_{n-1}$, and hence $v_{n-3} x_{1} v_{1} C^{+} v_{n-3}$ is a rainbow C_{n-3} with $x_{1} v_{n-3} \in E\left(G_{n-1}\right)$ and $x_{1} v_{1} \in E\left(G_{n}\right)$, a contradiction. Hence, $I_{n-1}=\{1,3, \ldots, n-5\}$ and $I_{n}=\{2,4, \ldots, n-4\}$. Consequently, $N_{G_{n-1}}\left(x_{1}, C\right)=N_{G_{n}}\left(x_{1}, C\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-4}\right\}$.

By the symmetry of $n-2, n-1, n$, we have that

$$
N_{G_{n-2}}\left(x_{1}, C\right)=N_{G_{n-1}}\left(x_{1}, C\right)=N_{G_{n}}\left(x_{1}, C\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-4}\right\} .
$$

More generally, by the symmetry of x_{1}, x_{2}, x_{3} and a similar discussion, we have that for each $j \in\{2,3\}$, either

$$
N_{G_{n-2}}\left(x_{j}, C\right)=N_{G_{n-1}}\left(x_{j}, C\right)=N_{G_{n}}\left(x_{j}, C\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-4}\right\}
$$

or

$$
N_{G_{n-2}}\left(x_{j}, C\right)=N_{G_{n-1}}\left(x_{j}, C\right)=N_{G_{n}}\left(x_{j}, C\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}\right\} \backslash\left\{v_{t}\right\}
$$

for some odd integer $t \in[n-3]$. Let $U_{j}=\left\{i: v_{i} \in N_{G_{n-2}}\left(x_{j}, C\right)\right\}$ for $j \in$ [3]. Recall that $U_{1}=\{2,4, \ldots, n-4\}$. If one of U_{2}, U_{3} is the even integer set (say $U_{2}=\{2,4, \ldots, n-4\}$), recalling that $x_{1} x_{2} x_{3} x_{1}$ is a triangle in G_{i} for $i=n-2, n-1, n$, then $x_{1} x_{2} v_{4} C^{+} v_{2} x_{1}$ is a rainbow C_{n-2} with $x_{1} x_{2} \in E\left(G_{n}\right), x_{2} v_{4} \in E\left(G_{n-2}\right)$ and $x_{1} v_{2} \in E\left(G_{n-1}\right)$, a contradiction. Thus, suppose $U_{2}=\{1,3, \ldots, n-3\} \backslash\{a\}$ and $U_{3}=\{1,3, \ldots, n-3\} \backslash\{b\}$, where a, b are odd integers of $[n-3]$. If $a \neq b$ or $a=b$ and $n \geq 8$, then there are two consecutive odd integers $c, c+2 \in[n-3]$ such that either $c \in U_{2}$ and $c+2 \in U_{3}$ or $c \in U_{3}$ and $c+2 \in U_{2}$. Without loss of generality, suppose $c \in U_{2}$ and $c+2 \in U_{3}$. Then $x_{2} x_{3} v_{c+2} C^{+} v_{c} x_{1}$ is a rainbow C_{n-2} with $x_{2} x_{3} \in E\left(G_{n-2}\right), x_{3} v_{c+2} \in E\left(G_{n-1}\right)$ and $x_{2} v_{c} \in E\left(G_{n}\right)$, a contradiction. If $a=b$ and $n \leq 6$, then we have $n=6$. Without loss of generality, suppose $U_{1}=U_{2}=\{1\}$. Then, $x_{1} x_{3} v_{1} v_{2} x_{1}$ is a rainbow C_{4} with $x_{1} x_{3} \in E\left(G_{n-2}\right), x_{3} v_{1} \in E\left(G_{n-1}\right), v_{1} v_{2} \in E\left(G_{1}\right)$ and $E\left(v_{2} x_{1}\right) \in E\left(G_{n}\right)$, a contradiction.

From Claim 2, we assume that $C=v_{1} v_{2} \cdots v_{n-2} v_{1}$ is a rainbow cycle with $v_{i} v_{i+1} \in E\left(G_{i}\right)$ for each $i \in[n-2]$ and $V \backslash V(C)=\left\{x_{1}, x_{2}\right\}$, where $v_{n-1}=v_{1}$. Next we need to find a rainbow C_{ℓ} for each $3 \leq \ell \leq n-3$ in \mathbf{G}. Suppose to the contrary that \mathbf{G} has no rainbow C_{ℓ} for some integer $\ell \in[3, n-3]$. Set

$$
I_{n-1}=\left\{i \in[n-2]: x_{1} v_{i} \in E\left(G_{n-1}\right)\right\} \text { and } I_{n}=\left\{i \in[n-2]: x_{1} v_{i+\ell-2} \in E\left(G_{n}\right)\right\}
$$

If $I_{n-1} \cap I_{n} \neq \emptyset$, choosing an integer $i \in I_{n-1} \cap I_{n}$, then $x_{1} v_{i} C^{+} v_{i+\ell-2} x_{1}$ is a rainbow C_{ℓ} with $x_{1} v_{i} \in E\left(G_{n-1}\right)$ and $x_{1} v_{i+\ell-2} \in E\left(G_{n}\right)$, a contradiction. So, $I_{n-1} \cap I_{n}=\emptyset$. Note that $\left|I_{n-1}\right| \geq d_{G_{n-1}}\left(x_{1}\right)-1=\frac{n}{2}-1$ and $\left|I_{n}\right| \geq d_{G_{n}}\left(x_{1}\right)-1=\frac{n}{2}-1$, which means that $\left|I_{n-1}\right|+\left|I_{n}\right| \geq$ $n-2$. It follows from $I_{n-1} \cap I_{n}=\emptyset$ and $I_{n-1} \cup I_{n} \subseteq[n-2]$ that $\left|I_{n-1}\right|=\left|I_{n}\right|=\frac{n}{2}-1$ and $x_{1} x_{2} \in E\left(G_{n-1}\right) \cap E\left(G_{n}\right)$. Then, $d_{G_{n-1}}\left(x_{1}, C\right)=d_{G_{n}}\left(x_{1}, C\right)=\frac{n}{2}-1$. By symmetry of x_{1} and x_{2}, we have that $d_{G_{n-1}}\left(x_{2}, C\right)=d_{G_{n}}\left(x_{2}, C\right)=\frac{n}{2}-1$.

Claim 3. For each integer $i \in[n-2]$, we have $x_{1} x_{2} \in E\left(G_{i-1}\right) \cup E\left(G_{i}\right) \cup E\left(G_{i+1}\right)$.
Proof. Without loss of generality, we only need to prove $x_{1} x_{2} \in E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(G_{3}\right)$.
We first assert that one of $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}$ belongs to $E\left(G_{n-1}\right) \cup E\left(G_{n}\right)$. Assume to the contrary that $E\left(G_{n-1}\right) \cup E\left(G_{n}\right)$ does not contain any edge of $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}$. For each integer $i \in[4, n-2]$, we pair $v_{2} v_{i}$ and $v_{3} v_{i+1}$, and there are $n-5$ such pairs. For each pair, if $v_{2} v_{i} \in E\left(G_{n-1}\right)$ and $v_{3} v_{i+1} \in E\left(G_{n}\right)$, then $v_{2} v_{i} C^{-} v_{3} v_{i+1} C^{+} v_{2}$ is a rainbow C_{n-2} such that this rainbow cycle contains no edge of G_{2}. By a similar discussion, we can deduce that $x_{1} x_{2} \in E\left(G_{2}\right)$, and the claim thus follows. Then we assume that either $v_{2} v_{i} \notin E\left(G_{n-1}\right)$ or $v_{3} v_{i+1} \notin E\left(G_{n}\right)$ for each $i \in[4, n-2]$. Hence, on the one hand, we have

$$
\left|N_{G_{n-1}}\left(v_{2}\right) \cap V(C)\right|+\left|N_{G_{n}}\left(v_{3}\right) \cap V(C)\right| \leq n-5 .
$$

On the other hand,

$$
\left|N_{G_{n-1}}\left(v_{2}\right) \cap V(C)\right|+\left|N_{G_{n}}\left(v_{3}\right) \cap V(C)\right| \geq 2\left(\frac{n}{2}-2\right)=n-4
$$

a contradiction. Therefore, one of $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}$ belongs to $E\left(G_{n-1}\right) \cup E\left(G_{n}\right)$.
Suppose $v_{i} v_{i+1} \in E\left(G_{n-1}\right) \cup E\left(G_{n}\right)$ for a fixed integer $i \in[3]$ (say $v_{i} v_{i+1} \in E\left(G_{n-1}\right)$. Then there is a new rainbow cycle $v_{1} v_{2} \ldots v_{n-2}$ with $v_{i} v_{i+1} \in E\left(G_{n-1}\right)$ and $v_{j} v_{j+1} \in E\left(G_{i}\right)$ for each $i \in[n-2]-\{i\}$, where $v_{n-1}=v_{1}$. Note that this rainbow cycle contains no edge of G_{i}. By a similar discussion, we have $x_{1} x_{2} \in E\left(G_{i}\right)$, the claim thus follows.

Recall that $I_{n-1}=\left\{i \in[n-2]: x_{1} v_{i} \in E\left(G_{n-1}\right)\right\}$. Now we can regard I_{n-1} as a subset of the cyclic group $\left(\mathbb{Z}_{n-2},+\right)$ and $I_{n-1}+k=\left\{i+k: i \in I_{n-1}\right\}$. Set

$$
\begin{aligned}
& J=\left(I_{n-1}+(\ell-2)\right) \cup\left(I_{n-1}-(\ell-2)\right) \\
& J^{\prime}=\left(I_{n-1}+(\ell-3)\right) \cup\left(I_{n-1}-(\ell-3)\right) .
\end{aligned}
$$

If there exists an integer $a \in J$ such that $x_{1} v_{a} \in E\left(G_{n}\right)$, then the definition of J implies that there is an integer $b \in I_{n-1}$ such that either $a=b+(\ell-2)$ or $a=b-(\ell-2)$. Without loss of generality, set $a=b-(\ell-2)$. It follows from the definition of I_{n-1} that $x_{1} v_{a} C^{+} v_{b} x_{1}$ is a rainbow C_{ℓ} with $x_{1} v_{a} \in E\left(G_{n}\right)$ and $x_{1} v_{b} \in E\left(G_{n-1}\right)$, a contradiction. Therefore, $|J| \leq$
$n-2-d_{G_{n}}\left(x_{1}, C\right)=n-2-\left|I_{n}\right|=\left|I_{n-1}\right|$. On the other hand, we have $|J| \geq\left|I_{n-1}\right|$. Then, $|J|=\left|I_{n-1}\right|$. By Lemma 1.2, we have $I_{n-1}=I_{n-1}+2(\ell-2)$.

If there exists an integer $a \in J^{\prime}$ such that $x_{2} v_{a} \in E\left(G_{n}\right)$, then the definition of J^{\prime} implies that there is an integer $b \in I_{n-1}$ such that $a=b+(\ell-3)$ or $a=b-(\ell-3)$. Without loss of generality, set $a=b-(\ell-3)$. Note that $v_{b+3} \in V\left(v_{b} C^{+} v_{a}\right)$ since $\ell \leq n-3$. By Claim 3, we have $x_{1} x_{2} \in E\left(G_{b}\right) \cup E\left(G_{b+1}\right) \cup E\left(G_{b+2}\right)$. Without loss of generality, set $x_{1} x_{2} \in E\left(G_{b}\right)$. It follows from the definition of I_{n-1} that $x_{1} x_{2} v_{a} \vec{C} v_{b} x_{1}$ is a rainbow C_{ℓ} with $x_{1} x_{2} \in E\left(G_{b}\right)$, $x_{2} v_{a} \in E\left(G_{n}\right)$ and $x_{1} v_{b} \in E\left(G_{n-1}\right)$, a contradiction. Therefore, $\left|J^{\prime}\right| \leq n-2-d_{G_{n}}\left(x_{2}, C\right)=$ $n-2-\left|I_{n}\right|=\left|I_{n-1}\right|$. On the other hand, we have $\left|J^{\prime}\right| \geq\left|I_{n-1}\right|$. Then, $\left|J^{\prime}\right|=\left|I_{n-1}\right|$. By Lemma 1.2, we have $I_{n-1}=I_{n-1}+2(\ell-3)$.

Combining $I_{n-1}=I_{n-1}+2(\ell-2)$ with $I_{n-1}=I_{n-1}+2(\ell-3)$, we can get $I_{n-1}=I_{n-1}+2$. It follows that either $I_{n-1}=\{1,3, \ldots, n-3\}$ or $I_{n-1}=\{2,4, \ldots, n-2\}$, which implies that either $N_{G_{n-1}}\left(x_{1}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{2}\right\}$ or $N_{G_{n-1}}\left(x_{1}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{2}\right\}$. By symmetry, we can deduce that $N_{G_{i}}\left(x_{j}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{3-j}\right\}$ or $N_{G_{i}}\left(x_{j}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{3-j}\right\}$ for each $i \in\{n-1, n\}$ and $j \in[2]$. Without loss of generality, set $I_{n-1}=\{1,3, \ldots, n-3\}$. So, $N_{G_{n-1}}\left(x_{1}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{2}\right\}$. Recall that $I_{n-1} \cap I_{n}=\emptyset$ and $I_{n-1} \cup I_{n} \subseteq[n-2]$. Then, $I_{n}=\{2,4, \ldots, n-2\}$.

Claim 4. ℓ is odd.
Proof. Suppose to the contrary that ℓ is even. If $N_{G_{n}}\left(x_{1}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{2}\right\}$, then $x_{1} v_{1} C^{+} v_{\ell-1} x_{1}$ is a rainbow C_{ℓ} with $x_{1} v_{1} \in E\left(G_{n-1}\right)$ and $v_{\ell-1} x_{1} \in E\left(G_{n}\right)$, a contradiction. Then, $N_{G_{n}}\left(x_{1}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{2}\right\}$.

From the proof of Claim 3, we know that one of $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}$ is in $E\left(G_{n-1}\right) \cup E\left(G_{n}\right)$. Without loss of generality, we assume $v_{1} v_{2} \in E\left(G_{n}\right)$. Let $C^{*}=v_{1} v_{2} \cdots v_{n-2} v_{1}$ be a rainbow C_{n-2} with $v_{1} v_{2} \in E\left(G_{n}\right)$ and $v_{i} v_{i+1} \in E\left(G_{i}\right)$ for each $i \in[2, n-2]$, where $v_{n-1}=v_{1}$. Repeating the above discussion, we have $N_{G_{1}}\left(x_{1}\right)=N_{G_{n}}\left(x_{1}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{2}\right\}$. Then, $x_{1} v_{2} C^{+} v_{\ell} x_{1}$ is a rainbow C_{ℓ} with $x_{1} v_{2} \in E\left(G_{1}\right)$ and $v_{\ell} x_{1} \in E\left(G_{n}\right)$, a contradiction. The claim thus follows.

From Claim 4, we always assume that ℓ is odd. Recall that $N_{G_{n-1}}\left(x_{1}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-4}, x_{2}\right\}$. If $N_{G_{n}}\left(x_{1}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-3}, x_{2}\right\}$, then $x_{1} v_{1} C^{+} v_{\ell-1} x_{1}$ is a rainbow C_{ℓ} with $x_{1} v_{1} \in E\left(G_{n-1}\right)$ and $v_{\ell-1} x_{1} \in E\left(G_{n}\right)$, a contradiction. Hence, $N_{G_{n}}\left(x_{1}\right)=N_{G_{n-1}}\left(x_{1}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{2}\right\}$.

If $N_{G_{n-1}}\left(x_{2}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{1}\right\}$, then $x_{2} x_{1} v_{1} C^{+} v_{\ell-2} x_{2}$ is a rainbow C_{ℓ} with $x_{1} v_{1} \in$ $E\left(G_{n}\right), v_{\ell-2} x_{2} \in E\left(G_{n-1}\right)$ and $x_{2} x_{1} \in E\left(G_{\ell-2}\right) \cup E\left(G_{\ell-1}\right) \cup E\left(G_{\ell}\right)$ (by Claim 3), a contradiction. Then, $N_{G_{n-1}}\left(x_{2}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{1}\right\}$. Similarly, we can deduce that $N_{G_{n}}\left(x_{2}\right)=$ $N_{G_{n-1}}\left(x_{2}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{1}\right\}$.

For each odd integer $a \in[n-2]$, let $C^{a}=v_{a-1} x_{2} v_{a+1} C^{+} v_{a-1}$ be a rainbow C_{n-2} with $v_{a-1} x_{2} \in E\left(G_{n-1}\right)$ and $x_{2} v_{a+1} \in E\left(G_{n}\right)$. Note that C^{a} does not use any edge of
G_{a} or G_{a-1}. Repeating the above discussions, we can get that $N_{G_{a}}\left(x_{1}\right)=N_{G_{a-1}}\left(x_{1}\right)=$ $\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{2}\right\}$. Then, $N_{G_{i}}\left(x_{1}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{2}\right\}$ for each $i \in[n]$. Similarly, we can deduce that $N_{G_{i}}\left(x_{2}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{1}\right\}$ for each $i \in[n]$. Note that C^{a} contains no v_{a}. Similarly, we have $N_{G_{i}}\left(v_{a}\right)=\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{1}\right\}$ for each $i \in[n]$.

For each even integer $b \in[n-2]$, let $C^{b}=v_{b-1} x_{1} v_{b+1} C^{+} v_{b-1}$ be a rainbow C_{n-2} with $v_{b-1} x_{1} \in E\left(G_{n-1}\right)$ and $x_{1} v_{b+1} \in E\left(G_{n}\right)$. Repeating the above discussions again, we can get that $N_{G_{i}}\left(v_{b}\right)=\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{2}\right\}$ for each $i \in[n]$.

In summary, it is not difficult to see that G_{i} is a bipartite graph with bipartition

$$
\left(\left\{v_{1}, v_{3}, \ldots, v_{n-3}, x_{2}\right\},\left\{v_{2}, v_{4}, \ldots, v_{n-2}, x_{1}\right\}\right)
$$

for each $i \in[n]$. This implies that \mathbf{G} consists of n copies of $K_{\frac{n}{2}, \frac{n}{2}}$, and Theorem 2.1 thus follows.

3 Acknowledgment

The work was supported by the National Natural Science Foundation of China (Nos. 12131013, 12161141006 and 12201375) and the Tianjin Research Innovation Project for Postgraduate Students (No.2022BKY039).

References

[1] R. Aharoni, E. Berger, M. Chudnovsky, D. Howard, P. Seymour, Large rainbow matchings in general graphs, Europ. J. Combin. 79 (2019), 222-227.
[2] R. Aharoni, M. DeVos, S. González Hermosillo de la Maza, A. Montejano, R. Šámal, A rainbow version of Mantel's theorem, Adv. Comb. 2(2020), 12 pp.
[3] R. Aharoni, D. Howard, A rainbow r-partite version of the Erdös-Ko-Rado theorem, Combin. Probab. Comput. 26 (2017), 321-337.
[4] J.A. Bondy, Pancyclic graphs I, J. Comb. Theory, Ser. B, 11(1)(1971), 80-84.
[5] J.A. Bondy, Pancyclic graphs, in: Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge, LA. (1971), 167-172.
[6] P. Bradshaw, Transversals and Bipancyclicity in Bipartite Graph Families, Electron. J. Combin. 28(4):\#P4.25, 2021
[7] P. Bradshaw, K. Halasz, L. Stacho, From one to many rainbow Hamiltonian cycles, Graphs \& Comb. 38(6)(2022), 1-21.
[8] Y. Cheng, J. Han, B. Wang, G. Wang, Rainbow spanning structures in graph and hypergraph system, arXiv:2105.10219.
[9] Y. Cheng, G. Wang, Y. Zhao, Rainbow pancyclicity in graph systems, Electron. J. Combin. 28(3): \#P3.24, 2021.
[10] A. Ferber, J. Han, D. Mao, Dirac-type problem of rainbow matchings and Hamilton cycles in random graphs, arXiv: 2211.05477.
[11] F. Joos, J. Kim, On a rainbow version of Dirac's theorem, Bull. London Math. Soc. 52(3)(2020), 498-504.
[12] L. Li, P. Li, X. Li, Rainbow structures in a collection of graphs with degree conditions, J. Graph. Theory. (2023), 1-19. https://doi.org/10.1002/jgt.22966
[13] R. Montgomery, A. Müyesser, Y. Pehova, Transversal factors and spanning trees, Adv. Comb. 3 (2020), 25 pp.

