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Abstract

Let G = {G, : i € [n]} be a collection of not necessarily distinct n-vertex graphs
with the same vertex set V, where G can be seen as an edge-colored (multi)graph and
each G; is the set of edges with color i. A graph F on V is called rainbow if any two
edges of F' come from different G;s’. We say that G is rainbow pancyclic if there is a
rainbow cycle Cy of length ¢ in G for each integer ¢ € [3,n]. In 2020, Joos and Kim
proved a rainbow version of Dirac’s theorem: If §(G;) > 5 for each i € [n], then there
is a rainbow Hamiltonian cycle in G. In this paper, under the same condition, we show
that G is rainbow pancyclic except that n is even and G consists of n copies of K zn.
This result supports the famous meta-conjecture posed by Bondy.
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1 Introduction

Recently, some classic results in graph theory have been considered for a collection of graphs,
which can be seen as the rainbow versions of these results. We first give an exact definition
of the rainbow structures in a collection of graphs. Let G = {G, : i € [m]} be a collection of
not necessarily distinct n-vertex graphs with the same vertex set V', where G can be seen as
an edge-colored (multi)graph and each G; can be seen as a set of edges with color i. A graph

F on V is called rainbow if any two edges of F' come from different G;s’, in other words, any



two edges of F' have distinct colors. In 2020, Aharoni, DeVos, de la Maza, Montejano and

Sémal [2] gave the rainbow version of Mantel’s Theorem as follows.

Theorem 1.1. [2] Suppose G = {G1,G2,G3} is a collection of not necessarily distinct n-
vertex graphs with the same vertex set such that |E(G;)| > #nQ for all 1 < i < 3, where

4A=T
9

T = . Then there exists a rainbow triangle in G.

The authors also constructed an example to show that the bounds on the numbers of
edges are sharp. What’s surprising is that each graph G; (1 <14 < 3) has to have more than
%nQ edges in order to guarantee the existence of rainbow triangles (while the Mantel’s
Theorem says that an n-vertex graph with more than only n?/4 edges has a triangle). In the
same paper, the authors posed a conjecture on the rainbow version of Dirac’s Theorem, and
the conjecture was solved by Cheng, Wang and Zhao [9] asymptotically, and by Joos and

Kim [11] completely.

Theorem 1.2. [11] Let G = {G; : i € [n]} be a collection of not necessarily distinct n-vertex
graphs with the same vertex set. If 0(G;) > %5 for each i € [n], then there exists a rainbow

Hamiltonian cycle in G.

Unlike the rainbow version of Mantel’s Theorem, the minimum degree condition of each
G; (i € [n]) in Theorem 1.2 agrees with that in Dirac’s Theorem (Dirac’s Theorem says that
any n-vertex graph with minimum degree at least n/2 contains a Hamiltonian cycle). The
above two theorems motivate us to consider an interesting problem: for a known result that
any n-vertex graph satisfying a property P contains H as a subgraph, is it true that any
collection G = {G; : i € [e(H)]} of n-vertex graphs on the same vertex set contains a rainbow
H if each G satisfies the property P 7 It is obvious that the answer is “Yes” for Dirac’s
Theorem but is “No” for Mantel” Theorem.

In 1971, Bondy [4] proved that every n-vertex graph is pancyclic under the same degree
condition of Dirac’s Theorem expect for Kz », and posed the following meta-conjecture in [5]:
Almost any nontrivial sufficient conditions for the Hamiltonicity of graphs can also guarantee
the pancyclicity of graphs expect for maybe a simple family of exceptional graphs. Inspired
by the meta-conjecture, we consider the rainbow pancyclicity of a collection of graphs under
the Dirac-type condition. The main result of this paper indicates that the answer of the above
problem is “Yes” for the Bondy’s Theorem, and it is also supports the meta-conjecture.

Before the proof of our main result, some notions and known results are needed. For any
two integers i < j, we use [i, j] to denote the set {i,i+1,...,j} of integers. In particular, the
set [1,n] of integers is denoted by [n]. Given a vertex v of a graph G and a subgraph F' of G,
we use Ng(v, F') to denote the set of neighbours of v in F. Set dg(v, F') = |Ng(v, F)|. Let
Py, and C}, denote the path and cycle on k vertices, respectively. For a cycle C' = vyvs - - - vpv;

and two integers 1 < i < j < ¢, we use v;C"v; and v;Cv; to denote the paths v;v; 11 - - v;
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and v;v;_1 - - - v;, respectively. For a path P = v1v;--- v, and two integers 1 <1 < j < /¢, we
define v; PTv; and v; P~ v;, similarly. We say that G = {G, : ¢ € [t]} consists of ¢ copies of G
itGi=Gy=...=G,=0G.

For convenience, in what follows we always use G to denote a collection {G; : i € [n]}
of not necessarily distinct n-vertex graphs with the same vertex set V. We define §(G) =
min{d(G;) : i € [n]}, where §(G) denotes the minimum degree of a graph G. We say that
G is rainbow pancyclic if G has a rainbow cycle Cy of length ¢ for every integer ¢ with
3 </l <n,and G is rainbow vertex-pancyclic if each vertex of V is contained in a rainbow
cycle of length ¢ for every integer ¢ with 3 < ¢ < n. In 2023, Li, Li and Li [12] showed the

rainbow vertex-pancyclicity of G by improving the value of minimum degree in Theorem 1.2.
Theorem 1.3. [12] If 6(G) > 2L, then G is rainbow vertez-pancyclic.

The following lemmas can be found in [12] and [6], respectively, which will be used in our

proof.

Lemma 1.1. [12] If 6(G) > 3, then G has a rainbow C,_y or G consists of n copies of
Kﬂ n,

Lemma 1.2. [6] For an integer n and a cyclic group (Z,+) of n elements, let k € [n — 1]
and I CZy. If J=(I+k)U (I —k) and |I| =|J|, then I =1 + 2k.

For more results on this topic, please see [1, 3, 7, 8, 10, 13].

2 Main result
Now we give our main result.

Theorem 2.1. If §(G) > 4, then either G is rainbow pancyclic or G consists of n copies of
Kﬁ n,

272

Proof. From Theorem 1.3, the result follows when n is odd. Hence, we assume that n is even
below. Combining Theorem 1.2 and Lemma 1.1, we only need to prove that G has a rainbow
Cyforeach3</¢<n-—2.

Claim 1. G has either a rainbow C,,_3 or a rainbow C,,_s.

Proof. Suppose to the contrary that G has no rainbow C,_5 or C,_3. By Theorem 1.2,
we can choose a rainbow path P, 3 = vjvs---v,_3. Without loss of generality, suppose
that v;v;41 € E(G;) for each i € [n — 4] and V \ V(P) = {x1, 29, x3}. Since there is no
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rainbow C,,_3 or C,,_o, we have that viv,_3 ¢ E(G,_1) U E(G,) and either viz; ¢ E(G,_1)
or v,_3x; ¢ F(G,) for each i € [3]. Hence,

dGn,l(Ul, {«Tla T2, JL‘:a}) + dGn<Un—37 {xlv T2, J5'3}) <3,

which implies that dg, ,(vi, V(P)) + dg, (vn—3, V(P)) > n — 3. Now we define the following

two sets:
L ={ien—=>5]:vv € E(Gpo1)}and I, 3 ={i € [2,n — 4] : v,_3v; € E(G,)}.

Note that |I1] + |I,—3| = dg,_,(v1,V(P)) + dg, (0n-3,V(P)) >n—3and 1 UI, 3 C [n—
4]. This implies that I; N I,_3 # (. Choose an integer i € I; N I,,_3, and then we get
that vy PTv;u, 3P~ v qvp is a rainbow C,,_3 with v;v,_3 € E(G,) and v;1 v € E(G,_1), a

contradiction. The claim thus follows. O
Claim 2. G has a rainbow C,,_5.

Proof. Suppose to the contrary that G has no rainbow C),_5. From Claim 1, G has a
rainbow C,,_3. Assume that C' = v1v,...v,_3v; is a rainbow cycle with v;v;41 € E(G;) for
cach i € [n — 3] and V' \ V(C) = {1, xa, x3}, where v,,_o = vy. Set

Ii={i€n—-3 21041 € E(Gy_1)}and I, = {i € [n — 3] : 2v; € E(G,)}.

The hypothesis that G has no rainbow C,_, implies that I,,_ NI, = (). Since I,,_1,1, C
[n — 3], we have |I,,_1| + |[I,| < n — 3. Note that [I,_i| > dg,_,(z1) —2 > § — 2 and
\In| > dg, (z1) =2 > 5 —2. Then, n —4 < [I,,_1|+|I,| <n—3. We distinguish the following
cases to proceed.

Case 1. |I,,4|+ |I,| =n —3.

Then, either |I,_1| = § —1and |I,| = § -2 or |[,.4| = § —2 and [[,| = § — L
By symmetry, we can assume that the former holds. Note that I, ; U I, = [n — 3] and
I,.1 NI, = (. Choose a maximum set {é,7 + 1,...,i + k} = A such that A C I, ; and
i—1i+k+1¢ 1, Itfollows from § —1> ”7_3 that |A| > 2, and hence i — 1 € I, and
i+ k+1¢€ I, Therefore, x10;1,11CHv; 21 is a rainbow C),_s with zyv,44 € E(G,_1) and
1011 € E(G,), a contradiction.

Case 2. |[,1|+ |I,| =n —4.

Then, |I,,_1| = |I.| = § —2 and x125237; is a triangle both in G,,_; and G,,. By symmetry
of G,_o and G,,_1, x1wow32y is also a triangle in G,,_5. Recall that I, 1 U I, C [n — 3] and
I,y NI, = (). Without loss of generality, set I,_1 U I, = [n — 4].

We first prove that Ng,  (x1,C) = Ng,(21,C) = {vo,v4,...,05-4}. Let A = {a,a +
1,...,a+ k} be a maximum subset of I,, ; such that a —1¢ [, janda+k+1¢ I, 4. If
|A| > 2, then it follows from the definition of I, ; that xjv,4 € E(G,_1) and x10,41 511 €
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E(G,—1). Since neither v, 21044 k+1C T Vg g NOT Vgp g 121004 k120 Va1 41 1s a rainbow C),_o,
we have a + k+ 1 ¢ I, and a + k + 2 ¢ I,,, respectively. Recall that a + k+ 1 ¢ I,,_; and
I, 1UI, = [n—4]. Then, a+k+1=n-3,a+k+2=1€ I, ;and a+k =n—4 € I,, ;. Recall
that n—5 = s+k—1 € I,,_;. Therefore, I, C [2,n—6]. Since |I,,| = §—2, it follows that there
exists a maximal set B = {b,b+1,...,b+k'} C I, such that b—1,b+k'+1 ¢ I,, and | B| > 2.
Since 1,n—5 € I,y and I,_; U, = [n—4], we have that b—1,b+ k' +1 € I,,_;. Therefore,
UpT10p41C Ty is a rainbow C,,_o, where v,x1 € E(G,,_1) and v,y 121 € E(G,,), a contradiction.
Thus, we have |A| = 1, which means that all the elements of I,,_; and all the elements of I,
alternate in [n—4]. If 1 € I,,, then n—4 € I,,_4, and hence v,,_3x1v;C"v,_3 is a rainbow C,,_3
with zyv,_3 € E(G,_1) and z1v; € E(G,,), a contradiction. Hence, I,,_1 = {1,3,...,n — 5}
and I, = {2,4,...,n — 4}. Consequently, Ng, ,(x1,C) = Ng, (x1,C) = {vo, vy, ..., 04}
By the symmetry of n — 2,n — 1,n, we have that

NGn,2<x17 C) = Nanl(a:l, C) = NGn(fL’l, C) = {UQ, V4y ... ,Un,4}.

More generally, by the symmetry of x1, x5, z3 and a similar discussion, we have that for each
J € {2,3}, either

NG7L72(SC]', C) = Nanl (LEj, C) = NGn(fL’j, C) = {’Z}Q,U4, RN ,Un,4}

or
Ng, ,(x;,C) = Ng, ,(x;,C) = Ng,(x;,C) = {v1,vs,..., 03} \ {vt}
for some odd integer t € [n — 3]. Let U; = {i : v; € Ng, ,(x;,C)} for j € [3]. Recall that
Uy ={2,4,...,n—4}. If one of Us,Us is the even integer set (say Uy = {2,4,...,n —4}),
recalling that x;xox37, is a triangle in G; for i = n — 2,n — 1,n, then z1250,C ey is a
rainbow C,,_o with z129 € E(G,), xovy € E(G,_2) and x1vs € E(G,_1), a contradiction.
Thus, suppose Uy = {1,3,...,n—=3}\{a} and Us = {1,3,...,n—3}\ {b}, where a, b are odd
integers of [n — 3]. If a # b or a = b and n > 8, then there are two consecutive odd integers
¢,c+2 € [n—3] such that either ¢ € Uy and ¢+2 € U; or ¢ € Uz and ¢+ 2 € U,. Without loss
of generality, suppose ¢ € Uy and ¢ + 2 € Us. Then x9230.42C " v.2; is a rainbow C,,_, with
zowy € E(Gp_2), T3Vero € E(G,—1) and x9v. € E(G),), a contradiction. If @ = b and n < 6,
then we have n = 6. Without loss of generality, suppose U; = Us = {1}. Then, x;x3010911
is a rainbow Cy with z1x3 € E(G,_2), x3v; € E(G,_1), v1v92 € E(G1) and E(vyzy) € E(Gy),

a contradiction. 0

From Claim 2, we assume that C' = vyvy - - - v,_ov; is a rainbow cycle with v;v;11 € E(G;)
for each @ € [n — 2] and V' \ V(C) = {x1,22}, where v,_1 = v;. Next we need to find a
rainbow C} for each 3 < ¢ < n — 3 in G. Suppose to the contrary that G has no rainbow C,
for some integer ¢ € [3,n — 3]. Set

Liy={i€en—-2:zv,€ E(Gh_1)} and I, = {i € [n — 2] : 210,402 € E(G,)}.
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If 1,1 N1, # 0, choosing an integer ¢ € I,,_y N I,, then x;v,CTv; 1, oz is a rainbow C
with x1v; € E(Gp,_1) and 210442 € E(G,,), a contradiction. So, I,, 1 NI, = (). Note that
[lh1| > dg,_ (z1)—1=%—1and |[,| > dg,(x1)—1 = 5 —1, which means that |I,,_;|+|I,| >
n — 2. It follows from I,y N1, = 0 and I,y U I, C [n — 2] that |I,_4| = |I,| = § — 1 and
1173 € E(Gpo1) NE(Gy). Then, dg,_, (v1,C) = dg, (z1,C) = § — 1. By symmetry of z; and
Ty, we have that dg,_, (72,C) = dg, (z2,C) = § — 1.

Claim 3. For each integer i € [n — 2|, we have x1x9 € E(G;—1) U E(G;) U E(G41).

Proof. Without loss of generality, we only need to prove z122 € E(G1) U E(Gs) U E(G3).
We first assert that one of v3vq, vovs, v3v4 belongs to E(G,_1) U E(G,). Assume to the
contrary that E(G,_1)UE(G,) does not contain any edge of v1vq, vov3, v3v4. For each integer
i € [4,n — 2|, we pair vyv; and vzv;1, and there are n — 5 such pairs. For each pair, if
vov; € E(Gp_1) and vzvq € E(G,), then v0;C~ v3v;411C vy is a rainbow C,_5 such that
this rainbow cycle contains no edge of GGo. By a similar discussion, we can deduce that
129 € FE(Gs), and the claim thus follows. Then we assume that either vov; ¢ E(G,_1) or

v3v;41 ¢ E(Gy) for each i € [4,n — 2]. Hence, on the one hand, we have
|Ng, ,(v2) NV(C)| + |Ng, (v3) N V(C)| <n—5.
On the other hand,

NG,y (02) NV (C)] + [Ne, (05) N V(O)] 2 2(5 ~2) =n — 4,

a contradiction. Therefore, one of vyvg, vov3, v3v4 belongs to E(G,—1) U E(G,).

Suppose v;v;41 € E(Gpn-1)UE(G,,) for a fixed integer i € [3] (say v;v;11 € E(G,—1). Then
there is a new rainbow cycle vivs ... v,_ with v;v,41 € E(G,_1) and v;v,41 € E(G;) for each
i € [n— 2] — {i}, where v,_; = v;. Note that this rainbow cycle contains no edge of G;. By

a similar discussion, we have z125 € E(G;), the claim thus follows. O

Recall that I,, 1 = {i € [n—2] : z1v; € E(G,_1)}. Now we can regard I,,_; as a subset of
the cyclic group (Z,_o,+) and I, 1 +k={i+k:i € I, 1}. Set

J= (L1 4+ (0 =2)U (L — (£ —2));

J' = (In_y + (€= 3)) U (g — (€ — 3)).

If there exists an integer a € J such that zv, € E(G,,), then the definition of J implies that
there is an integer b € I, such that either a = b+ (¢ —2) or a = b — (£ — 2). Without
loss of generality, set a = b — (¢ — 2). Tt follows from the definition of I, ; that x1v,C"vyxq
is a rainbow Cy with zyv, € E(G,) and z1v, € E(G,_1), a contradiction. Therefore, |J| <
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n—2—dg, (x1,C)=n—2—|I,| =|I,—1]. On the other hand, we have |J| > |I,_1|. Then,
|J| = |In—1]. By Lemma 1.2, we have I,,_; = I,_1 +2({ — 2).

If there exists an integer a € J’ such that zov, € E(G,,), then the definition of J’ implies
that there is an integer b € I,,_y such that a = b+ (¢ — 3) or a = b — (¢ — 3). Without loss
of generality, set a = b — (¢ — 3). Note that v,,3 € V(v,Ctv,) since £ < n — 3. By Claim 3,
we have z129 € E(Gp) U E(Gpy1) U E(Gpre). Without loss of generality, set x1xo € E(Gp).
It follows from the definition of I,,_; that xlxgvaaval is a rainbow C, with 2125 € E(G)),
zov, € E(G,) and x1v, € E(G,,_1), a contradiction. Therefore, |J'| < n —2 —dg, (x2,C) =
n—2—|I,| = |I,-1]. On the other hand, we have |J'| > |I,—1|. Then, |J'| = |I,-1|. By
Lemma 1.2, we have I,,_y = I,_1 + 2({ — 3).

Combining I,, 1 = I,,_1 +2(¢{—2) with [, y = I,_1+2({—3), we can get [, 1 = I,, 1 +2.
It follows that either I, 1 = {1,3,...,n—3} or I,, 1 = {2,4,...,n — 2}, which implies that
either Ng,_,(z1) = {v1,v3,..., 0 3,22} or Ng,_,(z1) = {va,04,...,04_2,22}. By symmetry,
we can deduce that Ng,(z;) = {v1,vs,...,Un—3,23-;} or Ng,(x;) = {v2,04,...,Vp_2, 23}
for each i € {n — 1,n} and j € [2]. Without loss of generality, set I,, 1 = {1,3,...,n — 3}.
So, Ng,_,(x1) = {v1,v3,...,0,_3,22}. Recall that I, ;N 1, =0 and I, UL, C [n— 2]
Then, I, = {2,4,...,n —2}.

Claim 4. ¢ is odd.

Proof. Suppose to the contrary that ¢ is even. If Ng, (1) = {v1,vs,...,0,_3,22}, then
z1v1C vz is a rainbow Cy with zyv; € E(G,_1) and v_121 € E(G,), a contradiction.
Then, Ng, (z1) = {v2, V4, ..., Up_2,Ta}.

From the proof of Claim 3, we know that one of vyvy, vous, v3v4 is in E(G,_1) U E(G,,).
Without loss of generality, we assume vivy € E(G,,). Let C* = vjvy - - - v,_ov; be a rainbow
Ch_o with vyvy € E(G,) and vv;41 € E(G;) for each i € [2,n — 2], where v,_; = v;.
Repeating the above discussion, we have Ng, (1) = Ng, (1) = {ve, v4, ..., 0p—2,22}. Then,

r10oC gy is a rainbow Cyp with zyvy € E(Gy) and vexy € E(G,,), a contradiction. The

claim thus follows. O

From Claim 4, we always assume that £ is odd. Recall that Ng, _, (1) = {vi,v3, ..., Vp_a, 22}
If Ng, (1) = {ve,v4,...,04_3, 22}, then zv,CTvp_q124 is a rainbow Cy with x1v, € E(G,,_1)
and v,_121 € F(G),), a contradiction. Hence, Ng, (z1) = Ng,_, (1) = {v1,v3,...,05_3, T2}

If Ng, ,(z2) = {vi,v3,...,0, 3,21}, then zox10:CTvy_oxy is a rainbow Cy with zyv; €
E(G,), vi—axy € E(G,_1) and xoxy € E(Gy_g) U E(Gy—1) U E(G,) (by Claim 3), a contra-
diction. Then, Ng, ,(x2) = {va,v4,...,0p_2,x1}. Similarly, we can deduce that Ng, (z2) =
N, (x2) = {vo,v4, ..., V2, 21}

For each odd integer a € [n — 2], let C* = v, 1790,11C v, 1 be a rainbow C,_»

with v, 129 € E(G,_1) and x9v,41 € E(G,). Note that C* does not use any edge of
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G, or G,_1. Repeating the above discussions, we can get that Ng, (v1) = Ng, ,(v1) =

{v1,v3,...,0_3,22}. Then, Ng,(x1) = {v1,vs,...,0,_3, 22} for each ¢ € [n]. Similarly, we
can deduce that Ng,(z2) = {ve,v4,...,0,_2, 21} for each i € [n]. Note that C* contains no
V. Similarly, we have Ng,(v,) = {v2,v4, ..., 0p_9, 21} for each i € [n].

For each even integer b € [n — 2], let C® = v,_1210541C vp_1 be a rainbow C,,_, with
w171 € E(G,—1) and z1v,41 € E(G,). Repeating the above discussions again, we can get
that Ng,(vp) = {v1,v3,...,0,_3, 22} for each i € [n].

In summary, it is not difficult to see that G; is a bipartite graph with bipartition

({Ula U3y ...,Un-3, x2}7 {U27 U4y .vvy Un—2, $1}>

for each 7 € [n]. This implies that G consists of n copies of K» », and Theorem 2.1 thus
follows. O
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