BIPRIMITIVE EDGE-TRANSITIVE PENTAVALENT GRAPHS

QI CAI AND ZAI PING LU

Abstract

A bipartite graph is said to be biprimitive if its bipartition preserving automorphism group acts primitively on each part of the graph. In this paper, a complete classification is given for biprimitive edge-transitive pentavalent graphs. In particular, it is proved that, up to isomorphism, there exists a unique biprimitive semisymmetric pentavalent graph, which is the incidence graph of a generalized hexagon of order $(4,4)$.

KEYWORDS. Symmetric graph, semisymmetric graph, orbital digraph, standard double cover.

1. Introduction

In this paper, all graphs are finite without loops or parallel edges, all digraphs are finite without parallel arcs, and all groups are finite.

Let $\Gamma=(V, E)$ be a graph with vertex set V and edge set E, and denote by $\operatorname{Aut}(\Gamma)$ the (full) automorphism group of Γ. An arc in Γ is an ordered pair of adjacent vertices. The graph Γ is called vertex-transitive, edge-transitive or symmetric if $\operatorname{Aut}(\Gamma)$ acts transitively on V, E or the arc set of Γ, respectively. If Γ is regular and edge-transitive but not vertex-transitive then Γ is called a semisymmetric graph.

Let $\Gamma=(V, E)$ be a connected bipartite graph with bipartition (U, W), that is, V is partitioned into two independent sets U and W. We call each of U and W a part of the graph Γ. Denote by Aut ${ }^{+}(\Gamma)$ the bipartition preserving automorphism group of Γ, that is, Aut ${ }^{+}(\Gamma)=\left\{g \in \operatorname{Aut}(\Gamma) \mid U^{g}=U\right\}$. Then the graph Γ is said to be biprimitive if Aut ${ }^{+}(\Gamma)$ acts primitively on both U and W.

The first classification result on biprimitive edge-transitive is given by Ivanov and Iofinova [15]. Appealing to the amalgams of edge-transitive cubic graphs obtained by Goldschmidt [14] and the classification of primitive groups with a subdegree 3 obtained by Wong [36], Ivanov and Iofinova classified biprimitive edge-transitive cubic graphs. Recently, Li and Zhang [23] classified biprimitive edge-transitive tetravalent graphs, based on their classification of finite primitive groups with solvable point-stabilizers [22]. Motivated by these works, we aim to classify biprimitive edge-transitive graphs of some special valencies. In this paper, we first classify biprimitive edge-transitive pentavalent graphs. The following is the main result of this paper.

Theorem 1.1. Let Γ be a connected bipartite pentavalent graph, and $G \leqslant \operatorname{Aut}^{+}(\Gamma)$. Assume that G acts primitively on both parts of Γ and acts transitively on the edge set of Γ. Then one of the followings holds, where p is a prime.

[^0](1) Γ is isomorphic to the complete bipartite graph $\mathrm{K}_{5,5}$.
(2) Γ is isomorphic to the graph $G(2 p, 5)$ constructed as in [5], Aut $(\Gamma) \cong \operatorname{PGL}_{2}(11)$ for $p=11$, and $\operatorname{Aut}(\Gamma) \cong \mathbb{Z}_{p}: \mathbb{Z}_{10}$ for $p>11$, where $p \equiv 1(\bmod 5)$.
(3) $\operatorname{Aut}(\Gamma) \cong\left(\mathbb{Z}_{5}^{3}: \mathrm{S}_{5}\right): \mathbb{Z}_{2}$, and Γ is unique up to isomorphism.
(4) Γ is isomorphic to one of the graphs described as in Example 7.2; more precisely,
(i) $\Gamma \cong \operatorname{BCay}\left(\mathbb{Z}_{p}^{2}, S_{-1, b}\right)$ and $\operatorname{Aut}(\Gamma) \cong\left(\mathbb{Z}_{p}^{2}: \mathrm{D}_{10}\right): \mathbb{Z}_{2}$, where $p \equiv \pm 1(\bmod 5)$ and $b=\frac{-1-\sqrt{5}}{2} \in \mathbb{Z}_{p}$; or
(ii) $\Gamma \cong \mathrm{BCay}\left(\mathbb{Z}_{p}^{4}, S_{-1}\right)$ and $\operatorname{Aut}(\Gamma) \cong\left(\mathbb{Z}_{p}^{4}: \mathrm{S}_{5}\right): \mathbb{Z}_{2}$.
(5) G is an almost simple group, $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut}(G)$, and Γ is isomorphic to one of the graphs described as in Example 5.9.
(6) G is an almost simple group, and Γ is isomorphic to one of the graphs described as in Theorem 6.5.
In particular, Γ is semisymmetric if and only if Γ is isomorphic to the incidence graph of a generalized hexagon of order $(4,4)$, which is included in part (5).

2. Orbital digraphs and standard double covers

Let U be a nonempty finite set, and let Δ be a subset of $U \times U$. The pair (U, Δ) is called a digraph with vertex set U, while the elements in Δ are called arcs. (Note, loops, arcs of the form of (u, u), are allowed in the digraph (U, Δ).) Set $\Delta^{*}=\{(v, u) \mid(u, v) \in U\}$. Then $\left(U, \Delta^{*}\right)$ is also a digraph, called the paired digraph of (U, Δ).

For a digraph $\Sigma=(U, \Delta)$, the standard double cover of Σ, denoted by $\Sigma^{(2)}$, is defined as the bipartite graph with vertex set $U \times \mathbb{Z}_{2}$ and edge set $\{\{(u, 0),(w, 1)\} \mid(u, w) \in \Delta\}$. It is easy to check that each $g \in \operatorname{Aut}(\Sigma)$ induces an automorphism of $\Sigma^{(2)}$ as follows:

$$
\tilde{g}: U \times \mathbb{Z}_{2} \rightarrow U \times \mathbb{Z}_{2},(u, i) \mapsto\left(u^{g}, i\right)
$$

Thus $\operatorname{Aut}\left(\Sigma^{(2)}\right)$ contains a subgroup isomorphic to $\operatorname{Aut}(\Sigma)$. For convenience, we sometimes identify $\operatorname{Aut}(\Sigma)$ with a subgroup of $\operatorname{Aut}\left(\Sigma^{(2)}\right)$. Define a map as follows:

$$
\iota: U \times \mathbb{Z}_{2} \rightarrow U \times \mathbb{Z}_{2},(u, i) \mapsto(u, i+1)
$$

Then it is easily shown that ι is an isomorphism from $\Sigma^{(2)}$ to the standard double cover of $\left(U, \Delta^{*}\right)$. We have the following lemma.

Lemma 2.1. Let $\Sigma=(U, \Delta)$ and $\Sigma_{1}=\left(U, \Delta^{*}\right)$ be paired digraphs. Then ι is an isomorphism from $\Sigma^{(2)}$ to $\Sigma_{1}^{(2)}$. In particular, if $\Delta=\Delta^{*}$ then $\iota \in \operatorname{Aut}\left(\Sigma^{(2)}\right)$ and $\operatorname{Aut}\left(\Sigma^{(2)}\right) \geqslant \tilde{G} \times\langle\iota\rangle$, where $\tilde{G}=\{\tilde{g} \mid g \in \operatorname{Aut}(\Sigma)\}$.

For a group G and subgroups $K \leqslant H \leqslant G$, denote by $\mathbf{N}_{G}(K)$ the normalizer of K in G, and by $\operatorname{Aut}(G, H, K)$ the subgroup of $\operatorname{Aut}(G)$ fixing both H and K.
Lemma 2.2. Let G be a transitive permutation group on $U, u, w \in U, H=G_{u}$ and $K=G_{u w}$. For $x \in \mathbf{N}_{G}(K)$, define $\Delta_{x}=\left\{\left(u, u^{x}\right)^{g} \mid g \in G\right\}$ and $\Sigma_{x}=\left(U, \Delta_{x}\right)$. Assume that $\delta \in \operatorname{Aut}(G, H, K)$. Then the following map

$$
\tilde{\delta}: U \times \mathbb{Z}_{2} \rightarrow U \times \mathbb{Z}_{2},\left(u^{g}, i\right) \mapsto\left(u^{g^{\delta}}, i\right)
$$

is an isomorphism from $\Sigma_{x}^{(2)}$ to $\Sigma_{x^{\delta}}^{(2)}$, where $x \in \mathbf{N}_{G}(K)$. In particular,
(1) if $(K x)^{\delta}=K x$ then $\tilde{\delta} \in \operatorname{Aut}\left(\Sigma_{x}^{(2)}\right)$;
(2) if $(K x)^{\delta}=K x^{-1}$ then $\tilde{\delta} \iota \in \operatorname{Aut}\left(\sum_{x}^{(2)}\right)$.

Proof. Noting that $U=\left\{u^{g} \mid g \in G\right\}$, it is easily shown that $\tilde{\delta}$ is a bijection. For $u^{g_{0}}, u^{g_{1}} \in U$, we have

$$
\begin{aligned}
\left(u^{g_{0}}, u^{g_{1}}\right) \in \Delta_{x} & \Leftrightarrow\left(u, u^{g_{1} g_{0}^{-1}}\right) \in \Delta_{x} \Leftrightarrow g_{1} g_{0}^{-1} \in H x H \\
& \Leftrightarrow\left(g_{1} g_{0}^{-1}\right)^{\delta} \in H x^{\delta} H \Leftrightarrow\left(u^{g_{0}^{\delta}}, u^{g_{1}^{\delta}}\right) \in \Delta_{x^{\delta}} .
\end{aligned}
$$

It follows that $\tilde{\delta}$ is an isomorphism from $\Sigma_{x}^{(2)}$ to $\Sigma_{x^{\delta}}^{(2)}$. If $(K x)^{\delta}=K x$ then we have part (1). Noting that Σ_{x} and $\Sigma_{x^{-1}}$ are paired digraphs, by Lemma 2.1, we get part (2) of the lemma. This completes the proof.

Assume that G is a transitive permutation group on U, and Δ is a G-invariant subset of $U \times U$. Then we have a G-vertex-transitive digraph (U, Δ). If Δ is a G-orbit then Δ is called an orbital of G, and the digraph (U, Δ) is called an orbital digraph. For a G-orbital Δ and $u \in U$, we have a G_{u}-orbit $\Delta(u)=\{w \mid(u, w) \in \Delta\}$ on U, which is called a suborbit of G at u. If $\Delta(u)$ is a suborbit then $\Delta^{*}(u)$ is called its paired suborbit, and $\Delta(u)$ is called self-paired if $\Delta(u)=\Delta^{*}(u)$, i.e. $\Delta^{*}=\Delta$.

Clearly, the set Δ_{x} defined as in Lemma 2.2 is an orbital of G, and so $\Delta_{x}(u)=\left\{u^{x h} \mid\right.$ $h \in H\}$ is a suborbit of G at u. For primitive permutation groups, by [11, Lemma 2.1], we have the following lemma.

Lemma 2.3. Let G be a primitive permutation group on $U, u \in U$ and $H=G_{u}$. Suppose that H has a maximal subgroup K with index $k>1$ such that $H \nless \mathbf{N}_{G}(K)$, and all maximal subgroups of H with index k are conjugate in H. For each $x \in \mathbf{N}_{G}(K)$, set $\Delta_{x}(u)=\left\{u^{x h} \mid h \in H\right\}$. Then, for $x, y \in \mathbf{N}_{G}(K) \backslash K$, the followings hold.
(1) $\Delta_{x}(u)$ is a suborbit of length k, and it is self-paired if and only if $x^{2} \in K$.
(2) $\Delta_{x}(u)=\Delta_{y}(u)$ if and only if $y x^{-1} \in K$, i.e. $K x=K y$.
(3) $\Delta_{x}(u)$ and $\Delta_{y}(u)$ are paired suborbits if and only if $y x \in K$, i.e., $K x^{-1}=K y$.

Moreover, if $\Delta(u)$ is a suborbit of length k then $\Delta(u)=\Delta_{x}(u)$ for some $x \in \mathbf{N}_{G}(K) \backslash K$.
A regular graph $\Gamma=(V, E)$ is called G-semisymmetric for some subgroup $G \leqslant \operatorname{Aut}(\Gamma)$ if G acts transitively on the edge set E but not on the vertex set V. It is well known that G has two orbits on V, which are independent sets and form a bipartition of Γ.

Let $\Sigma=(U, \Delta)$ be a G-orbital digraph, and identify G with the subgroup of $\operatorname{Aut}\left(\Sigma^{(2)}\right)$ induced by G. Then $\Sigma^{(2)}$ is G-semisymmetric and, for $(u, 0),(w, 1) \in U \times \mathbb{Z}_{2}$, the stabilizers $G_{(u, 0)}$ and $G_{(w, 1)}$ are conjugate in G. Conversely, the following lemma holds.

Lemma 2.4. Let $\Gamma=(V, E)$ be a G-semisymmetric graph of valency $k \geqslant 2$. Let $\{u, w\} \in E$, and let $U=\left\{u^{g} \mid g \in G\right\}$ and $W=\left\{w^{g} \mid g \in G\right\}$. Assume that G acts faithfully on both U and W, and the stabilizers G_{u} and G_{w} are conjugate in G. Then Γ is isomorphic to the standard double cover of some G-orbital digraph on U.

Proof. Clearly, $V=U \cup W$ and $U \cap W=\emptyset$. Noting that $G_{u^{g}}=G_{u}^{g}$, since G_{u} and G_{w} are conjugate, we choose $u_{0} \in U$ such that $G_{u_{0}}=G_{w}$. Noting that $\left|G_{u}: G_{u u_{0}}\right|=\mid G_{u}$: $G_{u w}\left|=|\Gamma(u)|=k \geqslant 2\right.$, we have $u_{0} \neq u$. Then u_{0} lies in a G_{u}-orbit $\Delta(u)$ on U, and

$$
|\Delta(u)|=\left|G_{u}: G_{u u_{0}}\right|=k
$$

Let Σ be the orbital digraph of G associated with $\Delta(u)$. Define

$$
\phi: V \mapsto U \times \mathbb{Z}_{2}, u^{g} \mapsto\left(u^{g}, 0\right), w^{g} \mapsto\left(u_{0}^{g}, 1\right)
$$

It is easily shown that ϕ is an isomorphism from Γ to $\Sigma^{(2)}$. Then the lemma follows.
Let R be a finite group, and S be a subset of R. Define a digraph Cay (R, S) with vertex set R such that (x, y) is an arc if and only if $y x^{-1} \in S$. The digraph $\mathrm{Cay}(R, S)$ is called a Cayley digraph of R, and the standard double cover of Cay (R, S), denoted by BCay (R, S), is called a bi-Cayley graph of R. Clearly, $\operatorname{BCay}(R, S)$ is of valency $|S|$. By [10, Lemmas 2.3 and 2.5] and [28, Lemma 1.3], the following lemma holds.

Lemma 2.5. Let $\Gamma=(V, E)$ be a connected bipartite graph of valency k with bipartition (U, W). Assume that Aut (Γ) contains a subgroup R which is regular on both U and W. Then $\Gamma \cong \mathrm{BCay}(R, S)$ for some $S \subseteq R$ with $|S|=k$ and $R=\langle S\rangle$. Moreover, S may be chosen to contain the identity 1 of R. If R is abelian then $\operatorname{BCay}(R, S)$ has an automorphism $\tilde{\epsilon} \iota$, where $\epsilon \in \operatorname{Aut}(R)$ such that $x^{\epsilon}=x^{-1}$ for all $x \in R$; in particular, Aut (Γ) contains a regular subgroup on V.

Lemma 2.6. Let $\Gamma=(V, E)$ be a connected G-semisymmetric graph of valency $k>1$ with bipartition (U, W). Assume that G acts faithfully on both U and W, and G has a normal subgroup R which is regular on both U and W. Let $\{u, w\} \in E$. If G_{u} and G_{w} are conjugate in G then $\Gamma \cong \mathrm{BCay}(R, S)$, where S is a G_{u}-orbit on R by conjugation.

Proof. Assume that G_{u} and G_{w} are conjugate in G. By Lemma 2.4, we may assume that $\Gamma=\Sigma^{(2)}$, where Σ is a G-orbital digraph on U. As a subgroup of $\operatorname{Aut}(\Sigma)$, the group G contains a regular normal subgroup R. Then Σ is isomorphic to a Cayley digraph of R, refer to [37, Proposition 1.2]. Up to isomorphism of digraphs, we let $\Sigma=\operatorname{Cay}(R, S)$. Let u be the vertex corresponding to the identity 1 of R. Then, by [37, Proposition 1.3], S is a G_{u}-orbit on R by conjugation. Thus the lemma follows.

3. On the stabilizers

In this section, we assume that $\Gamma=(V, E)$ is a connected G-semisymmetric pentavalent graph, where $G \leqslant \operatorname{Aut} \Gamma$. Let U and W be the G-orbits on V.

Since Γ has valency 5 , we have $5|U|=|E|=5|W|$, and so $|U|=|W|$. Thus, for $u \in U$ and $w \in W$, we have $\left|G: G_{u}\right|=\left|G: G_{w}\right|$, and so $\left|G_{u}\right|=\left|G_{w}\right|$. For $v \in V$, denote by $G_{v}^{\Gamma(v)}$ the permutation group induced by G_{v} on $\Gamma(v)$. Let $G_{v}^{[1]}$ be the kernel of G_{v} acting on $\Gamma(v)$. Then

$$
G_{v}^{\Gamma(v)} \cong G_{v} / G_{v}^{[1]} \cong \mathbb{Z}_{5}: \mathbb{Z}_{l}, \quad \mathrm{~A}_{5} \text { or } \mathrm{S}_{5},
$$

where $l \in\{1,2,4\}$. Moreover, the following lemma is true.
Lemma 3.1. Let $v \in V$. Then $\left|G_{v}\right|=2^{a} 3^{b} 5$ for some nonnegative integers a and b. If $b \neq 0$ then G_{u} is insolvable for some $u \in V$.

Proof. By [15, Lemma 3.3], we have the first part of the lemma.
Suppose that there exists $\{u, w\} \in E$ such that both G_{u} and G_{w} are solvable. Then both $G_{u w}^{\Gamma(u)}$ and $G_{u w}^{\Gamma(w)}$ are isomorphic to subgroups of \mathbb{Z}_{4}. It follows that every Sylow 3-subgroup of $G_{u w}$ is contained in both $G_{u}^{[1]}$ and $G_{w}^{[1]}$. Let N be the subgroup of $G_{u w}$
generated by all Sylow 3-subgroups of $G_{u w}$. Then N is characteristic in both $G_{u}^{[1]}$ and $G_{w}^{[1]}$, and so N is normal in both G_{u} and G_{w}. Since Γ is connected, we have $G=\left\langle G_{u}, G_{w}\right\rangle$, refer to [33, Exercise 3.8]. Then $N \unlhd G$. Clearly, N fixes the edge $\{u, w\}$. It follows from the edge-transitivity of G that N fixes E pointwise, which implies that $N=1$. Then we have $\left|G_{u w}\right|=2^{a}$, and $\left|G_{u}\right|=\left|G_{w}\right|=2^{a} 5$. Thus, if $b \neq 0$ then either G_{u} or G_{w} is insolvable. This completes the proof.

For a subgroup $X \leqslant G$ and a prime r, denote by $\mathbf{O}_{r}(X)$ the maximal normal r subgroup of X. Note, $\mathbf{O}_{r}(X)=1$ if $|X|$ is indivisible by r.
Lemma 3.2. Let $\{u, w\}$ be an edge of Γ. Then $\mathbf{O}_{3}\left(G_{u}\right)=\mathbf{O}_{3}\left(G_{w}\right)=\mathbf{O}_{3}\left(G_{u w}\right)=1$.
Proof. Since $\mathbf{O}_{3}\left(G_{u}\right) \unlhd G_{u}$, all $\mathbf{O}_{3}\left(G_{u}\right)$-orbits on $\Gamma(u)$ have the same length, which is a common divisor of $\left|\mathbf{O}_{3}\left(G_{u}\right)\right|$ and $|\Gamma(u)|$. It follows that $\mathbf{O}_{3}\left(G_{u}\right)$ fixes $\Gamma(u)$ pointwise, i.e. $\mathbf{O}_{3}\left(G_{u}\right) \leqslant G_{u}^{[1]}$, and so $\mathbf{O}_{3}\left(G_{u}\right) \leqslant \mathbf{O}_{3}\left(G_{u}^{[1]}\right)$. Noting that $\mathbf{O}_{3}\left(G_{u}^{[1]}\right)$ is a characteristic subgroup of $G_{u}^{[1]}$, since $G_{u}^{[1]} \unlhd G_{u}$, we have $\mathbf{O}_{3}\left(G_{u}^{[1]}\right) \unlhd G_{u}$, and so $\mathbf{O}_{3}\left(G_{u}^{[1]}\right) \leqslant \mathbf{O}_{3}\left(G_{u}\right)$. Thus $\mathbf{O}_{3}\left(G_{u}\right)=\mathbf{O}_{3}\left(G_{u}^{[1]}\right)$. Noting that $G_{u}^{[1]} \unlhd G_{u w}$, we have $\mathbf{O}_{3}\left(G_{u}\right)=\mathbf{O}_{3}\left(G_{u}^{[1]}\right) \leqslant \mathbf{O}_{3}\left(G_{u w}\right)$.

Recall that $G_{u}^{\Gamma(u)} \cong \mathbb{Z}_{5}: \mathbb{Z}_{l}, \mathrm{~A}_{5}$ or S_{5}, where $l \in\{1,2,4\}$. It is easily shown that every $G_{u w}$-orbit on $\Gamma(u)$ has length a divisor of 4 . Considering the action of $\mathbf{O}_{3}\left(G_{u w}\right)$ on $\Gamma(u)$, we conclude that $\mathbf{O}_{3}\left(G_{u w}\right) \leq G_{u}^{[1]}$. It follows that $\mathbf{O}_{3}\left(G_{u w}\right) \leqslant \mathbf{O}_{3}\left(G_{u}^{[1]}\right)$. Then $\mathbf{O}_{3}\left(G_{u}\right)=\mathbf{O}_{3}\left(G_{u}^{[1]}\right)=\mathbf{O}_{3}\left(G_{u w}\right)$. Similarly, we have $\mathbf{O}_{3}\left(G_{w}\right)=\mathbf{O}_{3}\left(G_{w}^{[1]}\right)=\mathbf{O}_{3}\left(G_{u w}\right)$. Thus $\mathbf{O}_{3}\left(G_{u}\right)=\mathbf{O}_{3}\left(G_{w}\right)=\mathbf{O}_{3}\left(G_{u w}\right) \unlhd\left\langle G_{u}, G_{w}\right\rangle$. Since Γ is connected, $G=\left\langle G_{u}, G_{w}\right\rangle$. Then $\mathrm{O}_{3}\left(G_{u w}\right)$ is normal in G and fixes the edge $\{u, w\}$. It follows from the edgetransitivity of G on Γ that $\mathbf{O}_{3}\left(G_{u w}\right)$ fixes E pointwise, yielding $\mathbf{O}_{3}\left(G_{u w}\right)=1$. Then the lemma follows.
Lemma 3.3. Let $\{u, w\} \in E$. If $G_{u}^{[1]}=1 \neq G_{w}^{[1]}$ then one of the followings holds.
(1) $G_{u} \cong \mathbb{Z}_{5}: \mathbb{Z}_{l} \leqslant \mathrm{AGL}_{1}(5)$ for $l \in\{2,4\}$, and $G_{w} \cong \mathbb{Z}_{10}, \mathbb{Z}_{2}$. D_{10} or \mathbb{Z}_{20}.
(2) $G_{u} \cong \mathrm{~A}_{5}$, and $G_{w} \cong \mathrm{~A}_{4} \times \mathbb{Z}_{5}$.
(3) $G_{u} \cong \mathrm{~S}_{5}$, and $G_{w} \cong \mathrm{~A}_{4} . \mathrm{D}_{10}$ or $\mathrm{S}_{4} \times \mathbb{Z}_{5}$.

Proof. Assume that $G_{u}^{[1]}=1 \neq G_{w}^{[1]}$. Then $G_{w}^{[1]} \unlhd G_{u w} \cong G_{u w}^{\Gamma(u)}$. Recall that $\left|G_{u}\right|=\left|G_{w}\right|$. If G_{u} is solvable, then $G_{u} \cong \mathbb{Z}_{5}: \mathbb{Z}_{l}$ for some divisor l of 4 , and so $G_{w}^{[1]}$ is isomorphic a subgroup of \mathbb{Z}_{l}, which yields (1) of this lemma. Thus, in the following, we assume that $G_{u} \cong \mathrm{~A}_{5}$ or S_{5}. In particular, we have $G_{w}^{[1]} \unlhd G_{u w} \cong \mathrm{~A}_{4}$ or S_{4}, respectively.

Suppose that G_{w} is insolvable. Then, since $\left|G_{u}\right|=\left|G_{w}\right|$, we conclude that $G_{u} \cong \mathrm{~S}_{5}$, $G_{w}^{\Gamma(w)} \cong \mathrm{A}_{5}$ and $G_{w}^{[1]} \cong \mathbb{Z}_{2}$. Note that $G_{w}^{[1]} \unlhd G_{u w} \cong \mathrm{~S}_{4}$. It follows that S_{4} has a normal subgroup of order 2 , which is impossible.

Now suppose that G_{w} is solvable. Then $G_{w}^{\Gamma(w)} \cong \mathbb{Z}_{5}: \mathbb{Z}_{l}$, where l is a divisor of 4. Again since $\left|G_{u}\right|=\left|G_{w}\right|$, we know that $G_{w}^{[1]}$ has order divisible by 3 as $1 \neq G_{w}^{[1]} \unlhd G_{u w} \cong \mathrm{~A}_{4}$ or S_{4}. It follows that $G_{w}^{[1]} \cong \mathrm{A}_{4}$ or S_{4}. If $G_{u} \cong \mathrm{~A}_{5}$ then $G_{w}^{[1]} \cong \mathrm{A}_{4}$ and $l=1$, which gives part (2) of the lemma. If $G_{u} \cong \mathrm{~S}_{5}$ then $G_{w}^{[1]} \cong \mathrm{A}_{4}$ or S_{4}, and $l=2$ or 1 respectively, and thus part (3) of this lemma holds. This completes the proof.

For an edge $\{u, w\}$ of Γ, let $G_{u w}^{[1]}=G_{u}^{[1]} \cap G_{v}^{[1]}$ and $G_{u}^{[2]}=\cap_{v \in \Gamma(u)} G_{u v}^{[1]}$. Then

$$
\begin{aligned}
G_{u w} / G_{u w}^{[1]} & \lesssim\left(G_{u w} / G_{u}^{[1]}\right) \times\left(G_{u w} / G_{w}^{[1]}\right) \cong G_{u w}^{\Gamma(u)} \times G_{u w}^{\Gamma(w)} \lesssim \mathrm{S}_{4}^{2}, \\
G_{u}^{[1]} / G_{u}^{[2]} & \lesssim \times_{v \in \Gamma(u)}\left(G_{u}^{[1]}\right)^{\Gamma(v)} \lesssim \mathrm{S}_{4}^{5} .
\end{aligned}
$$

Lemma 3.4. Let $\{u, w\} \in E$. Assume that $G_{u}^{[1]} \neq 1 \neq G_{w}^{[1]}$. Then either $G_{u w}^{[1]}$ is a 2 -group and $\left|G_{v}\right|$ is not divisible by 3^{3}, or $\left|G_{v}\right|$ is not divisible by 3^{7}, where $v \in\{u, w\}$.

Proof. If $G_{u w}^{[1]}$ is a 2-group then, since $G_{u w} / G_{u w}^{[1]} \lesssim \mathrm{S}_{4}^{2}$ and $\left|G_{u}: G_{u w}\right|=5$, the order of G_{u} is indivisible by 3^{3}, and the lemma is true.

Assume that $G_{u w}^{[1]}$ is not a 2-group. Note that $G_{u w}^{[1]}$ is a $\{2,3\}$-group and, by Lemma $3.2, G_{u w}^{[1]}$ is not a 3-group. It follows from [2, Theorem 1.1] that, one of $G_{u}^{[2]}$ and $G_{w}^{[2]}$ say $G_{u}^{[2]}$ is an r-group, where $r \in\{2,3\}$. Since $G_{u}^{[2]} \unlhd G_{u}^{[1]} \unlhd G_{u}$, we have $G_{u}^{[2]} \leqslant \mathbf{O}_{r}\left(G_{u}\right)$. By Lemma 3.2, we conclude that $G_{u}^{[2]}$ is an 2-group. Recalling that $G_{u}^{[1]} / G_{u}^{[2]} \lesssim S_{4}^{5}$ and $G_{u} / G_{u}^{[1]} \lesssim \mathrm{S}_{5}$, it follows that $\left|G_{u}\right|$ is indivisible by 3^{7}, and the lemma follows.

For normal subgroups of G, we have the following lemma, refer to [13, Lemmas 5.1 and 5.5] and [29, Lemma 3.2].

Lemma 3.5. Let $1 \neq N \unlhd G$. If $N_{v} \neq 1$ for some $v \in V$ then either Γ is N semisymmetric, or N acts transitively on one of U and W and has 5 orbits on the other one. If N is intransitive on U and W then N is semiregular on V.

4. A Reduction

In this section, we assume that $\Gamma=(V, E)$ is a connected G-semisymmetric pentavalent graph, and G acts primitively on each of its orbits on V, where $G \leqslant \operatorname{Aut} \Gamma$. Let U and W be the G-orbits on V. (Note, $G \leqslant$ Aut $^{+}(\Gamma)$.) Recall that the socle $\operatorname{soc}(G)$ of G is generated by all minimal normal subgroups of G.

Lemma 4.1. One of the following statements holds.
(1) $\operatorname{soc}(G) \cong \mathbb{Z}_{p}^{k}$, and $\operatorname{Aut}(\Gamma)$ has a regular subgroup isomorphic to $\mathbb{Z}_{p}^{k}: \mathbb{Z}_{2}$, where $1 \leqslant k \leqslant 4$ and p is a prime.
(2) G is almost simple, and Γ is $\operatorname{soc}(G)$-semisymmetric.
(3) Γ is isomorphic to the complete bipartite graph $\mathrm{K}_{5,5}$ of order 10 .

Proof. If G is unfaithful on U then the kernel of G on U acts transitively on W, which yields that $\Gamma \cong \mathrm{K}_{5,5}$. Similarly, if G is unfaithful on W then $\Gamma \cong \mathrm{K}_{5,5}$.

Assume next that G acts faithfully on both U and W in the following. We will analyze the structure of G by using the O'Nan-Scott Theorem for finite primitive groups, refer to $\left[9\right.$, Section 4.8, p. 137]. Let $M=\operatorname{soc}(G)$. Then $M=T_{1} \times T_{2} \times \cdots \times T_{k}$, where $T_{1}, T_{2}, \ldots, T_{k}$ are isomorphic simple groups. Fix an edge $\{u, w\} \in E$ with $u \in U$ and $w \in W$, and let $v=u$ or w.

Assume that G is of Affine type on U (and hence of Affine type on W). Then $M \cong \mathbb{Z}_{p}^{k}$ for some prime p and integer $k \geqslant 1$, and M is regular on both U and W. By Lemma $2.5, \Gamma$ is isomorphic to a bi-Cayley graph of M, and M can be generated by 4 elements, yielding $k \leqslant 4$. Again by Lemma 2.5, Aut (Γ) contains an involution which inverses every element in M and interchanges U and W. Then part (1) of this lemma follows.

If M is a nonabelian simple group then part (2) of this lemma follows from Lemma 3.5. Thus the rest is to prove that G, as a primitive permutation group on U or W, is not of Regular nonabelian type, Diagonal type or Product type.

Case 1. Suppose that G has Regular nonabelian type on U or W. Recall that $\left|G_{v}\right|=2^{a} 3^{b} 5$ and either G_{v} is solvable or $\operatorname{soc}\left(G_{v}^{\Gamma(v)}\right) \cong \mathrm{A}_{5}$. It follows from [9, Theorem 4.7B, p. 133] that $\operatorname{soc}\left(G_{v}\right) \cong \mathrm{A}_{5}$, and $\mathbf{N}_{G_{v}}\left(T_{1}\right)$ has a composition factor isomorphic to T_{1}. On the other hand, G_{v} acts on $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ faithfully and transitively by conjugation. This implies that $k \geqslant 5$, which forces that $\mathbf{N}_{G_{v}}\left(T_{1}\right)$ is solvable, a contradiction.

Case 2. Suppose that G has Diagonal type on U. Then $T_{1} \lesssim G_{u} \lesssim \operatorname{Aut}\left(T_{1}\right) \times \mathrm{S}_{k}$. This implies that $T_{1} \cong \mathrm{~A}_{5}$, and $G_{u}^{\Gamma(u)}$ is 2-transitive on $\Gamma(u)$. By [9, Theorem 4.5A, p. 123], either $k=2$, or G_{u} acts primitively on $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ by conjugation, where the kernel contains a normal subgroup isomorphic to T_{1}. In addition, for $k \geqslant 3$, since G_{u} has a unique insolvable composition factor and $\left|G_{u}\right|$ is indivisible by 5^{2}, we get $k \leqslant 4$.

By Case 1, G has Diagonal or Product type on W. If G has Diagonal type on W then a similar argument as above implies that $G_{w}^{\Gamma(w)}$ is 2-transitive on $\Gamma(w)$, which is impossible, refer to [13, Theorem 1.2]. Thus G is of Product type on W. By [9, Theorem 4.6A, p. 125], we conclude that either $M_{w} \cong T_{1}^{d}$ for some d with $1<d<k$, or G, as a permutation group on W, is permutation isomorphic to a primitive subgroup of a wreath product $H 乙 \mathrm{~S}_{k}$ with the product action, where H is a primitive group with socle isomorphic to $T_{1} \cong \mathrm{~A}_{5}$. Noting that $\left|M_{w}\right|$ is indivisible by 5^{2}, the latter case occurs. In particular, $1 \neq M_{w}=\left(T_{1}\right)_{w} \times \cdots \times\left(T_{k}\right)_{w}$ and $\left(T_{1}\right)_{w} \cong \cdots \cong\left(T_{k}\right)_{w}$, and so M_{w} is a $\{2,3\}$-group. In addition, G_{w} acts transitively on $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ by conjugation.

Let K be the kernel of G_{w} acting on $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$. Noting that $\left|G_{w}\right|$ has a divisor 5 , since $k \leqslant 4$, we know that $|K|$ is divisible by 5 . Note that $|M K|$ is a divisor of $|G|$, and $|G|$ is a divisor of $\mid H\left\langle\mathrm{~S}_{k}\right|$. Since $H \cong \mathrm{~A}_{5}$ or S_{5}, it follows that $|M K|$ is a divisor of $120^{k} k$!. In particular, $|M K|$ is indivisible by 5^{k+1} as $k \leqslant 4$. Note that

$$
|M K|=|M||K:(M \cap K)|=60^{k}|K:(M \cap K)|
$$

This implies that $|M \cap K|$ is divisible by 5 . Then M_{w} is not a $\{2,3\}$-group as $M \cap K \leqslant$ $M \cap G_{w}=M_{w}$, a contradiction.

Case 3. Suppose that G has Product type on U. Then, by Cases 1 and $2, G$ must have Product type on W. By [9, Theorem 4.6A, p. 125], either $M_{v} \cong T_{1}^{d}$ for some d with $1<d<k$, or $1 \neq M_{v}=\left(T_{1}\right)_{v} \times \cdots \times\left(T_{k}\right)_{v}$ and $\left(T_{1}\right)_{v} \cong \cdots \cong\left(T_{k}\right)_{v}$, where $v \in\{u, w\}$. Recalling that G_{v} has at most one insolvable composition factor, the latter case occurs. By Lemma 3.5, Γ is M-semisymmetric. Then $\left|M_{v}\right|$ is divisible by 5 , and hence $\left|M_{v}\right|$ is divisible by 5^{k}, which is impossible as $k>1$. This completes the proof.

Lemma 4.2. Let $v \in V$ and $H=G_{v}$. Assume that G is almost simple and H is solvable. Then H is unique up to G-conjugacy, and (G, H) is listed in Table 1.

Proof. Put $T=\operatorname{soc}(G)$. Choose a normal subgroup G_{0} of G, which is minimal such that $H_{0}:=H \cap G_{0}$ is maximal in G_{0}. Then $T \leqslant G_{0}$ and, noting that H_{0} is solvable, the pair $\left(G_{0}, H_{0}\right)$ is included in [22, Tables $\left.14-20\right]$. By Lemma 4.1, Γ is G_{0}-semisymmetric. Then, by Lemmas 3.1 and 3.2 , we have $\left|H_{0}\right|=2^{a} 3^{b} 5$ and $\mathbf{O}_{3}\left(H_{0}\right)=1$, where a and b are nonnegative integers. Inspecting the pairs listed in [22, Tables 14-20], we conclude that H is unique up G-conjugacy, and either the pair (G, H) is described as in Rows $1-4$ of Table 1 or one of the followings holds.
(1) $G_{0}=\mathrm{PSL}_{2}\left(p^{f}\right)$, and $H_{0} \cong \mathrm{D}_{\frac{2(p f+1)}{(2, p-1)}}$, where p is a prime and $p^{f} \notin\{7,9\}$.

Row	G	H	
1	$\mathrm{~S}_{5}, \mathrm{~A}_{5}$	$\mathbb{Z}_{5}: \mathbb{Z}_{4}, \mathrm{D}_{10}$	
2	${ }^{2} \mathrm{~F}_{4}(2),{ }^{2} \mathrm{~F}_{4}(2)^{\prime}$	$\left[2^{9}\right]: \mathbb{Z}_{5}: \mathbb{Z}_{4},\left[2^{10}\right]: \mathbb{Z}_{5}: \mathbb{Z}_{4}$	
3	$\mathrm{PGL}_{2}(11)$	D_{20}	
4	$\mathrm{PrL}_{2}(9), \mathrm{PGL}_{2}(9), \mathrm{M}_{10}$	$\mathbb{Z}_{10}: \mathbb{Z}_{4}, \mathrm{D}_{20}, \mathbb{Z}_{5}: \mathbb{Z}_{4}$	
5	$\mathrm{PGL}_{2}(p), \mathrm{PSL}_{2}(p)$	$\mathrm{D}_{2(p+1)}, \mathrm{D}_{p+1}$	prime $p=2^{s} 5-1$
6	$\mathrm{PGL}_{2}(p), \mathrm{PSL}_{2}(p)$	$\mathrm{D}_{2(p-1)}, \mathrm{D}_{p-1}$	prime $p=2^{s} 5+1>11$
7	$\mathrm{PSL}_{2}(16) \cdot \mathbb{Z}_{o}$	$\mathbb{Z}_{2}^{4}: \mathbb{Z}_{15} \mathbb{Z}_{o}$	$o \in\{1,2,4\}$
8	$\mathrm{PSU}_{3}(4) \cdot \mathbb{Z}_{o}$	$\mathbb{Z}_{2}^{4}: \mathbb{Z}_{15} \cdot \mathbb{Z}_{o}$	$o \in\{1,2,4\}$

TABLE 1. Solvable stabilizers
(2) $G_{0}=\mathrm{PSL}_{2}\left(p^{f}\right)$, and $H_{0} \cong \mathrm{D}_{\frac{2\left(p^{f}-1\right)}{(2, p-1)}}$, where p is a prime and $p^{f} \notin\{5,7,9,11\}$.
(3) $G_{0}=\operatorname{PSL}_{2}\left(p^{f}\right)$, and $H_{0} \cong \mathbb{Z}_{p}^{\frac{(2, p-1)}{\mathbb{Z}_{\frac{p}{f}-1}^{(2, p-1)}}}$, where p is a prime.
(4) $G_{0}=\operatorname{PSU}_{3}\left(2^{f}\right)$, and $H_{0} \cong\left[p^{3 f}\right]: \frac{\mathbb{Z}^{2, p-1}}{\left(3, p^{f}+1\right)}$, , where p is a prime.

Assume that (1) occurs. Then $p^{f}+1$ is indivisible by 3 ; otherwise, $\mathbf{O}_{3}\left(H_{0}\right) \neq 1$, a contradiction. We have $p^{f}+1=2^{s} 5$ for some integer $s \geqslant 0$. Since $p^{f} \neq 9$, we have $s \neq 1$. If $s=0$ then $p^{f}=4$ and $T \cong \mathrm{~A}_{5}$, and so (G, H) is described as in Row 1 of Table 1. Thus, we let $s \geqslant 2$, and so $p^{f} \equiv-1(\bmod 4)$. Then f is odd. Suppose that $f>1$. Then, since $\frac{p^{f}+1}{p+1}$ is odd, we have $5=\frac{p^{f}+1}{p+1}$; however, $\frac{p^{f}+1}{p+1}>p^{2}>5$, a contradiction. Thus $f=1$, and we get Row 5 of Table 1 .

Assume that (2) occurs. Then $p^{f}-1=2^{s} 5$ for some integer $s \geqslant 2$. Since $p^{f}-1$ is indivisible by 3 , we have $p^{f} \equiv-1(\bmod 3)$. Then f is odd. Since $\frac{p^{f}-1}{p-1}$ is odd, if $f>1$ then $5=\frac{p^{f}-1}{p-1}>p^{2}>5$, a contradiction. Then we have Row 6 of Table 1.

Assume that (3) occurs. Then $p^{f}=5$ or $p=2$. If $p^{f}=5$ then (G, H) is described as in Row 1 of Table 1. Now let $p=2$. Then $2^{f}-1=3^{t} 5$ for some integer $t \geqslant 0$. Suppose that $f>6$. Then, by Zsigmondy's Theorem, there is a prime r such that f is the smallest positive integer with $2^{f} \equiv 1(\bmod r)$. Noting that $r-1$ is divisible by f, this implies that $\left|H_{0}\right|$ has a prime divisor no less than 7 , a contradiction. Thus $f \leqslant 6$. Calculation shows that $f=4$. Then we have Row 7 of Table 1.

Finally, for (4), by a similar argument as above, we conclude that $p^{f}=4$, and Row 8 of Table 1 follows. This completes the proof.

Lemma 4.3. Let $v \in V$ and $H=G_{v}$. Assume that G is almost simple with socle T, and H is insolvable. Then, up to G-conjugacy, either H is unique, or H has two choices which are listed in Table 2 up to isomorphism. In addition, if $\mathbf{O}_{2}(H \cap T)=1 \neq \mathbf{O}_{2}(H)$ then (G, H) is listed as follows:
(1) $G=\mathrm{S}_{7}$ and $H \cong \mathbb{Z}_{2} \times \mathrm{S}_{5}$;
(2) $G=\mathrm{P}^{2} \mathrm{~L}_{2}(25)$ and $H \cong \mathbb{Z}_{2} \times \mathrm{S}_{5}$;
(3) $G=\mathrm{PSL}_{2}(16) \cdot \mathbb{Z}_{o}$ and $H \cong\left(\mathbb{Z}_{2} \times \mathrm{A}_{5}\right) \cdot \mathbb{Z}_{\frac{o}{2}}$, where $o \in\{2,4\}$;
(4) $G=\mathrm{PSL}_{3}(4) \cdot \mathbb{Z}_{2}^{i} \nless \mathrm{P}^{2}(4)$ and $H \cong 2 \times \mathrm{A}_{5} \cdot \mathbb{Z}_{2}^{i-1}$, where $i \in\{1,2\}$.

	G	H	
1	$\mathrm{PSL}_{2}(p)$	A_{5}	$p \equiv \pm 11, \pm 19(\bmod 40)$
2	$\mathrm{PSL}_{2}(p)$	A_{5}	$p \equiv \pm 1, \pm 9(\bmod 40)$
3	$\mathrm{PSL}_{2}\left(p^{2}\right)$	A_{5}	$p \equiv \pm 3(\bmod 10)$
4	$\mathrm{PSL}_{2}\left(5^{2}\right)$	S_{5}	
5	$\mathrm{P}_{2} \mathrm{~L}_{2}\left(p^{2}\right)$	S_{5}	$p \equiv \pm 3(\bmod 10)$
6	$\mathrm{PSp}_{6}(p)$	S_{5}	$p \equiv \pm 1(\bmod 8)$
7	$\mathrm{G}_{2}(4) \cdot \mathbb{Z}_{o}$	$2^{4+6}:\left(\mathrm{A}_{5} \times \mathbb{Z}_{3}\right): \mathbb{Z}_{o}$	$o \in\{1,2\}$
8	${\mathrm{P} \Sigma L_{2}(25)}^{\mathbb{Z}_{2} \times \mathrm{S}_{5}}$		
9	$\mathrm{PSL}_{3}(4) \cdot O$	$\mathbb{Z}_{2}^{4}: \mathrm{A}_{5} \cdot O$	$\|O\| \in\{1,2,3,6\}, G \leqslant \mathrm{PLL}_{3}(4)$
10	$\mathrm{PSp}_{4}(4) \cdot \mathbb{Z}_{o}$	$\mathbb{Z}_{2}^{6}:\left(\mathbb{Z}_{3} \times \mathrm{A}_{5}\right) \cdot \mathbb{Z}_{o}$	$o \in\{1,2\}$
11	$\mathrm{PSp}_{4}(p)$	$\mathbb{Z}_{2}^{4} \cdot \mathrm{~S}_{5}$	$p \equiv \pm 1(\bmod 8)$

Table 2. Nonconjugate stabilizers

Proof. By the assumption, we have $H / G_{v}^{[1]} \cong \mathrm{A}_{5}$ or S_{5}. Since H is maximal in G, if $G_{v}^{[1]}=1$ then, by [11, Theorem 1.3], either H is unique up to G-conjugacy, or the pair (G, H) is described as in Rows 1-6 of Table 2. Thus, in view of Lemmas 3.2 and 3.4, we assume next that $\mathbf{O}_{2}(H) \neq 1=\mathbf{O}_{3}(H)$, and $|H|$ is indivisible by 3^{7}. In particular, H is a 2-local maximal subgroup of G. In addition, since $G=T H$, we have $G / T \cong H /(H \cap T)$. By the Schreier Conjecture, G / T is solvable. Since H is insolvable, $H \cap T$ is insolvable, and thus $(H \cap T) / T_{v}^{[1]}=T_{v} / T_{v}^{[1]} \cong \mathrm{A}_{5}$ or S_{5}.

Assume that T is an alternating group A_{n}, where $\geqslant 5$. For $n=6$, by the Atlas [7], we have $H \cong \mathrm{~A}_{5}$ or S_{5}, and so $\mathrm{O}_{2}(H)=1$, which is not the case. Thus we let $n \neq 6$, and so $G=\mathrm{S}_{n}$ or A_{n}. Considering the natural action of G on n points, it follows from [25] that either $n \in\{7,9\}$ and H is conjugate to the stabilizer of some $(n-5)$-set, or $n \in\{10,20\}$ and H is conjugate to the stabilizer of some partition with equal part size $\frac{n}{5}$. Only for $G=\mathrm{S}_{7}$, we have $\mathbf{O}_{2}(H \cap T)=1 \neq \mathbf{O}_{2}(H)$; in this case, $H \cong \mathbb{Z}_{2} \times \mathrm{S}_{5}$ and $H \cap T \cong \mathrm{~S}_{5}$. Then the lemma is true in this case.

Assume that T is one of the 26 sporadic simple groups. Meierfrankenfeld and Shpectorov [31] proved that the Atlas [7] includes the complete lists of the 2-local maximal subgroups of the Monster and the Baby Monster, see also [35, pp. 258-261, Tables 5.6 and 5.7]. Thus all 2-local maximal subgroups of sporadic almost simple groups are listed in the Atlas [7]. Inspecting these subgroups, we conclude that T is one of $\mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{~J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \mathrm{Co}_{2}, \mathrm{Co}_{3}$, HS, Suz and $\mathrm{Ru}, \mathrm{O}_{2}(H \cap T) \neq 1$, and H is unique up to G-conjugacy.

Assume that T is a simple exceptional group of Lie type. Suppose that T has Lie rank at least 4. Noticing the limitations on H, it follows from [6, Theorem 1] that H is either parabolic or of maximal rank. For the parabolic case, H is an extension of a 2-group by the Chevalley group determined by some subdiagram obtained from the Dynkin diagram of G by removing one node. It follows that H has an insolvable composition factor not isomorphic to A_{5}, which is not the case. Thus H is a subgroup of maximal rank. Inspecting the subgroups listed in [26, Tables 5.1 and 5.2], there does not exist a desired H. Therefore, T has Lie rank 1 or 2 . Then all maximal subgroups of G are completely known, refer to [32] for $T=\mathrm{Sz}(q)$, [30] for $T={ }^{2} \mathrm{~F}_{4}(q)$ (with $q>2$), [19]
for $T=\operatorname{Ree}(q),[17]$ for $T={ }^{3} \mathrm{D}_{4}(q)$, and $[8,19]$ for $T=\mathrm{G}_{2}(q)$, respectively. Inspecting the 2-local maximal subgroups of G, we conclude that $T=\mathrm{G}_{2}(4)$. By the Atlas [7], we know H has two choices up to G-conjugacy, and Row 7 of Table 2 follows.

In the following, we assume that T is a simple classical group of dimension n over a field of order $q=p^{f}$, where p is a prime. Noticing the isomorphisms amongst finite classical groups, we assume that T is one of the following simple groups: $\mathrm{PSL}_{n}(q)$ with $n \geqslant 2, \operatorname{PSU}_{n}(q)$ with $n \geqslant 3, \operatorname{PSp}_{n}(q)$ with even $n \geqslant 4$ and $(n, q) \neq(4,2), \Omega_{n}(q)$ with odd $n \geqslant 7$ and odd $q, \mathrm{P} \Omega_{n}^{ \pm}(q)$ with even $n \geqslant 8$. If $T=\mathrm{PSp}_{4}\left(2^{f}\right)$ with $f>1$ and G contains a graph automorphism of T then, by [3, p. 384, Table 8.14], we conclude that G does not contains a desired H. If $T=\mathrm{P} \Omega_{8}^{+}(q)$ and G contains a triality of T then, inspecting the maximal subgroups of G listed in [18], we conclude that $T=\mathrm{P} \Omega_{8}^{+}(4)$, and H is unique up to G-conjugacy. Thus, since H is 2-local, by Aschbacher's Theorem for maximal subgroups of classical groups, we next assume that H lies in one of the eight classes of subgroups of G, say $\mathcal{C}_{i}(G), 1 \leq i \leq 8$, which are defined as in [20].

Inspecting the members of $\mathcal{C}_{i}(G)$ given in [20, pp. 70-74, Tables 3.5A-3.4F], it follows that $H \in \mathcal{C}_{1}(G) \cup \mathcal{C}_{2}(G) \cup \mathcal{C}_{5}(G) \cup \mathcal{C}_{6}(G), H$ has at most two choices up to G-conjugacy, and either $n \leqslant 10$ or $T=\Omega_{15}(3)$. Then, combining with [3], we conclude that one of the followings holds.
(i) $H \in \mathcal{C}_{1}(G)$ if and only if T is one of the following simple groups: $\mathrm{PSL}_{3}(4)$, $\mathrm{PSL}_{3}(5), \mathrm{PSU}_{3}(5), \mathrm{PSL}_{4}(4), \mathrm{PSp}_{4}(4), \mathrm{PSU}_{5}(2), \mathrm{PSU}_{6}(2), \mathrm{PSU}_{7}(2), \mathrm{P} \Omega_{8}^{-}(2)$; in this case, H has two choices if and only if $G \leqslant \mathrm{PLL}_{3}(4)$ or $T=\mathrm{PSp}_{4}(4)$, and $\mathrm{O}_{2}(H \cap T)=1$ if and only if $T=\mathrm{PSL}_{3}(5)$ or $G=\mathrm{PSL}_{3}(4) \cdot \mathbb{Z}_{2}^{i} \notin \mathrm{PL}_{3}(4)$, where $i \in\{1,2\}$.
(ii) $H \in \mathcal{C}_{2}(G)$ if and only if T is one of the following simple groups: $\mathrm{PSp}_{4}(5)$, $\operatorname{PSL}_{5}(9), \operatorname{PSL}_{5}(p)$ (with p a Fermat prime), $\operatorname{PSU}_{5}(p)$ (with p a Mersenne prime), $\mathrm{PSL}_{10}(3), \mathrm{PSU}_{10}(3), \mathrm{PSp}_{10}(3), \mathrm{P} \Omega_{10}^{+}(9), \mathrm{P} \Omega_{10}^{+}(p)$ (with p a Fermat prime), $\mathrm{P} \Omega_{10}^{-}(p)$ (with p a Mersenne prime), $\Omega_{15}(3)$; in this case, H is unique up to G-conjugacy.
(iii) $H \in \mathcal{C}_{5}(G)$ if and only if $G=\mathrm{P}^{2} \mathrm{~L}_{2}(25)$ or $G=\mathrm{PSL}_{2}(16) . \mathbb{Z}_{o}$ with $o \in\{2,4\}$; in this case, $\mathrm{O}_{2}(H \cap T)=1$, and H has two choices if and only if $G=\mathrm{P} \Sigma \mathrm{L}_{2}(25)$ and $H \cong \mathbb{Z}_{2} \times \mathrm{S}_{5}$.
(iv) $H \in \mathcal{C}_{6}(G)$ if and only if $T=\mathrm{PSp}_{4}(p)$ with prime $p>3$; in this case, H has two choices if and only if $G=\operatorname{PSp}_{4}(p), H \cong \mathbb{Z}_{2}^{4} \cdot S_{5}$ and $p \equiv \pm 1(\bmod 8)$.
By (i)-(iv), we conclude that H is desired as in this lemma. This completes the proof.
Theorem 4.4. Let $\{u, w\} \in E$ with $u \in U$ and $w \in W$. Assume that G is almost simple. Then one of the followings holds.
(1) G_{u} and G_{w} are conjugate in G, and Γ is isomorphic to the standard double cover of some G-orbital digraph.
(2) $H:=G_{u} \cong G_{w}$, and the pair (G, H) is listed in Table 2.

Proof. If G_{u} and G_{w} are conjugate in G then part (1) is true by Lemma 2.4. Assume next that G_{u} and G_{w} are not conjugate in G. By Lemma 4.2, one of G_{u} and G_{w}, say G_{u} is insolvable. In particular, $G_{u}^{\Gamma(u)} \cong G_{u} / G_{u}^{[1]} \cong \mathrm{A}_{5}$ or S_{5}, and $G_{u w}$ is not a 2-group.

Suppose that G_{w} is solvable. Then, by Lemma 4.2, the pair $\left(G, G_{w}\right)$ is described as in Rows 7 and 8 of Table 1. In particular, $\left|G_{w}\right|=240|G: T|$. Checking the maximal subgroups of G in the Atlas [7], we conclude that G has no insolvable maximal subgroup of order $\left|G_{u}\right|$, a contradiction. Therefore, G_{w} is insolvable.

Finally, since G_{u} and G_{w} are not conjugate in G, part (2) follows from Lemma 4.3.

5. Graphs with nonconjugate stabilizers

In this section, we deal with the graphs satisfying (2) of Theorem 4.4. We first give a construction for some biprimitive graphs.
Construction 5.1. Let G be a nonregular primitive group on U, and let H_{1} be a pointstabilizer. Suppose that H_{2} is a core-free maximal subgroup of G such that H_{2} is not conjugate to H_{1} in G. Let $k=\left|H_{1}:\left(H_{1} \cap H_{2}\right)\right|$, and set

$$
\mathcal{H}_{1}=\left\{H_{1}^{g} \mid g \in G\right\}, \mathcal{H}_{2}=\left\{H_{2}^{g} \mid g \in G\right\}
$$

Define a bipartite graph $\Gamma(G)$ with bipartition $\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ such that $M_{1} \in \mathcal{H}_{1}$ and $M_{2} \in \mathcal{H}_{2}$ are adjacent if and only if $k=\left|M_{1}:\left(M_{1} \cap M_{2}\right)\right|$. Then $\Gamma(G)$ is a regular graph if and only if $\left|H_{2}:\left(H_{1} \cap H_{2}\right)\right|=k$, i.e., $\left|H_{1}\right|=\left|H_{2}\right|$.

It is easily shown that the inner automorphism group $\operatorname{Inn}(G)$ of G acts faithfully and primitively on both parts of $\Gamma(G)$. We always view $\operatorname{Inn}(G)$ as a subgroup of Aut $(\Gamma(G))$. By the primitivity of $\operatorname{Inn}(G)$ on both parts of the graph, $\Gamma(G)$ is connected.
Lemma 5.2. Let G, H_{1}, H_{2}, k and $\Gamma(G)$ be as in Construction 5.1. Then $\operatorname{Inn}(G) \cong G$, and every $\alpha \in \operatorname{Aut}\left(G, H_{1}, H_{2}\right)$ induces an automorphism of $\Gamma(G)$ by $\left(H_{i}^{x}\right)^{\alpha}=H_{i}^{x^{\alpha}}$.
(1) If $\delta \in \operatorname{Aut}(G)$ such that $H_{1}^{\delta}=H_{2}$ and $H_{2}^{\delta}=H_{1}$, then δ induces an automorphism of $\Gamma(G)$ by $\left(H_{i}^{x}\right)^{\delta}=\left(H_{i}^{\delta}\right)^{x^{\delta}}$, and $\Gamma(G)$ is vertex-transitive.
(2) The graph $\Gamma(G)$ is $\operatorname{lnn}(G)$-semisymmetric if and only if $\Gamma(G)$ has valency k, i.e., $\left|\left\{M_{2} \in \mathcal{H}_{2}\left|k=\left|H_{1}:\left(H_{1} \cap M_{2}\right)\right|\right\}\left|=k=\left|\left\{M_{1} \in \mathcal{H}_{1}\left|k=\left|M_{1}:\left(M_{1} \cap H_{2}\right)\right|\right\} \mid\right.\right.\right.\right.\right.$.
Proof. Since G is a nonregular primitive group, it has trivial center. Then $\operatorname{Inn}(G) \cong G$. Pick $\alpha \in \operatorname{Aut}\left(G, H_{1}, H_{2}\right)$. Then α fixes both \mathcal{H}_{1} and \mathcal{H}_{2} setwise. For g in G, denote by $\operatorname{lnn}(g)$ the inner automorphism of G induced by g. Then $\alpha^{-1} \operatorname{lnn}(g) \alpha=\operatorname{lnn}\left(g^{\alpha}\right)$. Now for $H_{1}^{x} \in \mathcal{H}_{1}$ and $H_{2}^{y} \in \mathcal{H}_{2}$, we have

$$
\left(H_{1}^{x} \cap H_{2}^{y}\right)^{\alpha}=\left(H_{1}^{\ln (x)} \cap H_{2}^{\operatorname{lnn}(y)}\right)^{\alpha}=H_{1}^{\ln \left(x^{\alpha}\right)} \cap H_{2}^{\operatorname{lnn}\left(y^{\alpha}\right)}=H_{1}^{x^{\alpha}} \cap H_{2}^{y^{\alpha}} .
$$

It follows that $\left|H_{1}^{x}:\left(H_{1}^{x} \cap H_{2}^{y}\right)\right|=k$ if and only if $\left|H_{1}^{x^{\alpha}}:\left(H_{1}^{x^{\alpha}} \cap H_{2}^{y^{\alpha}}\right)\right|=k$. Thus α induces an automorphism of $\Gamma(G)$.

Let $\delta \in \operatorname{Aut}(G)$ with $H_{1}^{\delta}=H_{2}$ and $H_{2}^{\delta}=H_{1}$. In particular, $\left|H_{1}\right|=\left|H_{2}\right|$, and so Γ is regular. For $H_{1}^{x} \in \mathcal{H}_{1}$ and $H_{2}^{y} \in \mathcal{H}_{2}$, we have

$$
\left(H_{1}^{x} \cap H_{2}^{y}\right)^{\delta}=\left(H_{1}^{\operatorname{lnn}(x)} \cap H_{2}^{\ln (y)}\right)^{\delta}=H_{2}^{\ln \left(x^{\delta}\right)} \cap H_{1}^{\ln \left(y^{\delta}\right)}=H_{2}^{x^{\delta}} \cap H_{1}^{y^{\delta}}
$$

Then $\left|H_{1}^{x}:\left(H_{1}^{x} \cap H_{2}^{y}\right)\right|=k$ if and only if $\left|H_{2}^{x^{\delta}}:\left(H_{2}^{x^{\delta}} \cap H_{1}^{y^{\delta}}\right)\right|=k$. Noting that $\left|H_{2}^{x^{\delta}}\right|=\left|H_{1}^{y^{\delta}}\right|$, we have $\left|H_{1}^{y^{\delta}}:\left(H_{1}^{y^{\delta}} \cap H_{2}^{x^{\delta}}\right)\right|=k$. Thus δ induces an automorphism of $\Gamma(G)$, which interchanges \mathcal{H}_{1} and \mathcal{H}_{2}. Thus part (1) follows.

Next we prove part (2). Let $\Delta_{1}=\left\{M_{2} \in \mathcal{H}_{2}\left|k=\left|H_{1}:\left(H_{1} \cap M_{2}\right)\right|\right\}\right.$ and $\Delta_{2}=\left\{M_{1} \in\right.$ $\mathcal{H}_{1}\left|k=\left|M_{1}:\left(M_{1} \cap H_{2}\right)\right|\right\}$. Then Δ_{1} and Δ_{2} are the neighborhoods of H_{1} and H_{2} in $\Gamma(G)$, respectively. Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a right transversal of $H_{1} \cap H_{2}$ in H_{1}. Then $H_{2}^{x_{i}} \in \Delta_{1}$ for all i. Suppose that $H_{2}^{x_{i}}=H_{2}^{x_{j}}$ for some i and j. Then $x_{j}^{-1} x_{i} \in \mathbf{N}_{G}\left(H_{2}\right)=$ H_{2}, and so $x_{j}^{-1} x_{i} \in H_{1} \cap H_{2}$. This implies that $\left(H_{1} \cap H_{2}\right) x_{i}=\left(H_{1} \cap H_{2}\right) x_{j}$, yielding $i=j$. Thus, if $i \neq j$ then $H_{2}^{x_{i}}$ and $H_{2}^{x_{i}}$ are different neighbors of H_{1} in $\Gamma(G)$.

Assume that $\Gamma(G)$ has valency k. Then $\Delta_{1}=\left\{H_{2}^{x_{i}} \mid 1 \leqslant i \leqslant k\right\}$, and thus H_{1} acts transitively on the k maximal subgroups in Δ_{1} by conjugation. Recalling that $\operatorname{lnn}(G)$ acts transitively on both parts of $\Gamma(G)$, it follows that $\Gamma(G)$ is $\operatorname{lnn}(G)$-semisymmetric.

Conversely, let $\Gamma(G)$ be $\operatorname{Inn}(G)$-semisymmetric. Then $\Gamma(G)$ is regular, in particular, $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|$. Noting that H_{1} acts transitively on Δ_{1} by conjugation, we get $\Delta_{1}=\left\{H_{2}^{x_{i}} \mid\right.$ $1 \leqslant i \leqslant k\}$, which has size k. Thus $\Gamma(G)$ has valency k. This completes the proof.

In the following, we always assume that (G, H) is a pair described as in Table 2. Choose nonconjugate maximal subgroups H_{1} and H_{2} of G with $H_{1} \cong H \cong H_{2}$ and maximal $\left|H_{1} \cap H_{2}\right|$. Clearly, $G=\left\langle H_{1}, H_{2}\right\rangle$. Set $k=\left|H_{1}:\left(H_{1} \cap H_{2}\right)\right|$. Let \mathcal{H}_{1} and \mathcal{H}_{2} be the conjugacy classes of H_{1} and H_{2} in G, respectively. Let

$$
\Delta_{1}=\left\{X \in \mathcal{H}_{2}| | H_{1}:\left(H_{1} \cap X\right) \mid=k\right\}, \Delta_{2}=\left\{X \in \mathcal{H}_{1}| | X:\left(X \cap H_{2}\right) \mid=k\right\} .
$$

Since $|X|=\left|H_{2}\right|$ for all $X \in \mathcal{H}_{1}$, we have $\left|\Delta_{2}\right|=\left|\left\{X \in \mathcal{H}_{1}| | H_{2}:\left(X \cap H_{2}\right) \mid=k\right\}\right|$.
For a subgroup $X \leqslant G$, denote by $X^{(\infty)}$ the intersection of all terms appearing the derived series of X.

Lemma 5.3. $k \geqslant 5$.

Proof. Suppose that $k<5$. Let $K=H_{1} \cap H_{2}$. Then H_{1} acts unfaithfully on the set of right cosets of K in H_{1} by right multiplication. Let K_{1} be the kernel of this action. Then $K^{(\infty)} \leqslant H_{1}^{(\infty)} \leqslant K_{1} \leqslant K$, and so $H_{1}^{(\infty)} \leqslant K^{(\infty)}$, yielding $H_{1}^{(\infty)}=K^{(\infty)}$. Similarly, we have $H_{2}^{(\infty)}=K^{(\infty)}$. Then $1 \neq K^{(\infty)} \unlhd\left\langle H_{1}, H_{2}\right\rangle=G$, which is impossible. Thus $k \geqslant 5$, as desired.

Lemma 5.4. Let $G=\operatorname{PSL}_{2}(p)$ for a prime $p>3$.
(1) If $p \equiv \pm 1, \pm 9(\bmod 40)$, then $k>5$.
(2) If $p \equiv \pm 11, \pm 19(\bmod 40)$, then $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|=k=5$.

Proof. Let $\mathcal{K}_{i}=\left\{K \leqslant H_{i}^{g} \mid K \cong \mathrm{~A}_{4}, g \in G\right\}$, where $i=1,2$. Then \mathcal{K}_{1} and \mathcal{K}_{2} are conjugacy classes of subgroups in G. By [4, Theorem 2], G has exactly $\frac{p\left(p^{2}-1\right)}{24}$ subgroups isomorphic to A_{4}. Assume that $p \equiv \pm 1, \pm 9(\bmod 40)$. Then these $\frac{p\left(p^{2}-1\right)}{24}$ subgroups form two distinct G-conjugacy classes. It follows that $\mathcal{K}_{1} \cap \mathcal{K}_{2}=\emptyset$. In particular, $\left|H_{1} \cap H_{2}\right|<12$, and thus $k>5$.

Assume that $p \equiv \pm 11, \pm 19(\bmod 40)$. Then G has a unique conjugacy class of subgroups isomorphic to A_{4}. This implies that $\mathcal{K}_{1}=\mathcal{K}_{2}$, and thus $H_{1} \cap H_{2} \cong \mathrm{~A}_{4}$. Then $k=5$. Noting that A_{5} has exactly 5 subgroups A_{4}, it is easily shown that every subgroup A_{4} is contained in exactly one member of \mathcal{H}_{1} and one member of \mathcal{H}_{2}. For distinct $X, Y \in \mathcal{H}_{2}$ with $\left|H_{1}:\left(H_{1} \cap X\right)\right|=5=\left|H_{1}:\left(H_{1} \cap Y\right)\right|$, we have $H_{1} \cap X \cong \mathrm{~A}_{4} \cong H_{1} \cap Y$, and so $H_{1} \cap X \neq H_{1} \cap Y$. This implies that $\left|\Delta_{1}\right| \leqslant 5$. On the other hand, noting that $\mathbf{N}_{H_{1}}\left(H_{2}\right)=H_{1} \cap H_{2}$, we have $\Delta_{1}=\left\{H_{2}^{x} \mid x \in H_{1}\right\}$, and $\left|\Delta_{1}\right|=5$. Similarly, $\Delta_{2}=\left\{H_{1}^{x} \mid x \in H_{2}\right\}$, and $\left|\Delta_{2}\right|=5$. This completes the proof.

Lemma 5.5. Let $G=\operatorname{PSL}_{2}\left(p^{2}\right)$ or $\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right)$ for a prime p with $p \equiv \pm 3(\bmod 10)$. Then $k>5$.

Proof. Let $T=\operatorname{soc}(G)$. Then $G=T H_{1}=T\left(H_{1} \cap H_{2}\right)$. We have

$$
\frac{|T|\left|H_{1}\right|}{\left|H_{1} \cap T\right|}=|G|=\frac{|T|\left|H_{1} \cap H_{2}\right|}{\left|H_{1} \cap H_{2} \cap T\right|}
$$

yielding

$$
k=\left|H_{1}:\left(H_{1} \cap H_{2}\right)\right|=\left|\left(H_{1} \cap T\right):\left(H_{1} \cap H_{2} \cap T\right)\right| .
$$

Clearly, $H_{1} \cap T$ and $H_{2} \cap T$ are nonconjugate maximal subgroups of T and isomorphic to A_{5}. It is easily shown that T has two conjugacy classes of subgroups isomorphic to A_{4}. By a similar argument as in the proof of Lemma 5.4 (1), we have $k>5$.

Lemma 5.6. Let $G=\operatorname{PSp}_{6}(p)$ for a prime p with $p \equiv \pm 1(\bmod 8)$. Then $k>5$.
Proof. For a subgroup X of G, let \widehat{X} be the preimage of X in $\operatorname{Sp}_{6}(p)$. Let $\mathcal{K}_{i}=\{\widehat{K} \mid$ $\left.\mathrm{S}_{4} \cong K \leqslant X \in \mathcal{H}_{i}\right\}$ and $\mathcal{M}=\left\{\widehat{L} \times \widehat{S} \leqslant \operatorname{Sp}_{6}(p) \mid \widehat{L} \cong \operatorname{Sp}_{2}(p), \widehat{S} \cong \operatorname{Sp}_{4}(p)\right\}$, where $i=1,2$. Then $\mathcal{K}_{1}, \mathcal{K}_{2}$ and \mathcal{M} are conjugacy classes of subgroups in $\mathrm{Sp}_{6}(p)$. In addition, each $\widehat{K} \in \mathcal{K}_{1} \cup \mathcal{K}_{2}$ is contained in some member of \mathcal{M}, refer to [11, Lemmas 5.7 and 5.8]. In particular, for each $X \in \mathcal{H}_{1} \cup \mathcal{H}_{2}$ there is $\widehat{L} \widehat{S} \in \mathcal{M}$ with $(\widehat{X} \cap \widehat{L} \widehat{S}) \widehat{L} \cong 2 \mathrm{~S}_{4} \times \mathrm{Sp}_{4}(p)$.

By [3, p. 186, Proposition 4.5.21], \mathcal{H}_{1} and \mathcal{H}_{2} are fused by the diagonal automorphism of $\mathrm{Sp}_{6}(p)$, and by [3, p. 391, Table 8.28], \mathcal{M} is fixed by the diagonal automorphism of $\mathrm{Sp}_{6}(p)$. It follows that, for $\widehat{L} \widehat{S} \in \mathcal{M}$ and $2 \mathrm{~S}_{4} \cong \widehat{K} \leqslant \widehat{L}$, there exists $\widehat{X} \in \mathcal{H}_{1} \cup \mathcal{H}_{2}$ such that $(\widehat{X} \cap \widehat{L} \widehat{S}) \widehat{L}=\widehat{K} \times \widehat{S}$. Let

$$
\mathcal{L}_{i}=\left\{\widehat{K} \widehat{S} \mid 2 \mathrm{~S}_{4} \cong \widehat{K} \leqslant \widehat{L}, \widehat{L} \widehat{S} \in \mathcal{M},(\widehat{X} \cap \widehat{L} \widehat{S}) \widehat{L}=\widehat{K} \widehat{S}, X \in \mathcal{H}_{i}\right\}, i=1,2
$$

Then \mathcal{L}_{1} and \mathcal{L}_{2} are $\mathrm{Sp}_{6}(p)$-conjugacy classes, and $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ consists of all subgroups $2 \mathrm{~S}_{4} \times \mathrm{Sp}_{4}(p)$ which are contained in the members of \mathcal{M}.

Since $p \equiv \pm 1(\bmod 8)$, by [4, Theorem 2$], \mathrm{SL}_{2}(p)$ has $\frac{p\left(p^{2}-1\right)}{24}$ subgroups isomorphic to $2 \mathrm{~S}_{4}$, which form a single $\mathrm{GL}_{2}(p)$-conjugacy class. Then these $\frac{p\left(p^{2}-1\right)}{24}$ subgroups form two $\mathrm{SL}_{2}(p)$-conjugacy classes. Noting that $\mathrm{Sp}_{2}(p) \cong \mathrm{SL}_{2}(p)$, it follows that each $\widehat{L} \widehat{S} \in$ \mathcal{M} has exactly two conjugacy classes of subgroups isomorphic to $2 \mathrm{~S}_{4} \times \mathrm{Sp}_{4}(p)$. Then $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ splits into two $\operatorname{Sp}_{6}(p)$-conjugacy classes, and thus $\mathcal{L}_{1} \neq \mathcal{L}_{2}$. This implies that $\left|H_{1}:\left(H_{1} \cap H_{2}\right)\right|>5$; otherwise, $\widehat{H_{1} \cap H_{2}} \cong 2 S_{4}$, yielding $\mathcal{L}_{1} \cap \mathcal{L}_{2} \neq \emptyset$, a contradiction. Then $k>5$, and the lemma follows.

Lemma 5.7. Let $G=\operatorname{PSp}_{4}(p)$ for a prime p with $p \equiv \pm 1(\bmod 8)$. Then $k>5$.
Proof. Let $H=H_{1}$ or H_{2}, and let $R=2_{-}^{1+4}$. Then $H \cong \mathbf{C}_{\text {Aut }(R)}(\mathbf{Z}(R))=\operatorname{Aut}(R)$, refer to [1, Theorem A(4)]. Let K be a subgroup of H with $|H: K|=5$. Calculation with GAP [12], we conclude that K has a unique normal subgroup of order 16, and thus $\mathbf{O}_{2}(H)$ is this normal subgroup of K. Suppose that $\left|H_{1}:\left(H_{1} \cap H_{2}\right)\right|=5$. Then $\mathbf{O}_{2}\left(H_{1}\right)=\mathbf{O}_{2}\left(H_{2}\right)$. This implies that $H_{1}=\mathbf{N}_{G}\left(\mathbf{O}_{2}\left(H_{1}\right)\right)=\mathbf{N}_{G}\left(\mathbf{O}_{2}\left(H_{2}\right)\right)=H_{2}$, a contradiction. This completes the proof.

Calculation with GAP [12], we have the following lemma.
Lemma 5.8. Let (G, H) be as in Rows 4, 7-10 of Table 2. Then $k=5$ if and only if $G \neq \mathrm{PSL}_{2}(25), \mathrm{P} \Sigma \mathrm{L}_{2}(25)$. In addition, if $k=5$ then $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|=5$.

Example 5.9. Let (G, H) be as in Rows 1, 7, 9 and 10 of Table 2. Define a bipartite graph $\Gamma(G)$ with vertex set $\mathcal{H}_{1} \cup \mathcal{H}_{2}$ such that $X \in \mathcal{H}_{1}$ and $Y \in \mathcal{H}_{2}$ are adjacent if and only if $|X:(X \cap Y)|=5$. Then $\Gamma(G)$ is G-semisymmetric by Lemmas 5.25 .4 and 5.8, where G acts on $\mathcal{H}_{1} \cup \mathcal{H}_{2}$ by conjugation. In addition, we have the following remarks.
(1) Assume that $G=\operatorname{PSL}_{2}(p)$ with $p \equiv \pm 11, \pm 19(\bmod 40)$. Then the conjugacy classes \mathcal{H}_{1} and \mathcal{H}_{2} merge into one conjugacy class in $\mathrm{PGL}_{2}(p)$, refer to [4, Theorem 2]. In this case, $\mathrm{PGL}_{2}(p)$ acts transitively on the vertex set of $\Gamma(G)$, and thus $\Gamma(G)$ is a symmetric graph.
(2) Assume that $\operatorname{soc}(G)=\mathrm{PSL}_{3}(4)$. Then $\Gamma(G)$ is just the point-line incidence graph of the projective plane $\mathrm{PG}(2,4)$. The transpose-inverse automorphism of $\mathrm{PSL}_{3}(4)$ gives an automorphism of $\Gamma(G)$, which interchanges \mathcal{H}_{1} and \mathcal{H}_{2}. Thus $\Gamma(G)$ is a symmetric graph.
(3) Assume that $\operatorname{soc}(G)=\mathrm{PSp}_{4}(4)$. Then $\Gamma(G)$ is the incidence graph of a generalized 4 -gon of order $(4,4)$, refer to [7, p. 44]. In this case, the graph automorphism of $\mathrm{PSp}_{4}(4)$ interchanges \mathcal{H}_{1} and \mathcal{H}_{2}. Thus $\Gamma(G)$ is a symmetric graph.
(4) Assume that $\operatorname{soc}(G)=\mathrm{G}_{2}(4)$. Then $\Gamma(G)$ is the incidence graph of a generalized hexagon of order $(4,4)$, and $\operatorname{Aut}(\Gamma(G))$ contains the automorphism group of this generalized hexagon, refer to [7, p. 97].

Theorem 5.10. Let $\Gamma=(V, E)$ be a connected G-semisymmetric pentavalent graph, and $\{u, w\} \in E$. Assume that G is almost simple and acts primitively on both parts of Γ. Assume that G_{u} and G_{w} are not conjugate in G. Then Γ is isomorphic to one of the graphs constructed as in Example 5.9, and $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut}(G)$. In particular, Γ is semisymmetric if and only if $\operatorname{soc}(G)=\mathrm{G}_{2}(4)$.

Proof. Since G_{u} and G_{w} are not conjugate in G, by Theorem 4.4, the triple (G, G_{u}, G_{w}) is described as in Table 2. Noting that $\left|G_{u}:\left(G_{u} \cap G_{w}\right)\right|=5$, by Lemmas 5.4-5.8, One of Rows 1, 7, 9 and 10 of Table 2 occurs. Define $\tau: V \rightarrow \mathcal{H}_{1} \cup \mathcal{H}_{2}$ by $u^{g} \mapsto G_{u}^{g}$ and $w^{g} \mapsto G_{w}^{g}$. It is easily shown that τ is an isomorphism from Γ to the graph $\Gamma(G)$ defined as in Example 5.9.

Without loss of generality, we let $\Gamma=\Gamma(G)$. Thus, by the argument in Example 5.9, $\operatorname{Aut}(\Gamma)$ has a subgroup isomorphic to $\operatorname{Aut}(G)$, which acts transitively on the vertex set V of Γ unless $\operatorname{soc}(G)=\mathrm{G}_{2}(4)$. Let $A=$ Aut $^{+}(\Gamma)$. Then $|\operatorname{Aut}(\Gamma): A| \leqslant 2, G \leqslant A$, Γ is A-semisymmetric, and A acts primitively (and faithfully) on both parts of Γ. It follows from Lemma 4.1 that A is an almost simple group. Suppose that A_{u} and A_{w} are conjugate in A. By Theorem 4.4, as a primitive group, A has a suborbit of length 5 on U. Then A is known by [11, Theorem 1.1], which implies that A has no subgroup isomorphic to G, a contradiction. Thus A_{u} and A_{w} are not conjugate in A. Again by Theorem 4.4, we conclude that $A \leqslant \operatorname{Aut}(G) \leqslant \operatorname{Aut}(\Gamma)$. If $\operatorname{soc}(G) \neq \mathrm{G}_{2}(4)$ then, since $|\operatorname{Aut}(\Gamma): A| \leqslant 2$ and $\operatorname{Aut}(G)$ acts transitively on V, we have $\operatorname{Aut}(\Gamma)=\operatorname{Aut}(G)$.

Assume that $\operatorname{soc}(G)=\mathrm{G}_{2}(4)$. Without loss of generality, we may let $G=\mathrm{G}_{2}(4) .2$, the automorphism group of a generalized hexagon of order $(4,4)$. Then $A=G$. Suppose that $G \neq \operatorname{Aut}(\Gamma)$. Then $\operatorname{Aut}(\Gamma)$ is not almost simple and acts transitively on V. Let N be a minimal normal subgroup of $\operatorname{Aut}(\Gamma)$ with $N \neq \operatorname{soc}(G)$. Then $G N=G \times N$. Recalling that $|\operatorname{Aut}(\Gamma): G| \leqslant 2$, we have $\operatorname{Aut}(\Gamma)=G \times N$ and $|N|=2$. Set $N=\langle\sigma\rangle$. Choose $g \in G$ with $u^{g \sigma}=w$. We have $G_{w}=\left(G_{u}\right)^{g \sigma}=G_{u}^{g}$, which contradicts that G_{u}
and G_{w} are not conjugate in G. Thus $\operatorname{Aut}(\Gamma)=G$, and so Γ is semisymmetric. Then the theorem follows.

6. Graphs with conjugate stabilizers

This section is to classify those graphs satisfying (1) of Theorem 4.4.
In the following, we assume that G is an almost simple primitive permutation group on a set U with a suborbit of length 5 . Fix a point $u \in U$. Then the pair $\left(G, G_{u}\right)$ is given as in [11, Tables 1 and 2]. Note that all subgroups of G_{u} with index 5 are conjugate in G_{u}. By lemma 2.3 and [11, Tables 4 and 5], we have the following lemma.

Lemma 6.1. The pair $\left(G, G_{u}\right)$ is listed in Table 3, where c is the number of choices of G_{u} up to G-conjugacy, K is a subgroup of G_{u} with index $5, N=\mathbf{N}_{G}(K)$, r_{1} and r_{2} are the numbers of self paired and nonself paired suborbits of length 5 of G at u, respectively.

	G	G_{u}	c	N/K	r_{1}	r_{2}	Conditions
1	$\mathrm{A}_{5}, \mathrm{~S}_{5}$	$\mathrm{D}_{10}, \mathrm{AGL}_{1}(5)$	1	\mathbb{Z}_{2}	1	0	
2	PGL_{2} (9)	D_{20}	1	\mathbb{Z}_{2}	1	0	
3	M_{10}	$\mathrm{AGL}_{1}(5)$	1	\mathbb{Z}_{2}	1	0	
4	$\mathrm{P}^{\mathrm{P}} \mathrm{L}_{2}(9)$	$\mathrm{AGL}_{1}(5) \times \mathbb{Z}_{2}$	1	\mathbb{Z}_{2}	1	0	
5	$\mathrm{PGL}_{2}(11)$	D_{20}	1	\mathbb{Z}_{2}	1	0	
6	A_{9}	$\left(\mathrm{A}_{5} \times \mathrm{A}_{4}\right): \mathbb{Z}_{2}$	1	\mathbb{Z}_{2}	1	0	
7	S_{9}	$\mathrm{S}_{5} \times \mathrm{S}_{4}$	1	\mathbb{Z}_{2}	1	0	
8	$\mathrm{PSL}_{2}(19)$	D_{20}	1	\mathbb{Z}_{3}	0	2	
9	Suz(8)	$\mathrm{AGL}_{1}(5)$	1	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	3	0	
10	$\mathrm{J}_{3} \cdot \mathbb{Z}_{o}$	$\mathrm{AGL}_{2}(4) . \mathbb{Z}_{o}$	1	\mathbb{Z}_{2}	1	0	$o \in\{1,2\}$
11	Th	S_{5}	1	\mathbb{Z}_{2}	1	0	
12	$\mathrm{PSL}_{2}(p)$	A_{5}	2	\mathbb{Z}_{2}	1	0	$p \equiv \pm 1, \pm 9(\bmod 40)$
13	$\mathrm{PSL}_{2}\left(p^{2}\right)$	A_{5}	2	\mathbb{Z}_{2}	1	0	$p \equiv \pm 3(\bmod 10)$
14	$\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right)$	S_{5}	2	\mathbb{Z}_{2}	1	0	$p \equiv \pm 3(\bmod 10)$
15	$\mathrm{PSp}_{6}(p)$	S_{5}	2	\mathbb{Z}_{2}	1	0	$p \equiv \pm 1(\bmod 8)$
16	$\mathrm{PSp}_{6}(3)$	A_{5}	1	\mathbb{Z}_{3}	0	2	
17	$\mathrm{PSp}_{6}(p)$	A_{5}	1	\mathbb{Z}_{p-1}	1	$p-3$	$p \equiv 13,37,43,67(\bmod 120)$
18	$\mathrm{PSp}_{6}(p)$	A_{5}	1	\mathbb{Z}_{p+1}	1	$p-1$	$p \equiv 53,77,83,107(\bmod 120)$
19	$\mathrm{PGSp}_{6}(p)$	S_{5}	1	\mathbb{Z}_{2}	1	0	$11 \leqslant p \equiv \pm 3(\bmod 8)$

Table 3. Almost simple primitive groups with a suborbit of length 5.

Remark 6.2. For one of Rows $12-15$ in Table 3, the group G has two nonequivalent permutation representations of degree $\left|G: G_{u}\right|$. Nevertheless, the resulting permutation groups have isomorphic orbital digraphs.
Lemma 6.3. Let $G=\operatorname{PSp}_{6}(p)$ be as in Rows 16-18 of Table 3, and let K be a subgroup of G_{u} with index 5 . Then $\mathbf{N}_{\operatorname{PGSp}_{6}(p)}(K) / K$ is a dihedral group.
Proof. Choose a maximal subgroup M of $\operatorname{PGSp}_{6}(p)$ with $G_{u} \leqslant M \cong \mathrm{~S}_{5}$, refer to [3, Table 8.29]. Let $\delta \in M \backslash G_{u}$ be an involution. Without loss of generality, we assume that K is
normalized by δ. Then $\mathbf{N}_{\mathrm{PGSp}}^{6}(p)(K)=\mathbf{N}_{G}(K):\langle\delta\rangle$, yielding $\mathbf{N}_{\mathrm{PGSp}_{6}(p)}(K) / K=\langle\bar{x}\rangle:\langle\bar{\delta}\rangle$, where $\langle\bar{x}\rangle=\mathbf{N}_{G}(K) / K$ and δ is the image of δ in $\mathbf{N}_{\mathrm{PGSp}_{6}(p)}(K) / K$.

Let $\bar{y} \in \mathbf{C}_{\langle\bar{x}\rangle}(\bar{\delta})$, and y be a preimage of \bar{y} in $\mathbf{N}_{G}(K)$. Then $\delta^{-1} y^{-1} \delta y \in K$, and so $\delta^{y} \in K\langle\delta\rangle$. This implies that $y \in \mathbf{N}_{\operatorname{PGSp}_{6}(p)}(K\langle\delta\rangle)$, and so $\bar{y} \in \mathbf{N}_{\operatorname{PGSp}_{6}(p)}(K\langle\delta\rangle) /(K\langle\delta\rangle)$. Thus $\mathbf{C}_{\langle\bar{x}\rangle}(\bar{\delta}) \leqslant \mathbf{N}_{\operatorname{PGSp}_{6}(p)}(K\langle\delta\rangle) /(K\langle\delta\rangle)$. If $p=3$ then $\left|\mathbf{N}_{\mathrm{PGSp}_{6}(p)}(K\langle\delta\rangle) /(K\langle\delta\rangle)\right|=1$ by [11, Table $5(13)$], and so $\mathbf{C}_{\langle\bar{x}\rangle}(\bar{\delta})=1$, yielding $\mathbf{N}_{\mathrm{PGSp}_{6}(p)}(K) / K=\langle\bar{x}\rangle:\langle\bar{\delta}\rangle \cong \mathrm{D}_{6}$.

Now let $p>3$, in this case, we have $13 \leqslant p \equiv \pm 1(\bmod 8)$. Noting that $K\langle\delta\rangle$ has index 5 in M, by [11, Table $5(14)], \mathbf{N}_{\mathrm{PGSp}_{6}(p)}(K\langle\delta\rangle) /(K\langle\delta\rangle) \cong \mathbb{Z}_{2}$, and so $\left|\mathbf{C}_{\langle\bar{x}\rangle}(\bar{\delta})\right| \leqslant 2$. It is easily shown that $\langle\bar{x}\rangle$ contains an involution which centralizes $\bar{\delta}$. Then $\mathbf{C}_{\langle\bar{x}\rangle}(\bar{\delta}) \cong \mathbb{Z}_{2}$.

Let n be the order of \bar{x}. Then $n=p+1$ or $p-1, n \geqslant 10$, and n is indivisible by 8 as $p \equiv \pm 3(\bmod 8)$. Set $\bar{x}^{\bar{\delta}}=\bar{x}^{r}$, where $0 \leqslant r \leqslant n-1$. We have $\bar{x}=\bar{x}^{\bar{\delta}^{2}}=\bar{x}^{r^{2}}$, and so $r^{2} \equiv 1(\bmod n)$. Let d be the greatest common divisor of $r+1$ and n. Then $r-1$ is divisible by $\frac{n}{d}$. Thus $\left(\bar{x}^{d}\right)^{\bar{\delta}}=\bar{x}^{d r}=\bar{x}^{d}$, yielding $\bar{x}^{d} \in \mathbf{C}_{\langle\bar{x}\rangle}(\bar{\delta})$. This implies that $\bar{x}^{2 d}=1$, and so $2 d \equiv 0(\bmod n)$, yielding $d=n$ or $\frac{n}{2}$. In addition, since n is even and $r^{2}-1$ is divisible by n, both $r-1$ and $r+1$ are even, and hence d is even as is d the greatest common divisor of $r+1$ and n. Suppose that $d=\frac{n}{2}$. Then n is divisible by 4 but not by 8 , and so d is indivisible by 4 . By the choice of d, we have $r+1 \equiv 2(\bmod 4)$, and then $r-1 \equiv 0(\bmod 4)$. Thus $\left(\bar{x}^{\frac{n}{4}}\right)^{\bar{\delta}}=\bar{x}^{\frac{n}{4} r}=\bar{x}^{\frac{n}{4}(r-1)+\frac{n}{4}}=\bar{x}^{\frac{n}{4}}$, yielding $\bar{x}^{\frac{n}{4}} \in \mathbf{C}_{\langle\bar{x}\rangle}(\bar{\delta})$. This forces that $\bar{x}^{\frac{n}{4}}$ has order 1 or 2 , and so $n=4$ or 8 . By $n=p \pm 1$, we have $p<9$, which contradicts that $p \geqslant 13$. Therefore, $d=n$. Then $\bar{x}^{\bar{\delta}}=\bar{x}^{r}=\bar{x}^{r+1-1}=\bar{x}^{-1}$. This says that $\langle\bar{x}\rangle:\langle\bar{\delta}\rangle$ is a dihedral group, and the lemma follows.

Given a subgroup K of G_{u} with index 5 , by Lemma 2.3, every suborbit of length 5 has the form of $\Delta_{x}(u):=\left\{u^{x h} \mid h \in G_{u}\right\}$, where $x \in \mathbf{N}_{G}(K) \backslash K$. Denote by Σ_{x} the orbital digraph of G associated with $\Delta_{x}(u)$. In the following, we always identify G with the subgroup \tilde{G} of $\operatorname{Aut}\left(\Sigma_{x}^{(2)}\right)$ induced by G. Recall that there exists an ι isomorphism from Σ_{x} to $\Sigma_{x^{-1}}$, and each $\delta \in \operatorname{Aut}\left(G, G_{u}, K\right)$ defines an isomorphism $\tilde{\delta}: U \times \mathbb{Z}_{2} \rightarrow$ $U \times \mathbb{Z}_{2},\left(u^{g}, i\right) \mapsto\left(u^{g^{\delta}}, i\right)$ from $\Sigma_{x}^{(2)}$ to $\Sigma_{x^{\delta}}^{(2)}$, see Section 2.

Lemma 6.4. Let G be a primitive group in Table 3, and let $x, y \in \mathbf{N}_{G}(K) \backslash K$. Then
(1) $\Sigma_{x}^{(2)} \cong \Sigma_{x^{-1}}^{(2)}$;
(2) $\Sigma_{x}^{(2)}$ is a symmetric graph;
(3) $\operatorname{Aut}\left(\Sigma_{x}^{(2)}\right)= \begin{cases}\operatorname{Aut}\left(\Sigma_{x}\right) \times\langle\iota\rangle, & \text { if } \Delta_{x}=\Delta_{x^{-1}} \\ G:\langle\tilde{\delta} \iota\rangle \cong \operatorname{Aut}(G) \text { with } \delta \in \operatorname{Aut}\left(G, G_{u}, K\right), & \text { otherwise }\end{cases}$
(4) $\Sigma_{x}^{(2)} \cong \Sigma_{y}^{(2)}$ if and only if $\Delta_{x}=\Delta_{y}, \Delta_{x^{-1}}=\Delta_{y}$ or $G=\operatorname{Suz}(8)$.

Proof. Part (1) and part (2) for self-paired $\Delta_{x}(u)$ follow directly form Lemma 2.1. In addition, if $\Delta_{x}(u)$ is self-paired then $\operatorname{Aut}\left(\Sigma_{x}^{(2)}\right) \geqslant \operatorname{Aut}\left(\Sigma_{x}\right) \times\langle\iota\rangle$ and, by [11, Theorem 1.2], $\operatorname{Aut}\left(\Sigma_{x}\right)$ is almost simple with socle soc (G) unless $G=\mathrm{A}_{5}$ or S_{5} with $\operatorname{Aut}\left(\Sigma_{x}\right)=\mathrm{P}^{2} \mathrm{~L}_{2}(9)$.

Assume that Δ_{x} is not self-paired. Then G is described as in Rows 8, 16-18 of Table 3. By Lemma 6.3 and calculation with GAP for $G=\mathrm{PSL}_{2}(19)$, we conclude that there is an involution $\delta \in \operatorname{Aut}\left(G, G_{u}, K\right)$ with $(K x)^{\delta}=K x^{-1}$. Then, by Lemma 2.2, $\tilde{\delta}_{\iota} \in \operatorname{Aut}\left(\sum_{x}^{(2)}\right)$. It is easy to check that $\tilde{\delta} \iota$ is an involution and interchanges $U \times\{0\}$ and $U \times\{1\}$. In particular, $\Sigma_{x}^{(2)}$ is a symmetric graph, and part (2) of the lemma follows. Moreover, $\tilde{\delta}_{\iota}$ normalizes G, and $G\langle\tilde{\delta} \iota\rangle \cong \operatorname{Aut}(G)$.

Let $A=\operatorname{Aut}^{+}\left(\Sigma_{x}^{(2)}\right)$. Then $G \leqslant A$, and if Δ_{x} is self-paired then $\operatorname{Aut}\left(\Sigma_{x}\right) \leqslant A$. For the self-paired case, replacing G by $\operatorname{Aut}\left(\Sigma_{x}\right)$ if necessary, we may choose $G=\operatorname{Aut}\left(\Sigma_{x}\right)$. Note that $\Sigma_{x}^{(2)}$ is A-semisymmetric, and A acts primitively (and faithfully) on both $U \times\{0\}$ and $U \times\{1\}$. It follows from Lemma 4.1 that A is an almost simple group. Suppose that $A_{(u, 0)}$ and $A_{(u, 1)}$ are not conjugate in A. Applying Theorem 4.4 to the pair $\left(A, A_{(u, 0)}\right)$, we conclude that either $\left|A: A_{(u, 0)}\right| \neq\left|G: G_{u}\right|$ or A has no subgroup isomorphic to G, a contradiction. Then $A_{(u, 0)}$ and $A_{(u, 1)}$ are conjugate in A. Applying Theorem 4.4 and [11, Theorem 1.1] to the pair $\left(A, A_{(u, 0)}\right)$, we conclude that $A \leqslant G$, and so $A=G$. Since $\left|\operatorname{Aut}\left(\Sigma_{x}^{(2)}\right): A\right|=2$, part (3) of the lemma follows.

We next prove part (4) of this lemma. This is trivial if G has a unique suborbit of length 5 at u. If G has exactly two suborbits of length 5 at u, then these two suborbits are paired to each other, and (4) is true by (1). Assume that $G=\operatorname{Suz}(8)$. Then there is $\delta \in \operatorname{Aut}\left(G, G_{u}, K\right)$ such that $\langle\delta\rangle$ has order 3 and acts transitively on the 3 -set $\left\{K x \mid x \in N_{G}(K) \backslash K\right\}$, confirmed by GAP. It follows from Lemma 2.2 that the resulting standard double covers are isomorphic to every other. Thus, all that's left now is the case where G is given as in Rows 17 and 18 of Table 3.

Assume that G is given as in Row 17 or 18 of Table 3. Clearly, $\Sigma_{x}^{(2)} \cong \Sigma_{y}^{(2)}$ if $K x=K y$ or $K x^{-1}=K y$. Now let $\Sigma_{x}^{(2)} \cong \Sigma_{y}^{(2)}$, and pick an isomorphism λ from $\Sigma_{y}^{(2)}$ to $\Sigma_{x}^{(2)}$. We have $\operatorname{Aut}\left(\Sigma_{y}^{(2)}\right)=\lambda^{-1} \operatorname{Aut}\left(\Sigma_{x}^{(2)}\right) \lambda$. By (3) and [11, Theorem 1.2], $\operatorname{Aut}\left(\Sigma_{x}^{(2)}\right) \cong \operatorname{Aut}\left(\Sigma_{y}^{(2)}\right) \cong$ $\operatorname{PSp}_{6}(p) \times \mathbb{Z}_{2}$ or $\operatorname{PGSp}_{6}(p)$. Then $\operatorname{Aut}\left(\Sigma_{x}^{(2)}\right)$ and $\operatorname{Aut}\left(\Sigma_{y}^{(2)}\right)$ have a common characteristic subgroup G. Then G is normalized by λ. (Note, λ is a permutation on $U \times \mathbb{Z}_{2}$.) Replacing $\Sigma_{x}^{(2)}$ by $\Sigma_{x^{-1}}^{(2)}$, and λ by $\lambda \iota$ if necessary, we may assume that λ fixes both $U \times\{0\}$ and $U \times\{1\}$ setwise. Clearly, for each $g \in G$, we have an isomorphism λg from $\Sigma_{y}^{(2)}$ to $\Sigma_{x}^{(2)}$, which fixes both $U \times\{0\}$ and $U \times\{1\}$ setwise. Since G acts transitively on $U \times\{0\}$, replacing λ by λg for some $g \in G$, we may let $(u, 0)^{\lambda}=(u, 0)$.

Set $X=G\langle\lambda\rangle$. We have $G_{u} \unlhd X_{(u, 0)}=G_{u}\langle\lambda\rangle$, and thus we may further choose λ such that $K^{\lambda}=K$. Let $(u, 1)^{\lambda}=(w, 1)$, and choose $g \in G$ with $w=u^{g}$. Then

$$
G_{u}^{g}=G_{(u, 1)^{g}}=G_{(u, 1)^{\lambda}}=G \cap X_{(u, 1)^{\lambda}}=G \cap X_{(u, 1)}^{\lambda}=\left(G \cap X_{(u, 1)}\right)^{\lambda}=G_{u}^{\lambda}=G_{u}
$$

Since G_{u} is a maximal subgroup of G, we have $g \in G_{u}$, and so $w=u$. Thus λ fixes $(u, 1)$. Consider the neighborhoods $\left\{\left(u^{y h}, 1\right) \mid h \in G_{u}\right\}^{\lambda}$ and $\left\{\left(u^{x h}, 1\right) \mid h \in G_{u}\right\}$ of $(u, 0)$ in $\Sigma_{y}^{(2)}$ and $\Sigma_{x}^{(2)}$, respectively. Recalling that $(u, 0)^{\lambda}=(u, 0)$, we have

$$
\left\{\left(u^{x h}, 1\right) \mid h \in G_{u}\right\}=\left\{\left(u^{y h}, 1\right) \mid h \in G_{u}\right\}^{\lambda}=\left\{\left(u^{y h}, 1\right)^{\lambda} \mid h \in G_{u}\right\} .
$$

For $h \in G_{u}$, we have

$$
\left(u^{y h}, 1\right)^{\lambda}=(u, 1)^{y h \lambda}=(u, 1)^{(y h)^{\lambda}}=\left(u^{y^{\lambda} h^{\lambda}}, 1\right) .
$$

It follows that

$$
\left\{\left(u^{x h}, 1\right) \mid h \in G_{u}\right\}=\left\{\left(u^{y^{\lambda} h^{\lambda}}, 1\right) \mid h \in G_{u}\right\}=\left\{\left(u^{y^{\lambda} h}, 1\right) \mid h \in G_{u}\right\} .
$$

Then $\Delta_{x}(u)=\left\{u^{x h} \mid h \in G_{u}\right\}=\left\{u^{y^{\lambda} h} \mid h \in G_{u}\right\}=\Delta_{y^{\lambda}}(u)$, yielding $K x=K y^{\lambda}=$ $(K y)^{\lambda}$. Let $\bar{\lambda}$ be the automorphism of G induced by λ. Then $\bar{\lambda} \in \operatorname{Aut}(G, H, K)$. It follows from Lemma 6.3 that $(K y)^{\lambda}=(K y)^{\bar{\lambda}}=K y$ or $K y^{-1}$. Thus $K x=K y$ or $K y^{-1}$, and part (4) of the lemma follows. This completes the proof.

	Aut (Γ)	$(\operatorname{Aut}(\Gamma))_{u}$	G	n	Remarks
1	$\mathrm{P} \mathrm{\Gamma L}_{2}(9) \times \mathbb{Z}_{2}$	$\mathrm{AGL}_{1}(5) \times \mathbb{Z}_{2}$	$\begin{aligned} & \hline \mathrm{PGL}_{2}(9) \\ & \mathrm{M}_{10} \\ & \mathrm{P} \mathrm{\Gamma L}_{2}(9) \end{aligned}$	1	
2	$\mathrm{PGL}_{2}(11) \times \mathbb{Z}_{2}$	D_{20}	$\mathrm{PGL}_{2}(11)$	1	
3	$\mathrm{S}_{9} \times \mathbb{Z}_{2}$	$\mathrm{S}_{5} \times \mathrm{S}_{4}$	$\mathrm{S}_{9}, \mathrm{~A}_{9}$	1	
4	$\mathrm{PGL}_{2}(19)$	D_{20}	$\mathrm{PSL}_{2}(19)$	1	
5	Suz (8) $\times \mathbb{Z}_{2}$	AGL_{1} (5)	Suz(8)	1	
6	$\mathrm{J}_{3}: \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\mathrm{A}^{\text {L }}$ 2 (4)	$\mathrm{J}_{3}: \mathbb{Z}_{2}, \mathrm{~J}_{3}$	1	
7	$\mathrm{Th} \times \mathbb{Z}_{2}$	S_{5}	Th	1	
8	$\mathrm{PSL}_{2}(p) \times \mathbb{Z}_{2}$	A_{5}	$\mathrm{PSL}_{2}(p)$	1	$p \equiv \pm 1, \pm 9(\bmod 40)$
9	$\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right) \times \mathbb{Z}_{2}$	S_{5}	$\begin{aligned} & \mathrm{P}_{\mathrm{LL}}^{2}\left(p^{2}\right) \\ & \mathrm{PSL}_{2}\left(p^{2}\right) \\ & \mathrm{A}_{n}, \mathrm{~S}_{n} \end{aligned}$	1	$3<p \equiv \pm 3(\bmod 10)$ $p=3, n \in\{5,6\}$
10	$\mathrm{PSp}_{6}(p) \times \mathbb{Z}_{2}$	S_{5}	$\mathrm{PSp}_{6}(p)$	1	$p \equiv \pm 1(\bmod 8)$
11	$\mathrm{PGSp}_{6}(3)$	A_{5}	$\mathrm{PSp}_{6}(3)$	1	
12	$\mathrm{PGSp}_{6}(p)$	A_{5}	$\mathrm{PSp}_{6}(p)$	$\frac{p-3}{2}$	$p \equiv 13,37,43,67(\bmod 120)$
13	$\mathrm{PGSp}_{6}(p)$	A_{5}	$\mathrm{PSp}_{6}(p)$	$\frac{p-1}{2}$	$p \equiv 53,77,83,107(\bmod 120)$
14	$\mathrm{PGSp}_{6}(p) \times \mathbb{Z}_{2}$	S_{5}	$\begin{aligned} & \operatorname{PGSp}_{6}(p) \\ & \operatorname{PSp}_{6}(p) \\ & \hline \end{aligned}$	1	$11 \leqslant p \equiv \pm 3(\bmod 8)$

Table 4. Examples from standard double covers.

If Σ_{x} is a seif-paired orbital digraph of some primitive group G described as in Table 3, then $\operatorname{Aut}\left(\Sigma_{x}\right)$ is known by [11, Theorem 1.2]. Thus, by Theorem 4.4, Lemmas 6.1 and 6.4, we have the following theorem.

Theorem 6.5. Let $\Gamma=(V, E)$ be a connected G-semisymmetric pentavalent graph, and $\{u, w\} \in E$. Assume that G is almost simple and acts primitively on both parts of Γ. Assume that G_{u} and G_{w} are conjugate in G. Then Γ is a symmetric graph, and the triple $\left(\operatorname{Aut}(\Gamma),(\operatorname{Aut}(\Gamma))_{u}, G\right)$ is listed in Table 4, where the fifth column gives the number n of nonisomorphic graphs having the same automorphism group.

7. Proof of Theorem 1.1

Let $\Gamma=(V, E)$ be a connected G-semisymmetric pentavalent graph, and let U and W be the G-orbits on V. Assume that G acts primitively on both U and W. If either $|U|=5$ or G acts unfaithfully on one of U and W, then Γ is isomorphic to the complete bipartite graph $\mathrm{K}_{5,5}$, desired as in (1) of Theorem 1.1. If G is almost simple then, by Theorem 4.4, (5) and (6) of Theorem 1.1 follow from Theorems 5.10 and 6.5 , respectively. Thus, by Lemma 4.1, all that's left now is to settle the case where G is an affine primitive permutation group on U (and W).

Assume G is an affine primitive permutation group on U (and W). By Lemma 4.1, $\operatorname{soc}(G) \cong \mathbb{Z}_{p}^{k}$, where $1 \leqslant k \leqslant 4$ and p is a prime. By Lemma 2.5 , Aut (Γ) contains a subgroup which acts regularly on V, and so Γ is symmetric. If $k=1$ then Γ has order twice a prime, and so Theorem 1.1 (2) occurs by [5, Theorem 2.4 and Table 1].

Let $k>1$ from now on, and fix $\{u, w\} \in E$ with $u \in U$ and $w \in W$. Let $v=u$ or w. Then, by [24, Theorem 2.3], G_{v} acts faithfully on $\Gamma(v)$, see also [21, Lemma 2.4]. Thus
$(*) \operatorname{soc}(G) \cong \mathbb{Z}_{p}^{k}$, and $G_{v} \cong \mathbb{Z}_{5}, \mathrm{D}_{10}, \mathrm{AGL}_{1}(5), \mathrm{A}_{5}$ or S_{5}, where $2 \leqslant k \leqslant 4$.
We first deal with the case where G_{u} and G_{w} are not conjugate in G.
Lemma 7.1. If G_{u} and G_{w} are not conjugate in G, then Theorem 1.1 (3) holds.
Proof. Assume that G_{u} and G_{w} are not conjugate in G. Noticing (*), if $p>5$ then both G_{u} and G_{w} are complements in G of the normal Sylow p-subgroup, and so they are conjugate in G by the Schur-Zassenhaus Theorem, a contradiction. Thus $p \leqslant 5$. Dealing with G as a primitive subgroup of the symmetric group $\mathrm{S}_{p^{k}}$, by calculation with GAP, we conclude that $p^{k}=5^{3}$, and the following statements hold.
(i) Up to conjugacy, G is contained in a unique primitive subgroup of S_{125}, say $X \cong \mathbb{Z}_{5}^{3}: S_{5}$, and $\mathbb{Z}_{5}^{3}: \mathrm{A}_{5} \cong X^{\prime} \leqslant G$, where X^{\prime} is the derived subgroup of X which is also a primitive subgroup of S_{125}. In particular, $G=X$ or X^{\prime}, and $G_{w} \cong G_{u} \cong \mathrm{~S}_{5}$ or A_{5}.
(ii) G has 5 conjugacy classes of (maximal) subgroups isomorphic to G_{u}.
(iii) Fix a point-stabilizer H_{1} of the primitive subgroup G of S_{125}. We have $\mathbf{N}_{\mathrm{S}_{125}}(G) \cong$ $\mathbb{Z}_{5}^{3}:\left(\mathbb{Z}_{4} \times \mathrm{S}_{5}\right)$, and $\mathbf{N}_{\mathbf{N}_{\mathrm{S}_{125}}(G)}\left(H_{1}\right) \cong \mathbb{Z}_{4} \times \mathrm{S}_{5}$.
(iv) There exists $H_{2} \leqslant G$ such $H_{2} \cong H_{1},\left|H_{1}:\left(H_{1} \cap H_{2}\right)\right|=5$, and H_{2} is not conjugate to H_{1} in G. Let $\langle\beta\rangle$ be the center of $\mathbf{N}_{\mathbf{N}_{\mathrm{S}_{125}}(G)}\left(H_{1}\right)$. Then $H_{1}, H_{2}, H_{2}^{\beta}, H_{2}^{\beta^{2}}$ and $H_{2}^{\beta^{3}}$ are not conjugate in G.
(v) Let $\mathcal{H}_{1}=\left\{H_{1}^{x} \mid x \in A\right\}$ and $\mathcal{H}_{2}=\left\{H_{2}^{x} \mid x \in G\right\}$. Then \mathcal{H}_{2} contains exactly 5 members, each intersects H_{1} at a subgroup of index 5.
Then, by Lemma 5.2, we have a biprimitive $\operatorname{Inn}(G)$-semisymmetric graph $\Gamma(G)$ of valency 5. It is easily shown that, up to isomorphism the graph $\Gamma(G)$ is independent of the choice of G. In particular, Aut ${ }^{+}(\Gamma(G)) \gtrsim \mathbb{Z}_{5}^{3}: S_{5}$.

Clearly, $\Gamma(G) \not \not \mathrm{K}_{5,5}$, and so Aut ${ }^{+}(\Gamma(G))$ acts faithfully (and of course, primitively) on both parts of $\Gamma(G)$. By Lemma 4.1 and checking the order of those graphs in Theorems 5.10 and 6.5 , we conclude that $\mathrm{Aut}^{+}(\Gamma(G))$ is an affine primitive group on each part of $\Gamma(G)$. Then (*) holds for Aut ${ }^{+}(\Gamma(G))$, and thus the stabilizer of H_{1} in Aut ${ }^{+}(\Gamma(G))$ has order a divisor of 120 . It follows that Aut $^{+}(\Gamma(G)) \cong \mathbb{Z}_{5}^{3}: \mathrm{S}_{5}$. By Lemma 2.5, $\Gamma(G)$ has an automorphism of order 2, which interchanges two parts of $\Gamma(G)$. Then $\operatorname{Aut}(\Gamma(G)) \cong\left(\mathbb{Z}_{5}^{3}: \mathrm{S}_{5}\right): \mathbb{Z}_{2}$.

Finally, without loss of generality, we may choose $G_{u}=H_{1}$ and $G_{w}=H_{2}^{\beta^{i}}$ for some $i \in\{0,1,2,3\}$. Define a map $\theta: U \cup W \rightarrow \mathcal{H}_{1} \cup \mathcal{H}_{2}$ by

$$
u^{x} \mapsto H_{1}^{\beta^{i} x \beta^{-i}}, w^{y} \mapsto H_{2}^{\beta^{i} y \beta^{-i}} .
$$

It is easily shown that θ is an isomorphism from Γ to $\Gamma(G)$. Then the lemma follows.
Before dealing with the conjugate case, we first present a example in the following, which in fact includes all possible desired graphs. Consider \mathbb{Z}_{p}^{k} as a k-dimensional row vector space over the field \mathbb{Z}_{p}, and view every matrix in $\mathrm{GL}_{k}(p)$ as an invertible linear transformation of \mathbb{Z}_{p}^{k} by right multiplication. For $\alpha \in \mathrm{GL}_{k}(p)$ and $\mathbf{u} \in \mathbb{Z}_{p}^{2}$, define the affine transformation $t_{\alpha, \mathbf{u}}: \mathbb{Z}_{p}^{k} \rightarrow \mathbb{Z}_{p}^{k}$ by $t_{\alpha, \mathbf{u}}: \mathbf{v} \mapsto \mathbf{v} \alpha+\mathbf{u}$.

Example 7.2. Let p be a prime.
(1) Suppose that $k=2, p \equiv \pm 1(\bmod 5)$, and there exist nonzero $b, c \in \mathbb{Z}_{p}$ with $c^{2} b^{2}+b=-c^{3}$ and $b^{4}+3 c b^{2}=-c^{2}$. Let $\alpha_{0}=\left(\begin{array}{ll}0 & 1 \\ c & b\end{array}\right)$. We have $\alpha_{0}^{5}=1$. Let $\mathbf{e}_{1}=(1,0)$ and set $S_{c, b}=\left\{\mathbf{e}_{1} \alpha_{0}^{i} \mid 0 \leqslant i \leqslant 4\right\}$. Then $\operatorname{BCay}\left(\mathbb{Z}_{p}^{2}, S_{c, b}\right)$ is connected and of valency 5. Set $X=\left\{t_{\alpha, \mathbf{u}} \mid \alpha \in\left\langle\alpha_{0}\right\rangle, \mathbf{u} \in \mathbb{Z}_{p}^{2}\right\}$, and identify X with the subgroup of Aut ${ }^{+}\left(\mathrm{BCay}\left(\mathbb{Z}_{p}^{2}, S_{c, b}\right)\right)$ induced by X, see the second paragraph of Section 2. Then BCay $\left(\mathbb{Z}_{p}^{2}, S_{c, b}\right)$ is X-semisymmetric.
(2) Suppose that $k=4, p \neq 5$ and $d \in \mathbb{Z}_{p}$ with $d^{5}=-1$. Let

$$
\alpha_{0}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
d & -d^{2} & d^{3} & -d^{4}
\end{array}\right)
$$

and $\mathbf{e}_{1}=(1,0,0,0)$. Set $S_{d}=\left\{\mathbf{e}_{1} \alpha_{0}^{i} \mid 0 \leqslant i \leqslant 4\right\}$ and $X=\left\{t_{\alpha, \mathbf{u}} \mid \alpha \in\left\langle\alpha_{0}\right\rangle, \mathbf{u} \in \mathbb{Z}_{p}^{2}\right\}$. Identify X with the subgroup of $\mathrm{Aut}^{+}\left(\mathrm{BCay}\left(\mathbb{Z}_{p}^{4}, S_{d}\right)\right)$ induced by X. Then BCay $\left(\mathbb{Z}_{p}^{4}, S_{d}\right)$ is a connected X-semisymmetric pentavalent graph.

Let p be a prime with $p \equiv \pm 1(\bmod 5)$. The law of quadratic reciprocity, refer to $[16$, Theorem 1, p.53], asserts that 5 is a quadratic residue $(\bmod p)$. Then $x^{2}-5=0$ has exactly two solutions in \mathbb{Z}_{p}, denoted by $\sqrt{5}$ and $-\sqrt{5}$, respectively. For $a, b \in \mathbb{Z}_{p}$ with $b \neq 0$, write $a b^{-1}$ as $\frac{a}{b}$.

Lemma 7.3. Let $S_{c, d}$ and X be as in Example 7.2 (1). Then the followings are true.
(1) If X is a primitive subgroup of $\mathrm{AGL}_{2}(p)$, then $p \equiv-1(\bmod 5), c=-1$ and $b=\frac{-1 \pm \sqrt{5}}{2}$.
(2) There exists an involution $\beta_{0} \in \mathrm{GL}_{k}(p)$ with $\left\langle\alpha_{0}, \beta_{0}\right\rangle \cong \mathrm{D}_{10}$ and $S_{c, b} \beta_{0}=S_{c, b}$ if and only if $c=-1$ and $b=\frac{-1 \pm \sqrt{5}}{2}$; in this case, $\left\{t_{\alpha, \mathbf{u}} \mid \alpha \in\left\langle\alpha_{0}, \beta_{0}\right\rangle, \mathbf{u} \in \mathbb{Z}_{p}^{2}\right\}$ is a primitive subgroup of $\mathrm{AGL}_{2}(p)$.

Proof. We first prove part (1) of the lemma. Assume that X is a primitive subgroup of $\mathrm{AGL}_{2}(p)$. Then $p \equiv-1(\bmod 5)$ by $[11$, Theorem 1.1]. This implies that $p-1 \not \equiv$ $0(\bmod 10)$. Let $b, c \in \mathbb{Z}_{p} \backslash\{0\}$ with $c^{2} b^{2}+b=-c^{3}$ and $b^{4}+3 c b^{2}=-c^{2}$. Put $f=\frac{b^{2}}{c}$. By $b^{4}+3 c b^{2}=-c^{2}$, we have $f^{2}+3 f+1=0$. By $c^{2} b^{2}+b=-c^{3}$ and $b^{2}=f c$, we have $c^{3} f+b=-c^{3}$, i.e., $-b=c^{3}(f+1)$. Then $c^{6}(f+1)^{2}=b^{2}=f c$, and so $c^{5}(f+1)^{2}=f$. Since $(f+1)^{2}=f^{2}+2 f+1=-f$, we have $-c^{5} f=f$, and so $c^{5}=-1$ as $f \neq 0$. Noting that $c^{10}=1$, if $c \neq-1$ then $p-1$ is divisible by 10 , which is impossible. Thus we have $c=-1$, or equivalently, $b^{2}+b=1$. Then $b=\frac{-1 \pm \sqrt{5}}{2}$, as desired.

Now we prove part (2) of the lemma. Let $\mathbf{e}_{i}=\mathbf{e}_{1} \alpha_{0}^{i-1}$ be as in Example 7.2 (1), where $i \in\{1,2,3,4,5\}$. If $c=-1$ and $b=\frac{-1 \pm \sqrt{5}}{2}$, then $\left(\begin{array}{cc}1 & 0 \\ b & -1\end{array}\right)$ is one desired β_{0}. Conversely, suppose that $\left\langle\alpha_{0}, \beta_{0}\right\rangle \cong \mathrm{D}_{10}$ and $S_{c, b} \beta_{0}=S_{c, b}$ for some $\beta_{0} \in \mathrm{GL}_{2}(p)$. Then the permutation on $S_{c, b}$ induced by β_{0} is a product of two disjoint transpositions, say $\left(\mathbf{e}_{2}, \mathbf{e}_{5}\right)\left(\mathbf{e}_{3}, \mathbf{e}_{4}\right)$ without loss of generality. By straightforward calculation, we get $c=-1$,
and then $b=\frac{-1 \pm \sqrt{5}}{2}$. Further calculation shows that $\left\langle\alpha_{0}, \beta_{0}\right\rangle$ does not fixes any 1dimensional subspace of \mathbb{Z}_{p}^{2}. Then we have a primitive subgroup $\left\{t_{\alpha, \mathbf{u}} \mid \alpha \in\left\langle\alpha_{0}, \beta_{0}\right\rangle, \mathbf{u} \in\right.$ $\left.\mathbb{Z}_{p}^{2}\right\}$ of $\mathrm{AGL}_{2}(p)$. This completes the proof.

Lemma 7.4. Let S_{d} and X be as in Example 7.2 (2). If X is a primitive subgroup of $\mathrm{AGL}_{4}(p)$ then $d=-1$. If $d=-1$ there exists $H \leqslant \mathrm{GL}_{4}(p)$ with $H \cong \mathrm{~S}_{5}$ such that $S_{d} \alpha=S_{d} \alpha$ for all $\alpha \in H$, and $\left\{t_{\alpha, \mathbf{u}} \mid \alpha \in H, \mathbf{u} \in \mathbb{Z}_{p}^{4}\right\}$ is a primitive subgroup of $\mathrm{AGL}_{4}(p)$.

Proof. Suppose that $d \neq-1$. By $d^{5}=-1$, we have $d^{4}-d^{3}+d^{2}-d+1=0$. Calculation shows that 1 is an eigenvalue of α_{0} in \mathbb{Z}_{p}. It follows that X is not a primitive subgroup of $\mathrm{AGL}_{4}(p)$. This implies the first part of the lemma.

Assume that $d=-1$. Let $\mathbf{e}_{i}=\mathbf{e}_{1} \alpha_{0}^{i-1}$ for $i \in\{1,2,3,4,5\}$. Noting that $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$ is a basis of \mathbb{Z}_{p}^{4}, every permutation on $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ extends naturally an invertible linear transformation of \mathbb{Z}_{p}^{4}, which fixes $\mathbf{e}_{5}=(-1,-1,-1,-1)$. It follows that $\mathrm{GL}_{4}(p)$ has a subgroup $H \cong S_{5}$ which fixes S_{d}. Finally, by [11, Lemma 3.4], $\left\{t_{\alpha, \mathbf{u}} \mid \alpha \in H, \mathbf{u} \in \mathbb{Z}_{p}^{4}\right\}$ is a primitive subgroup of $\mathrm{AGL}_{4}(p)$. This completes the proof.

Corollary 7.5. Let $S_{c, b}$ and S_{d} be as in Example 7.2. Then Aut ${ }^{+}\left(\mathrm{BCay}\left(\mathbb{Z}_{p}^{2}, S_{-1, b}\right)\right) \gtrsim$ $\mathbb{Z}_{p}^{2}: \mathrm{D}_{10}$, and Aut ${ }^{+}\left(\mathrm{BCay}\left(\mathbb{Z}_{p}^{4}, S_{-1}\right)\right) \gtrsim \mathbb{Z}_{p}^{4}: \mathrm{S}_{5}$.

Finally, the following lemma fulfills the proof of Theorem 1.1.
Lemma 7.6. If G_{u} and G_{w} are conjugate subgroups of G, then Theorem 1.1 (4) holds.
Proof. Assume that G_{u} and G_{w} are conjugate in G. By [11, Theorem 1.1], as an affine primitive group on U, the group G is explicitly known; in particular, $k=2$ or 4 , $p \equiv \pm 1(\bmod 5)$ if $k=4$, and $p \neq 5$ if $k=4$. By Lemma 2.6 , we write $\Gamma=\mathrm{BCay}\left(\mathbb{Z}_{p}^{k}, S\right)$, where S is an H-orbit on \mathbb{Z}_{p}^{k} for some $H \leqslant \operatorname{GL}_{k}(p)$ with $H \cong G_{u}$. Thus G is the subgroup of Aut ${ }^{+}(\Gamma)$ induced by $G_{0}:=\left\{t_{\alpha, \mathbf{v}} \mid \alpha \in H, \mathbf{v} \in \mathbb{Z}_{p}^{k}\right\}$, see the second paragraph of Section 2. Noting that the vertex set of Γ is identified with $\mathbb{Z}_{p}^{k} \times \mathbb{Z}_{2}$, we choose $u=(\mathbf{0}, 0)$, where $\mathbf{0}$ is the zero vector of \mathbb{Z}_{p}^{k}.

Since Γ is connected, the digraph Cay $\left(\mathbb{Z}_{p}^{k}, S\right)$ is connected, and so S spans the vector space \mathbb{Z}_{p}^{k}. Then S contains a basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}$ of \mathbb{Z}_{p}^{k}. For each $\alpha \in \operatorname{GL}_{k}(p)$, it is easily shown that $\operatorname{Cay}\left(\mathbb{Z}_{p}^{k}, S\right) \cong \operatorname{Cay}\left(\mathbb{Z}_{p}^{k}, S \alpha\right)$, and then $\Gamma=\operatorname{BCay}\left(\mathbb{Z}_{p}^{k}, S\right) \cong \operatorname{BCay}\left(\mathbb{Z}_{p}^{k}, S \alpha\right)$. Thus, up to isomorphism, we choose \mathbf{e}_{i} with the i th coordinate 1 and all other coordinates 0 for $i \in\{1,2, \ldots, k\}$, and choose $\alpha_{0} \in H$ with $\alpha_{0}^{5}=1$ and $\mathbf{e}_{i} \alpha_{0}=\mathbf{e}_{i+1}$ for $i \in$ $\{1,2, \ldots, k-1\}$. Then, by straightforward calculation, we conclude α_{0} is given as in Example 7.2. We have $S=S_{c, b}$ or S_{d} for $k=2$ or 4 , respectively.

Let $A=$ Aut $^{+}(\Gamma)$. By Lemma 2.5, Γ has an automorphism τ of order 2, which interchanges two parts of Γ. Then $\operatorname{Aut}(\Gamma)=A:\langle\tau\rangle$. Clearly, A acts faithfully and primitively on both parts of Γ. By Lemma 4.1, Theorems 5.10 and 6.5, we conclude that A is an affine primitive group on each part of Γ. It follows from Lemma 7.1, A_{u} and A_{w} are conjugate in A, and thus A has a suborbit of length 5. By [11, Theorem 1.1], either $k=2$ and $|A|$ is a divisor of $10 p^{2}$, or $k=4$ and $|A|$ is a divisor of $120 p^{4}$. Note that (*) holds for A, and every $\alpha \in \mathrm{GL}_{k}(p)$ with $S \alpha=S$ induces an element of A.

Assume that $k=2$. Then, by Lemma 7.3, $c=-1$ and $b=\frac{-1 \pm \sqrt{5}}{2}$. Recalling that $|A|$ is a divisor of $10 p^{2}$, by Corollary 7.5 , we conclude that $A \cong \mathbb{Z}_{p}^{2}: \mathrm{D}_{10}$, and so $\operatorname{Aut}(\Gamma)=$
$A:\langle\tau\rangle \cong\left(\mathbb{Z}_{p}^{2}: \mathrm{D}_{10}\right): \mathbb{Z}_{2}$. Let $b_{1}=\frac{-1-\sqrt{5}}{2}$ and $b_{2}=\frac{-1+\sqrt{5}}{2}$. Then $\Gamma=\mathrm{BCay}\left(\mathbb{Z}_{p}^{k}, S_{-1, b_{1}}\right)$ or $\operatorname{BCay}\left(\mathbb{Z}_{p}^{k}, S_{-1, b_{2}}\right)$. Take $\alpha=\left(\begin{array}{cc}1 & 0 \\ -1 & b_{2}\end{array}\right)$. Calculation shows that $S_{-1, b_{1}} \alpha=S_{-1, b_{2}}$, and thus $\operatorname{BCay}\left(\mathbb{Z}_{p}^{2}, S_{-1, b_{1}}\right) \cong \operatorname{BCay}\left(\mathbb{Z}_{p}^{2}, S_{-1, b_{2}}\right)$. Then (i) of Theorem 1.1 (4) follows.

Now let $k=4$. Recall that (*) holds for A. If $\left|A_{u}\right|$ is odd then $A_{u} \cong \mathbb{Z}_{5}$; however, since A is a primitive subgroup of $\operatorname{AGL}_{4}(p)$, we have that $d=-1$ and A_{u} should has a subgroup isomorphic to S_{5} by Lemma 7.4, a contradiction. Thus $\left|A_{u}\right|$ is even, and then A_{u} has a subgroup isomorphic to D_{10}. This implies that there exists an involution $\beta_{0} \in \mathrm{GL}_{k}(p)$ such that $S_{d} \beta_{0}=S_{d}$ and $\left\langle\alpha_{0}, \beta_{0}\right\rangle \cong \mathrm{D}_{10}$. Recall that $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4} \in S_{d}$ and $\mathbf{e}_{i} \alpha_{0}=\mathbf{e}_{i+1}$ for $i \in\{1,2,3\}$. Then $S_{d}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{4} \alpha_{0}\right\}$. Without loss of generality, we assume that β_{0} induces the permutation $\left(\mathbf{e}_{1}, \mathbf{e}_{4}\right)\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)$ on S_{d}. Straightforward calculation shows that $-d^{2}=d^{3}$, yielding $d=-1$. It follows from Lemma 7.4 that A_{u} has a subgroup isomorphic to S_{5}. Since $\left|A_{u}\right|$ is a divisor of 120 , we have $A_{u} \cong S_{5}$, and so $\operatorname{Aut}(\Gamma)=$ $A:\langle\tau\rangle \cong\left(\mathbb{Z}_{p}^{4}: S_{5}\right): \mathbb{Z}_{2}$, desired as in (ii) of Theorem 1.1 (4). This completes the proof.

References

[1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), 469-514.
[2] J.V. Bon, Thompson-Wielandt-like theorems revisited, Bull. London Math. Soc. $\mathbf{3 5}$ (2003), 30-36.
[3] J.N. Bray, D.F. Holt and C.M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge University Press, New York, 2013.
[4] P.J. Cameron, G.R. Omidi and B. Tayfeh-Rezaie, 3-Designs from PGL(2,q), Electron J Combin 13 (2006), Research Paper 50.
[5] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J Combin. Theory Ser. B 42 (1987), 196-211.
[6] A.M. Cohen, M.W. Liebeck, J. Saxl and G.M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite ans algebraic, Proc. London Math, Soc (3), 64 (1992), 21-48.
[7] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[8] B.N. Cooperstein, Maximal subgroups of $\mathrm{G}_{2}\left(2^{n}\right)$, J. Algebra 70 (1981), 23-36.
[9] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
[10] S.F. Du and M.Y. Xu, A classification of semisymmetric graphs of order 2pq, Commun. Algebra 28 (2000), 2685-2715.
[11] J.B. Fawcetta, M. Giudicia, C.H. Li, C.E. Praeger, G. Royle and G. Verret, Primitive permutation groups with a suborbit of length 5 and vertex-primitive graphs of valency 5, J. Combin. Theory Ser. A 157 (2018), 247-266.
[12] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.11.1, 2021. http://www.gap-system.org
[13] M. Giudici, C.H. Li, and C.E. Praeger, Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 356 (2004), 291-317.
[14] D. Goldschmidt, Automorphisms of trivalent graphs, Annals of Math. 111 (1980), 377-406.
[15] M. E. Iofinova and A. A. Ivanov, Biprimitive cubic graphs (Russian), Investigation in Algebraic Theory of Combinatorial Objects, Proc. of the Seminar, Institute for System Studies, Moscow, 1985, pp.124-134.
[16] K.Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1990.
[17] P.B. Kleidman, The maximal subgroups of the steinberg triality groups ${ }^{3} D_{4}(q)$ and of their automorphism groups, J.Algebra 115(1988), 182-199.
[18] P.B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal group $\mathrm{P} \Omega_{8}^{+}(q)$ and of their automorphism groups, J.Algebra 110(1987), 173-242.
[19] P.B. Kleidman, The maximal subgroups of the Chevalley groups $\mathrm{G}_{2}(q)$ and with q odd, the Ree group ${ }^{2} \mathrm{G}_{2}(q)$, and their automorphism groups, J.Algebra $117(1988), 30-71$.
[20] P.B. Kleidman and M.W. Liebeck, The subgroup structure of the finite classical groups, Cambridge University Press, 1990.
[21] C.H. Li, Z.P. Lu and G.X. Wang, Arc-transitive graphs of square-free order and small valency, Discrete Math. 339 (2016), 2907-2918.
[22] C.H. Li and H. Zhang, The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs, Proc. Lond. Math. Soc. 103 (2011) 441-472.
[23] C.H. Li and H. Zhang, Finite vertex-biprimitive edge-transitive tetravalent graphs, Descrite Math. 317 (2014) 33-43.
[24] J.J. Li, Z.P. Lu and G.X. Wang, A note on bi-normal Cayley graphs, Ars Combin. 117 (2014), 3-7.
[25] M.W. Liebeck, C. E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra . 111 (1987), 365-383.
[26] M.W. Liebeck, J. Saxl and G.M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. 65 (1992), 297-325.
[27] M.W. Liebeck and G.M. Seitz, A survey of maximal subgroups of exceptional groups of Lie type, Groups, Combinatorics and Geometry (Durham, 2001), 139-146, World Sci. Publ., River Edge, NJ, 2003.
[28] Z.P. Lu, On the automorphism groups of biCayley graphs, Acta Scientiarum Naturalium Universitatis Pekinensis, 39 (2003), 1-5.
[29] Z.P. Lu, C.Q. Wang and M.Y. Xu, On semisymmetric cubic graphs of order $6 p^{2}$, Sci China Ser A 47 (2004), 1-17.
[30] G. Malle, The maximal subgroups of ${ }^{2} \mathrm{~F}_{4}\left(q^{2}\right)$, J. Algebra 139 (1991), 52-69.
[31] U. Meierfrankenfeld and S. Shpectorov, Maximal 2-local subgroups of the Monster and Baby Monster, Preprint, https://users.math.msu.edu/users/meierfra/Preprints/2monster/maxmon.pdf.
[32] M. Suzuki, On a class of doubly transitive groups, Ann. of Math. 75 (1962), 105-145.
[33] R. Weiss, s-Transitive graphs, In: Algebraic Methods in Graph Theory, Vol I, II, Szeged (1978), pp. 827-847, Colloq. Soc. János Bolyai 25, North-Holland, Amsterdam-New York, 1981.
[34] R.A. Wilson, The maximal subgroups of the Baby Monster, I, J. Algebra 211 (1999), 1-14.
[35] R.A. Wilson, The Finite Simple Groups, Springer-Verlag, London, 2009.
[36] W. Wong, Determination of a class of primitive permutation groups, Math. Z., 99 (1967), 235-246.
[37] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), 309-319.
Q. Cai, Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, China E-mail address: 919727874@qq.com
Z.P. Lu, Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, China E-mail address: lu@nankai.edu.cn

[^0]: 2010 Mathematics Subject Classification. 05C25, 20B25.
 Supported by the National Natural Science Foundation of China (11971248, 12331013, 12161141006) and the Fundamental Research Funds for the Central Universities.

